Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Harry Wentland | 4239 | 58.09% | 16 | 10.06% |
Krunoslav Kovac | 381 | 5.22% | 1 | 0.63% |
Dmytro Laktyushkin | 244 | 3.34% | 19 | 11.95% |
Eric Yang | 224 | 3.07% | 3 | 1.89% |
Bhawanpreet Lakha | 215 | 2.95% | 5 | 3.14% |
Hersen Wu | 203 | 2.78% | 5 | 3.14% |
David Francis | 173 | 2.37% | 2 | 1.26% |
Daniel Gomez | 171 | 2.34% | 1 | 0.63% |
Yue Hin Lau | 155 | 2.12% | 11 | 6.92% |
Wesley Chalmers | 120 | 1.64% | 2 | 1.26% |
Anthony Koo | 109 | 1.49% | 6 | 3.77% |
Eric Bernstein | 99 | 1.36% | 7 | 4.40% |
Tony Cheng | 93 | 1.27% | 8 | 5.03% |
Nicholas Kazlauskas | 92 | 1.26% | 2 | 1.26% |
Derek Lai | 73 | 1.00% | 2 | 1.26% |
Yogesh Mohan Marimuthu | 66 | 0.90% | 1 | 0.63% |
Becle Lee | 65 | 0.89% | 1 | 0.63% |
Jun Lei | 59 | 0.81% | 4 | 2.52% |
Su Sung Chung | 58 | 0.79% | 2 | 1.26% |
Charlene Liu | 55 | 0.75% | 8 | 5.03% |
Yongqiang Sun | 53 | 0.73% | 6 | 3.77% |
Aric Cyr | 42 | 0.58% | 1 | 0.63% |
abdoulaye berthe | 38 | 0.52% | 2 | 1.26% |
Andrey Grodzovsky | 36 | 0.49% | 3 | 1.89% |
yanyan kang | 31 | 0.42% | 1 | 0.63% |
Melissa Wen | 29 | 0.40% | 2 | 1.26% |
Atufa Khan | 16 | 0.22% | 1 | 0.63% |
Vitaly Prosyak | 16 | 0.22% | 1 | 0.63% |
Eryk Brol | 12 | 0.16% | 1 | 0.63% |
SivapiriyanKumarasamy | 12 | 0.16% | 1 | 0.63% |
Navid Emamdoost | 10 | 0.14% | 2 | 1.26% |
Xingyue Tao | 10 | 0.14% | 3 | 1.89% |
Thomas Lim | 10 | 0.14% | 1 | 0.63% |
Leon Elazar | 8 | 0.11% | 1 | 0.63% |
Ashley Thomas | 8 | 0.11% | 1 | 0.63% |
Andrew Jiang | 7 | 0.10% | 1 | 0.63% |
Jimmy Kizito | 6 | 0.08% | 1 | 0.63% |
Ao Zhong | 6 | 0.08% | 1 | 0.63% |
Isabella Basso | 6 | 0.08% | 1 | 0.63% |
Feifei Xu | 5 | 0.07% | 3 | 1.89% |
Dave Airlie | 5 | 0.07% | 4 | 2.52% |
Stylon Wang | 5 | 0.07% | 1 | 0.63% |
Hawking Zhang | 4 | 0.05% | 1 | 0.63% |
Ken Chalmers | 4 | 0.05% | 1 | 0.63% |
Jerry (Fangzhi) Zuo | 4 | 0.05% | 1 | 0.63% |
Joseph Gravenor | 3 | 0.04% | 1 | 0.63% |
Joshua Aberback | 3 | 0.04% | 1 | 0.63% |
Jing Zhou | 3 | 0.04% | 1 | 0.63% |
Roman Li | 2 | 0.03% | 1 | 0.63% |
Wyatt Wood | 2 | 0.03% | 1 | 0.63% |
Zhan Liu | 2 | 0.03% | 1 | 0.63% |
Christophe Jaillet | 1 | 0.01% | 1 | 0.63% |
Gary Li | 1 | 0.01% | 1 | 0.63% |
Mikita Lipski | 1 | 0.01% | 1 | 0.63% |
Daniel Kolesa | 1 | 0.01% | 1 | 0.63% |
Bernard Zhao | 1 | 0.01% | 1 | 0.63% |
Total | 7297 | 159 |
/* * Copyright 2016 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dm_services.h" #include "dc.h" #include "dcn10_init.h" #include "resource.h" #include "include/irq_service_interface.h" #include "dcn10_resource.h" #include "dcn10_ipp.h" #include "dcn10_mpc.h" #include "irq/dcn10/irq_service_dcn10.h" #include "dcn10_dpp.h" #include "dcn10_optc.h" #include "dcn10_hw_sequencer.h" #include "dce110/dce110_hw_sequencer.h" #include "dcn10_opp.h" #include "dcn10_link_encoder.h" #include "dcn10_stream_encoder.h" #include "dce/dce_clock_source.h" #include "dce/dce_audio.h" #include "dce/dce_hwseq.h" #include "virtual/virtual_stream_encoder.h" #include "dce110/dce110_resource.h" #include "dce112/dce112_resource.h" #include "dcn10_hubp.h" #include "dcn10_hubbub.h" #include "dce/dce_panel_cntl.h" #include "soc15_hw_ip.h" #include "vega10_ip_offset.h" #include "dcn/dcn_1_0_offset.h" #include "dcn/dcn_1_0_sh_mask.h" #include "nbio/nbio_7_0_offset.h" #include "mmhub/mmhub_9_1_offset.h" #include "mmhub/mmhub_9_1_sh_mask.h" #include "reg_helper.h" #include "dce/dce_abm.h" #include "dce/dce_dmcu.h" #include "dce/dce_aux.h" #include "dce/dce_i2c.h" #ifndef mmDP0_DP_DPHY_INTERNAL_CTRL #define mmDP0_DP_DPHY_INTERNAL_CTRL 0x210f #define mmDP0_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 #define mmDP1_DP_DPHY_INTERNAL_CTRL 0x220f #define mmDP1_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 #define mmDP2_DP_DPHY_INTERNAL_CTRL 0x230f #define mmDP2_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 #define mmDP3_DP_DPHY_INTERNAL_CTRL 0x240f #define mmDP3_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 #define mmDP4_DP_DPHY_INTERNAL_CTRL 0x250f #define mmDP4_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 #define mmDP5_DP_DPHY_INTERNAL_CTRL 0x260f #define mmDP5_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 #define mmDP6_DP_DPHY_INTERNAL_CTRL 0x270f #define mmDP6_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 #endif enum dcn10_clk_src_array_id { DCN10_CLK_SRC_PLL0, DCN10_CLK_SRC_PLL1, DCN10_CLK_SRC_PLL2, DCN10_CLK_SRC_PLL3, DCN10_CLK_SRC_TOTAL, DCN101_CLK_SRC_TOTAL = DCN10_CLK_SRC_PLL3 }; /* begin ********************* * macros to expend register list macro defined in HW object header file */ /* DCN */ #define BASE_INNER(seg) \ DCE_BASE__INST0_SEG ## seg #define BASE(seg) \ BASE_INNER(seg) #define SR(reg_name)\ .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \ mm ## reg_name #define SRI(reg_name, block, id)\ .reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ mm ## block ## id ## _ ## reg_name #define SRII(reg_name, block, id)\ .reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ mm ## block ## id ## _ ## reg_name #define VUPDATE_SRII(reg_name, block, id)\ .reg_name[id] = BASE(mm ## reg_name ## 0 ## _ ## block ## id ## _BASE_IDX) + \ mm ## reg_name ## 0 ## _ ## block ## id /* set field/register/bitfield name */ #define SFRB(field_name, reg_name, bitfield, post_fix)\ .field_name = reg_name ## __ ## bitfield ## post_fix /* NBIO */ #define NBIO_BASE_INNER(seg) \ NBIF_BASE__INST0_SEG ## seg #define NBIO_BASE(seg) \ NBIO_BASE_INNER(seg) #define NBIO_SR(reg_name)\ .reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \ mm ## reg_name /* MMHUB */ #define MMHUB_BASE_INNER(seg) \ MMHUB_BASE__INST0_SEG ## seg #define MMHUB_BASE(seg) \ MMHUB_BASE_INNER(seg) #define MMHUB_SR(reg_name)\ .reg_name = MMHUB_BASE(mm ## reg_name ## _BASE_IDX) + \ mm ## reg_name /* macros to expend register list macro defined in HW object header file * end *********************/ static const struct dce_dmcu_registers dmcu_regs = { DMCU_DCN10_REG_LIST() }; static const struct dce_dmcu_shift dmcu_shift = { DMCU_MASK_SH_LIST_DCN10(__SHIFT) }; static const struct dce_dmcu_mask dmcu_mask = { DMCU_MASK_SH_LIST_DCN10(_MASK) }; static const struct dce_abm_registers abm_regs = { ABM_DCN10_REG_LIST(0) }; static const struct dce_abm_shift abm_shift = { ABM_MASK_SH_LIST_DCN10(__SHIFT) }; static const struct dce_abm_mask abm_mask = { ABM_MASK_SH_LIST_DCN10(_MASK) }; #define stream_enc_regs(id)\ [id] = {\ SE_DCN_REG_LIST(id)\ } static const struct dcn10_stream_enc_registers stream_enc_regs[] = { stream_enc_regs(0), stream_enc_regs(1), stream_enc_regs(2), stream_enc_regs(3), }; static const struct dcn10_stream_encoder_shift se_shift = { SE_COMMON_MASK_SH_LIST_DCN10(__SHIFT) }; static const struct dcn10_stream_encoder_mask se_mask = { SE_COMMON_MASK_SH_LIST_DCN10(_MASK) }; #define audio_regs(id)\ [id] = {\ AUD_COMMON_REG_LIST(id)\ } static const struct dce_audio_registers audio_regs[] = { audio_regs(0), audio_regs(1), audio_regs(2), audio_regs(3), }; #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\ SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\ SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\ AUD_COMMON_MASK_SH_LIST_BASE(mask_sh) static const struct dce_audio_shift audio_shift = { DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT) }; static const struct dce_audio_mask audio_mask = { DCE120_AUD_COMMON_MASK_SH_LIST(_MASK) }; #define aux_regs(id)\ [id] = {\ AUX_REG_LIST(id)\ } static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = { aux_regs(0), aux_regs(1), aux_regs(2), aux_regs(3) }; #define hpd_regs(id)\ [id] = {\ HPD_REG_LIST(id)\ } static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = { hpd_regs(0), hpd_regs(1), hpd_regs(2), hpd_regs(3) }; #define link_regs(id)\ [id] = {\ LE_DCN10_REG_LIST(id), \ SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \ } static const struct dcn10_link_enc_registers link_enc_regs[] = { link_regs(0), link_regs(1), link_regs(2), link_regs(3) }; static const struct dcn10_link_enc_shift le_shift = { LINK_ENCODER_MASK_SH_LIST_DCN10(__SHIFT) }; static const struct dcn10_link_enc_mask le_mask = { LINK_ENCODER_MASK_SH_LIST_DCN10(_MASK) }; static const struct dce_panel_cntl_registers panel_cntl_regs[] = { { DCN_PANEL_CNTL_REG_LIST() } }; static const struct dce_panel_cntl_shift panel_cntl_shift = { DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT) }; static const struct dce_panel_cntl_mask panel_cntl_mask = { DCE_PANEL_CNTL_MASK_SH_LIST(_MASK) }; static const struct dce110_aux_registers_shift aux_shift = { DCN10_AUX_MASK_SH_LIST(__SHIFT) }; static const struct dce110_aux_registers_mask aux_mask = { DCN10_AUX_MASK_SH_LIST(_MASK) }; #define ipp_regs(id)\ [id] = {\ IPP_REG_LIST_DCN10(id),\ } static const struct dcn10_ipp_registers ipp_regs[] = { ipp_regs(0), ipp_regs(1), ipp_regs(2), ipp_regs(3), }; static const struct dcn10_ipp_shift ipp_shift = { IPP_MASK_SH_LIST_DCN10(__SHIFT) }; static const struct dcn10_ipp_mask ipp_mask = { IPP_MASK_SH_LIST_DCN10(_MASK), }; #define opp_regs(id)\ [id] = {\ OPP_REG_LIST_DCN10(id),\ } static const struct dcn10_opp_registers opp_regs[] = { opp_regs(0), opp_regs(1), opp_regs(2), opp_regs(3), }; static const struct dcn10_opp_shift opp_shift = { OPP_MASK_SH_LIST_DCN10(__SHIFT) }; static const struct dcn10_opp_mask opp_mask = { OPP_MASK_SH_LIST_DCN10(_MASK), }; #define aux_engine_regs(id)\ [id] = {\ AUX_COMMON_REG_LIST(id), \ .AUX_RESET_MASK = 0 \ } static const struct dce110_aux_registers aux_engine_regs[] = { aux_engine_regs(0), aux_engine_regs(1), aux_engine_regs(2), aux_engine_regs(3), aux_engine_regs(4), aux_engine_regs(5) }; #define tf_regs(id)\ [id] = {\ TF_REG_LIST_DCN10(id),\ } static const struct dcn_dpp_registers tf_regs[] = { tf_regs(0), tf_regs(1), tf_regs(2), tf_regs(3), }; static const struct dcn_dpp_shift tf_shift = { TF_REG_LIST_SH_MASK_DCN10(__SHIFT), TF_DEBUG_REG_LIST_SH_DCN10 }; static const struct dcn_dpp_mask tf_mask = { TF_REG_LIST_SH_MASK_DCN10(_MASK), TF_DEBUG_REG_LIST_MASK_DCN10 }; static const struct dcn_mpc_registers mpc_regs = { MPC_COMMON_REG_LIST_DCN1_0(0), MPC_COMMON_REG_LIST_DCN1_0(1), MPC_COMMON_REG_LIST_DCN1_0(2), MPC_COMMON_REG_LIST_DCN1_0(3), MPC_OUT_MUX_COMMON_REG_LIST_DCN1_0(0), MPC_OUT_MUX_COMMON_REG_LIST_DCN1_0(1), MPC_OUT_MUX_COMMON_REG_LIST_DCN1_0(2), MPC_OUT_MUX_COMMON_REG_LIST_DCN1_0(3) }; static const struct dcn_mpc_shift mpc_shift = { MPC_COMMON_MASK_SH_LIST_DCN1_0(__SHIFT),\ SFRB(CUR_VUPDATE_LOCK_SET, CUR0_VUPDATE_LOCK_SET0, CUR0_VUPDATE_LOCK_SET, __SHIFT) }; static const struct dcn_mpc_mask mpc_mask = { MPC_COMMON_MASK_SH_LIST_DCN1_0(_MASK),\ SFRB(CUR_VUPDATE_LOCK_SET, CUR0_VUPDATE_LOCK_SET0, CUR0_VUPDATE_LOCK_SET, _MASK) }; #define tg_regs(id)\ [id] = {TG_COMMON_REG_LIST_DCN1_0(id)} static const struct dcn_optc_registers tg_regs[] = { tg_regs(0), tg_regs(1), tg_regs(2), tg_regs(3), }; static const struct dcn_optc_shift tg_shift = { TG_COMMON_MASK_SH_LIST_DCN1_0(__SHIFT) }; static const struct dcn_optc_mask tg_mask = { TG_COMMON_MASK_SH_LIST_DCN1_0(_MASK) }; static const struct bios_registers bios_regs = { NBIO_SR(BIOS_SCRATCH_3), NBIO_SR(BIOS_SCRATCH_6) }; #define hubp_regs(id)\ [id] = {\ HUBP_REG_LIST_DCN10(id)\ } static const struct dcn_mi_registers hubp_regs[] = { hubp_regs(0), hubp_regs(1), hubp_regs(2), hubp_regs(3), }; static const struct dcn_mi_shift hubp_shift = { HUBP_MASK_SH_LIST_DCN10(__SHIFT) }; static const struct dcn_mi_mask hubp_mask = { HUBP_MASK_SH_LIST_DCN10(_MASK) }; static const struct dcn_hubbub_registers hubbub_reg = { HUBBUB_REG_LIST_DCN10(0) }; static const struct dcn_hubbub_shift hubbub_shift = { HUBBUB_MASK_SH_LIST_DCN10(__SHIFT) }; static const struct dcn_hubbub_mask hubbub_mask = { HUBBUB_MASK_SH_LIST_DCN10(_MASK) }; static int map_transmitter_id_to_phy_instance( enum transmitter transmitter) { switch (transmitter) { case TRANSMITTER_UNIPHY_A: return 0; break; case TRANSMITTER_UNIPHY_B: return 1; break; case TRANSMITTER_UNIPHY_C: return 2; break; case TRANSMITTER_UNIPHY_D: return 3; break; default: ASSERT(0); return 0; } } #define clk_src_regs(index, pllid)\ [index] = {\ CS_COMMON_REG_LIST_DCN1_0(index, pllid),\ } static const struct dce110_clk_src_regs clk_src_regs[] = { clk_src_regs(0, A), clk_src_regs(1, B), clk_src_regs(2, C), clk_src_regs(3, D) }; static const struct dce110_clk_src_shift cs_shift = { CS_COMMON_MASK_SH_LIST_DCN1_0(__SHIFT) }; static const struct dce110_clk_src_mask cs_mask = { CS_COMMON_MASK_SH_LIST_DCN1_0(_MASK) }; static const struct resource_caps res_cap = { .num_timing_generator = 4, .num_opp = 4, .num_video_plane = 4, .num_audio = 4, .num_stream_encoder = 4, .num_pll = 4, .num_ddc = 4, }; static const struct resource_caps rv2_res_cap = { .num_timing_generator = 3, .num_opp = 3, .num_video_plane = 3, .num_audio = 3, .num_stream_encoder = 3, .num_pll = 3, .num_ddc = 4, }; static const struct dc_plane_cap plane_cap = { .type = DC_PLANE_TYPE_DCN_UNIVERSAL, .blends_with_above = true, .blends_with_below = true, .per_pixel_alpha = true, .pixel_format_support = { .argb8888 = true, .nv12 = true, .fp16 = true, .p010 = true }, .max_upscale_factor = { .argb8888 = 16000, .nv12 = 16000, .fp16 = 1 }, .max_downscale_factor = { .argb8888 = 250, .nv12 = 250, .fp16 = 1 } }; static const struct dc_debug_options debug_defaults_drv = { .sanity_checks = true, .disable_dmcu = false, .force_abm_enable = false, .timing_trace = false, .clock_trace = true, /* raven smu dones't allow 0 disp clk, * smu min disp clk limit is 50Mhz * keep min disp clk 100Mhz avoid smu hang */ .min_disp_clk_khz = 100000, .disable_pplib_clock_request = false, .disable_pplib_wm_range = false, .pplib_wm_report_mode = WM_REPORT_DEFAULT, .pipe_split_policy = MPC_SPLIT_AVOID, .force_single_disp_pipe_split = false, .disable_dcc = DCC_ENABLE, .voltage_align_fclk = true, .disable_stereo_support = true, .vsr_support = true, .performance_trace = false, .az_endpoint_mute_only = true, .recovery_enabled = false, /*enable this by default after testing.*/ .max_downscale_src_width = 3840, .underflow_assert_delay_us = 0xFFFFFFFF, }; static const struct dc_debug_options debug_defaults_diags = { .disable_dmcu = false, .force_abm_enable = false, .timing_trace = true, .clock_trace = true, .disable_stutter = true, .disable_pplib_clock_request = true, .disable_pplib_wm_range = true, .underflow_assert_delay_us = 0xFFFFFFFF, }; static void dcn10_dpp_destroy(struct dpp **dpp) { kfree(TO_DCN10_DPP(*dpp)); *dpp = NULL; } static struct dpp *dcn10_dpp_create( struct dc_context *ctx, uint32_t inst) { struct dcn10_dpp *dpp = kzalloc(sizeof(struct dcn10_dpp), GFP_KERNEL); if (!dpp) return NULL; dpp1_construct(dpp, ctx, inst, &tf_regs[inst], &tf_shift, &tf_mask); return &dpp->base; } static struct input_pixel_processor *dcn10_ipp_create( struct dc_context *ctx, uint32_t inst) { struct dcn10_ipp *ipp = kzalloc(sizeof(struct dcn10_ipp), GFP_KERNEL); if (!ipp) { BREAK_TO_DEBUGGER(); return NULL; } dcn10_ipp_construct(ipp, ctx, inst, &ipp_regs[inst], &ipp_shift, &ipp_mask); return &ipp->base; } static struct output_pixel_processor *dcn10_opp_create( struct dc_context *ctx, uint32_t inst) { struct dcn10_opp *opp = kzalloc(sizeof(struct dcn10_opp), GFP_KERNEL); if (!opp) { BREAK_TO_DEBUGGER(); return NULL; } dcn10_opp_construct(opp, ctx, inst, &opp_regs[inst], &opp_shift, &opp_mask); return &opp->base; } static struct dce_aux *dcn10_aux_engine_create(struct dc_context *ctx, uint32_t inst) { struct aux_engine_dce110 *aux_engine = kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL); if (!aux_engine) return NULL; dce110_aux_engine_construct(aux_engine, ctx, inst, SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD, &aux_engine_regs[inst], &aux_mask, &aux_shift, ctx->dc->caps.extended_aux_timeout_support); return &aux_engine->base; } #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) } static const struct dce_i2c_registers i2c_hw_regs[] = { i2c_inst_regs(1), i2c_inst_regs(2), i2c_inst_regs(3), i2c_inst_regs(4), i2c_inst_regs(5), i2c_inst_regs(6), }; static const struct dce_i2c_shift i2c_shifts = { I2C_COMMON_MASK_SH_LIST_DCE110(__SHIFT) }; static const struct dce_i2c_mask i2c_masks = { I2C_COMMON_MASK_SH_LIST_DCE110(_MASK) }; static struct dce_i2c_hw *dcn10_i2c_hw_create(struct dc_context *ctx, uint32_t inst) { struct dce_i2c_hw *dce_i2c_hw = kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL); if (!dce_i2c_hw) return NULL; dcn1_i2c_hw_construct(dce_i2c_hw, ctx, inst, &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks); return dce_i2c_hw; } static struct mpc *dcn10_mpc_create(struct dc_context *ctx) { struct dcn10_mpc *mpc10 = kzalloc(sizeof(struct dcn10_mpc), GFP_KERNEL); if (!mpc10) return NULL; dcn10_mpc_construct(mpc10, ctx, &mpc_regs, &mpc_shift, &mpc_mask, 4); return &mpc10->base; } static struct hubbub *dcn10_hubbub_create(struct dc_context *ctx) { struct dcn10_hubbub *dcn10_hubbub = kzalloc(sizeof(struct dcn10_hubbub), GFP_KERNEL); if (!dcn10_hubbub) return NULL; hubbub1_construct(&dcn10_hubbub->base, ctx, &hubbub_reg, &hubbub_shift, &hubbub_mask); return &dcn10_hubbub->base; } static struct timing_generator *dcn10_timing_generator_create( struct dc_context *ctx, uint32_t instance) { struct optc *tgn10 = kzalloc(sizeof(struct optc), GFP_KERNEL); if (!tgn10) return NULL; tgn10->base.inst = instance; tgn10->base.ctx = ctx; tgn10->tg_regs = &tg_regs[instance]; tgn10->tg_shift = &tg_shift; tgn10->tg_mask = &tg_mask; dcn10_timing_generator_init(tgn10); return &tgn10->base; } static const struct encoder_feature_support link_enc_feature = { .max_hdmi_deep_color = COLOR_DEPTH_121212, .max_hdmi_pixel_clock = 600000, .hdmi_ycbcr420_supported = true, .dp_ycbcr420_supported = true, .flags.bits.IS_HBR2_CAPABLE = true, .flags.bits.IS_HBR3_CAPABLE = true, .flags.bits.IS_TPS3_CAPABLE = true, .flags.bits.IS_TPS4_CAPABLE = true }; static struct link_encoder *dcn10_link_encoder_create( struct dc_context *ctx, const struct encoder_init_data *enc_init_data) { struct dcn10_link_encoder *enc10 = kzalloc(sizeof(struct dcn10_link_encoder), GFP_KERNEL); int link_regs_id; if (!enc10) return NULL; link_regs_id = map_transmitter_id_to_phy_instance(enc_init_data->transmitter); dcn10_link_encoder_construct(enc10, enc_init_data, &link_enc_feature, &link_enc_regs[link_regs_id], &link_enc_aux_regs[enc_init_data->channel - 1], &link_enc_hpd_regs[enc_init_data->hpd_source], &le_shift, &le_mask); return &enc10->base; } static struct panel_cntl *dcn10_panel_cntl_create(const struct panel_cntl_init_data *init_data) { struct dce_panel_cntl *panel_cntl = kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL); if (!panel_cntl) return NULL; dce_panel_cntl_construct(panel_cntl, init_data, &panel_cntl_regs[init_data->inst], &panel_cntl_shift, &panel_cntl_mask); return &panel_cntl->base; } static struct clock_source *dcn10_clock_source_create( struct dc_context *ctx, struct dc_bios *bios, enum clock_source_id id, const struct dce110_clk_src_regs *regs, bool dp_clk_src) { struct dce110_clk_src *clk_src = kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL); if (!clk_src) return NULL; if (dce112_clk_src_construct(clk_src, ctx, bios, id, regs, &cs_shift, &cs_mask)) { clk_src->base.dp_clk_src = dp_clk_src; return &clk_src->base; } kfree(clk_src); BREAK_TO_DEBUGGER(); return NULL; } static void read_dce_straps( struct dc_context *ctx, struct resource_straps *straps) { generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX), FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio); } static struct audio *create_audio( struct dc_context *ctx, unsigned int inst) { return dce_audio_create(ctx, inst, &audio_regs[inst], &audio_shift, &audio_mask); } static struct stream_encoder *dcn10_stream_encoder_create( enum engine_id eng_id, struct dc_context *ctx) { struct dcn10_stream_encoder *enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL); if (!enc1) return NULL; dcn10_stream_encoder_construct(enc1, ctx, ctx->dc_bios, eng_id, &stream_enc_regs[eng_id], &se_shift, &se_mask); return &enc1->base; } static const struct dce_hwseq_registers hwseq_reg = { HWSEQ_DCN1_REG_LIST() }; static const struct dce_hwseq_shift hwseq_shift = { HWSEQ_DCN1_MASK_SH_LIST(__SHIFT) }; static const struct dce_hwseq_mask hwseq_mask = { HWSEQ_DCN1_MASK_SH_LIST(_MASK) }; static struct dce_hwseq *dcn10_hwseq_create( struct dc_context *ctx) { struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL); if (hws) { hws->ctx = ctx; hws->regs = &hwseq_reg; hws->shifts = &hwseq_shift; hws->masks = &hwseq_mask; hws->wa.DEGVIDCN10_253 = true; hws->wa.false_optc_underflow = true; hws->wa.DEGVIDCN10_254 = true; if ((ctx->asic_id.chip_family == FAMILY_RV) && ASICREV_IS_RAVEN2(ctx->asic_id.hw_internal_rev)) switch (ctx->asic_id.pci_revision_id) { case PRID_POLLOCK_94: case PRID_POLLOCK_95: case PRID_POLLOCK_E9: case PRID_POLLOCK_EA: case PRID_POLLOCK_EB: hws->wa.wait_hubpret_read_start_during_mpo_transition = true; break; default: hws->wa.wait_hubpret_read_start_during_mpo_transition = false; break; } } return hws; } static const struct resource_create_funcs res_create_funcs = { .read_dce_straps = read_dce_straps, .create_audio = create_audio, .create_stream_encoder = dcn10_stream_encoder_create, .create_hwseq = dcn10_hwseq_create, }; static const struct resource_create_funcs res_create_maximus_funcs = { .read_dce_straps = NULL, .create_audio = NULL, .create_stream_encoder = NULL, .create_hwseq = dcn10_hwseq_create, }; static void dcn10_clock_source_destroy(struct clock_source **clk_src) { kfree(TO_DCE110_CLK_SRC(*clk_src)); *clk_src = NULL; } static struct pp_smu_funcs *dcn10_pp_smu_create(struct dc_context *ctx) { struct pp_smu_funcs *pp_smu = kzalloc(sizeof(*pp_smu), GFP_KERNEL); if (!pp_smu) return pp_smu; dm_pp_get_funcs(ctx, pp_smu); return pp_smu; } static void dcn10_resource_destruct(struct dcn10_resource_pool *pool) { unsigned int i; for (i = 0; i < pool->base.stream_enc_count; i++) { if (pool->base.stream_enc[i] != NULL) { kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i])); pool->base.stream_enc[i] = NULL; } } if (pool->base.mpc != NULL) { kfree(TO_DCN10_MPC(pool->base.mpc)); pool->base.mpc = NULL; } kfree(pool->base.hubbub); pool->base.hubbub = NULL; for (i = 0; i < pool->base.pipe_count; i++) { if (pool->base.opps[i] != NULL) pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]); if (pool->base.dpps[i] != NULL) dcn10_dpp_destroy(&pool->base.dpps[i]); if (pool->base.ipps[i] != NULL) pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]); if (pool->base.hubps[i] != NULL) { kfree(TO_DCN10_HUBP(pool->base.hubps[i])); pool->base.hubps[i] = NULL; } if (pool->base.irqs != NULL) { dal_irq_service_destroy(&pool->base.irqs); } if (pool->base.timing_generators[i] != NULL) { kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i])); pool->base.timing_generators[i] = NULL; } } for (i = 0; i < pool->base.res_cap->num_ddc; i++) { if (pool->base.engines[i] != NULL) dce110_engine_destroy(&pool->base.engines[i]); kfree(pool->base.hw_i2cs[i]); pool->base.hw_i2cs[i] = NULL; kfree(pool->base.sw_i2cs[i]); pool->base.sw_i2cs[i] = NULL; } for (i = 0; i < pool->base.audio_count; i++) { if (pool->base.audios[i]) dce_aud_destroy(&pool->base.audios[i]); } for (i = 0; i < pool->base.clk_src_count; i++) { if (pool->base.clock_sources[i] != NULL) { dcn10_clock_source_destroy(&pool->base.clock_sources[i]); pool->base.clock_sources[i] = NULL; } } if (pool->base.dp_clock_source != NULL) { dcn10_clock_source_destroy(&pool->base.dp_clock_source); pool->base.dp_clock_source = NULL; } if (pool->base.abm != NULL) dce_abm_destroy(&pool->base.abm); if (pool->base.dmcu != NULL) dce_dmcu_destroy(&pool->base.dmcu); kfree(pool->base.pp_smu); } static struct hubp *dcn10_hubp_create( struct dc_context *ctx, uint32_t inst) { struct dcn10_hubp *hubp1 = kzalloc(sizeof(struct dcn10_hubp), GFP_KERNEL); if (!hubp1) return NULL; dcn10_hubp_construct(hubp1, ctx, inst, &hubp_regs[inst], &hubp_shift, &hubp_mask); return &hubp1->base; } static void get_pixel_clock_parameters( const struct pipe_ctx *pipe_ctx, struct pixel_clk_params *pixel_clk_params) { const struct dc_stream_state *stream = pipe_ctx->stream; pixel_clk_params->requested_pix_clk_100hz = stream->timing.pix_clk_100hz; pixel_clk_params->encoder_object_id = stream->link->link_enc->id; pixel_clk_params->signal_type = pipe_ctx->stream->signal; pixel_clk_params->controller_id = pipe_ctx->stream_res.tg->inst + 1; /* TODO: un-hardcode*/ pixel_clk_params->requested_sym_clk = LINK_RATE_LOW * LINK_RATE_REF_FREQ_IN_KHZ; pixel_clk_params->flags.ENABLE_SS = 0; pixel_clk_params->color_depth = stream->timing.display_color_depth; pixel_clk_params->flags.DISPLAY_BLANKED = 1; pixel_clk_params->pixel_encoding = stream->timing.pixel_encoding; if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR422) pixel_clk_params->color_depth = COLOR_DEPTH_888; if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420) pixel_clk_params->requested_pix_clk_100hz /= 2; if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING) pixel_clk_params->requested_pix_clk_100hz *= 2; } static void build_clamping_params(struct dc_stream_state *stream) { stream->clamping.clamping_level = CLAMPING_FULL_RANGE; stream->clamping.c_depth = stream->timing.display_color_depth; stream->clamping.pixel_encoding = stream->timing.pixel_encoding; } static void build_pipe_hw_param(struct pipe_ctx *pipe_ctx) { get_pixel_clock_parameters(pipe_ctx, &pipe_ctx->stream_res.pix_clk_params); pipe_ctx->clock_source->funcs->get_pix_clk_dividers( pipe_ctx->clock_source, &pipe_ctx->stream_res.pix_clk_params, &pipe_ctx->pll_settings); pipe_ctx->stream->clamping.pixel_encoding = pipe_ctx->stream->timing.pixel_encoding; resource_build_bit_depth_reduction_params(pipe_ctx->stream, &pipe_ctx->stream->bit_depth_params); build_clamping_params(pipe_ctx->stream); } static enum dc_status build_mapped_resource( const struct dc *dc, struct dc_state *context, struct dc_stream_state *stream) { struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(&context->res_ctx, stream); if (!pipe_ctx) return DC_ERROR_UNEXPECTED; build_pipe_hw_param(pipe_ctx); return DC_OK; } static enum dc_status dcn10_add_stream_to_ctx( struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream) { enum dc_status result = DC_ERROR_UNEXPECTED; result = resource_map_pool_resources(dc, new_ctx, dc_stream); if (result == DC_OK) result = resource_map_phy_clock_resources(dc, new_ctx, dc_stream); if (result == DC_OK) result = build_mapped_resource(dc, new_ctx, dc_stream); return result; } static struct pipe_ctx *dcn10_acquire_idle_pipe_for_layer( struct dc_state *context, const struct resource_pool *pool, struct dc_stream_state *stream) { struct resource_context *res_ctx = &context->res_ctx; struct pipe_ctx *head_pipe = resource_get_head_pipe_for_stream(res_ctx, stream); struct pipe_ctx *idle_pipe = find_idle_secondary_pipe(res_ctx, pool, head_pipe); if (!head_pipe) { ASSERT(0); return NULL; } if (!idle_pipe) return NULL; idle_pipe->stream = head_pipe->stream; idle_pipe->stream_res.tg = head_pipe->stream_res.tg; idle_pipe->stream_res.abm = head_pipe->stream_res.abm; idle_pipe->stream_res.opp = head_pipe->stream_res.opp; idle_pipe->plane_res.hubp = pool->hubps[idle_pipe->pipe_idx]; idle_pipe->plane_res.ipp = pool->ipps[idle_pipe->pipe_idx]; idle_pipe->plane_res.dpp = pool->dpps[idle_pipe->pipe_idx]; idle_pipe->plane_res.mpcc_inst = pool->dpps[idle_pipe->pipe_idx]->inst; return idle_pipe; } static bool dcn10_get_dcc_compression_cap(const struct dc *dc, const struct dc_dcc_surface_param *input, struct dc_surface_dcc_cap *output) { return dc->res_pool->hubbub->funcs->get_dcc_compression_cap( dc->res_pool->hubbub, input, output); } static void dcn10_destroy_resource_pool(struct resource_pool **pool) { struct dcn10_resource_pool *dcn10_pool = TO_DCN10_RES_POOL(*pool); dcn10_resource_destruct(dcn10_pool); kfree(dcn10_pool); *pool = NULL; } static bool dcn10_validate_bandwidth( struct dc *dc, struct dc_state *context, bool fast_validate) { bool voltage_supported; DC_FP_START(); voltage_supported = dcn_validate_bandwidth(dc, context, fast_validate); DC_FP_END(); return voltage_supported; } static enum dc_status dcn10_validate_plane(const struct dc_plane_state *plane_state, struct dc_caps *caps) { if (plane_state->format >= SURFACE_PIXEL_FORMAT_VIDEO_BEGIN && caps->max_video_width != 0 && plane_state->src_rect.width > caps->max_video_width) return DC_FAIL_SURFACE_VALIDATE; return DC_OK; } static enum dc_status dcn10_validate_global(struct dc *dc, struct dc_state *context) { int i, j; bool video_down_scaled = false; bool video_large = false; bool desktop_large = false; bool dcc_disabled = false; bool mpo_enabled = false; for (i = 0; i < context->stream_count; i++) { if (context->stream_status[i].plane_count == 0) continue; if (context->stream_status[i].plane_count > 2) return DC_FAIL_UNSUPPORTED_1; if (context->stream_status[i].plane_count > 1) mpo_enabled = true; for (j = 0; j < context->stream_status[i].plane_count; j++) { struct dc_plane_state *plane = context->stream_status[i].plane_states[j]; if (plane->format >= SURFACE_PIXEL_FORMAT_VIDEO_BEGIN) { if (plane->src_rect.width > plane->dst_rect.width || plane->src_rect.height > plane->dst_rect.height) video_down_scaled = true; if (plane->src_rect.width >= 3840) video_large = true; } else { if (plane->src_rect.width >= 3840) desktop_large = true; if (!plane->dcc.enable) dcc_disabled = true; } } } /* Disable MPO in multi-display configurations. */ if (context->stream_count > 1 && mpo_enabled) return DC_FAIL_UNSUPPORTED_1; /* * Workaround: On DCN10 there is UMC issue that causes underflow when * playing 4k video on 4k desktop with video downscaled and single channel * memory */ if (video_large && desktop_large && video_down_scaled && dcc_disabled && dc->dcn_soc->number_of_channels == 1) return DC_FAIL_SURFACE_VALIDATE; return DC_OK; } static enum dc_status dcn10_patch_unknown_plane_state(struct dc_plane_state *plane_state) { enum surface_pixel_format surf_pix_format = plane_state->format; unsigned int bpp = resource_pixel_format_to_bpp(surf_pix_format); enum swizzle_mode_values swizzle = DC_SW_LINEAR; if (bpp == 64) swizzle = DC_SW_64KB_D; else swizzle = DC_SW_64KB_S; plane_state->tiling_info.gfx9.swizzle = swizzle; return DC_OK; } struct stream_encoder *dcn10_find_first_free_match_stream_enc_for_link( struct resource_context *res_ctx, const struct resource_pool *pool, struct dc_stream_state *stream) { int i; int j = -1; struct dc_link *link = stream->link; for (i = 0; i < pool->stream_enc_count; i++) { if (!res_ctx->is_stream_enc_acquired[i] && pool->stream_enc[i]) { /* Store first available for MST second display * in daisy chain use case */ j = i; if (link->ep_type == DISPLAY_ENDPOINT_PHY && pool->stream_enc[i]->id == link->link_enc->preferred_engine) return pool->stream_enc[i]; } } /* * For CZ and later, we can allow DIG FE and BE to differ for all display types */ if (j >= 0) return pool->stream_enc[j]; return NULL; } static const struct dc_cap_funcs cap_funcs = { .get_dcc_compression_cap = dcn10_get_dcc_compression_cap }; static const struct resource_funcs dcn10_res_pool_funcs = { .destroy = dcn10_destroy_resource_pool, .link_enc_create = dcn10_link_encoder_create, .panel_cntl_create = dcn10_panel_cntl_create, .validate_bandwidth = dcn10_validate_bandwidth, .acquire_idle_pipe_for_layer = dcn10_acquire_idle_pipe_for_layer, .validate_plane = dcn10_validate_plane, .validate_global = dcn10_validate_global, .add_stream_to_ctx = dcn10_add_stream_to_ctx, .patch_unknown_plane_state = dcn10_patch_unknown_plane_state, .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link }; static uint32_t read_pipe_fuses(struct dc_context *ctx) { uint32_t value = dm_read_reg_soc15(ctx, mmCC_DC_PIPE_DIS, 0); /* RV1 support max 4 pipes */ value = value & 0xf; return value; } static bool verify_clock_values(struct dm_pp_clock_levels_with_voltage *clks) { int i; if (clks->num_levels == 0) return false; for (i = 0; i < clks->num_levels; i++) /* Ensure that the result is sane */ if (clks->data[i].clocks_in_khz == 0) return false; return true; } static bool dcn10_resource_construct( uint8_t num_virtual_links, struct dc *dc, struct dcn10_resource_pool *pool) { int i; int j; struct dc_context *ctx = dc->ctx; uint32_t pipe_fuses = read_pipe_fuses(ctx); struct dm_pp_clock_levels_with_voltage fclks = {0}, dcfclks = {0}; int min_fclk_khz, min_dcfclk_khz, socclk_khz; bool res; ctx->dc_bios->regs = &bios_regs; if (ctx->dce_version == DCN_VERSION_1_01) pool->base.res_cap = &rv2_res_cap; else pool->base.res_cap = &res_cap; pool->base.funcs = &dcn10_res_pool_funcs; /* * TODO fill in from actual raven resource when we create * more than virtual encoder */ /************************************************* * Resource + asic cap harcoding * *************************************************/ pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE; /* max pipe num for ASIC before check pipe fuses */ pool->base.pipe_count = pool->base.res_cap->num_timing_generator; if (dc->ctx->dce_version == DCN_VERSION_1_01) pool->base.pipe_count = 3; dc->caps.max_video_width = 3840; dc->caps.max_downscale_ratio = 200; dc->caps.i2c_speed_in_khz = 100; dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/ dc->caps.max_cursor_size = 256; dc->caps.min_horizontal_blanking_period = 80; dc->caps.max_slave_planes = 1; dc->caps.max_slave_yuv_planes = 1; dc->caps.max_slave_rgb_planes = 0; dc->caps.is_apu = true; dc->caps.post_blend_color_processing = false; dc->caps.extended_aux_timeout_support = false; /* Raven DP PHY HBR2 eye diagram pattern is not stable. Use TP4 */ dc->caps.force_dp_tps4_for_cp2520 = true; /* Color pipeline capabilities */ dc->caps.color.dpp.dcn_arch = 1; dc->caps.color.dpp.input_lut_shared = 1; dc->caps.color.dpp.icsc = 1; dc->caps.color.dpp.dgam_ram = 1; dc->caps.color.dpp.dgam_rom_caps.srgb = 1; dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1; dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 0; dc->caps.color.dpp.dgam_rom_caps.pq = 0; dc->caps.color.dpp.dgam_rom_caps.hlg = 0; dc->caps.color.dpp.post_csc = 0; dc->caps.color.dpp.gamma_corr = 0; dc->caps.color.dpp.dgam_rom_for_yuv = 1; dc->caps.color.dpp.hw_3d_lut = 0; dc->caps.color.dpp.ogam_ram = 1; // RGAM on DCN1 dc->caps.color.dpp.ogam_rom_caps.srgb = 1; dc->caps.color.dpp.ogam_rom_caps.bt2020 = 1; dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0; dc->caps.color.dpp.ogam_rom_caps.pq = 0; dc->caps.color.dpp.ogam_rom_caps.hlg = 0; dc->caps.color.dpp.ocsc = 1; /* no post-blend color operations */ dc->caps.color.mpc.gamut_remap = 0; dc->caps.color.mpc.num_3dluts = 0; dc->caps.color.mpc.shared_3d_lut = 0; dc->caps.color.mpc.ogam_ram = 0; dc->caps.color.mpc.ogam_rom_caps.srgb = 0; dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0; dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0; dc->caps.color.mpc.ogam_rom_caps.pq = 0; dc->caps.color.mpc.ogam_rom_caps.hlg = 0; dc->caps.color.mpc.ocsc = 0; if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV) dc->debug = debug_defaults_drv; else dc->debug = debug_defaults_diags; /************************************************* * Create resources * *************************************************/ pool->base.clock_sources[DCN10_CLK_SRC_PLL0] = dcn10_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL0, &clk_src_regs[0], false); pool->base.clock_sources[DCN10_CLK_SRC_PLL1] = dcn10_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL1, &clk_src_regs[1], false); pool->base.clock_sources[DCN10_CLK_SRC_PLL2] = dcn10_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL2, &clk_src_regs[2], false); if (dc->ctx->dce_version == DCN_VERSION_1_0) { pool->base.clock_sources[DCN10_CLK_SRC_PLL3] = dcn10_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL3, &clk_src_regs[3], false); } pool->base.clk_src_count = DCN10_CLK_SRC_TOTAL; if (dc->ctx->dce_version == DCN_VERSION_1_01) pool->base.clk_src_count = DCN101_CLK_SRC_TOTAL; pool->base.dp_clock_source = dcn10_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_ID_DP_DTO, /* todo: not reuse phy_pll registers */ &clk_src_regs[0], true); for (i = 0; i < pool->base.clk_src_count; i++) { if (pool->base.clock_sources[i] == NULL) { dm_error("DC: failed to create clock sources!\n"); BREAK_TO_DEBUGGER(); goto fail; } } pool->base.dmcu = dcn10_dmcu_create(ctx, &dmcu_regs, &dmcu_shift, &dmcu_mask); if (pool->base.dmcu == NULL) { dm_error("DC: failed to create dmcu!\n"); BREAK_TO_DEBUGGER(); goto fail; } pool->base.abm = dce_abm_create(ctx, &abm_regs, &abm_shift, &abm_mask); if (pool->base.abm == NULL) { dm_error("DC: failed to create abm!\n"); BREAK_TO_DEBUGGER(); goto fail; } dml_init_instance(&dc->dml, &dcn1_0_soc, &dcn1_0_ip, DML_PROJECT_RAVEN1); memcpy(dc->dcn_ip, &dcn10_ip_defaults, sizeof(dcn10_ip_defaults)); memcpy(dc->dcn_soc, &dcn10_soc_defaults, sizeof(dcn10_soc_defaults)); DC_FP_START(); dcn10_resource_construct_fp(dc); DC_FP_END(); if (!dc->config.is_vmin_only_asic) if (ASICREV_IS_RAVEN2(dc->ctx->asic_id.hw_internal_rev)) switch (dc->ctx->asic_id.pci_revision_id) { case PRID_DALI_DE: case PRID_DALI_DF: case PRID_DALI_E3: case PRID_DALI_E4: case PRID_POLLOCK_94: case PRID_POLLOCK_95: case PRID_POLLOCK_E9: case PRID_POLLOCK_EA: case PRID_POLLOCK_EB: dc->config.is_vmin_only_asic = true; break; default: break; } pool->base.pp_smu = dcn10_pp_smu_create(ctx); /* * Right now SMU/PPLIB and DAL all have the AZ D3 force PME notification * * implemented. So AZ D3 should work.For issue 197007. * */ if (pool->base.pp_smu != NULL && pool->base.pp_smu->rv_funcs.set_pme_wa_enable != NULL) dc->debug.az_endpoint_mute_only = false; if (!dc->debug.disable_pplib_clock_request) { /* * TODO: This is not the proper way to obtain * fabric_and_dram_bandwidth, should be min(fclk, memclk). */ res = dm_pp_get_clock_levels_by_type_with_voltage( ctx, DM_PP_CLOCK_TYPE_FCLK, &fclks); DC_FP_START(); if (res) res = verify_clock_values(&fclks); if (res) dcn_bw_update_from_pplib_fclks(dc, &fclks); else BREAK_TO_DEBUGGER(); DC_FP_END(); res = dm_pp_get_clock_levels_by_type_with_voltage( ctx, DM_PP_CLOCK_TYPE_DCFCLK, &dcfclks); DC_FP_START(); if (res) res = verify_clock_values(&dcfclks); if (res) dcn_bw_update_from_pplib_dcfclks(dc, &dcfclks); else BREAK_TO_DEBUGGER(); DC_FP_END(); } dcn_bw_sync_calcs_and_dml(dc); if (!dc->debug.disable_pplib_wm_range) { dc->res_pool = &pool->base; DC_FP_START(); dcn_get_soc_clks( dc, &min_fclk_khz, &min_dcfclk_khz, &socclk_khz); DC_FP_END(); dcn_bw_notify_pplib_of_wm_ranges( dc, min_fclk_khz, min_dcfclk_khz, socclk_khz); } { struct irq_service_init_data init_data; init_data.ctx = dc->ctx; pool->base.irqs = dal_irq_service_dcn10_create(&init_data); if (!pool->base.irqs) goto fail; } /* index to valid pipe resource */ j = 0; /* mem input -> ipp -> dpp -> opp -> TG */ for (i = 0; i < pool->base.pipe_count; i++) { /* if pipe is disabled, skip instance of HW pipe, * i.e, skip ASIC register instance */ if ((pipe_fuses & (1 << i)) != 0) continue; pool->base.hubps[j] = dcn10_hubp_create(ctx, i); if (pool->base.hubps[j] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create memory input!\n"); goto fail; } pool->base.ipps[j] = dcn10_ipp_create(ctx, i); if (pool->base.ipps[j] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create input pixel processor!\n"); goto fail; } pool->base.dpps[j] = dcn10_dpp_create(ctx, i); if (pool->base.dpps[j] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create dpp!\n"); goto fail; } pool->base.opps[j] = dcn10_opp_create(ctx, i); if (pool->base.opps[j] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create output pixel processor!\n"); goto fail; } pool->base.timing_generators[j] = dcn10_timing_generator_create( ctx, i); if (pool->base.timing_generators[j] == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create tg!\n"); goto fail; } /* check next valid pipe */ j++; } for (i = 0; i < pool->base.res_cap->num_ddc; i++) { pool->base.engines[i] = dcn10_aux_engine_create(ctx, i); if (pool->base.engines[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC:failed to create aux engine!!\n"); goto fail; } pool->base.hw_i2cs[i] = dcn10_i2c_hw_create(ctx, i); if (pool->base.hw_i2cs[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC:failed to create hw i2c!!\n"); goto fail; } pool->base.sw_i2cs[i] = NULL; } /* valid pipe num */ pool->base.pipe_count = j; pool->base.timing_generator_count = j; /* within dml lib, it is hard code to 4. If ASIC pipe is fused, * the value may be changed */ dc->dml.ip.max_num_dpp = pool->base.pipe_count; dc->dcn_ip->max_num_dpp = pool->base.pipe_count; pool->base.mpc = dcn10_mpc_create(ctx); if (pool->base.mpc == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create mpc!\n"); goto fail; } pool->base.hubbub = dcn10_hubbub_create(ctx); if (pool->base.hubbub == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create hubbub!\n"); goto fail; } if (!resource_construct(num_virtual_links, dc, &pool->base, (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ? &res_create_funcs : &res_create_maximus_funcs))) goto fail; dcn10_hw_sequencer_construct(dc); dc->caps.max_planes = pool->base.pipe_count; for (i = 0; i < dc->caps.max_planes; ++i) dc->caps.planes[i] = plane_cap; dc->cap_funcs = cap_funcs; return true; fail: dcn10_resource_destruct(pool); return false; } struct resource_pool *dcn10_create_resource_pool( const struct dc_init_data *init_data, struct dc *dc) { struct dcn10_resource_pool *pool = kzalloc(sizeof(struct dcn10_resource_pool), GFP_KERNEL); if (!pool) return NULL; if (dcn10_resource_construct(init_data->num_virtual_links, dc, pool)) return &pool->base; kfree(pool); BREAK_TO_DEBUGGER(); return NULL; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1