Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Nicholas Kazlauskas | 5117 | 89.63% | 4 | 12.90% |
Eric Yang | 189 | 3.31% | 2 | 6.45% |
Yue Hin Lau | 181 | 3.17% | 4 | 12.90% |
Harry Wentland | 76 | 1.33% | 4 | 12.90% |
Dmytro Laktyushkin | 72 | 1.26% | 5 | 16.13% |
Bhawanpreet Lakha | 25 | 0.44% | 3 | 9.68% |
Tony Cheng | 25 | 0.44% | 1 | 3.23% |
Jun Lei | 10 | 0.18% | 2 | 6.45% |
Josip Pavic | 8 | 0.14% | 2 | 6.45% |
Andrew Jiang | 2 | 0.04% | 1 | 3.23% |
Arnd Bergmann | 2 | 0.04% | 1 | 3.23% |
Takashi Iwai | 1 | 0.02% | 1 | 3.23% |
Anthony Koo | 1 | 0.02% | 1 | 3.23% |
Total | 5709 | 31 |
/* * Copyright 2016 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dcn30/dcn30_hubbub.h" #include "dcn31_hubbub.h" #include "dm_services.h" #include "reg_helper.h" #define CTX \ hubbub2->base.ctx #define DC_LOGGER \ hubbub2->base.ctx->logger #define REG(reg)\ hubbub2->regs->reg #undef FN #define FN(reg_name, field_name) \ hubbub2->shifts->field_name, hubbub2->masks->field_name #ifdef NUM_VMID #undef NUM_VMID #endif #define NUM_VMID 16 #define DCN31_CRB_SEGMENT_SIZE_KB 64 static void dcn31_init_crb(struct hubbub *hubbub) { struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub); REG_GET(DCHUBBUB_DET0_CTRL, DET0_SIZE_CURRENT, &hubbub2->det0_size); REG_GET(DCHUBBUB_DET1_CTRL, DET1_SIZE_CURRENT, &hubbub2->det1_size); REG_GET(DCHUBBUB_DET2_CTRL, DET2_SIZE_CURRENT, &hubbub2->det2_size); REG_GET(DCHUBBUB_DET3_CTRL, DET3_SIZE_CURRENT, &hubbub2->det3_size); REG_GET(DCHUBBUB_COMPBUF_CTRL, COMPBUF_SIZE_CURRENT, &hubbub2->compbuf_size_segments); REG_SET_2(COMPBUF_RESERVED_SPACE, 0, COMPBUF_RESERVED_SPACE_64B, hubbub2->pixel_chunk_size / 32, COMPBUF_RESERVED_SPACE_ZS, hubbub2->pixel_chunk_size / 128); REG_UPDATE(DCHUBBUB_DEBUG_CTRL_0, DET_DEPTH, 0x17F); } static void dcn31_program_det_size(struct hubbub *hubbub, int hubp_inst, unsigned int det_buffer_size_in_kbyte) { struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub); unsigned int det_size_segments = (det_buffer_size_in_kbyte + DCN31_CRB_SEGMENT_SIZE_KB - 1) / DCN31_CRB_SEGMENT_SIZE_KB; switch (hubp_inst) { case 0: REG_UPDATE(DCHUBBUB_DET0_CTRL, DET0_SIZE, det_size_segments); hubbub2->det0_size = det_size_segments; break; case 1: REG_UPDATE(DCHUBBUB_DET1_CTRL, DET1_SIZE, det_size_segments); hubbub2->det1_size = det_size_segments; break; case 2: REG_UPDATE(DCHUBBUB_DET2_CTRL, DET2_SIZE, det_size_segments); hubbub2->det2_size = det_size_segments; break; case 3: REG_UPDATE(DCHUBBUB_DET3_CTRL, DET3_SIZE, det_size_segments); hubbub2->det3_size = det_size_segments; break; default: break; } /* Should never be hit, if it is we have an erroneous hw config*/ ASSERT(hubbub2->det0_size + hubbub2->det1_size + hubbub2->det2_size + hubbub2->det3_size + hubbub2->compbuf_size_segments <= hubbub2->crb_size_segs); } static void dcn31_program_compbuf_size(struct hubbub *hubbub, unsigned int compbuf_size_kb, bool safe_to_increase) { struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub); unsigned int compbuf_size_segments = (compbuf_size_kb + DCN31_CRB_SEGMENT_SIZE_KB - 1) / DCN31_CRB_SEGMENT_SIZE_KB; if (safe_to_increase || compbuf_size_segments <= hubbub2->compbuf_size_segments) { if (compbuf_size_segments > hubbub2->compbuf_size_segments) { REG_WAIT(DCHUBBUB_DET0_CTRL, DET0_SIZE_CURRENT, hubbub2->det0_size, 1, 100); REG_WAIT(DCHUBBUB_DET1_CTRL, DET1_SIZE_CURRENT, hubbub2->det1_size, 1, 100); REG_WAIT(DCHUBBUB_DET2_CTRL, DET2_SIZE_CURRENT, hubbub2->det2_size, 1, 100); REG_WAIT(DCHUBBUB_DET3_CTRL, DET3_SIZE_CURRENT, hubbub2->det3_size, 1, 100); } /* Should never be hit, if it is we have an erroneous hw config*/ ASSERT(hubbub2->det0_size + hubbub2->det1_size + hubbub2->det2_size + hubbub2->det3_size + compbuf_size_segments <= hubbub2->crb_size_segs); REG_UPDATE(DCHUBBUB_COMPBUF_CTRL, COMPBUF_SIZE, compbuf_size_segments); hubbub2->compbuf_size_segments = compbuf_size_segments; ASSERT(REG_GET(DCHUBBUB_COMPBUF_CTRL, CONFIG_ERROR, &compbuf_size_segments) && !compbuf_size_segments); } } static uint32_t convert_and_clamp( uint32_t wm_ns, uint32_t refclk_mhz, uint32_t clamp_value) { uint32_t ret_val = 0; ret_val = wm_ns * refclk_mhz; ret_val /= 1000; if (ret_val > clamp_value) { /* clamping WMs is abnormal, unexpected and may lead to underflow*/ ASSERT(0); ret_val = clamp_value; } return ret_val; } static bool hubbub31_program_urgent_watermarks( struct hubbub *hubbub, struct dcn_watermark_set *watermarks, unsigned int refclk_mhz, bool safe_to_lower) { struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub); uint32_t prog_wm_value; bool wm_pending = false; /* Repeat for water mark set A, B, C and D. */ /* clock state A */ if (safe_to_lower || watermarks->a.urgent_ns > hubbub2->watermarks.a.urgent_ns) { hubbub2->watermarks.a.urgent_ns = watermarks->a.urgent_ns; prog_wm_value = convert_and_clamp(watermarks->a.urgent_ns, refclk_mhz, 0x3fff); REG_SET(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A, 0, DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("URGENCY_WATERMARK_A calculated =%d\n" "HW register value = 0x%x\n", watermarks->a.urgent_ns, prog_wm_value); } else if (watermarks->a.urgent_ns < hubbub2->watermarks.a.urgent_ns) wm_pending = true; /* determine the transfer time for a quantity of data for a particular requestor.*/ if (safe_to_lower || watermarks->a.frac_urg_bw_flip > hubbub2->watermarks.a.frac_urg_bw_flip) { hubbub2->watermarks.a.frac_urg_bw_flip = watermarks->a.frac_urg_bw_flip; REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_FLIP_A, 0, DCHUBBUB_ARB_FRAC_URG_BW_FLIP_A, watermarks->a.frac_urg_bw_flip); } else if (watermarks->a.frac_urg_bw_flip < hubbub2->watermarks.a.frac_urg_bw_flip) wm_pending = true; if (safe_to_lower || watermarks->a.frac_urg_bw_nom > hubbub2->watermarks.a.frac_urg_bw_nom) { hubbub2->watermarks.a.frac_urg_bw_nom = watermarks->a.frac_urg_bw_nom; REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_NOM_A, 0, DCHUBBUB_ARB_FRAC_URG_BW_NOM_A, watermarks->a.frac_urg_bw_nom); } else if (watermarks->a.frac_urg_bw_nom < hubbub2->watermarks.a.frac_urg_bw_nom) wm_pending = true; if (safe_to_lower || watermarks->a.urgent_latency_ns > hubbub2->watermarks.a.urgent_latency_ns) { hubbub2->watermarks.a.urgent_latency_ns = watermarks->a.urgent_latency_ns; prog_wm_value = convert_and_clamp(watermarks->a.urgent_latency_ns, refclk_mhz, 0x3fff); REG_SET(DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_A, 0, DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_A, prog_wm_value); } else if (watermarks->a.urgent_latency_ns < hubbub2->watermarks.a.urgent_latency_ns) wm_pending = true; /* clock state B */ if (safe_to_lower || watermarks->b.urgent_ns > hubbub2->watermarks.b.urgent_ns) { hubbub2->watermarks.b.urgent_ns = watermarks->b.urgent_ns; prog_wm_value = convert_and_clamp(watermarks->b.urgent_ns, refclk_mhz, 0x3fff); REG_SET(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_B, 0, DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_B, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("URGENCY_WATERMARK_B calculated =%d\n" "HW register value = 0x%x\n", watermarks->b.urgent_ns, prog_wm_value); } else if (watermarks->b.urgent_ns < hubbub2->watermarks.b.urgent_ns) wm_pending = true; /* determine the transfer time for a quantity of data for a particular requestor.*/ if (safe_to_lower || watermarks->b.frac_urg_bw_flip > hubbub2->watermarks.b.frac_urg_bw_flip) { hubbub2->watermarks.b.frac_urg_bw_flip = watermarks->b.frac_urg_bw_flip; REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_FLIP_B, 0, DCHUBBUB_ARB_FRAC_URG_BW_FLIP_B, watermarks->b.frac_urg_bw_flip); } else if (watermarks->b.frac_urg_bw_flip < hubbub2->watermarks.b.frac_urg_bw_flip) wm_pending = true; if (safe_to_lower || watermarks->b.frac_urg_bw_nom > hubbub2->watermarks.b.frac_urg_bw_nom) { hubbub2->watermarks.b.frac_urg_bw_nom = watermarks->b.frac_urg_bw_nom; REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_NOM_B, 0, DCHUBBUB_ARB_FRAC_URG_BW_NOM_B, watermarks->b.frac_urg_bw_nom); } else if (watermarks->b.frac_urg_bw_nom < hubbub2->watermarks.b.frac_urg_bw_nom) wm_pending = true; if (safe_to_lower || watermarks->b.urgent_latency_ns > hubbub2->watermarks.b.urgent_latency_ns) { hubbub2->watermarks.b.urgent_latency_ns = watermarks->b.urgent_latency_ns; prog_wm_value = convert_and_clamp(watermarks->b.urgent_latency_ns, refclk_mhz, 0x3fff); REG_SET(DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_B, 0, DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_B, prog_wm_value); } else if (watermarks->b.urgent_latency_ns < hubbub2->watermarks.b.urgent_latency_ns) wm_pending = true; /* clock state C */ if (safe_to_lower || watermarks->c.urgent_ns > hubbub2->watermarks.c.urgent_ns) { hubbub2->watermarks.c.urgent_ns = watermarks->c.urgent_ns; prog_wm_value = convert_and_clamp(watermarks->c.urgent_ns, refclk_mhz, 0x3fff); REG_SET(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_C, 0, DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_C, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("URGENCY_WATERMARK_C calculated =%d\n" "HW register value = 0x%x\n", watermarks->c.urgent_ns, prog_wm_value); } else if (watermarks->c.urgent_ns < hubbub2->watermarks.c.urgent_ns) wm_pending = true; /* determine the transfer time for a quantity of data for a particular requestor.*/ if (safe_to_lower || watermarks->c.frac_urg_bw_flip > hubbub2->watermarks.c.frac_urg_bw_flip) { hubbub2->watermarks.c.frac_urg_bw_flip = watermarks->c.frac_urg_bw_flip; REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_FLIP_C, 0, DCHUBBUB_ARB_FRAC_URG_BW_FLIP_C, watermarks->c.frac_urg_bw_flip); } else if (watermarks->c.frac_urg_bw_flip < hubbub2->watermarks.c.frac_urg_bw_flip) wm_pending = true; if (safe_to_lower || watermarks->c.frac_urg_bw_nom > hubbub2->watermarks.c.frac_urg_bw_nom) { hubbub2->watermarks.c.frac_urg_bw_nom = watermarks->c.frac_urg_bw_nom; REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_NOM_C, 0, DCHUBBUB_ARB_FRAC_URG_BW_NOM_C, watermarks->c.frac_urg_bw_nom); } else if (watermarks->c.frac_urg_bw_nom < hubbub2->watermarks.c.frac_urg_bw_nom) wm_pending = true; if (safe_to_lower || watermarks->c.urgent_latency_ns > hubbub2->watermarks.c.urgent_latency_ns) { hubbub2->watermarks.c.urgent_latency_ns = watermarks->c.urgent_latency_ns; prog_wm_value = convert_and_clamp(watermarks->c.urgent_latency_ns, refclk_mhz, 0x3fff); REG_SET(DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_C, 0, DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_C, prog_wm_value); } else if (watermarks->c.urgent_latency_ns < hubbub2->watermarks.c.urgent_latency_ns) wm_pending = true; /* clock state D */ if (safe_to_lower || watermarks->d.urgent_ns > hubbub2->watermarks.d.urgent_ns) { hubbub2->watermarks.d.urgent_ns = watermarks->d.urgent_ns; prog_wm_value = convert_and_clamp(watermarks->d.urgent_ns, refclk_mhz, 0x3fff); REG_SET(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_D, 0, DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_D, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("URGENCY_WATERMARK_D calculated =%d\n" "HW register value = 0x%x\n", watermarks->d.urgent_ns, prog_wm_value); } else if (watermarks->d.urgent_ns < hubbub2->watermarks.d.urgent_ns) wm_pending = true; /* determine the transfer time for a quantity of data for a particular requestor.*/ if (safe_to_lower || watermarks->d.frac_urg_bw_flip > hubbub2->watermarks.d.frac_urg_bw_flip) { hubbub2->watermarks.d.frac_urg_bw_flip = watermarks->d.frac_urg_bw_flip; REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_FLIP_D, 0, DCHUBBUB_ARB_FRAC_URG_BW_FLIP_D, watermarks->d.frac_urg_bw_flip); } else if (watermarks->d.frac_urg_bw_flip < hubbub2->watermarks.d.frac_urg_bw_flip) wm_pending = true; if (safe_to_lower || watermarks->d.frac_urg_bw_nom > hubbub2->watermarks.d.frac_urg_bw_nom) { hubbub2->watermarks.d.frac_urg_bw_nom = watermarks->d.frac_urg_bw_nom; REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_NOM_D, 0, DCHUBBUB_ARB_FRAC_URG_BW_NOM_D, watermarks->d.frac_urg_bw_nom); } else if (watermarks->d.frac_urg_bw_nom < hubbub2->watermarks.d.frac_urg_bw_nom) wm_pending = true; if (safe_to_lower || watermarks->d.urgent_latency_ns > hubbub2->watermarks.d.urgent_latency_ns) { hubbub2->watermarks.d.urgent_latency_ns = watermarks->d.urgent_latency_ns; prog_wm_value = convert_and_clamp(watermarks->d.urgent_latency_ns, refclk_mhz, 0x3fff); REG_SET(DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_D, 0, DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_D, prog_wm_value); } else if (watermarks->d.urgent_latency_ns < hubbub2->watermarks.d.urgent_latency_ns) wm_pending = true; return wm_pending; } static bool hubbub31_program_stutter_watermarks( struct hubbub *hubbub, struct dcn_watermark_set *watermarks, unsigned int refclk_mhz, bool safe_to_lower) { struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub); uint32_t prog_wm_value; bool wm_pending = false; /* clock state A */ if (safe_to_lower || watermarks->a.cstate_pstate.cstate_enter_plus_exit_ns > hubbub2->watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns) { hubbub2->watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = watermarks->a.cstate_pstate.cstate_enter_plus_exit_ns; prog_wm_value = convert_and_clamp( watermarks->a.cstate_pstate.cstate_enter_plus_exit_ns, refclk_mhz, 0xffff); REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A, 0, DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("SR_ENTER_EXIT_WATERMARK_A calculated =%d\n" "HW register value = 0x%x\n", watermarks->a.cstate_pstate.cstate_enter_plus_exit_ns, prog_wm_value); } else if (watermarks->a.cstate_pstate.cstate_enter_plus_exit_ns < hubbub2->watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns) wm_pending = true; if (safe_to_lower || watermarks->a.cstate_pstate.cstate_exit_ns > hubbub2->watermarks.a.cstate_pstate.cstate_exit_ns) { hubbub2->watermarks.a.cstate_pstate.cstate_exit_ns = watermarks->a.cstate_pstate.cstate_exit_ns; prog_wm_value = convert_and_clamp( watermarks->a.cstate_pstate.cstate_exit_ns, refclk_mhz, 0xffff); REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_A, 0, DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_A, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("SR_EXIT_WATERMARK_A calculated =%d\n" "HW register value = 0x%x\n", watermarks->a.cstate_pstate.cstate_exit_ns, prog_wm_value); } else if (watermarks->a.cstate_pstate.cstate_exit_ns < hubbub2->watermarks.a.cstate_pstate.cstate_exit_ns) wm_pending = true; if (safe_to_lower || watermarks->a.cstate_pstate.cstate_enter_plus_exit_z8_ns > hubbub2->watermarks.a.cstate_pstate.cstate_enter_plus_exit_z8_ns) { hubbub2->watermarks.a.cstate_pstate.cstate_enter_plus_exit_z8_ns = watermarks->a.cstate_pstate.cstate_enter_plus_exit_z8_ns; prog_wm_value = convert_and_clamp( watermarks->a.cstate_pstate.cstate_enter_plus_exit_z8_ns, refclk_mhz, 0xffff); REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_Z8_A, 0, DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_Z8_A, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("SR_ENTER_WATERMARK_Z8_A calculated =%d\n" "HW register value = 0x%x\n", watermarks->a.cstate_pstate.cstate_enter_plus_exit_z8_ns, prog_wm_value); } else if (watermarks->a.cstate_pstate.cstate_enter_plus_exit_z8_ns < hubbub2->watermarks.a.cstate_pstate.cstate_enter_plus_exit_z8_ns) wm_pending = true; if (safe_to_lower || watermarks->a.cstate_pstate.cstate_exit_z8_ns > hubbub2->watermarks.a.cstate_pstate.cstate_exit_z8_ns) { hubbub2->watermarks.a.cstate_pstate.cstate_exit_z8_ns = watermarks->a.cstate_pstate.cstate_exit_z8_ns; prog_wm_value = convert_and_clamp( watermarks->a.cstate_pstate.cstate_exit_z8_ns, refclk_mhz, 0xffff); REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_Z8_A, 0, DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_Z8_A, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("SR_EXIT_WATERMARK_Z8_A calculated =%d\n" "HW register value = 0x%x\n", watermarks->a.cstate_pstate.cstate_exit_z8_ns, prog_wm_value); } else if (watermarks->a.cstate_pstate.cstate_exit_z8_ns < hubbub2->watermarks.a.cstate_pstate.cstate_exit_z8_ns) wm_pending = true; /* clock state B */ if (safe_to_lower || watermarks->b.cstate_pstate.cstate_enter_plus_exit_ns > hubbub2->watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns) { hubbub2->watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = watermarks->b.cstate_pstate.cstate_enter_plus_exit_ns; prog_wm_value = convert_and_clamp( watermarks->b.cstate_pstate.cstate_enter_plus_exit_ns, refclk_mhz, 0xffff); REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B, 0, DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("SR_ENTER_EXIT_WATERMARK_B calculated =%d\n" "HW register value = 0x%x\n", watermarks->b.cstate_pstate.cstate_enter_plus_exit_ns, prog_wm_value); } else if (watermarks->b.cstate_pstate.cstate_enter_plus_exit_ns < hubbub2->watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns) wm_pending = true; if (safe_to_lower || watermarks->b.cstate_pstate.cstate_exit_ns > hubbub2->watermarks.b.cstate_pstate.cstate_exit_ns) { hubbub2->watermarks.b.cstate_pstate.cstate_exit_ns = watermarks->b.cstate_pstate.cstate_exit_ns; prog_wm_value = convert_and_clamp( watermarks->b.cstate_pstate.cstate_exit_ns, refclk_mhz, 0xffff); REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_B, 0, DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_B, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("SR_EXIT_WATERMARK_B calculated =%d\n" "HW register value = 0x%x\n", watermarks->b.cstate_pstate.cstate_exit_ns, prog_wm_value); } else if (watermarks->b.cstate_pstate.cstate_exit_ns < hubbub2->watermarks.b.cstate_pstate.cstate_exit_ns) wm_pending = true; if (safe_to_lower || watermarks->b.cstate_pstate.cstate_enter_plus_exit_z8_ns > hubbub2->watermarks.b.cstate_pstate.cstate_enter_plus_exit_z8_ns) { hubbub2->watermarks.b.cstate_pstate.cstate_enter_plus_exit_z8_ns = watermarks->b.cstate_pstate.cstate_enter_plus_exit_z8_ns; prog_wm_value = convert_and_clamp( watermarks->b.cstate_pstate.cstate_enter_plus_exit_z8_ns, refclk_mhz, 0xffff); REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_Z8_B, 0, DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_Z8_B, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("SR_ENTER_WATERMARK_Z8_B calculated =%d\n" "HW register value = 0x%x\n", watermarks->b.cstate_pstate.cstate_enter_plus_exit_z8_ns, prog_wm_value); } else if (watermarks->b.cstate_pstate.cstate_enter_plus_exit_z8_ns < hubbub2->watermarks.b.cstate_pstate.cstate_enter_plus_exit_z8_ns) wm_pending = true; if (safe_to_lower || watermarks->b.cstate_pstate.cstate_exit_z8_ns > hubbub2->watermarks.b.cstate_pstate.cstate_exit_z8_ns) { hubbub2->watermarks.b.cstate_pstate.cstate_exit_z8_ns = watermarks->b.cstate_pstate.cstate_exit_z8_ns; prog_wm_value = convert_and_clamp( watermarks->b.cstate_pstate.cstate_exit_z8_ns, refclk_mhz, 0xffff); REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_Z8_B, 0, DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_Z8_B, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("SR_EXIT_WATERMARK_Z8_B calculated =%d\n" "HW register value = 0x%x\n", watermarks->b.cstate_pstate.cstate_exit_z8_ns, prog_wm_value); } else if (watermarks->b.cstate_pstate.cstate_exit_z8_ns < hubbub2->watermarks.b.cstate_pstate.cstate_exit_z8_ns) wm_pending = true; /* clock state C */ if (safe_to_lower || watermarks->c.cstate_pstate.cstate_enter_plus_exit_ns > hubbub2->watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns) { hubbub2->watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = watermarks->c.cstate_pstate.cstate_enter_plus_exit_ns; prog_wm_value = convert_and_clamp( watermarks->c.cstate_pstate.cstate_enter_plus_exit_ns, refclk_mhz, 0xffff); REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_C, 0, DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_C, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("SR_ENTER_EXIT_WATERMARK_C calculated =%d\n" "HW register value = 0x%x\n", watermarks->c.cstate_pstate.cstate_enter_plus_exit_ns, prog_wm_value); } else if (watermarks->c.cstate_pstate.cstate_enter_plus_exit_ns < hubbub2->watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns) wm_pending = true; if (safe_to_lower || watermarks->c.cstate_pstate.cstate_exit_ns > hubbub2->watermarks.c.cstate_pstate.cstate_exit_ns) { hubbub2->watermarks.c.cstate_pstate.cstate_exit_ns = watermarks->c.cstate_pstate.cstate_exit_ns; prog_wm_value = convert_and_clamp( watermarks->c.cstate_pstate.cstate_exit_ns, refclk_mhz, 0xffff); REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_C, 0, DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_C, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("SR_EXIT_WATERMARK_C calculated =%d\n" "HW register value = 0x%x\n", watermarks->c.cstate_pstate.cstate_exit_ns, prog_wm_value); } else if (watermarks->c.cstate_pstate.cstate_exit_ns < hubbub2->watermarks.c.cstate_pstate.cstate_exit_ns) wm_pending = true; if (safe_to_lower || watermarks->c.cstate_pstate.cstate_enter_plus_exit_z8_ns > hubbub2->watermarks.c.cstate_pstate.cstate_enter_plus_exit_z8_ns) { hubbub2->watermarks.c.cstate_pstate.cstate_enter_plus_exit_z8_ns = watermarks->c.cstate_pstate.cstate_enter_plus_exit_z8_ns; prog_wm_value = convert_and_clamp( watermarks->c.cstate_pstate.cstate_enter_plus_exit_z8_ns, refclk_mhz, 0xffff); REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_Z8_C, 0, DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_Z8_C, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("SR_ENTER_WATERMARK_Z8_C calculated =%d\n" "HW register value = 0x%x\n", watermarks->c.cstate_pstate.cstate_enter_plus_exit_z8_ns, prog_wm_value); } else if (watermarks->c.cstate_pstate.cstate_enter_plus_exit_z8_ns < hubbub2->watermarks.c.cstate_pstate.cstate_enter_plus_exit_z8_ns) wm_pending = true; if (safe_to_lower || watermarks->c.cstate_pstate.cstate_exit_z8_ns > hubbub2->watermarks.c.cstate_pstate.cstate_exit_z8_ns) { hubbub2->watermarks.c.cstate_pstate.cstate_exit_z8_ns = watermarks->c.cstate_pstate.cstate_exit_z8_ns; prog_wm_value = convert_and_clamp( watermarks->c.cstate_pstate.cstate_exit_z8_ns, refclk_mhz, 0xffff); REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_Z8_C, 0, DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_Z8_C, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("SR_EXIT_WATERMARK_Z8_C calculated =%d\n" "HW register value = 0x%x\n", watermarks->c.cstate_pstate.cstate_exit_z8_ns, prog_wm_value); } else if (watermarks->c.cstate_pstate.cstate_exit_z8_ns < hubbub2->watermarks.c.cstate_pstate.cstate_exit_z8_ns) wm_pending = true; /* clock state D */ if (safe_to_lower || watermarks->d.cstate_pstate.cstate_enter_plus_exit_ns > hubbub2->watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns) { hubbub2->watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = watermarks->d.cstate_pstate.cstate_enter_plus_exit_ns; prog_wm_value = convert_and_clamp( watermarks->d.cstate_pstate.cstate_enter_plus_exit_ns, refclk_mhz, 0xffff); REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_D, 0, DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_D, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("SR_ENTER_EXIT_WATERMARK_D calculated =%d\n" "HW register value = 0x%x\n", watermarks->d.cstate_pstate.cstate_enter_plus_exit_ns, prog_wm_value); } else if (watermarks->d.cstate_pstate.cstate_enter_plus_exit_ns < hubbub2->watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns) wm_pending = true; if (safe_to_lower || watermarks->d.cstate_pstate.cstate_exit_ns > hubbub2->watermarks.d.cstate_pstate.cstate_exit_ns) { hubbub2->watermarks.d.cstate_pstate.cstate_exit_ns = watermarks->d.cstate_pstate.cstate_exit_ns; prog_wm_value = convert_and_clamp( watermarks->d.cstate_pstate.cstate_exit_ns, refclk_mhz, 0xffff); REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_D, 0, DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_D, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("SR_EXIT_WATERMARK_D calculated =%d\n" "HW register value = 0x%x\n", watermarks->d.cstate_pstate.cstate_exit_ns, prog_wm_value); } else if (watermarks->d.cstate_pstate.cstate_exit_ns < hubbub2->watermarks.d.cstate_pstate.cstate_exit_ns) wm_pending = true; if (safe_to_lower || watermarks->d.cstate_pstate.cstate_enter_plus_exit_z8_ns > hubbub2->watermarks.d.cstate_pstate.cstate_enter_plus_exit_z8_ns) { hubbub2->watermarks.d.cstate_pstate.cstate_enter_plus_exit_z8_ns = watermarks->d.cstate_pstate.cstate_enter_plus_exit_z8_ns; prog_wm_value = convert_and_clamp( watermarks->d.cstate_pstate.cstate_enter_plus_exit_z8_ns, refclk_mhz, 0xffff); REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_Z8_D, 0, DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_Z8_D, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("SR_ENTER_WATERMARK_Z8_D calculated =%d\n" "HW register value = 0x%x\n", watermarks->d.cstate_pstate.cstate_enter_plus_exit_z8_ns, prog_wm_value); } else if (watermarks->d.cstate_pstate.cstate_enter_plus_exit_z8_ns < hubbub2->watermarks.d.cstate_pstate.cstate_enter_plus_exit_z8_ns) wm_pending = true; if (safe_to_lower || watermarks->d.cstate_pstate.cstate_exit_z8_ns > hubbub2->watermarks.d.cstate_pstate.cstate_exit_z8_ns) { hubbub2->watermarks.d.cstate_pstate.cstate_exit_z8_ns = watermarks->d.cstate_pstate.cstate_exit_z8_ns; prog_wm_value = convert_and_clamp( watermarks->d.cstate_pstate.cstate_exit_z8_ns, refclk_mhz, 0xffff); REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_Z8_D, 0, DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_Z8_D, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("SR_EXIT_WATERMARK_Z8_D calculated =%d\n" "HW register value = 0x%x\n", watermarks->d.cstate_pstate.cstate_exit_z8_ns, prog_wm_value); } else if (watermarks->d.cstate_pstate.cstate_exit_z8_ns < hubbub2->watermarks.d.cstate_pstate.cstate_exit_z8_ns) wm_pending = true; return wm_pending; } static bool hubbub31_program_pstate_watermarks( struct hubbub *hubbub, struct dcn_watermark_set *watermarks, unsigned int refclk_mhz, bool safe_to_lower) { struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub); uint32_t prog_wm_value; bool wm_pending = false; /* clock state A */ if (safe_to_lower || watermarks->a.cstate_pstate.pstate_change_ns > hubbub2->watermarks.a.cstate_pstate.pstate_change_ns) { hubbub2->watermarks.a.cstate_pstate.pstate_change_ns = watermarks->a.cstate_pstate.pstate_change_ns; prog_wm_value = convert_and_clamp( watermarks->a.cstate_pstate.pstate_change_ns, refclk_mhz, 0xffff); REG_SET(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_A, 0, DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_A, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("DRAM_CLK_CHANGE_WATERMARK_A calculated =%d\n" "HW register value = 0x%x\n\n", watermarks->a.cstate_pstate.pstate_change_ns, prog_wm_value); } else if (watermarks->a.cstate_pstate.pstate_change_ns < hubbub2->watermarks.a.cstate_pstate.pstate_change_ns) wm_pending = true; /* clock state B */ if (safe_to_lower || watermarks->b.cstate_pstate.pstate_change_ns > hubbub2->watermarks.b.cstate_pstate.pstate_change_ns) { hubbub2->watermarks.b.cstate_pstate.pstate_change_ns = watermarks->b.cstate_pstate.pstate_change_ns; prog_wm_value = convert_and_clamp( watermarks->b.cstate_pstate.pstate_change_ns, refclk_mhz, 0xffff); REG_SET(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_B, 0, DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_B, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("DRAM_CLK_CHANGE_WATERMARK_B calculated =%d\n" "HW register value = 0x%x\n\n", watermarks->b.cstate_pstate.pstate_change_ns, prog_wm_value); } else if (watermarks->b.cstate_pstate.pstate_change_ns < hubbub2->watermarks.b.cstate_pstate.pstate_change_ns) wm_pending = false; /* clock state C */ if (safe_to_lower || watermarks->c.cstate_pstate.pstate_change_ns > hubbub2->watermarks.c.cstate_pstate.pstate_change_ns) { hubbub2->watermarks.c.cstate_pstate.pstate_change_ns = watermarks->c.cstate_pstate.pstate_change_ns; prog_wm_value = convert_and_clamp( watermarks->c.cstate_pstate.pstate_change_ns, refclk_mhz, 0xffff); REG_SET(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_C, 0, DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_C, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("DRAM_CLK_CHANGE_WATERMARK_C calculated =%d\n" "HW register value = 0x%x\n\n", watermarks->c.cstate_pstate.pstate_change_ns, prog_wm_value); } else if (watermarks->c.cstate_pstate.pstate_change_ns < hubbub2->watermarks.c.cstate_pstate.pstate_change_ns) wm_pending = true; /* clock state D */ if (safe_to_lower || watermarks->d.cstate_pstate.pstate_change_ns > hubbub2->watermarks.d.cstate_pstate.pstate_change_ns) { hubbub2->watermarks.d.cstate_pstate.pstate_change_ns = watermarks->d.cstate_pstate.pstate_change_ns; prog_wm_value = convert_and_clamp( watermarks->d.cstate_pstate.pstate_change_ns, refclk_mhz, 0xffff); REG_SET(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_D, 0, DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_D, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("DRAM_CLK_CHANGE_WATERMARK_D calculated =%d\n" "HW register value = 0x%x\n\n", watermarks->d.cstate_pstate.pstate_change_ns, prog_wm_value); } else if (watermarks->d.cstate_pstate.pstate_change_ns < hubbub2->watermarks.d.cstate_pstate.pstate_change_ns) wm_pending = true; return wm_pending; } static bool hubbub31_program_watermarks( struct hubbub *hubbub, struct dcn_watermark_set *watermarks, unsigned int refclk_mhz, bool safe_to_lower) { bool wm_pending = false; if (hubbub31_program_urgent_watermarks(hubbub, watermarks, refclk_mhz, safe_to_lower)) wm_pending = true; if (hubbub31_program_stutter_watermarks(hubbub, watermarks, refclk_mhz, safe_to_lower)) wm_pending = true; if (hubbub31_program_pstate_watermarks(hubbub, watermarks, refclk_mhz, safe_to_lower)) wm_pending = true; /* * The DCHub arbiter has a mechanism to dynamically rate limit the DCHub request stream to the fabric. * If the memory controller is fully utilized and the DCHub requestors are * well ahead of their amortized schedule, then it is safe to prevent the next winner * from being committed and sent to the fabric. * The utilization of the memory controller is approximated by ensuring that * the number of outstanding requests is greater than a threshold specified * by the ARB_MIN_REQ_OUTSTANDING. To determine that the DCHub requestors are well ahead of the amortized schedule, * the slack of the next winner is compared with the ARB_SAT_LEVEL in DLG RefClk cycles. * * TODO: Revisit request limit after figure out right number. request limit for RM isn't decided yet, set maximum value (0x1FF) * to turn off it for now. */ /*REG_SET(DCHUBBUB_ARB_SAT_LEVEL, 0, DCHUBBUB_ARB_SAT_LEVEL, 60 * refclk_mhz); REG_UPDATE(DCHUBBUB_ARB_DF_REQ_OUTSTAND, DCHUBBUB_ARB_MIN_REQ_OUTSTAND, 0x1FF);*/ hubbub1_allow_self_refresh_control(hubbub, !hubbub->ctx->dc->debug.disable_stutter); return wm_pending; } static void hubbub3_get_blk256_size(unsigned int *blk256_width, unsigned int *blk256_height, unsigned int bytes_per_element) { /* copied from DML. might want to refactor DML to leverage from DML */ /* DML : get_blk256_size */ if (bytes_per_element == 1) { *blk256_width = 16; *blk256_height = 16; } else if (bytes_per_element == 2) { *blk256_width = 16; *blk256_height = 8; } else if (bytes_per_element == 4) { *blk256_width = 8; *blk256_height = 8; } else if (bytes_per_element == 8) { *blk256_width = 8; *blk256_height = 4; } } static void hubbub31_det_request_size( unsigned int detile_buf_size, unsigned int height, unsigned int width, unsigned int bpe, bool *req128_horz_wc, bool *req128_vert_wc) { unsigned int blk256_height = 0; unsigned int blk256_width = 0; unsigned int swath_bytes_horz_wc, swath_bytes_vert_wc; hubbub3_get_blk256_size(&blk256_width, &blk256_height, bpe); swath_bytes_horz_wc = width * blk256_height * bpe; swath_bytes_vert_wc = height * blk256_width * bpe; *req128_horz_wc = (2 * swath_bytes_horz_wc <= detile_buf_size) ? false : /* full 256B request */ true; /* half 128b request */ *req128_vert_wc = (2 * swath_bytes_vert_wc <= detile_buf_size) ? false : /* full 256B request */ true; /* half 128b request */ } static bool hubbub31_get_dcc_compression_cap(struct hubbub *hubbub, const struct dc_dcc_surface_param *input, struct dc_surface_dcc_cap *output) { struct dc *dc = hubbub->ctx->dc; enum dcc_control dcc_control; unsigned int bpe; enum segment_order segment_order_horz, segment_order_vert; bool req128_horz_wc, req128_vert_wc; memset(output, 0, sizeof(*output)); if (dc->debug.disable_dcc == DCC_DISABLE) return false; if (!hubbub->funcs->dcc_support_pixel_format(input->format, &bpe)) return false; if (!hubbub->funcs->dcc_support_swizzle(input->swizzle_mode, bpe, &segment_order_horz, &segment_order_vert)) return false; hubbub31_det_request_size(TO_DCN20_HUBBUB(hubbub)->detile_buf_size, input->surface_size.height, input->surface_size.width, bpe, &req128_horz_wc, &req128_vert_wc); if (!req128_horz_wc && !req128_vert_wc) { dcc_control = dcc_control__256_256_xxx; } else if (input->scan == SCAN_DIRECTION_HORIZONTAL) { if (!req128_horz_wc) dcc_control = dcc_control__256_256_xxx; else if (segment_order_horz == segment_order__contiguous) dcc_control = dcc_control__128_128_xxx; else dcc_control = dcc_control__256_64_64; } else if (input->scan == SCAN_DIRECTION_VERTICAL) { if (!req128_vert_wc) dcc_control = dcc_control__256_256_xxx; else if (segment_order_vert == segment_order__contiguous) dcc_control = dcc_control__128_128_xxx; else dcc_control = dcc_control__256_64_64; } else { if ((req128_horz_wc && segment_order_horz == segment_order__non_contiguous) || (req128_vert_wc && segment_order_vert == segment_order__non_contiguous)) /* access_dir not known, must use most constraining */ dcc_control = dcc_control__256_64_64; else /* reg128 is true for either horz and vert * but segment_order is contiguous */ dcc_control = dcc_control__128_128_xxx; } /* Exception for 64KB_R_X */ if ((bpe == 2) && (input->swizzle_mode == DC_SW_64KB_R_X)) dcc_control = dcc_control__128_128_xxx; if (dc->debug.disable_dcc == DCC_HALF_REQ_DISALBE && dcc_control != dcc_control__256_256_xxx) return false; switch (dcc_control) { case dcc_control__256_256_xxx: output->grph.rgb.max_uncompressed_blk_size = 256; output->grph.rgb.max_compressed_blk_size = 256; output->grph.rgb.independent_64b_blks = false; output->grph.rgb.dcc_controls.dcc_256_256_unconstrained = 1; output->grph.rgb.dcc_controls.dcc_256_128_128 = 1; break; case dcc_control__128_128_xxx: output->grph.rgb.max_uncompressed_blk_size = 128; output->grph.rgb.max_compressed_blk_size = 128; output->grph.rgb.independent_64b_blks = false; output->grph.rgb.dcc_controls.dcc_128_128_uncontrained = 1; output->grph.rgb.dcc_controls.dcc_256_128_128 = 1; break; case dcc_control__256_64_64: output->grph.rgb.max_uncompressed_blk_size = 256; output->grph.rgb.max_compressed_blk_size = 64; output->grph.rgb.independent_64b_blks = true; output->grph.rgb.dcc_controls.dcc_256_64_64 = 1; break; case dcc_control__256_128_128: output->grph.rgb.max_uncompressed_blk_size = 256; output->grph.rgb.max_compressed_blk_size = 128; output->grph.rgb.independent_64b_blks = false; output->grph.rgb.dcc_controls.dcc_256_128_128 = 1; break; } output->capable = true; output->const_color_support = true; return true; } int hubbub31_init_dchub_sys_ctx(struct hubbub *hubbub, struct dcn_hubbub_phys_addr_config *pa_config) { struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub); struct dcn_vmid_page_table_config phys_config; REG_SET(DCN_VM_FB_LOCATION_BASE, 0, FB_BASE, pa_config->system_aperture.fb_base >> 24); REG_SET(DCN_VM_FB_LOCATION_TOP, 0, FB_TOP, pa_config->system_aperture.fb_top >> 24); REG_SET(DCN_VM_FB_OFFSET, 0, FB_OFFSET, pa_config->system_aperture.fb_offset >> 24); REG_SET(DCN_VM_AGP_BOT, 0, AGP_BOT, pa_config->system_aperture.agp_bot >> 24); REG_SET(DCN_VM_AGP_TOP, 0, AGP_TOP, pa_config->system_aperture.agp_top >> 24); REG_SET(DCN_VM_AGP_BASE, 0, AGP_BASE, pa_config->system_aperture.agp_base >> 24); if (pa_config->gart_config.page_table_start_addr != pa_config->gart_config.page_table_end_addr) { phys_config.page_table_start_addr = pa_config->gart_config.page_table_start_addr >> 12; phys_config.page_table_end_addr = pa_config->gart_config.page_table_end_addr >> 12; phys_config.page_table_base_addr = pa_config->gart_config.page_table_base_addr; phys_config.depth = 0; phys_config.block_size = 0; // Init VMID 0 based on PA config dcn20_vmid_setup(&hubbub2->vmid[0], &phys_config); dcn20_vmid_setup(&hubbub2->vmid[15], &phys_config); } dcn21_dchvm_init(hubbub); return NUM_VMID; } static void hubbub31_get_dchub_ref_freq(struct hubbub *hubbub, unsigned int dccg_ref_freq_inKhz, unsigned int *dchub_ref_freq_inKhz) { struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub); uint32_t ref_div = 0; uint32_t ref_en = 0; unsigned int dc_refclk_khz = 24000; REG_GET_2(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, &ref_div, DCHUBBUB_GLOBAL_TIMER_ENABLE, &ref_en); if (ref_en) { if (ref_div == 2) *dchub_ref_freq_inKhz = dc_refclk_khz / 2; else *dchub_ref_freq_inKhz = dc_refclk_khz; /* * The external Reference Clock may change based on the board or * platform requirements and the programmable integer divide must * be programmed to provide a suitable DLG RefClk frequency between * a minimum of 20MHz and maximum of 50MHz */ if (*dchub_ref_freq_inKhz < 20000 || *dchub_ref_freq_inKhz > 50000) ASSERT_CRITICAL(false); return; } else { *dchub_ref_freq_inKhz = dc_refclk_khz; // HUBBUB global timer must be enabled. ASSERT_CRITICAL(false); return; } } static bool hubbub31_verify_allow_pstate_change_high(struct hubbub *hubbub) { struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub); /* * Pstate latency is ~20us so if we wait over 40us and pstate allow * still not asserted, we are probably stuck and going to hang */ const unsigned int pstate_wait_timeout_us = 100; const unsigned int pstate_wait_expected_timeout_us = 40; static unsigned int max_sampled_pstate_wait_us; /* data collection */ static bool forced_pstate_allow; /* help with revert wa */ unsigned int debug_data = 0; unsigned int i; if (forced_pstate_allow) { /* we hacked to force pstate allow to prevent hang last time * we verify_allow_pstate_change_high. so disable force * here so we can check status */ REG_UPDATE_2(DCHUBBUB_ARB_DRAM_STATE_CNTL, DCHUBBUB_ARB_ALLOW_PSTATE_CHANGE_FORCE_VALUE, 0, DCHUBBUB_ARB_ALLOW_PSTATE_CHANGE_FORCE_ENABLE, 0); forced_pstate_allow = false; } REG_WRITE(DCHUBBUB_TEST_DEBUG_INDEX, hubbub2->debug_test_index_pstate); for (i = 0; i < pstate_wait_timeout_us; i++) { debug_data = REG_READ(DCHUBBUB_TEST_DEBUG_DATA); /* Debug bit is specific to ASIC. */ if (debug_data & (1 << 26)) { if (i > pstate_wait_expected_timeout_us) DC_LOG_WARNING("pstate took longer than expected ~%dus\n", i); return true; } if (max_sampled_pstate_wait_us < i) max_sampled_pstate_wait_us = i; udelay(1); } /* force pstate allow to prevent system hang * and break to debugger to investigate */ REG_UPDATE_2(DCHUBBUB_ARB_DRAM_STATE_CNTL, DCHUBBUB_ARB_ALLOW_PSTATE_CHANGE_FORCE_VALUE, 1, DCHUBBUB_ARB_ALLOW_PSTATE_CHANGE_FORCE_ENABLE, 1); forced_pstate_allow = true; DC_LOG_WARNING("pstate TEST_DEBUG_DATA: 0x%X\n", debug_data); return false; } static const struct hubbub_funcs hubbub31_funcs = { .update_dchub = hubbub2_update_dchub, .init_dchub_sys_ctx = hubbub31_init_dchub_sys_ctx, .init_vm_ctx = hubbub2_init_vm_ctx, .dcc_support_swizzle = hubbub3_dcc_support_swizzle, .dcc_support_pixel_format = hubbub2_dcc_support_pixel_format, .get_dcc_compression_cap = hubbub31_get_dcc_compression_cap, .wm_read_state = hubbub21_wm_read_state, .get_dchub_ref_freq = hubbub31_get_dchub_ref_freq, .program_watermarks = hubbub31_program_watermarks, .allow_self_refresh_control = hubbub1_allow_self_refresh_control, .is_allow_self_refresh_enabled = hubbub1_is_allow_self_refresh_enabled, .verify_allow_pstate_change_high = hubbub31_verify_allow_pstate_change_high, .program_det_size = dcn31_program_det_size, .program_compbuf_size = dcn31_program_compbuf_size, .init_crb = dcn31_init_crb, .hubbub_read_state = hubbub2_read_state, }; void hubbub31_construct(struct dcn20_hubbub *hubbub31, struct dc_context *ctx, const struct dcn_hubbub_registers *hubbub_regs, const struct dcn_hubbub_shift *hubbub_shift, const struct dcn_hubbub_mask *hubbub_mask, int det_size_kb, int pixel_chunk_size_kb, int config_return_buffer_size_kb) { hubbub3_construct(hubbub31, ctx, hubbub_regs, hubbub_shift, hubbub_mask); hubbub31->base.funcs = &hubbub31_funcs; hubbub31->detile_buf_size = det_size_kb * 1024; hubbub31->pixel_chunk_size = pixel_chunk_size_kb * 1024; hubbub31->crb_size_segs = config_return_buffer_size_kb / DCN31_CRB_SEGMENT_SIZE_KB; hubbub31->debug_test_index_pstate = 0x6; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1