Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
rodrigosiqueira | 3541 | 84.57% | 2 | 10.00% |
Aurabindo Pillai | 459 | 10.96% | 2 | 10.00% |
Alex Deucher | 64 | 1.53% | 1 | 5.00% |
Alvin lee | 39 | 0.93% | 1 | 5.00% |
George Shen | 28 | 0.67% | 2 | 10.00% |
Jun Lei | 19 | 0.45% | 1 | 5.00% |
Dillon Varone | 18 | 0.43% | 3 | 15.00% |
Wenjing Liu | 9 | 0.21% | 3 | 15.00% |
Harry Wentland | 5 | 0.12% | 1 | 5.00% |
Dmytro Laktyushkin | 3 | 0.07% | 2 | 10.00% |
Eric Bernstein | 1 | 0.02% | 1 | 5.00% |
Vladimir Stempen | 1 | 0.02% | 1 | 5.00% |
Total | 4187 | 20 |
// SPDX-License-Identifier: MIT /* * Copyright 2022 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "clk_mgr.h" #include "resource.h" #include "dcn321_fpu.h" #include "dcn32/dcn32_resource.h" #include "dcn321/dcn321_resource.h" #include "dml/dcn32/display_mode_vba_util_32.h" #define DCN3_2_DEFAULT_DET_SIZE 256 struct _vcs_dpi_ip_params_st dcn3_21_ip = { .gpuvm_enable = 0, .gpuvm_max_page_table_levels = 4, .hostvm_enable = 0, .rob_buffer_size_kbytes = 128, .det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE, .config_return_buffer_size_in_kbytes = 1280, .compressed_buffer_segment_size_in_kbytes = 64, .meta_fifo_size_in_kentries = 22, .zero_size_buffer_entries = 512, .compbuf_reserved_space_64b = 256, .compbuf_reserved_space_zs = 64, .dpp_output_buffer_pixels = 2560, .opp_output_buffer_lines = 1, .pixel_chunk_size_kbytes = 8, .alpha_pixel_chunk_size_kbytes = 4, .min_pixel_chunk_size_bytes = 1024, .dcc_meta_buffer_size_bytes = 6272, .meta_chunk_size_kbytes = 2, .min_meta_chunk_size_bytes = 256, .writeback_chunk_size_kbytes = 8, .ptoi_supported = false, .num_dsc = 4, .maximum_dsc_bits_per_component = 12, .maximum_pixels_per_line_per_dsc_unit = 6016, .dsc422_native_support = true, .is_line_buffer_bpp_fixed = true, .line_buffer_fixed_bpp = 57, .line_buffer_size_bits = 1171920, .max_line_buffer_lines = 32, .writeback_interface_buffer_size_kbytes = 90, .max_num_dpp = 4, .max_num_otg = 4, .max_num_hdmi_frl_outputs = 1, .max_num_wb = 1, .max_dchub_pscl_bw_pix_per_clk = 4, .max_pscl_lb_bw_pix_per_clk = 2, .max_lb_vscl_bw_pix_per_clk = 4, .max_vscl_hscl_bw_pix_per_clk = 4, .max_hscl_ratio = 6, .max_vscl_ratio = 6, .max_hscl_taps = 8, .max_vscl_taps = 8, .dpte_buffer_size_in_pte_reqs_luma = 64, .dpte_buffer_size_in_pte_reqs_chroma = 34, .dispclk_ramp_margin_percent = 1, .max_inter_dcn_tile_repeaters = 8, .cursor_buffer_size = 16, .cursor_chunk_size = 2, .writeback_line_buffer_buffer_size = 0, .writeback_min_hscl_ratio = 1, .writeback_min_vscl_ratio = 1, .writeback_max_hscl_ratio = 1, .writeback_max_vscl_ratio = 1, .writeback_max_hscl_taps = 1, .writeback_max_vscl_taps = 1, .dppclk_delay_subtotal = 47, .dppclk_delay_scl = 50, .dppclk_delay_scl_lb_only = 16, .dppclk_delay_cnvc_formatter = 28, .dppclk_delay_cnvc_cursor = 6, .dispclk_delay_subtotal = 125, .dynamic_metadata_vm_enabled = false, .odm_combine_4to1_supported = false, .dcc_supported = true, .max_num_dp2p0_outputs = 2, .max_num_dp2p0_streams = 4, }; struct _vcs_dpi_soc_bounding_box_st dcn3_21_soc = { .clock_limits = { { .state = 0, .dcfclk_mhz = 1564.0, .fabricclk_mhz = 400.0, .dispclk_mhz = 2150.0, .dppclk_mhz = 2150.0, .phyclk_mhz = 810.0, .phyclk_d18_mhz = 667.0, .phyclk_d32_mhz = 625.0, .socclk_mhz = 1200.0, .dscclk_mhz = 716.667, .dram_speed_mts = 1600.0, .dtbclk_mhz = 1564.0, }, }, .num_states = 1, .sr_exit_time_us = 19.95, .sr_enter_plus_exit_time_us = 24.36, .sr_exit_z8_time_us = 285.0, .sr_enter_plus_exit_z8_time_us = 320, .writeback_latency_us = 12.0, .round_trip_ping_latency_dcfclk_cycles = 263, .urgent_latency_pixel_data_only_us = 4, .urgent_latency_pixel_mixed_with_vm_data_us = 4, .urgent_latency_vm_data_only_us = 4, .fclk_change_latency_us = 20, .usr_retraining_latency_us = 2, .smn_latency_us = 2, .mall_allocated_for_dcn_mbytes = 64, .urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096, .urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096, .urgent_out_of_order_return_per_channel_vm_only_bytes = 4096, .pct_ideal_sdp_bw_after_urgent = 100.0, .pct_ideal_fabric_bw_after_urgent = 67.0, .pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 20.0, .pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0, // N/A, for now keep as is until DML implemented .pct_ideal_dram_sdp_bw_after_urgent_vm_only = 30.0, // N/A, for now keep as is until DML implemented .pct_ideal_dram_bw_after_urgent_strobe = 67.0, .max_avg_sdp_bw_use_normal_percent = 80.0, .max_avg_fabric_bw_use_normal_percent = 60.0, .max_avg_dram_bw_use_normal_strobe_percent = 50.0, .max_avg_dram_bw_use_normal_percent = 15.0, .num_chans = 8, .dram_channel_width_bytes = 2, .fabric_datapath_to_dcn_data_return_bytes = 64, .return_bus_width_bytes = 64, .downspread_percent = 0.38, .dcn_downspread_percent = 0.5, .dram_clock_change_latency_us = 400, .dispclk_dppclk_vco_speed_mhz = 4300.0, .do_urgent_latency_adjustment = true, .urgent_latency_adjustment_fabric_clock_component_us = 1.0, .urgent_latency_adjustment_fabric_clock_reference_mhz = 3000, }; static void get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st *entry) { if (entry->dcfclk_mhz > 0) { float bw_on_sdp = entry->dcfclk_mhz * dcn3_21_soc.return_bus_width_bytes * ((float)dcn3_21_soc.pct_ideal_sdp_bw_after_urgent / 100); entry->fabricclk_mhz = bw_on_sdp / (dcn3_21_soc.return_bus_width_bytes * ((float)dcn3_21_soc.pct_ideal_fabric_bw_after_urgent / 100)); entry->dram_speed_mts = bw_on_sdp / (dcn3_21_soc.num_chans * dcn3_21_soc.dram_channel_width_bytes * ((float)dcn3_21_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100)); } else if (entry->fabricclk_mhz > 0) { float bw_on_fabric = entry->fabricclk_mhz * dcn3_21_soc.return_bus_width_bytes * ((float)dcn3_21_soc.pct_ideal_fabric_bw_after_urgent / 100); entry->dcfclk_mhz = bw_on_fabric / (dcn3_21_soc.return_bus_width_bytes * ((float)dcn3_21_soc.pct_ideal_sdp_bw_after_urgent / 100)); entry->dram_speed_mts = bw_on_fabric / (dcn3_21_soc.num_chans * dcn3_21_soc.dram_channel_width_bytes * ((float)dcn3_21_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100)); } else if (entry->dram_speed_mts > 0) { float bw_on_dram = entry->dram_speed_mts * dcn3_21_soc.num_chans * dcn3_21_soc.dram_channel_width_bytes * ((float)dcn3_21_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100); entry->fabricclk_mhz = bw_on_dram / (dcn3_21_soc.return_bus_width_bytes * ((float)dcn3_21_soc.pct_ideal_fabric_bw_after_urgent / 100)); entry->dcfclk_mhz = bw_on_dram / (dcn3_21_soc.return_bus_width_bytes * ((float)dcn3_21_soc.pct_ideal_sdp_bw_after_urgent / 100)); } } static float calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st *entry) { float memory_bw_kbytes_sec; float fabric_bw_kbytes_sec; float sdp_bw_kbytes_sec; float limiting_bw_kbytes_sec; memory_bw_kbytes_sec = entry->dram_speed_mts * dcn3_21_soc.num_chans * dcn3_21_soc.dram_channel_width_bytes * ((float)dcn3_21_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100); fabric_bw_kbytes_sec = entry->fabricclk_mhz * dcn3_21_soc.return_bus_width_bytes * ((float)dcn3_21_soc.pct_ideal_fabric_bw_after_urgent / 100); sdp_bw_kbytes_sec = entry->dcfclk_mhz * dcn3_21_soc.return_bus_width_bytes * ((float)dcn3_21_soc.pct_ideal_sdp_bw_after_urgent / 100); limiting_bw_kbytes_sec = memory_bw_kbytes_sec; if (fabric_bw_kbytes_sec < limiting_bw_kbytes_sec) limiting_bw_kbytes_sec = fabric_bw_kbytes_sec; if (sdp_bw_kbytes_sec < limiting_bw_kbytes_sec) limiting_bw_kbytes_sec = sdp_bw_kbytes_sec; return limiting_bw_kbytes_sec; } void dcn321_insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries, struct _vcs_dpi_voltage_scaling_st *entry) { int i = 0; int index = 0; float net_bw_of_new_state = 0; dc_assert_fp_enabled(); get_optimal_ntuple(entry); if (*num_entries == 0) { table[0] = *entry; (*num_entries)++; } else { net_bw_of_new_state = calculate_net_bw_in_kbytes_sec(entry); while (net_bw_of_new_state > calculate_net_bw_in_kbytes_sec(&table[index])) { index++; if (index >= *num_entries) break; } for (i = *num_entries; i > index; i--) table[i] = table[i - 1]; table[index] = *entry; (*num_entries)++; } } static void remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries, unsigned int index) { int i; if (*num_entries == 0) return; for (i = index; i < *num_entries - 1; i++) { table[i] = table[i + 1]; } memset(&table[--(*num_entries)], 0, sizeof(struct _vcs_dpi_voltage_scaling_st)); } static int build_synthetic_soc_states(struct clk_bw_params *bw_params, struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries) { int i, j; struct _vcs_dpi_voltage_scaling_st entry = {0}; unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0; unsigned int min_dcfclk_mhz = 199, min_fclk_mhz = 299; static const unsigned int num_dcfclk_stas = 5; unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564}; unsigned int num_uclk_dpms = 0; unsigned int num_fclk_dpms = 0; unsigned int num_dcfclk_dpms = 0; for (i = 0; i < MAX_NUM_DPM_LVL; i++) { if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz) max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz; if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz) max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz; if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz) max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz; if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz) max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz; if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz) max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz; if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz) max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz; if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz) max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz; if (bw_params->clk_table.entries[i].memclk_mhz > 0) num_uclk_dpms++; if (bw_params->clk_table.entries[i].fclk_mhz > 0) num_fclk_dpms++; if (bw_params->clk_table.entries[i].dcfclk_mhz > 0) num_dcfclk_dpms++; } if (!max_dcfclk_mhz || !max_dispclk_mhz || !max_dtbclk_mhz) return -1; if (max_dppclk_mhz == 0) max_dppclk_mhz = max_dispclk_mhz; if (max_fclk_mhz == 0) max_fclk_mhz = max_dcfclk_mhz * dcn3_21_soc.pct_ideal_sdp_bw_after_urgent / dcn3_21_soc.pct_ideal_fabric_bw_after_urgent; if (max_phyclk_mhz == 0) max_phyclk_mhz = dcn3_21_soc.clock_limits[0].phyclk_mhz; *num_entries = 0; entry.dispclk_mhz = max_dispclk_mhz; entry.dscclk_mhz = max_dispclk_mhz / 3; entry.dppclk_mhz = max_dppclk_mhz; entry.dtbclk_mhz = max_dtbclk_mhz; entry.phyclk_mhz = max_phyclk_mhz; entry.phyclk_d18_mhz = dcn3_21_soc.clock_limits[0].phyclk_d18_mhz; entry.phyclk_d32_mhz = dcn3_21_soc.clock_limits[0].phyclk_d32_mhz; // Insert all the DCFCLK STAs for (i = 0; i < num_dcfclk_stas; i++) { entry.dcfclk_mhz = dcfclk_sta_targets[i]; entry.fabricclk_mhz = 0; entry.dram_speed_mts = 0; dcn321_insert_entry_into_table_sorted(table, num_entries, &entry); } // Insert the max DCFCLK entry.dcfclk_mhz = max_dcfclk_mhz; entry.fabricclk_mhz = 0; entry.dram_speed_mts = 0; dcn321_insert_entry_into_table_sorted(table, num_entries, &entry); // Insert the UCLK DPMS for (i = 0; i < num_uclk_dpms; i++) { entry.dcfclk_mhz = 0; entry.fabricclk_mhz = 0; entry.dram_speed_mts = bw_params->clk_table.entries[i].memclk_mhz * 16; dcn321_insert_entry_into_table_sorted(table, num_entries, &entry); } // If FCLK is coarse grained, insert individual DPMs. if (num_fclk_dpms > 2) { for (i = 0; i < num_fclk_dpms; i++) { entry.dcfclk_mhz = 0; entry.fabricclk_mhz = bw_params->clk_table.entries[i].fclk_mhz; entry.dram_speed_mts = 0; dcn321_insert_entry_into_table_sorted(table, num_entries, &entry); } } // If FCLK fine grained, only insert max else { entry.dcfclk_mhz = 0; entry.fabricclk_mhz = max_fclk_mhz; entry.dram_speed_mts = 0; dcn321_insert_entry_into_table_sorted(table, num_entries, &entry); } // At this point, the table contains all "points of interest" based on // DPMs from PMFW, and STAs. Table is sorted by BW, and all clock // ratios (by derate, are exact). // Remove states that require higher clocks than are supported for (i = *num_entries - 1; i >= 0 ; i--) { if (table[i].dcfclk_mhz > max_dcfclk_mhz || table[i].fabricclk_mhz > max_fclk_mhz || table[i].dram_speed_mts > max_uclk_mhz * 16) remove_entry_from_table_at_index(table, num_entries, i); } // At this point, the table only contains supported points of interest // it could be used as is, but some states may be redundant due to // coarse grained nature of some clocks, so we want to round up to // coarse grained DPMs and remove duplicates. // Round up UCLKs for (i = *num_entries - 1; i >= 0 ; i--) { for (j = 0; j < num_uclk_dpms; j++) { if (bw_params->clk_table.entries[j].memclk_mhz * 16 >= table[i].dram_speed_mts) { table[i].dram_speed_mts = bw_params->clk_table.entries[j].memclk_mhz * 16; break; } } } // If FCLK is coarse grained, round up to next DPMs if (num_fclk_dpms > 2) { for (i = *num_entries - 1; i >= 0 ; i--) { for (j = 0; j < num_fclk_dpms; j++) { if (bw_params->clk_table.entries[j].fclk_mhz >= table[i].fabricclk_mhz) { table[i].fabricclk_mhz = bw_params->clk_table.entries[j].fclk_mhz; break; } } } } // Otherwise, round up to minimum. else { for (i = *num_entries - 1; i >= 0 ; i--) { if (table[i].fabricclk_mhz < min_fclk_mhz) { table[i].fabricclk_mhz = min_fclk_mhz; break; } } } // Round DCFCLKs up to minimum for (i = *num_entries - 1; i >= 0 ; i--) { if (table[i].dcfclk_mhz < min_dcfclk_mhz) { table[i].dcfclk_mhz = min_dcfclk_mhz; break; } } // Remove duplicate states, note duplicate states are always neighbouring since table is sorted. i = 0; while (i < *num_entries - 1) { if (table[i].dcfclk_mhz == table[i + 1].dcfclk_mhz && table[i].fabricclk_mhz == table[i + 1].fabricclk_mhz && table[i].dram_speed_mts == table[i + 1].dram_speed_mts) remove_entry_from_table_at_index(table, num_entries, i + 1); else i++; } // Fix up the state indicies for (i = *num_entries - 1; i >= 0 ; i--) { table[i].state = i; } return 0; } static void dcn321_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts, unsigned int *optimal_dcfclk, unsigned int *optimal_fclk) { double bw_from_dram, bw_from_dram1, bw_from_dram2; bw_from_dram1 = uclk_mts * dcn3_21_soc.num_chans * dcn3_21_soc.dram_channel_width_bytes * (dcn3_21_soc.max_avg_dram_bw_use_normal_percent / 100); bw_from_dram2 = uclk_mts * dcn3_21_soc.num_chans * dcn3_21_soc.dram_channel_width_bytes * (dcn3_21_soc.max_avg_sdp_bw_use_normal_percent / 100); bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2; if (optimal_fclk) *optimal_fclk = bw_from_dram / (dcn3_21_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_21_soc.max_avg_sdp_bw_use_normal_percent / 100)); if (optimal_dcfclk) *optimal_dcfclk = bw_from_dram / (dcn3_21_soc.return_bus_width_bytes * (dcn3_21_soc.max_avg_sdp_bw_use_normal_percent / 100)); } /** dcn321_update_bw_bounding_box * This would override some dcn3_2 ip_or_soc initial parameters hardcoded from spreadsheet * with actual values as per dGPU SKU: * -with passed few options from dc->config * -with dentist_vco_frequency from Clk Mgr (currently hardcoded, but might need to get it from PM FW) * -with passed latency values (passed in ns units) in dc-> bb override for debugging purposes * -with passed latencies from VBIOS (in 100_ns units) if available for certain dGPU SKU * -with number of DRAM channels from VBIOS (which differ for certain dGPU SKU of the same ASIC) * -clocks levels with passed clk_table entries from Clk Mgr as reported by PM FW for different * clocks (which might differ for certain dGPU SKU of the same ASIC) */ void dcn321_update_bw_bounding_box_fpu(struct dc *dc, struct clk_bw_params *bw_params) { dc_assert_fp_enabled(); if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) { /* Overrides from dc->config options */ dcn3_21_ip.clamp_min_dcfclk = dc->config.clamp_min_dcfclk; /* Override from passed dc->bb_overrides if available*/ if ((int)(dcn3_21_soc.sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns && dc->bb_overrides.sr_exit_time_ns) { dcn3_21_soc.sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0; } if ((int)(dcn3_21_soc.sr_enter_plus_exit_time_us * 1000) != dc->bb_overrides.sr_enter_plus_exit_time_ns && dc->bb_overrides.sr_enter_plus_exit_time_ns) { dcn3_21_soc.sr_enter_plus_exit_time_us = dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0; } if ((int)(dcn3_21_soc.urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns && dc->bb_overrides.urgent_latency_ns) { dcn3_21_soc.urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0; dcn3_21_soc.urgent_latency_pixel_data_only_us = dc->bb_overrides.urgent_latency_ns / 1000.0; } if ((int)(dcn3_21_soc.dram_clock_change_latency_us * 1000) != dc->bb_overrides.dram_clock_change_latency_ns && dc->bb_overrides.dram_clock_change_latency_ns) { dcn3_21_soc.dram_clock_change_latency_us = dc->bb_overrides.dram_clock_change_latency_ns / 1000.0; } if ((int)(dcn3_21_soc.fclk_change_latency_us * 1000) != dc->bb_overrides.fclk_clock_change_latency_ns && dc->bb_overrides.fclk_clock_change_latency_ns) { dcn3_21_soc.fclk_change_latency_us = dc->bb_overrides.fclk_clock_change_latency_ns / 1000; } if ((int)(dcn3_21_soc.dummy_pstate_latency_us * 1000) != dc->bb_overrides.dummy_clock_change_latency_ns && dc->bb_overrides.dummy_clock_change_latency_ns) { dcn3_21_soc.dummy_pstate_latency_us = dc->bb_overrides.dummy_clock_change_latency_ns / 1000.0; } /* Override from VBIOS if VBIOS bb_info available */ if (dc->ctx->dc_bios->funcs->get_soc_bb_info) { struct bp_soc_bb_info bb_info = {0}; if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) { if (bb_info.dram_clock_change_latency_100ns > 0) dcn3_21_soc.dram_clock_change_latency_us = bb_info.dram_clock_change_latency_100ns * 10; if (bb_info.dram_sr_enter_exit_latency_100ns > 0) dcn3_21_soc.sr_enter_plus_exit_time_us = bb_info.dram_sr_enter_exit_latency_100ns * 10; if (bb_info.dram_sr_exit_latency_100ns > 0) dcn3_21_soc.sr_exit_time_us = bb_info.dram_sr_exit_latency_100ns * 10; } } /* Override from VBIOS for num_chan */ if (dc->ctx->dc_bios->vram_info.num_chans) dcn3_21_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans; if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes) dcn3_21_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes; } /* DML DSC delay factor workaround */ dcn3_21_ip.dsc_delay_factor_wa = dc->debug.dsc_delay_factor_wa_x1000 / 1000.0; dcn3_21_ip.min_prefetch_in_strobe_us = dc->debug.min_prefetch_in_strobe_ns / 1000.0; /* Override dispclk_dppclk_vco_speed_mhz from Clk Mgr */ dcn3_21_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0; dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0; /* Overrides Clock levelsfrom CLK Mgr table entries as reported by PM FW */ if ((!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) && (bw_params->clk_table.entries[0].memclk_mhz)) { if (dc->debug.use_legacy_soc_bb_mechanism) { unsigned int i = 0, j = 0, num_states = 0; unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0}; unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0}; unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0}; unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0}; unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {615, 906, 1324, 1564}; unsigned int num_dcfclk_sta_targets = 4, num_uclk_states = 0; unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0; for (i = 0; i < MAX_NUM_DPM_LVL; i++) { if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz) max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz; if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz) max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz; if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz) max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz; if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz) max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz; } if (!max_dcfclk_mhz) max_dcfclk_mhz = dcn3_21_soc.clock_limits[0].dcfclk_mhz; if (!max_dispclk_mhz) max_dispclk_mhz = dcn3_21_soc.clock_limits[0].dispclk_mhz; if (!max_dppclk_mhz) max_dppclk_mhz = dcn3_21_soc.clock_limits[0].dppclk_mhz; if (!max_phyclk_mhz) max_phyclk_mhz = dcn3_21_soc.clock_limits[0].phyclk_mhz; if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { // If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz; num_dcfclk_sta_targets++; } else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { // If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates for (i = 0; i < num_dcfclk_sta_targets; i++) { if (dcfclk_sta_targets[i] > max_dcfclk_mhz) { dcfclk_sta_targets[i] = max_dcfclk_mhz; break; } } // Update size of array since we "removed" duplicates num_dcfclk_sta_targets = i + 1; } num_uclk_states = bw_params->clk_table.num_entries; // Calculate optimal dcfclk for each uclk for (i = 0; i < num_uclk_states; i++) { dcn321_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16, &optimal_dcfclk_for_uclk[i], NULL); if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) { optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz; } } // Calculate optimal uclk for each dcfclk sta target for (i = 0; i < num_dcfclk_sta_targets; i++) { for (j = 0; j < num_uclk_states; j++) { if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) { optimal_uclk_for_dcfclk_sta_targets[i] = bw_params->clk_table.entries[j].memclk_mhz * 16; break; } } } i = 0; j = 0; // create the final dcfclk and uclk table while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) { if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) { dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; } else { if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) { dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; } else { j = num_uclk_states; } } } while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) { dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; } while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) { dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; } dcn3_21_soc.num_states = num_states; for (i = 0; i < dcn3_21_soc.num_states; i++) { dcn3_21_soc.clock_limits[i].state = i; dcn3_21_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i]; dcn3_21_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i]; /* Fill all states with max values of all these clocks */ dcn3_21_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz; dcn3_21_soc.clock_limits[i].dppclk_mhz = max_dppclk_mhz; dcn3_21_soc.clock_limits[i].phyclk_mhz = max_phyclk_mhz; dcn3_21_soc.clock_limits[i].dscclk_mhz = max_dispclk_mhz / 3; /* Populate from bw_params for DTBCLK, SOCCLK */ if (i > 0) { if (!bw_params->clk_table.entries[i].dtbclk_mhz) { dcn3_21_soc.clock_limits[i].dtbclk_mhz = dcn3_21_soc.clock_limits[i-1].dtbclk_mhz; } else { dcn3_21_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz; } } else if (bw_params->clk_table.entries[i].dtbclk_mhz) { dcn3_21_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz; } if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0) dcn3_21_soc.clock_limits[i].socclk_mhz = dcn3_21_soc.clock_limits[i-1].socclk_mhz; else dcn3_21_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz; if (!dram_speed_mts[i] && i > 0) dcn3_21_soc.clock_limits[i].dram_speed_mts = dcn3_21_soc.clock_limits[i-1].dram_speed_mts; else dcn3_21_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i]; /* These clocks cannot come from bw_params, always fill from dcn3_21_soc[0] */ /* PHYCLK_D18, PHYCLK_D32 */ dcn3_21_soc.clock_limits[i].phyclk_d18_mhz = dcn3_21_soc.clock_limits[0].phyclk_d18_mhz; dcn3_21_soc.clock_limits[i].phyclk_d32_mhz = dcn3_21_soc.clock_limits[0].phyclk_d32_mhz; } } else { build_synthetic_soc_states(bw_params, dcn3_21_soc.clock_limits, &dcn3_21_soc.num_states); } /* Re-init DML with updated bb */ dml_init_instance(&dc->dml, &dcn3_21_soc, &dcn3_21_ip, DML_PROJECT_DCN32); if (dc->current_state) dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_21_soc, &dcn3_21_ip, DML_PROJECT_DCN32); } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1