Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Anthony Koo | 1876 | 33.45% | 13 | 20.31% |
Harry Wentland | 793 | 14.14% | 5 | 7.81% |
Ahmad Othman | 726 | 12.95% | 1 | 1.56% |
Reza Amini | 417 | 7.44% | 5 | 7.81% |
Angus Wang | 327 | 5.83% | 2 | 3.12% |
SivapiriyanKumarasamy | 305 | 5.44% | 1 | 1.56% |
Haiyi Zhou | 254 | 4.53% | 2 | 3.12% |
Aric Cyr | 187 | 3.33% | 5 | 7.81% |
Max Tseng | 147 | 2.62% | 1 | 1.56% |
Eric Cook | 101 | 1.80% | 4 | 6.25% |
Bayan Zabihiyan | 98 | 1.75% | 2 | 3.12% |
Alvin lee | 69 | 1.23% | 2 | 3.12% |
Bing Guo | 48 | 0.86% | 1 | 1.56% |
Felipe Clark | 47 | 0.84% | 2 | 3.12% |
Harry VanZyllDeJong | 42 | 0.75% | 2 | 3.12% |
Amanda Liu | 40 | 0.71% | 1 | 1.56% |
Harmanprit Tatla | 29 | 0.52% | 2 | 3.12% |
Amy Zhang | 29 | 0.52% | 1 | 1.56% |
Ken Chalmers | 20 | 0.36% | 1 | 1.56% |
Jaehyun Chung | 19 | 0.34% | 2 | 3.12% |
Mike Hsieh | 7 | 0.12% | 1 | 1.56% |
Jerry (Fangzhi) Zuo | 6 | 0.11% | 1 | 1.56% |
Leo (Hanghong) Ma | 5 | 0.09% | 1 | 1.56% |
Andrey Grodzovsky | 4 | 0.07% | 1 | 1.56% |
Alex Deucher | 4 | 0.07% | 1 | 1.56% |
Samson Tam | 4 | 0.07% | 1 | 1.56% |
Leo (Sunpeng) Li | 2 | 0.04% | 1 | 1.56% |
Bhawanpreet Lakha | 1 | 0.02% | 1 | 1.56% |
Corbin McElhanney | 1 | 0.02% | 1 | 1.56% |
Total | 5608 | 64 |
/* * Copyright 2016 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dm_services.h" #include "dc.h" #include "mod_freesync.h" #include "core_types.h" #define MOD_FREESYNC_MAX_CONCURRENT_STREAMS 32 #define MIN_REFRESH_RANGE 10 /* Refresh rate ramp at a fixed rate of 65 Hz/second */ #define STATIC_SCREEN_RAMP_DELTA_REFRESH_RATE_PER_FRAME ((1000 / 60) * 65) /* Number of elements in the render times cache array */ #define RENDER_TIMES_MAX_COUNT 10 /* Threshold to exit/exit BTR (to avoid frequent enter-exits at the lower limit) */ #define BTR_MAX_MARGIN 2500 /* Threshold to change BTR multiplier (to avoid frequent changes) */ #define BTR_DRIFT_MARGIN 2000 /* Threshold to exit fixed refresh rate */ #define FIXED_REFRESH_EXIT_MARGIN_IN_HZ 1 /* Number of consecutive frames to check before entering/exiting fixed refresh */ #define FIXED_REFRESH_ENTER_FRAME_COUNT 5 #define FIXED_REFRESH_EXIT_FRAME_COUNT 10 /* Flip interval workaround constants */ #define VSYNCS_BETWEEN_FLIP_THRESHOLD 2 #define FREESYNC_CONSEC_FLIP_AFTER_VSYNC 5 #define FREESYNC_VSYNC_TO_FLIP_DELTA_IN_US 500 struct core_freesync { struct mod_freesync public; struct dc *dc; }; #define MOD_FREESYNC_TO_CORE(mod_freesync)\ container_of(mod_freesync, struct core_freesync, public) struct mod_freesync *mod_freesync_create(struct dc *dc) { struct core_freesync *core_freesync = kzalloc(sizeof(struct core_freesync), GFP_KERNEL); if (core_freesync == NULL) goto fail_alloc_context; if (dc == NULL) goto fail_construct; core_freesync->dc = dc; return &core_freesync->public; fail_construct: kfree(core_freesync); fail_alloc_context: return NULL; } void mod_freesync_destroy(struct mod_freesync *mod_freesync) { struct core_freesync *core_freesync = NULL; if (mod_freesync == NULL) return; core_freesync = MOD_FREESYNC_TO_CORE(mod_freesync); kfree(core_freesync); } #if 0 /* Unused currently */ static unsigned int calc_refresh_in_uhz_from_duration( unsigned int duration_in_ns) { unsigned int refresh_in_uhz = ((unsigned int)(div64_u64((1000000000ULL * 1000000), duration_in_ns))); return refresh_in_uhz; } #endif static unsigned int calc_duration_in_us_from_refresh_in_uhz( unsigned int refresh_in_uhz) { unsigned int duration_in_us = ((unsigned int)(div64_u64((1000000000ULL * 1000), refresh_in_uhz))); return duration_in_us; } static unsigned int calc_duration_in_us_from_v_total( const struct dc_stream_state *stream, const struct mod_vrr_params *in_vrr, unsigned int v_total) { unsigned int duration_in_us = (unsigned int)(div64_u64(((unsigned long long)(v_total) * 10000) * stream->timing.h_total, stream->timing.pix_clk_100hz)); return duration_in_us; } unsigned int mod_freesync_calc_v_total_from_refresh( const struct dc_stream_state *stream, unsigned int refresh_in_uhz) { unsigned int v_total; unsigned int frame_duration_in_ns; frame_duration_in_ns = ((unsigned int)(div64_u64((1000000000ULL * 1000000), refresh_in_uhz))); v_total = div64_u64(div64_u64(((unsigned long long)( frame_duration_in_ns) * (stream->timing.pix_clk_100hz / 10)), stream->timing.h_total), 1000000); /* v_total cannot be less than nominal */ if (v_total < stream->timing.v_total) { ASSERT(v_total < stream->timing.v_total); v_total = stream->timing.v_total; } return v_total; } static unsigned int calc_v_total_from_duration( const struct dc_stream_state *stream, const struct mod_vrr_params *vrr, unsigned int duration_in_us) { unsigned int v_total = 0; if (duration_in_us < vrr->min_duration_in_us) duration_in_us = vrr->min_duration_in_us; if (duration_in_us > vrr->max_duration_in_us) duration_in_us = vrr->max_duration_in_us; if (dc_is_hdmi_signal(stream->signal)) { uint32_t h_total_up_scaled; h_total_up_scaled = stream->timing.h_total * 10000; v_total = div_u64((unsigned long long)duration_in_us * stream->timing.pix_clk_100hz + (h_total_up_scaled - 1), h_total_up_scaled); } else { v_total = div64_u64(div64_u64(((unsigned long long)( duration_in_us) * (stream->timing.pix_clk_100hz / 10)), stream->timing.h_total), 1000); } /* v_total cannot be less than nominal */ if (v_total < stream->timing.v_total) { ASSERT(v_total < stream->timing.v_total); v_total = stream->timing.v_total; } return v_total; } static void update_v_total_for_static_ramp( struct core_freesync *core_freesync, const struct dc_stream_state *stream, struct mod_vrr_params *in_out_vrr) { unsigned int v_total = 0; unsigned int current_duration_in_us = calc_duration_in_us_from_v_total( stream, in_out_vrr, in_out_vrr->adjust.v_total_max); unsigned int target_duration_in_us = calc_duration_in_us_from_refresh_in_uhz( in_out_vrr->fixed.target_refresh_in_uhz); bool ramp_direction_is_up = (current_duration_in_us > target_duration_in_us) ? true : false; /* Calculate ratio between new and current frame duration with 3 digit */ unsigned int frame_duration_ratio = div64_u64(1000000, (1000 + div64_u64(((unsigned long long)( STATIC_SCREEN_RAMP_DELTA_REFRESH_RATE_PER_FRAME) * current_duration_in_us), 1000000))); /* Calculate delta between new and current frame duration in us */ unsigned int frame_duration_delta = div64_u64(((unsigned long long)( current_duration_in_us) * (1000 - frame_duration_ratio)), 1000); /* Adjust frame duration delta based on ratio between current and * standard frame duration (frame duration at 60 Hz refresh rate). */ unsigned int ramp_rate_interpolated = div64_u64(((unsigned long long)( frame_duration_delta) * current_duration_in_us), 16666); /* Going to a higher refresh rate (lower frame duration) */ if (ramp_direction_is_up) { /* Reduce frame duration */ current_duration_in_us -= ramp_rate_interpolated; /* Adjust for frame duration below min */ if (current_duration_in_us <= target_duration_in_us) { in_out_vrr->fixed.ramping_active = false; in_out_vrr->fixed.ramping_done = true; current_duration_in_us = calc_duration_in_us_from_refresh_in_uhz( in_out_vrr->fixed.target_refresh_in_uhz); } /* Going to a lower refresh rate (larger frame duration) */ } else { /* Increase frame duration */ current_duration_in_us += ramp_rate_interpolated; /* Adjust for frame duration above max */ if (current_duration_in_us >= target_duration_in_us) { in_out_vrr->fixed.ramping_active = false; in_out_vrr->fixed.ramping_done = true; current_duration_in_us = calc_duration_in_us_from_refresh_in_uhz( in_out_vrr->fixed.target_refresh_in_uhz); } } v_total = div64_u64(div64_u64(((unsigned long long)( current_duration_in_us) * (stream->timing.pix_clk_100hz / 10)), stream->timing.h_total), 1000); /* v_total cannot be less than nominal */ if (v_total < stream->timing.v_total) v_total = stream->timing.v_total; in_out_vrr->adjust.v_total_min = v_total; in_out_vrr->adjust.v_total_max = v_total; } static void apply_below_the_range(struct core_freesync *core_freesync, const struct dc_stream_state *stream, unsigned int last_render_time_in_us, struct mod_vrr_params *in_out_vrr) { unsigned int inserted_frame_duration_in_us = 0; unsigned int mid_point_frames_ceil = 0; unsigned int mid_point_frames_floor = 0; unsigned int frame_time_in_us = 0; unsigned int delta_from_mid_point_in_us_1 = 0xFFFFFFFF; unsigned int delta_from_mid_point_in_us_2 = 0xFFFFFFFF; unsigned int frames_to_insert = 0; unsigned int delta_from_mid_point_delta_in_us; unsigned int max_render_time_in_us = in_out_vrr->max_duration_in_us - in_out_vrr->btr.margin_in_us; /* Program BTR */ if ((last_render_time_in_us + in_out_vrr->btr.margin_in_us / 2) < max_render_time_in_us) { /* Exit Below the Range */ if (in_out_vrr->btr.btr_active) { in_out_vrr->btr.frame_counter = 0; in_out_vrr->btr.btr_active = false; } } else if (last_render_time_in_us > (max_render_time_in_us + in_out_vrr->btr.margin_in_us / 2)) { /* Enter Below the Range */ if (!in_out_vrr->btr.btr_active) { in_out_vrr->btr.btr_active = true; } } /* BTR set to "not active" so disengage */ if (!in_out_vrr->btr.btr_active) { in_out_vrr->btr.inserted_duration_in_us = 0; in_out_vrr->btr.frames_to_insert = 0; in_out_vrr->btr.frame_counter = 0; /* Restore FreeSync */ in_out_vrr->adjust.v_total_min = mod_freesync_calc_v_total_from_refresh(stream, in_out_vrr->max_refresh_in_uhz); in_out_vrr->adjust.v_total_max = mod_freesync_calc_v_total_from_refresh(stream, in_out_vrr->min_refresh_in_uhz); /* BTR set to "active" so engage */ } else { /* Calculate number of midPoint frames that could fit within * the render time interval - take ceil of this value */ mid_point_frames_ceil = (last_render_time_in_us + in_out_vrr->btr.mid_point_in_us - 1) / in_out_vrr->btr.mid_point_in_us; if (mid_point_frames_ceil > 0) { frame_time_in_us = last_render_time_in_us / mid_point_frames_ceil; delta_from_mid_point_in_us_1 = (in_out_vrr->btr.mid_point_in_us > frame_time_in_us) ? (in_out_vrr->btr.mid_point_in_us - frame_time_in_us) : (frame_time_in_us - in_out_vrr->btr.mid_point_in_us); } /* Calculate number of midPoint frames that could fit within * the render time interval - take floor of this value */ mid_point_frames_floor = last_render_time_in_us / in_out_vrr->btr.mid_point_in_us; if (mid_point_frames_floor > 0) { frame_time_in_us = last_render_time_in_us / mid_point_frames_floor; delta_from_mid_point_in_us_2 = (in_out_vrr->btr.mid_point_in_us > frame_time_in_us) ? (in_out_vrr->btr.mid_point_in_us - frame_time_in_us) : (frame_time_in_us - in_out_vrr->btr.mid_point_in_us); } /* Choose number of frames to insert based on how close it * can get to the mid point of the variable range. * - Delta for CEIL: delta_from_mid_point_in_us_1 * - Delta for FLOOR: delta_from_mid_point_in_us_2 */ if ((last_render_time_in_us / mid_point_frames_ceil) < in_out_vrr->min_duration_in_us) { /* Check for out of range. * If using CEIL produces a value that is out of range, * then we are forced to use FLOOR. */ frames_to_insert = mid_point_frames_floor; } else if (mid_point_frames_floor < 2) { /* Check if FLOOR would result in non-LFC. In this case * choose to use CEIL */ frames_to_insert = mid_point_frames_ceil; } else if (delta_from_mid_point_in_us_1 < delta_from_mid_point_in_us_2) { /* If choosing CEIL results in a frame duration that is * closer to the mid point of the range. * Choose CEIL */ frames_to_insert = mid_point_frames_ceil; } else { /* If choosing FLOOR results in a frame duration that is * closer to the mid point of the range. * Choose FLOOR */ frames_to_insert = mid_point_frames_floor; } /* Prefer current frame multiplier when BTR is enabled unless it drifts * too far from the midpoint */ if (delta_from_mid_point_in_us_1 < delta_from_mid_point_in_us_2) { delta_from_mid_point_delta_in_us = delta_from_mid_point_in_us_2 - delta_from_mid_point_in_us_1; } else { delta_from_mid_point_delta_in_us = delta_from_mid_point_in_us_1 - delta_from_mid_point_in_us_2; } if (in_out_vrr->btr.frames_to_insert != 0 && delta_from_mid_point_delta_in_us < BTR_DRIFT_MARGIN) { if (((last_render_time_in_us / in_out_vrr->btr.frames_to_insert) < max_render_time_in_us) && ((last_render_time_in_us / in_out_vrr->btr.frames_to_insert) > in_out_vrr->min_duration_in_us)) frames_to_insert = in_out_vrr->btr.frames_to_insert; } /* Either we've calculated the number of frames to insert, * or we need to insert min duration frames */ if (last_render_time_in_us / frames_to_insert < in_out_vrr->min_duration_in_us){ frames_to_insert -= (frames_to_insert > 1) ? 1 : 0; } if (frames_to_insert > 0) inserted_frame_duration_in_us = last_render_time_in_us / frames_to_insert; if (inserted_frame_duration_in_us < in_out_vrr->min_duration_in_us) inserted_frame_duration_in_us = in_out_vrr->min_duration_in_us; /* Cache the calculated variables */ in_out_vrr->btr.inserted_duration_in_us = inserted_frame_duration_in_us; in_out_vrr->btr.frames_to_insert = frames_to_insert; in_out_vrr->btr.frame_counter = frames_to_insert; } } static void apply_fixed_refresh(struct core_freesync *core_freesync, const struct dc_stream_state *stream, unsigned int last_render_time_in_us, struct mod_vrr_params *in_out_vrr) { bool update = false; unsigned int max_render_time_in_us = in_out_vrr->max_duration_in_us; /* Compute the exit refresh rate and exit frame duration */ unsigned int exit_refresh_rate_in_milli_hz = ((1000000000/max_render_time_in_us) + (1000*FIXED_REFRESH_EXIT_MARGIN_IN_HZ)); unsigned int exit_frame_duration_in_us = 1000000000/exit_refresh_rate_in_milli_hz; if (last_render_time_in_us < exit_frame_duration_in_us) { /* Exit Fixed Refresh mode */ if (in_out_vrr->fixed.fixed_active) { in_out_vrr->fixed.frame_counter++; if (in_out_vrr->fixed.frame_counter > FIXED_REFRESH_EXIT_FRAME_COUNT) { in_out_vrr->fixed.frame_counter = 0; in_out_vrr->fixed.fixed_active = false; in_out_vrr->fixed.target_refresh_in_uhz = 0; update = true; } } else in_out_vrr->fixed.frame_counter = 0; } else if (last_render_time_in_us > max_render_time_in_us) { /* Enter Fixed Refresh mode */ if (!in_out_vrr->fixed.fixed_active) { in_out_vrr->fixed.frame_counter++; if (in_out_vrr->fixed.frame_counter > FIXED_REFRESH_ENTER_FRAME_COUNT) { in_out_vrr->fixed.frame_counter = 0; in_out_vrr->fixed.fixed_active = true; in_out_vrr->fixed.target_refresh_in_uhz = in_out_vrr->max_refresh_in_uhz; update = true; } } else in_out_vrr->fixed.frame_counter = 0; } if (update) { if (in_out_vrr->fixed.fixed_active) { in_out_vrr->adjust.v_total_min = mod_freesync_calc_v_total_from_refresh( stream, in_out_vrr->max_refresh_in_uhz); in_out_vrr->adjust.v_total_max = in_out_vrr->adjust.v_total_min; } else { in_out_vrr->adjust.v_total_min = mod_freesync_calc_v_total_from_refresh(stream, in_out_vrr->max_refresh_in_uhz); in_out_vrr->adjust.v_total_max = mod_freesync_calc_v_total_from_refresh(stream, in_out_vrr->min_refresh_in_uhz); } } } static void determine_flip_interval_workaround_req(struct mod_vrr_params *in_vrr, unsigned int curr_time_stamp_in_us) { in_vrr->flip_interval.vsync_to_flip_in_us = curr_time_stamp_in_us - in_vrr->flip_interval.v_update_timestamp_in_us; /* Determine conditions for stopping workaround */ if (in_vrr->flip_interval.flip_interval_workaround_active && in_vrr->flip_interval.vsyncs_between_flip < VSYNCS_BETWEEN_FLIP_THRESHOLD && in_vrr->flip_interval.vsync_to_flip_in_us > FREESYNC_VSYNC_TO_FLIP_DELTA_IN_US) { in_vrr->flip_interval.flip_interval_detect_counter = 0; in_vrr->flip_interval.program_flip_interval_workaround = true; in_vrr->flip_interval.flip_interval_workaround_active = false; } else { /* Determine conditions for starting workaround */ if (in_vrr->flip_interval.vsyncs_between_flip >= VSYNCS_BETWEEN_FLIP_THRESHOLD && in_vrr->flip_interval.vsync_to_flip_in_us < FREESYNC_VSYNC_TO_FLIP_DELTA_IN_US) { /* Increase flip interval counter we have 2 vsyncs between flips and * vsync to flip interval is less than 500us */ in_vrr->flip_interval.flip_interval_detect_counter++; if (in_vrr->flip_interval.flip_interval_detect_counter > FREESYNC_CONSEC_FLIP_AFTER_VSYNC) { /* Start workaround if we detect 5 consecutive instances of the above case */ in_vrr->flip_interval.program_flip_interval_workaround = true; in_vrr->flip_interval.flip_interval_workaround_active = true; } } else { /* Reset the flip interval counter if we condition is no longer met */ in_vrr->flip_interval.flip_interval_detect_counter = 0; } } in_vrr->flip_interval.vsyncs_between_flip = 0; } static bool vrr_settings_require_update(struct core_freesync *core_freesync, struct mod_freesync_config *in_config, unsigned int min_refresh_in_uhz, unsigned int max_refresh_in_uhz, struct mod_vrr_params *in_vrr) { if (in_vrr->state != in_config->state) { return true; } else if (in_vrr->state == VRR_STATE_ACTIVE_FIXED && in_vrr->fixed.target_refresh_in_uhz != in_config->fixed_refresh_in_uhz) { return true; } else if (in_vrr->min_refresh_in_uhz != min_refresh_in_uhz) { return true; } else if (in_vrr->max_refresh_in_uhz != max_refresh_in_uhz) { return true; } return false; } bool mod_freesync_get_vmin_vmax(struct mod_freesync *mod_freesync, const struct dc_stream_state *stream, unsigned int *vmin, unsigned int *vmax) { *vmin = stream->adjust.v_total_min; *vmax = stream->adjust.v_total_max; return true; } bool mod_freesync_get_v_position(struct mod_freesync *mod_freesync, struct dc_stream_state *stream, unsigned int *nom_v_pos, unsigned int *v_pos) { struct core_freesync *core_freesync = NULL; struct crtc_position position; if (mod_freesync == NULL) return false; core_freesync = MOD_FREESYNC_TO_CORE(mod_freesync); if (dc_stream_get_crtc_position(core_freesync->dc, &stream, 1, &position.vertical_count, &position.nominal_vcount)) { *nom_v_pos = position.nominal_vcount; *v_pos = position.vertical_count; return true; } return false; } static void build_vrr_infopacket_data_v1(const struct mod_vrr_params *vrr, struct dc_info_packet *infopacket, bool freesync_on_desktop) { /* PB1 = 0x1A (24bit AMD IEEE OUI (0x00001A) - Byte 0) */ infopacket->sb[1] = 0x1A; /* PB2 = 0x00 (24bit AMD IEEE OUI (0x00001A) - Byte 1) */ infopacket->sb[2] = 0x00; /* PB3 = 0x00 (24bit AMD IEEE OUI (0x00001A) - Byte 2) */ infopacket->sb[3] = 0x00; /* PB4 = Reserved */ /* PB5 = Reserved */ /* PB6 = [Bits 7:3 = Reserved] */ /* PB6 = [Bit 0 = FreeSync Supported] */ if (vrr->state != VRR_STATE_UNSUPPORTED) infopacket->sb[6] |= 0x01; /* PB6 = [Bit 1 = FreeSync Enabled] */ if (vrr->state != VRR_STATE_DISABLED && vrr->state != VRR_STATE_UNSUPPORTED) infopacket->sb[6] |= 0x02; if (freesync_on_desktop) { /* PB6 = [Bit 2 = FreeSync Active] */ if (vrr->state != VRR_STATE_DISABLED && vrr->state != VRR_STATE_UNSUPPORTED) infopacket->sb[6] |= 0x04; } else { if (vrr->state == VRR_STATE_ACTIVE_VARIABLE || vrr->state == VRR_STATE_ACTIVE_FIXED) infopacket->sb[6] |= 0x04; } // For v1 & 2 infoframes program nominal if non-fs mode, otherwise full range /* PB7 = FreeSync Minimum refresh rate (Hz) */ if (vrr->state == VRR_STATE_ACTIVE_VARIABLE || vrr->state == VRR_STATE_ACTIVE_FIXED) { infopacket->sb[7] = (unsigned char)((vrr->min_refresh_in_uhz + 500000) / 1000000); } else { infopacket->sb[7] = (unsigned char)((vrr->max_refresh_in_uhz + 500000) / 1000000); } /* PB8 = FreeSync Maximum refresh rate (Hz) * Note: We should never go above the field rate of the mode timing set. */ infopacket->sb[8] = (unsigned char)((vrr->max_refresh_in_uhz + 500000) / 1000000); } static void build_vrr_infopacket_data_v3(const struct mod_vrr_params *vrr, struct dc_info_packet *infopacket) { unsigned int min_refresh; unsigned int max_refresh; unsigned int fixed_refresh; unsigned int min_programmed; unsigned int max_programmed; /* PB1 = 0x1A (24bit AMD IEEE OUI (0x00001A) - Byte 0) */ infopacket->sb[1] = 0x1A; /* PB2 = 0x00 (24bit AMD IEEE OUI (0x00001A) - Byte 1) */ infopacket->sb[2] = 0x00; /* PB3 = 0x00 (24bit AMD IEEE OUI (0x00001A) - Byte 2) */ infopacket->sb[3] = 0x00; /* PB4 = Reserved */ /* PB5 = Reserved */ /* PB6 = [Bits 7:3 = Reserved] */ /* PB6 = [Bit 0 = FreeSync Supported] */ if (vrr->state != VRR_STATE_UNSUPPORTED) infopacket->sb[6] |= 0x01; /* PB6 = [Bit 1 = FreeSync Enabled] */ if (vrr->state != VRR_STATE_DISABLED && vrr->state != VRR_STATE_UNSUPPORTED) infopacket->sb[6] |= 0x02; /* PB6 = [Bit 2 = FreeSync Active] */ if (vrr->state == VRR_STATE_ACTIVE_VARIABLE || vrr->state == VRR_STATE_ACTIVE_FIXED) infopacket->sb[6] |= 0x04; min_refresh = (vrr->min_refresh_in_uhz + 500000) / 1000000; max_refresh = (vrr->max_refresh_in_uhz + 500000) / 1000000; fixed_refresh = (vrr->fixed_refresh_in_uhz + 500000) / 1000000; min_programmed = (vrr->state == VRR_STATE_ACTIVE_FIXED) ? fixed_refresh : (vrr->state == VRR_STATE_ACTIVE_VARIABLE) ? min_refresh : (vrr->state == VRR_STATE_INACTIVE) ? min_refresh : max_refresh; // Non-fs case, program nominal range max_programmed = (vrr->state == VRR_STATE_ACTIVE_FIXED) ? fixed_refresh : (vrr->state == VRR_STATE_ACTIVE_VARIABLE) ? max_refresh : max_refresh;// Non-fs case, program nominal range /* PB7 = FreeSync Minimum refresh rate (Hz) */ infopacket->sb[7] = min_programmed & 0xFF; /* PB8 = FreeSync Maximum refresh rate (Hz) */ infopacket->sb[8] = max_programmed & 0xFF; /* PB11 : MSB FreeSync Minimum refresh rate [Hz] - bits 9:8 */ infopacket->sb[11] = (min_programmed >> 8) & 0x03; /* PB12 : MSB FreeSync Maximum refresh rate [Hz] - bits 9:8 */ infopacket->sb[12] = (max_programmed >> 8) & 0x03; /* PB16 : Reserved bits 7:1, FixedRate bit 0 */ infopacket->sb[16] = (vrr->state == VRR_STATE_ACTIVE_FIXED) ? 1 : 0; } static void build_vrr_infopacket_fs2_data(enum color_transfer_func app_tf, struct dc_info_packet *infopacket) { if (app_tf != TRANSFER_FUNC_UNKNOWN) { infopacket->valid = true; if (app_tf != TRANSFER_FUNC_PQ2084) { infopacket->sb[6] |= 0x08; // PB6 = [Bit 3 = Native Color Active] if (app_tf == TRANSFER_FUNC_GAMMA_22) infopacket->sb[9] |= 0x04; // PB6 = [Bit 2 = Gamma 2.2 EOTF Active] } } } static void build_vrr_infopacket_header_v1(enum signal_type signal, struct dc_info_packet *infopacket, unsigned int *payload_size) { if (dc_is_hdmi_signal(signal)) { /* HEADER */ /* HB0 = Packet Type = 0x83 (Source Product * Descriptor InfoFrame) */ infopacket->hb0 = DC_HDMI_INFOFRAME_TYPE_SPD; /* HB1 = Version = 0x01 */ infopacket->hb1 = 0x01; /* HB2 = [Bits 7:5 = 0] [Bits 4:0 = Length = 0x08] */ infopacket->hb2 = 0x08; *payload_size = 0x08; } else if (dc_is_dp_signal(signal)) { /* HEADER */ /* HB0 = Secondary-data Packet ID = 0 - Only non-zero * when used to associate audio related info packets */ infopacket->hb0 = 0x00; /* HB1 = Packet Type = 0x83 (Source Product * Descriptor InfoFrame) */ infopacket->hb1 = DC_HDMI_INFOFRAME_TYPE_SPD; /* HB2 = [Bits 7:0 = Least significant eight bits - * For INFOFRAME, the value must be 1Bh] */ infopacket->hb2 = 0x1B; /* HB3 = [Bits 7:2 = INFOFRAME SDP Version Number = 0x1] * [Bits 1:0 = Most significant two bits = 0x00] */ infopacket->hb3 = 0x04; *payload_size = 0x1B; } } static void build_vrr_infopacket_header_v2(enum signal_type signal, struct dc_info_packet *infopacket, unsigned int *payload_size) { if (dc_is_hdmi_signal(signal)) { /* HEADER */ /* HB0 = Packet Type = 0x83 (Source Product * Descriptor InfoFrame) */ infopacket->hb0 = DC_HDMI_INFOFRAME_TYPE_SPD; /* HB1 = Version = 0x02 */ infopacket->hb1 = 0x02; /* HB2 = [Bits 7:5 = 0] [Bits 4:0 = Length = 0x09] */ infopacket->hb2 = 0x09; *payload_size = 0x09; } else if (dc_is_dp_signal(signal)) { /* HEADER */ /* HB0 = Secondary-data Packet ID = 0 - Only non-zero * when used to associate audio related info packets */ infopacket->hb0 = 0x00; /* HB1 = Packet Type = 0x83 (Source Product * Descriptor InfoFrame) */ infopacket->hb1 = DC_HDMI_INFOFRAME_TYPE_SPD; /* HB2 = [Bits 7:0 = Least significant eight bits - * For INFOFRAME, the value must be 1Bh] */ infopacket->hb2 = 0x1B; /* HB3 = [Bits 7:2 = INFOFRAME SDP Version Number = 0x2] * [Bits 1:0 = Most significant two bits = 0x00] */ infopacket->hb3 = 0x08; *payload_size = 0x1B; } } static void build_vrr_infopacket_header_v3(enum signal_type signal, struct dc_info_packet *infopacket, unsigned int *payload_size) { unsigned char version; version = 3; if (dc_is_hdmi_signal(signal)) { /* HEADER */ /* HB0 = Packet Type = 0x83 (Source Product * Descriptor InfoFrame) */ infopacket->hb0 = DC_HDMI_INFOFRAME_TYPE_SPD; /* HB1 = Version = 0x03 */ infopacket->hb1 = version; /* HB2 = [Bits 7:5 = 0] [Bits 4:0 = Length] */ infopacket->hb2 = 0x10; *payload_size = 0x10; } else if (dc_is_dp_signal(signal)) { /* HEADER */ /* HB0 = Secondary-data Packet ID = 0 - Only non-zero * when used to associate audio related info packets */ infopacket->hb0 = 0x00; /* HB1 = Packet Type = 0x83 (Source Product * Descriptor InfoFrame) */ infopacket->hb1 = DC_HDMI_INFOFRAME_TYPE_SPD; /* HB2 = [Bits 7:0 = Least significant eight bits - * For INFOFRAME, the value must be 1Bh] */ infopacket->hb2 = 0x1B; /* HB3 = [Bits 7:2 = INFOFRAME SDP Version Number = 0x2] * [Bits 1:0 = Most significant two bits = 0x00] */ infopacket->hb3 = (version & 0x3F) << 2; *payload_size = 0x1B; } } static void build_vrr_infopacket_checksum(unsigned int *payload_size, struct dc_info_packet *infopacket) { /* Calculate checksum */ unsigned int idx = 0; unsigned char checksum = 0; checksum += infopacket->hb0; checksum += infopacket->hb1; checksum += infopacket->hb2; checksum += infopacket->hb3; for (idx = 1; idx <= *payload_size; idx++) checksum += infopacket->sb[idx]; /* PB0 = Checksum (one byte complement) */ infopacket->sb[0] = (unsigned char)(0x100 - checksum); infopacket->valid = true; } static void build_vrr_infopacket_v1(enum signal_type signal, const struct mod_vrr_params *vrr, struct dc_info_packet *infopacket, bool freesync_on_desktop) { /* SPD info packet for FreeSync */ unsigned int payload_size = 0; build_vrr_infopacket_header_v1(signal, infopacket, &payload_size); build_vrr_infopacket_data_v1(vrr, infopacket, freesync_on_desktop); build_vrr_infopacket_checksum(&payload_size, infopacket); infopacket->valid = true; } static void build_vrr_infopacket_v2(enum signal_type signal, const struct mod_vrr_params *vrr, enum color_transfer_func app_tf, struct dc_info_packet *infopacket, bool freesync_on_desktop) { unsigned int payload_size = 0; build_vrr_infopacket_header_v2(signal, infopacket, &payload_size); build_vrr_infopacket_data_v1(vrr, infopacket, freesync_on_desktop); build_vrr_infopacket_fs2_data(app_tf, infopacket); build_vrr_infopacket_checksum(&payload_size, infopacket); infopacket->valid = true; } #ifndef TRIM_FSFT static void build_vrr_infopacket_fast_transport_data( bool ftActive, unsigned int ftOutputRate, struct dc_info_packet *infopacket) { /* PB9 : bit7 - fast transport Active*/ unsigned char activeBit = (ftActive) ? 1 << 7 : 0; infopacket->sb[1] &= ~activeBit; //clear bit infopacket->sb[1] |= activeBit; //set bit /* PB13 : Target Output Pixel Rate [kHz] - bits 7:0 */ infopacket->sb[13] = ftOutputRate & 0xFF; /* PB14 : Target Output Pixel Rate [kHz] - bits 15:8 */ infopacket->sb[14] = (ftOutputRate >> 8) & 0xFF; /* PB15 : Target Output Pixel Rate [kHz] - bits 23:16 */ infopacket->sb[15] = (ftOutputRate >> 16) & 0xFF; } #endif static void build_vrr_infopacket_v3(enum signal_type signal, const struct mod_vrr_params *vrr, #ifndef TRIM_FSFT bool ftActive, unsigned int ftOutputRate, #endif enum color_transfer_func app_tf, struct dc_info_packet *infopacket) { unsigned int payload_size = 0; build_vrr_infopacket_header_v3(signal, infopacket, &payload_size); build_vrr_infopacket_data_v3(vrr, infopacket); build_vrr_infopacket_fs2_data(app_tf, infopacket); #ifndef TRIM_FSFT build_vrr_infopacket_fast_transport_data( ftActive, ftOutputRate, infopacket); #endif build_vrr_infopacket_checksum(&payload_size, infopacket); infopacket->valid = true; } static void build_vrr_infopacket_sdp_v1_3(enum vrr_packet_type packet_type, struct dc_info_packet *infopacket) { uint8_t idx = 0, size = 0; size = ((packet_type == PACKET_TYPE_FS_V1) ? 0x08 : (packet_type == PACKET_TYPE_FS_V3) ? 0x10 : 0x09); for (idx = infopacket->hb2; idx > 1; idx--) // Data Byte Count: 0x1B infopacket->sb[idx] = infopacket->sb[idx-1]; infopacket->sb[1] = size; // Length infopacket->sb[0] = (infopacket->hb3 >> 2) & 0x3F;//Version infopacket->hb3 = (0x13 << 2); // Header,SDP 1.3 infopacket->hb2 = 0x1D; } void mod_freesync_build_vrr_infopacket(struct mod_freesync *mod_freesync, const struct dc_stream_state *stream, const struct mod_vrr_params *vrr, enum vrr_packet_type packet_type, enum color_transfer_func app_tf, struct dc_info_packet *infopacket, bool pack_sdp_v1_3) { /* SPD info packet for FreeSync * VTEM info packet for HdmiVRR * Check if Freesync is supported. Return if false. If true, * set the corresponding bit in the info packet */ if (!vrr->send_info_frame) return; switch (packet_type) { case PACKET_TYPE_FS_V3: #ifndef TRIM_FSFT // always populate with pixel rate. build_vrr_infopacket_v3( stream->signal, vrr, stream->timing.flags.FAST_TRANSPORT, (stream->timing.flags.FAST_TRANSPORT) ? stream->timing.fast_transport_output_rate_100hz : stream->timing.pix_clk_100hz, app_tf, infopacket); #else build_vrr_infopacket_v3(stream->signal, vrr, app_tf, infopacket); #endif break; case PACKET_TYPE_FS_V2: build_vrr_infopacket_v2(stream->signal, vrr, app_tf, infopacket, stream->freesync_on_desktop); break; case PACKET_TYPE_VRR: case PACKET_TYPE_FS_V1: default: build_vrr_infopacket_v1(stream->signal, vrr, infopacket, stream->freesync_on_desktop); } if (true == pack_sdp_v1_3 && true == dc_is_dp_signal(stream->signal) && packet_type != PACKET_TYPE_VRR && packet_type != PACKET_TYPE_VTEM) build_vrr_infopacket_sdp_v1_3(packet_type, infopacket); } void mod_freesync_build_vrr_params(struct mod_freesync *mod_freesync, const struct dc_stream_state *stream, struct mod_freesync_config *in_config, struct mod_vrr_params *in_out_vrr) { struct core_freesync *core_freesync = NULL; unsigned long long nominal_field_rate_in_uhz = 0; unsigned long long rounded_nominal_in_uhz = 0; unsigned int refresh_range = 0; unsigned long long min_refresh_in_uhz = 0; unsigned long long max_refresh_in_uhz = 0; if (mod_freesync == NULL) return; core_freesync = MOD_FREESYNC_TO_CORE(mod_freesync); /* Calculate nominal field rate for stream */ nominal_field_rate_in_uhz = mod_freesync_calc_nominal_field_rate(stream); min_refresh_in_uhz = in_config->min_refresh_in_uhz; max_refresh_in_uhz = in_config->max_refresh_in_uhz; /* Full range may be larger than current video timing, so cap at nominal */ if (max_refresh_in_uhz > nominal_field_rate_in_uhz) max_refresh_in_uhz = nominal_field_rate_in_uhz; /* Full range may be larger than current video timing, so cap at nominal */ if (min_refresh_in_uhz > max_refresh_in_uhz) min_refresh_in_uhz = max_refresh_in_uhz; /* If a monitor reports exactly max refresh of 2x of min, enforce it on nominal */ rounded_nominal_in_uhz = div_u64(nominal_field_rate_in_uhz + 50000, 100000) * 100000; if (in_config->max_refresh_in_uhz == (2 * in_config->min_refresh_in_uhz) && in_config->max_refresh_in_uhz == rounded_nominal_in_uhz) min_refresh_in_uhz = div_u64(nominal_field_rate_in_uhz, 2); if (!vrr_settings_require_update(core_freesync, in_config, (unsigned int)min_refresh_in_uhz, (unsigned int)max_refresh_in_uhz, in_out_vrr)) return; in_out_vrr->state = in_config->state; in_out_vrr->send_info_frame = in_config->vsif_supported; if (in_config->state == VRR_STATE_UNSUPPORTED) { in_out_vrr->state = VRR_STATE_UNSUPPORTED; in_out_vrr->supported = false; in_out_vrr->adjust.v_total_min = stream->timing.v_total; in_out_vrr->adjust.v_total_max = stream->timing.v_total; return; } else { in_out_vrr->min_refresh_in_uhz = (unsigned int)min_refresh_in_uhz; in_out_vrr->max_duration_in_us = calc_duration_in_us_from_refresh_in_uhz( (unsigned int)min_refresh_in_uhz); in_out_vrr->max_refresh_in_uhz = (unsigned int)max_refresh_in_uhz; in_out_vrr->min_duration_in_us = calc_duration_in_us_from_refresh_in_uhz( (unsigned int)max_refresh_in_uhz); if (in_config->state == VRR_STATE_ACTIVE_FIXED) in_out_vrr->fixed_refresh_in_uhz = in_config->fixed_refresh_in_uhz; else in_out_vrr->fixed_refresh_in_uhz = 0; refresh_range = div_u64(in_out_vrr->max_refresh_in_uhz + 500000, 1000000) - + div_u64(in_out_vrr->min_refresh_in_uhz + 500000, 1000000); in_out_vrr->supported = true; } in_out_vrr->fixed.ramping_active = in_config->ramping; in_out_vrr->btr.btr_enabled = in_config->btr; if (in_out_vrr->max_refresh_in_uhz < (2 * in_out_vrr->min_refresh_in_uhz)) in_out_vrr->btr.btr_enabled = false; else { in_out_vrr->btr.margin_in_us = in_out_vrr->max_duration_in_us - 2 * in_out_vrr->min_duration_in_us; if (in_out_vrr->btr.margin_in_us > BTR_MAX_MARGIN) in_out_vrr->btr.margin_in_us = BTR_MAX_MARGIN; } in_out_vrr->btr.btr_active = false; in_out_vrr->btr.inserted_duration_in_us = 0; in_out_vrr->btr.frames_to_insert = 0; in_out_vrr->btr.frame_counter = 0; in_out_vrr->fixed.fixed_active = false; in_out_vrr->fixed.target_refresh_in_uhz = 0; in_out_vrr->btr.mid_point_in_us = (in_out_vrr->min_duration_in_us + in_out_vrr->max_duration_in_us) / 2; if (in_out_vrr->state == VRR_STATE_UNSUPPORTED) { in_out_vrr->adjust.v_total_min = stream->timing.v_total; in_out_vrr->adjust.v_total_max = stream->timing.v_total; } else if (in_out_vrr->state == VRR_STATE_DISABLED) { in_out_vrr->adjust.v_total_min = stream->timing.v_total; in_out_vrr->adjust.v_total_max = stream->timing.v_total; } else if (in_out_vrr->state == VRR_STATE_INACTIVE) { in_out_vrr->adjust.v_total_min = stream->timing.v_total; in_out_vrr->adjust.v_total_max = stream->timing.v_total; } else if (in_out_vrr->state == VRR_STATE_ACTIVE_VARIABLE && refresh_range >= MIN_REFRESH_RANGE) { in_out_vrr->adjust.v_total_min = mod_freesync_calc_v_total_from_refresh(stream, in_out_vrr->max_refresh_in_uhz); in_out_vrr->adjust.v_total_max = mod_freesync_calc_v_total_from_refresh(stream, in_out_vrr->min_refresh_in_uhz); } else if (in_out_vrr->state == VRR_STATE_ACTIVE_FIXED) { in_out_vrr->fixed.target_refresh_in_uhz = in_out_vrr->fixed_refresh_in_uhz; if (in_out_vrr->fixed.ramping_active && in_out_vrr->fixed.fixed_active) { /* Do not update vtotals if ramping is already active * in order to continue ramp from current refresh. */ in_out_vrr->fixed.fixed_active = true; } else { in_out_vrr->fixed.fixed_active = true; in_out_vrr->adjust.v_total_min = mod_freesync_calc_v_total_from_refresh(stream, in_out_vrr->fixed.target_refresh_in_uhz); in_out_vrr->adjust.v_total_max = in_out_vrr->adjust.v_total_min; } } else { in_out_vrr->state = VRR_STATE_INACTIVE; in_out_vrr->adjust.v_total_min = stream->timing.v_total; in_out_vrr->adjust.v_total_max = stream->timing.v_total; } } void mod_freesync_handle_preflip(struct mod_freesync *mod_freesync, const struct dc_plane_state *plane, const struct dc_stream_state *stream, unsigned int curr_time_stamp_in_us, struct mod_vrr_params *in_out_vrr) { struct core_freesync *core_freesync = NULL; unsigned int last_render_time_in_us = 0; unsigned int average_render_time_in_us = 0; if (mod_freesync == NULL) return; core_freesync = MOD_FREESYNC_TO_CORE(mod_freesync); if (in_out_vrr->supported && in_out_vrr->state == VRR_STATE_ACTIVE_VARIABLE) { unsigned int i = 0; unsigned int oldest_index = plane->time.index + 1; if (oldest_index >= DC_PLANE_UPDATE_TIMES_MAX) oldest_index = 0; last_render_time_in_us = curr_time_stamp_in_us - plane->time.prev_update_time_in_us; /* Sum off all entries except oldest one */ for (i = 0; i < DC_PLANE_UPDATE_TIMES_MAX; i++) { average_render_time_in_us += plane->time.time_elapsed_in_us[i]; } average_render_time_in_us -= plane->time.time_elapsed_in_us[oldest_index]; /* Add render time for current flip */ average_render_time_in_us += last_render_time_in_us; average_render_time_in_us /= DC_PLANE_UPDATE_TIMES_MAX; if (in_out_vrr->btr.btr_enabled) { apply_below_the_range(core_freesync, stream, last_render_time_in_us, in_out_vrr); } else { apply_fixed_refresh(core_freesync, stream, last_render_time_in_us, in_out_vrr); } determine_flip_interval_workaround_req(in_out_vrr, curr_time_stamp_in_us); } } void mod_freesync_handle_v_update(struct mod_freesync *mod_freesync, const struct dc_stream_state *stream, struct mod_vrr_params *in_out_vrr) { struct core_freesync *core_freesync = NULL; unsigned int cur_timestamp_in_us; unsigned long long cur_tick; if ((mod_freesync == NULL) || (stream == NULL) || (in_out_vrr == NULL)) return; core_freesync = MOD_FREESYNC_TO_CORE(mod_freesync); if (in_out_vrr->supported == false) return; cur_tick = dm_get_timestamp(core_freesync->dc->ctx); cur_timestamp_in_us = (unsigned int) div_u64(dm_get_elapse_time_in_ns(core_freesync->dc->ctx, cur_tick, 0), 1000); in_out_vrr->flip_interval.vsyncs_between_flip++; in_out_vrr->flip_interval.v_update_timestamp_in_us = cur_timestamp_in_us; if (in_out_vrr->state == VRR_STATE_ACTIVE_VARIABLE && (in_out_vrr->flip_interval.flip_interval_workaround_active || (!in_out_vrr->flip_interval.flip_interval_workaround_active && in_out_vrr->flip_interval.program_flip_interval_workaround))) { // set freesync vmin vmax to nominal for workaround in_out_vrr->adjust.v_total_min = mod_freesync_calc_v_total_from_refresh( stream, in_out_vrr->max_refresh_in_uhz); in_out_vrr->adjust.v_total_max = in_out_vrr->adjust.v_total_min; in_out_vrr->flip_interval.program_flip_interval_workaround = false; in_out_vrr->flip_interval.do_flip_interval_workaround_cleanup = true; return; } if (in_out_vrr->state != VRR_STATE_ACTIVE_VARIABLE && in_out_vrr->flip_interval.do_flip_interval_workaround_cleanup) { in_out_vrr->flip_interval.do_flip_interval_workaround_cleanup = false; in_out_vrr->flip_interval.flip_interval_detect_counter = 0; in_out_vrr->flip_interval.vsyncs_between_flip = 0; in_out_vrr->flip_interval.vsync_to_flip_in_us = 0; } /* Below the Range Logic */ /* Only execute if in fullscreen mode */ if (in_out_vrr->state == VRR_STATE_ACTIVE_VARIABLE && in_out_vrr->btr.btr_active) { /* TODO: pass in flag for Pre-DCE12 ASIC * in order for frame variable duration to take affect, * it needs to be done one VSYNC early, which is at * frameCounter == 1. * For DCE12 and newer updates to V_TOTAL_MIN/MAX * will take affect on current frame */ if (in_out_vrr->btr.frames_to_insert == in_out_vrr->btr.frame_counter) { in_out_vrr->adjust.v_total_min = calc_v_total_from_duration(stream, in_out_vrr, in_out_vrr->btr.inserted_duration_in_us); in_out_vrr->adjust.v_total_max = in_out_vrr->adjust.v_total_min; } if (in_out_vrr->btr.frame_counter > 0) in_out_vrr->btr.frame_counter--; /* Restore FreeSync */ if (in_out_vrr->btr.frame_counter == 0) { in_out_vrr->adjust.v_total_min = mod_freesync_calc_v_total_from_refresh(stream, in_out_vrr->max_refresh_in_uhz); in_out_vrr->adjust.v_total_max = mod_freesync_calc_v_total_from_refresh(stream, in_out_vrr->min_refresh_in_uhz); } } /* If in fullscreen freesync mode or in video, do not program * static screen ramp values */ if (in_out_vrr->state == VRR_STATE_ACTIVE_VARIABLE) in_out_vrr->fixed.ramping_active = false; /* Gradual Static Screen Ramping Logic * Execute if ramp is active and user enabled freesync static screen */ if (in_out_vrr->state == VRR_STATE_ACTIVE_FIXED && in_out_vrr->fixed.ramping_active) { update_v_total_for_static_ramp( core_freesync, stream, in_out_vrr); } } void mod_freesync_get_settings(struct mod_freesync *mod_freesync, const struct mod_vrr_params *vrr, unsigned int *v_total_min, unsigned int *v_total_max, unsigned int *event_triggers, unsigned int *window_min, unsigned int *window_max, unsigned int *lfc_mid_point_in_us, unsigned int *inserted_frames, unsigned int *inserted_duration_in_us) { if (mod_freesync == NULL) return; if (vrr->supported) { *v_total_min = vrr->adjust.v_total_min; *v_total_max = vrr->adjust.v_total_max; *event_triggers = 0; *lfc_mid_point_in_us = vrr->btr.mid_point_in_us; *inserted_frames = vrr->btr.frames_to_insert; *inserted_duration_in_us = vrr->btr.inserted_duration_in_us; } } unsigned long long mod_freesync_calc_nominal_field_rate( const struct dc_stream_state *stream) { unsigned long long nominal_field_rate_in_uhz = 0; unsigned int total = stream->timing.h_total * stream->timing.v_total; /* Calculate nominal field rate for stream, rounded up to nearest integer */ nominal_field_rate_in_uhz = stream->timing.pix_clk_100hz; nominal_field_rate_in_uhz *= 100000000ULL; nominal_field_rate_in_uhz = div_u64(nominal_field_rate_in_uhz, total); return nominal_field_rate_in_uhz; } unsigned long long mod_freesync_calc_field_rate_from_timing( unsigned int vtotal, unsigned int htotal, unsigned int pix_clk) { unsigned long long field_rate_in_uhz = 0; unsigned int total = htotal * vtotal; /* Calculate nominal field rate for stream, rounded up to nearest integer */ field_rate_in_uhz = pix_clk; field_rate_in_uhz *= 1000000ULL; field_rate_in_uhz = div_u64(field_rate_in_uhz, total); return field_rate_in_uhz; } bool mod_freesync_get_freesync_enabled(struct mod_vrr_params *pVrr) { return (pVrr->state != VRR_STATE_UNSUPPORTED) && (pVrr->state != VRR_STATE_DISABLED); } bool mod_freesync_is_valid_range(uint32_t min_refresh_cap_in_uhz, uint32_t max_refresh_cap_in_uhz, uint32_t nominal_field_rate_in_uhz) { /* Typically nominal refresh calculated can have some fractional part. * Allow for some rounding error of actual video timing by taking floor * of caps and request. Round the nominal refresh rate. * * Dividing will convert everything to units in Hz although input * variable name is in uHz! * * Also note, this takes care of rounding error on the nominal refresh * so by rounding error we only expect it to be off by a small amount, * such as < 0.1 Hz. i.e. 143.9xxx or 144.1xxx. * * Example 1. Caps Min = 40 Hz, Max = 144 Hz * Request Min = 40 Hz, Max = 144 Hz * Nominal = 143.5x Hz rounded to 144 Hz * This function should allow this as valid request * * Example 2. Caps Min = 40 Hz, Max = 144 Hz * Request Min = 40 Hz, Max = 144 Hz * Nominal = 144.4x Hz rounded to 144 Hz * This function should allow this as valid request * * Example 3. Caps Min = 40 Hz, Max = 144 Hz * Request Min = 40 Hz, Max = 144 Hz * Nominal = 120.xx Hz rounded to 120 Hz * This function should return NOT valid since the requested * max is greater than current timing's nominal * * Example 4. Caps Min = 40 Hz, Max = 120 Hz * Request Min = 40 Hz, Max = 120 Hz * Nominal = 144.xx Hz rounded to 144 Hz * This function should return NOT valid since the nominal * is greater than the capability's max refresh */ nominal_field_rate_in_uhz = div_u64(nominal_field_rate_in_uhz + 500000, 1000000); min_refresh_cap_in_uhz /= 1000000; max_refresh_cap_in_uhz /= 1000000; /* Check nominal is within range */ if (nominal_field_rate_in_uhz > max_refresh_cap_in_uhz || nominal_field_rate_in_uhz < min_refresh_cap_in_uhz) return false; /* If nominal is less than max, limit the max allowed refresh rate */ if (nominal_field_rate_in_uhz < max_refresh_cap_in_uhz) max_refresh_cap_in_uhz = nominal_field_rate_in_uhz; /* Check min is within range */ if (min_refresh_cap_in_uhz > max_refresh_cap_in_uhz) return false; /* For variable range, check for at least 10 Hz range */ if (nominal_field_rate_in_uhz - min_refresh_cap_in_uhz < 10) return false; return true; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1