Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Eric Huang | 4781 | 70.24% | 4 | 9.76% |
Rex Zhu | 1395 | 20.49% | 16 | 39.02% |
Jammy Zhou | 271 | 3.98% | 2 | 4.88% |
Evan Quan | 88 | 1.29% | 1 | 2.44% |
Alex Deucher | 87 | 1.28% | 4 | 9.76% |
Kenneth Feng | 82 | 1.20% | 1 | 2.44% |
Gustavo A. R. Silva | 73 | 1.07% | 5 | 12.20% |
yanyang1 | 13 | 0.19% | 1 | 2.44% |
Emily Deng | 7 | 0.10% | 1 | 2.44% |
Georgiana Rodica Chelu | 5 | 0.07% | 2 | 4.88% |
Tom St Denis | 2 | 0.03% | 1 | 2.44% |
Nils Wallménius | 1 | 0.01% | 1 | 2.44% |
Sam Ravnborg | 1 | 0.01% | 1 | 2.44% |
Lee Jones | 1 | 0.01% | 1 | 2.44% |
Total | 6807 | 41 |
/* * Copyright 2016 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include <linux/module.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/fb.h> #include "vega10_processpptables.h" #include "ppatomfwctrl.h" #include "atomfirmware.h" #include "pp_debug.h" #include "cgs_common.h" #include "vega10_pptable.h" #define NUM_DSPCLK_LEVELS 8 #define VEGA10_ENGINECLOCK_HARDMAX 198000 static void set_hw_cap(struct pp_hwmgr *hwmgr, bool enable, enum phm_platform_caps cap) { if (enable) phm_cap_set(hwmgr->platform_descriptor.platformCaps, cap); else phm_cap_unset(hwmgr->platform_descriptor.platformCaps, cap); } static const void *get_powerplay_table(struct pp_hwmgr *hwmgr) { int index = GetIndexIntoMasterDataTable(powerplayinfo); u16 size; u8 frev, crev; const void *table_address = hwmgr->soft_pp_table; if (!table_address) { table_address = (ATOM_Vega10_POWERPLAYTABLE *) smu_atom_get_data_table(hwmgr->adev, index, &size, &frev, &crev); hwmgr->soft_pp_table = table_address; /*Cache the result in RAM.*/ hwmgr->soft_pp_table_size = size; } return table_address; } static int check_powerplay_tables( struct pp_hwmgr *hwmgr, const ATOM_Vega10_POWERPLAYTABLE *powerplay_table) { const ATOM_Vega10_State_Array *state_arrays; state_arrays = (ATOM_Vega10_State_Array *)(((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usStateArrayOffset)); PP_ASSERT_WITH_CODE((powerplay_table->sHeader.format_revision >= ATOM_Vega10_TABLE_REVISION_VEGA10), "Unsupported PPTable format!", return -1); PP_ASSERT_WITH_CODE(powerplay_table->usStateArrayOffset, "State table is not set!", return -1); PP_ASSERT_WITH_CODE(powerplay_table->sHeader.structuresize > 0, "Invalid PowerPlay Table!", return -1); PP_ASSERT_WITH_CODE(state_arrays->ucNumEntries > 0, "Invalid PowerPlay Table!", return -1); return 0; } static int set_platform_caps(struct pp_hwmgr *hwmgr, uint32_t powerplay_caps) { set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_VEGA10_PP_PLATFORM_CAP_POWERPLAY), PHM_PlatformCaps_PowerPlaySupport); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_VEGA10_PP_PLATFORM_CAP_SBIOSPOWERSOURCE), PHM_PlatformCaps_BiosPowerSourceControl); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_VEGA10_PP_PLATFORM_CAP_HARDWAREDC), PHM_PlatformCaps_AutomaticDCTransition); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_VEGA10_PP_PLATFORM_CAP_BACO), PHM_PlatformCaps_BACO); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_VEGA10_PP_PLATFORM_COMBINE_PCC_WITH_THERMAL_SIGNAL), PHM_PlatformCaps_CombinePCCWithThermalSignal); return 0; } static int init_thermal_controller( struct pp_hwmgr *hwmgr, const ATOM_Vega10_POWERPLAYTABLE *powerplay_table) { const ATOM_Vega10_Thermal_Controller *thermal_controller; const Vega10_PPTable_Generic_SubTable_Header *header; const ATOM_Vega10_Fan_Table *fan_table_v1; const ATOM_Vega10_Fan_Table_V2 *fan_table_v2; const ATOM_Vega10_Fan_Table_V3 *fan_table_v3; thermal_controller = (ATOM_Vega10_Thermal_Controller *) (((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usThermalControllerOffset)); PP_ASSERT_WITH_CODE((powerplay_table->usThermalControllerOffset != 0), "Thermal controller table not set!", return -EINVAL); hwmgr->thermal_controller.ucType = thermal_controller->ucType; hwmgr->thermal_controller.ucI2cLine = thermal_controller->ucI2cLine; hwmgr->thermal_controller.ucI2cAddress = thermal_controller->ucI2cAddress; hwmgr->thermal_controller.fanInfo.bNoFan = (0 != (thermal_controller->ucFanParameters & ATOM_VEGA10_PP_FANPARAMETERS_NOFAN)); hwmgr->thermal_controller.fanInfo.ucTachometerPulsesPerRevolution = thermal_controller->ucFanParameters & ATOM_VEGA10_PP_FANPARAMETERS_TACHOMETER_PULSES_PER_REVOLUTION_MASK; hwmgr->thermal_controller.fanInfo.ulMinRPM = thermal_controller->ucFanMinRPM * 100UL; hwmgr->thermal_controller.fanInfo.ulMaxRPM = thermal_controller->ucFanMaxRPM * 100UL; hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay = 100000; set_hw_cap( hwmgr, ATOM_VEGA10_PP_THERMALCONTROLLER_NONE != hwmgr->thermal_controller.ucType, PHM_PlatformCaps_ThermalController); if (!powerplay_table->usFanTableOffset) return 0; header = (const Vega10_PPTable_Generic_SubTable_Header *) (((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usFanTableOffset)); if (header->ucRevId == 10) { fan_table_v1 = (ATOM_Vega10_Fan_Table *)header; PP_ASSERT_WITH_CODE((fan_table_v1->ucRevId >= 8), "Invalid Input Fan Table!", return -EINVAL); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity = le16_to_cpu(fan_table_v1->usFanOutputSensitivity); hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM = le16_to_cpu(fan_table_v1->usFanRPMMax); hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMaxLimit = le16_to_cpu(fan_table_v1->usThrottlingRPM); hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit = le16_to_cpu(fan_table_v1->usFanAcousticLimit); hwmgr->thermal_controller.advanceFanControlParameters.usTMax = le16_to_cpu(fan_table_v1->usTargetTemperature); hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin = le16_to_cpu(fan_table_v1->usMinimumPWMLimit); hwmgr->thermal_controller.advanceFanControlParameters.ulTargetGfxClk = le16_to_cpu(fan_table_v1->usTargetGfxClk); hwmgr->thermal_controller.advanceFanControlParameters.usFanGainEdge = le16_to_cpu(fan_table_v1->usFanGainEdge); hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHotspot = le16_to_cpu(fan_table_v1->usFanGainHotspot); hwmgr->thermal_controller.advanceFanControlParameters.usFanGainLiquid = le16_to_cpu(fan_table_v1->usFanGainLiquid); hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrVddc = le16_to_cpu(fan_table_v1->usFanGainVrVddc); hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrMvdd = le16_to_cpu(fan_table_v1->usFanGainVrMvdd); hwmgr->thermal_controller.advanceFanControlParameters.usFanGainPlx = le16_to_cpu(fan_table_v1->usFanGainPlx); hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHbm = le16_to_cpu(fan_table_v1->usFanGainHbm); hwmgr->thermal_controller.advanceFanControlParameters.ucEnableZeroRPM = fan_table_v1->ucEnableZeroRPM; hwmgr->thermal_controller.advanceFanControlParameters.usZeroRPMStopTemperature = le16_to_cpu(fan_table_v1->usFanStopTemperature); hwmgr->thermal_controller.advanceFanControlParameters.usZeroRPMStartTemperature = le16_to_cpu(fan_table_v1->usFanStartTemperature); } else if (header->ucRevId == 0xb) { fan_table_v2 = (ATOM_Vega10_Fan_Table_V2 *)header; hwmgr->thermal_controller.fanInfo.ucTachometerPulsesPerRevolution = fan_table_v2->ucFanParameters & ATOM_VEGA10_PP_FANPARAMETERS_TACHOMETER_PULSES_PER_REVOLUTION_MASK; hwmgr->thermal_controller.fanInfo.ulMinRPM = fan_table_v2->ucFanMinRPM * 100UL; hwmgr->thermal_controller.fanInfo.ulMaxRPM = fan_table_v2->ucFanMaxRPM * 100UL; phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity = le16_to_cpu(fan_table_v2->usFanOutputSensitivity); hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM = fan_table_v2->ucFanMaxRPM * 100UL; hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMaxLimit = le16_to_cpu(fan_table_v2->usThrottlingRPM); hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit = le16_to_cpu(fan_table_v2->usFanAcousticLimitRpm); hwmgr->thermal_controller.advanceFanControlParameters.usTMax = le16_to_cpu(fan_table_v2->usTargetTemperature); hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin = le16_to_cpu(fan_table_v2->usMinimumPWMLimit); hwmgr->thermal_controller.advanceFanControlParameters.ulTargetGfxClk = le16_to_cpu(fan_table_v2->usTargetGfxClk); hwmgr->thermal_controller.advanceFanControlParameters.usFanGainEdge = le16_to_cpu(fan_table_v2->usFanGainEdge); hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHotspot = le16_to_cpu(fan_table_v2->usFanGainHotspot); hwmgr->thermal_controller.advanceFanControlParameters.usFanGainLiquid = le16_to_cpu(fan_table_v2->usFanGainLiquid); hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrVddc = le16_to_cpu(fan_table_v2->usFanGainVrVddc); hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrMvdd = le16_to_cpu(fan_table_v2->usFanGainVrMvdd); hwmgr->thermal_controller.advanceFanControlParameters.usFanGainPlx = le16_to_cpu(fan_table_v2->usFanGainPlx); hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHbm = le16_to_cpu(fan_table_v2->usFanGainHbm); hwmgr->thermal_controller.advanceFanControlParameters.ucEnableZeroRPM = fan_table_v2->ucEnableZeroRPM; hwmgr->thermal_controller.advanceFanControlParameters.usZeroRPMStopTemperature = le16_to_cpu(fan_table_v2->usFanStopTemperature); hwmgr->thermal_controller.advanceFanControlParameters.usZeroRPMStartTemperature = le16_to_cpu(fan_table_v2->usFanStartTemperature); } else if (header->ucRevId > 0xb) { fan_table_v3 = (ATOM_Vega10_Fan_Table_V3 *)header; hwmgr->thermal_controller.fanInfo.ucTachometerPulsesPerRevolution = fan_table_v3->ucFanParameters & ATOM_VEGA10_PP_FANPARAMETERS_TACHOMETER_PULSES_PER_REVOLUTION_MASK; hwmgr->thermal_controller.fanInfo.ulMinRPM = fan_table_v3->ucFanMinRPM * 100UL; hwmgr->thermal_controller.fanInfo.ulMaxRPM = fan_table_v3->ucFanMaxRPM * 100UL; phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity = le16_to_cpu(fan_table_v3->usFanOutputSensitivity); hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM = fan_table_v3->ucFanMaxRPM * 100UL; hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMaxLimit = le16_to_cpu(fan_table_v3->usThrottlingRPM); hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit = le16_to_cpu(fan_table_v3->usFanAcousticLimitRpm); hwmgr->thermal_controller.advanceFanControlParameters.usTMax = le16_to_cpu(fan_table_v3->usTargetTemperature); hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin = le16_to_cpu(fan_table_v3->usMinimumPWMLimit); hwmgr->thermal_controller.advanceFanControlParameters.ulTargetGfxClk = le16_to_cpu(fan_table_v3->usTargetGfxClk); hwmgr->thermal_controller.advanceFanControlParameters.usFanGainEdge = le16_to_cpu(fan_table_v3->usFanGainEdge); hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHotspot = le16_to_cpu(fan_table_v3->usFanGainHotspot); hwmgr->thermal_controller.advanceFanControlParameters.usFanGainLiquid = le16_to_cpu(fan_table_v3->usFanGainLiquid); hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrVddc = le16_to_cpu(fan_table_v3->usFanGainVrVddc); hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrMvdd = le16_to_cpu(fan_table_v3->usFanGainVrMvdd); hwmgr->thermal_controller.advanceFanControlParameters.usFanGainPlx = le16_to_cpu(fan_table_v3->usFanGainPlx); hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHbm = le16_to_cpu(fan_table_v3->usFanGainHbm); hwmgr->thermal_controller.advanceFanControlParameters.ucEnableZeroRPM = fan_table_v3->ucEnableZeroRPM; hwmgr->thermal_controller.advanceFanControlParameters.usZeroRPMStopTemperature = le16_to_cpu(fan_table_v3->usFanStopTemperature); hwmgr->thermal_controller.advanceFanControlParameters.usZeroRPMStartTemperature = le16_to_cpu(fan_table_v3->usFanStartTemperature); hwmgr->thermal_controller.advanceFanControlParameters.usMGpuThrottlingRPMLimit = le16_to_cpu(fan_table_v3->usMGpuThrottlingRPM); } return 0; } static int init_over_drive_limits( struct pp_hwmgr *hwmgr, const ATOM_Vega10_POWERPLAYTABLE *powerplay_table) { const ATOM_Vega10_GFXCLK_Dependency_Table *gfxclk_dep_table = (const ATOM_Vega10_GFXCLK_Dependency_Table *) (((unsigned long) powerplay_table) + le16_to_cpu(powerplay_table->usGfxclkDependencyTableOffset)); bool is_acg_enabled = false; ATOM_Vega10_GFXCLK_Dependency_Record_V2 *patom_record_v2; if (gfxclk_dep_table->ucRevId == 1) { patom_record_v2 = (ATOM_Vega10_GFXCLK_Dependency_Record_V2 *)gfxclk_dep_table->entries; is_acg_enabled = (bool)patom_record_v2[gfxclk_dep_table->ucNumEntries-1].ucACGEnable; } if (powerplay_table->ulMaxODEngineClock > VEGA10_ENGINECLOCK_HARDMAX && !is_acg_enabled) hwmgr->platform_descriptor.overdriveLimit.engineClock = VEGA10_ENGINECLOCK_HARDMAX; else hwmgr->platform_descriptor.overdriveLimit.engineClock = le32_to_cpu(powerplay_table->ulMaxODEngineClock); hwmgr->platform_descriptor.overdriveLimit.memoryClock = le32_to_cpu(powerplay_table->ulMaxODMemoryClock); hwmgr->platform_descriptor.minOverdriveVDDC = 0; hwmgr->platform_descriptor.maxOverdriveVDDC = 0; hwmgr->platform_descriptor.overdriveVDDCStep = 0; return 0; } static int get_mm_clock_voltage_table( struct pp_hwmgr *hwmgr, phm_ppt_v1_mm_clock_voltage_dependency_table **vega10_mm_table, const ATOM_Vega10_MM_Dependency_Table *mm_dependency_table) { uint32_t i; const ATOM_Vega10_MM_Dependency_Record *mm_dependency_record; phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table; PP_ASSERT_WITH_CODE((mm_dependency_table->ucNumEntries != 0), "Invalid PowerPlay Table!", return -1); mm_table = kzalloc(struct_size(mm_table, entries, mm_dependency_table->ucNumEntries), GFP_KERNEL); if (!mm_table) return -ENOMEM; mm_table->count = mm_dependency_table->ucNumEntries; for (i = 0; i < mm_dependency_table->ucNumEntries; i++) { mm_dependency_record = &mm_dependency_table->entries[i]; mm_table->entries[i].vddcInd = mm_dependency_record->ucVddcInd; mm_table->entries[i].samclock = le32_to_cpu(mm_dependency_record->ulPSPClk); mm_table->entries[i].eclk = le32_to_cpu(mm_dependency_record->ulEClk); mm_table->entries[i].vclk = le32_to_cpu(mm_dependency_record->ulVClk); mm_table->entries[i].dclk = le32_to_cpu(mm_dependency_record->ulDClk); } *vega10_mm_table = mm_table; return 0; } static void get_scl_sda_value(uint8_t line, uint8_t *scl, uint8_t* sda) { switch(line){ case Vega10_I2CLineID_DDC1: *scl = Vega10_I2C_DDC1CLK; *sda = Vega10_I2C_DDC1DATA; break; case Vega10_I2CLineID_DDC2: *scl = Vega10_I2C_DDC2CLK; *sda = Vega10_I2C_DDC2DATA; break; case Vega10_I2CLineID_DDC3: *scl = Vega10_I2C_DDC3CLK; *sda = Vega10_I2C_DDC3DATA; break; case Vega10_I2CLineID_DDC4: *scl = Vega10_I2C_DDC4CLK; *sda = Vega10_I2C_DDC4DATA; break; case Vega10_I2CLineID_DDC5: *scl = Vega10_I2C_DDC5CLK; *sda = Vega10_I2C_DDC5DATA; break; case Vega10_I2CLineID_DDC6: *scl = Vega10_I2C_DDC6CLK; *sda = Vega10_I2C_DDC6DATA; break; case Vega10_I2CLineID_SCLSDA: *scl = Vega10_I2C_SCL; *sda = Vega10_I2C_SDA; break; case Vega10_I2CLineID_DDCVGA: *scl = Vega10_I2C_DDCVGACLK; *sda = Vega10_I2C_DDCVGADATA; break; default: *scl = 0; *sda = 0; break; } } static int get_tdp_table( struct pp_hwmgr *hwmgr, struct phm_tdp_table **info_tdp_table, const Vega10_PPTable_Generic_SubTable_Header *table) { uint32_t table_size; struct phm_tdp_table *tdp_table; uint8_t scl; uint8_t sda; const ATOM_Vega10_PowerTune_Table *power_tune_table; const ATOM_Vega10_PowerTune_Table_V2 *power_tune_table_v2; const ATOM_Vega10_PowerTune_Table_V3 *power_tune_table_v3; table_size = sizeof(uint32_t) + sizeof(struct phm_tdp_table); tdp_table = kzalloc(table_size, GFP_KERNEL); if (!tdp_table) return -ENOMEM; if (table->ucRevId == 5) { power_tune_table = (ATOM_Vega10_PowerTune_Table *)table; tdp_table->usMaximumPowerDeliveryLimit = le16_to_cpu(power_tune_table->usSocketPowerLimit); tdp_table->usTDC = le16_to_cpu(power_tune_table->usTdcLimit); tdp_table->usEDCLimit = le16_to_cpu(power_tune_table->usEdcLimit); tdp_table->usSoftwareShutdownTemp = le16_to_cpu(power_tune_table->usSoftwareShutdownTemp); tdp_table->usTemperatureLimitTedge = le16_to_cpu(power_tune_table->usTemperatureLimitTedge); tdp_table->usTemperatureLimitHotspot = le16_to_cpu(power_tune_table->usTemperatureLimitHotSpot); tdp_table->usTemperatureLimitLiquid1 = le16_to_cpu(power_tune_table->usTemperatureLimitLiquid1); tdp_table->usTemperatureLimitLiquid2 = le16_to_cpu(power_tune_table->usTemperatureLimitLiquid2); tdp_table->usTemperatureLimitHBM = le16_to_cpu(power_tune_table->usTemperatureLimitHBM); tdp_table->usTemperatureLimitVrVddc = le16_to_cpu(power_tune_table->usTemperatureLimitVrSoc); tdp_table->usTemperatureLimitVrMvdd = le16_to_cpu(power_tune_table->usTemperatureLimitVrMem); tdp_table->usTemperatureLimitPlx = le16_to_cpu(power_tune_table->usTemperatureLimitPlx); tdp_table->ucLiquid1_I2C_address = power_tune_table->ucLiquid1_I2C_address; tdp_table->ucLiquid2_I2C_address = power_tune_table->ucLiquid2_I2C_address; tdp_table->ucLiquid_I2C_Line = power_tune_table->ucLiquid_I2C_LineSCL; tdp_table->ucLiquid_I2C_LineSDA = power_tune_table->ucLiquid_I2C_LineSDA; tdp_table->ucVr_I2C_address = power_tune_table->ucVr_I2C_address; tdp_table->ucVr_I2C_Line = power_tune_table->ucVr_I2C_LineSCL; tdp_table->ucVr_I2C_LineSDA = power_tune_table->ucVr_I2C_LineSDA; tdp_table->ucPlx_I2C_address = power_tune_table->ucPlx_I2C_address; tdp_table->ucPlx_I2C_Line = power_tune_table->ucPlx_I2C_LineSCL; tdp_table->ucPlx_I2C_LineSDA = power_tune_table->ucPlx_I2C_LineSDA; hwmgr->platform_descriptor.LoadLineSlope = le16_to_cpu(power_tune_table->usLoadLineResistance); } else if (table->ucRevId == 6) { power_tune_table_v2 = (ATOM_Vega10_PowerTune_Table_V2 *)table; tdp_table->usMaximumPowerDeliveryLimit = le16_to_cpu(power_tune_table_v2->usSocketPowerLimit); tdp_table->usTDC = le16_to_cpu(power_tune_table_v2->usTdcLimit); tdp_table->usEDCLimit = le16_to_cpu(power_tune_table_v2->usEdcLimit); tdp_table->usSoftwareShutdownTemp = le16_to_cpu(power_tune_table_v2->usSoftwareShutdownTemp); tdp_table->usTemperatureLimitTedge = le16_to_cpu(power_tune_table_v2->usTemperatureLimitTedge); tdp_table->usTemperatureLimitHotspot = le16_to_cpu(power_tune_table_v2->usTemperatureLimitHotSpot); tdp_table->usTemperatureLimitLiquid1 = le16_to_cpu(power_tune_table_v2->usTemperatureLimitLiquid1); tdp_table->usTemperatureLimitLiquid2 = le16_to_cpu(power_tune_table_v2->usTemperatureLimitLiquid2); tdp_table->usTemperatureLimitHBM = le16_to_cpu(power_tune_table_v2->usTemperatureLimitHBM); tdp_table->usTemperatureLimitVrVddc = le16_to_cpu(power_tune_table_v2->usTemperatureLimitVrSoc); tdp_table->usTemperatureLimitVrMvdd = le16_to_cpu(power_tune_table_v2->usTemperatureLimitVrMem); tdp_table->usTemperatureLimitPlx = le16_to_cpu(power_tune_table_v2->usTemperatureLimitPlx); tdp_table->ucLiquid1_I2C_address = power_tune_table_v2->ucLiquid1_I2C_address; tdp_table->ucLiquid2_I2C_address = power_tune_table_v2->ucLiquid2_I2C_address; get_scl_sda_value(power_tune_table_v2->ucLiquid_I2C_Line, &scl, &sda); tdp_table->ucLiquid_I2C_Line = scl; tdp_table->ucLiquid_I2C_LineSDA = sda; tdp_table->ucVr_I2C_address = power_tune_table_v2->ucVr_I2C_address; get_scl_sda_value(power_tune_table_v2->ucVr_I2C_Line, &scl, &sda); tdp_table->ucVr_I2C_Line = scl; tdp_table->ucVr_I2C_LineSDA = sda; tdp_table->ucPlx_I2C_address = power_tune_table_v2->ucPlx_I2C_address; get_scl_sda_value(power_tune_table_v2->ucPlx_I2C_Line, &scl, &sda); tdp_table->ucPlx_I2C_Line = scl; tdp_table->ucPlx_I2C_LineSDA = sda; hwmgr->platform_descriptor.LoadLineSlope = le16_to_cpu(power_tune_table_v2->usLoadLineResistance); } else { power_tune_table_v3 = (ATOM_Vega10_PowerTune_Table_V3 *)table; tdp_table->usMaximumPowerDeliveryLimit = le16_to_cpu(power_tune_table_v3->usSocketPowerLimit); tdp_table->usTDC = le16_to_cpu(power_tune_table_v3->usTdcLimit); tdp_table->usEDCLimit = le16_to_cpu(power_tune_table_v3->usEdcLimit); tdp_table->usSoftwareShutdownTemp = le16_to_cpu(power_tune_table_v3->usSoftwareShutdownTemp); tdp_table->usTemperatureLimitTedge = le16_to_cpu(power_tune_table_v3->usTemperatureLimitTedge); tdp_table->usTemperatureLimitHotspot = le16_to_cpu(power_tune_table_v3->usTemperatureLimitHotSpot); tdp_table->usTemperatureLimitLiquid1 = le16_to_cpu(power_tune_table_v3->usTemperatureLimitLiquid1); tdp_table->usTemperatureLimitLiquid2 = le16_to_cpu(power_tune_table_v3->usTemperatureLimitLiquid2); tdp_table->usTemperatureLimitHBM = le16_to_cpu(power_tune_table_v3->usTemperatureLimitHBM); tdp_table->usTemperatureLimitVrVddc = le16_to_cpu(power_tune_table_v3->usTemperatureLimitVrSoc); tdp_table->usTemperatureLimitVrMvdd = le16_to_cpu(power_tune_table_v3->usTemperatureLimitVrMem); tdp_table->usTemperatureLimitPlx = le16_to_cpu(power_tune_table_v3->usTemperatureLimitPlx); tdp_table->ucLiquid1_I2C_address = power_tune_table_v3->ucLiquid1_I2C_address; tdp_table->ucLiquid2_I2C_address = power_tune_table_v3->ucLiquid2_I2C_address; tdp_table->usBoostStartTemperature = le16_to_cpu(power_tune_table_v3->usBoostStartTemperature); tdp_table->usBoostStopTemperature = le16_to_cpu(power_tune_table_v3->usBoostStopTemperature); tdp_table->ulBoostClock = le32_to_cpu(power_tune_table_v3->ulBoostClock); get_scl_sda_value(power_tune_table_v3->ucLiquid_I2C_Line, &scl, &sda); tdp_table->ucLiquid_I2C_Line = scl; tdp_table->ucLiquid_I2C_LineSDA = sda; tdp_table->ucVr_I2C_address = power_tune_table_v3->ucVr_I2C_address; get_scl_sda_value(power_tune_table_v3->ucVr_I2C_Line, &scl, &sda); tdp_table->ucVr_I2C_Line = scl; tdp_table->ucVr_I2C_LineSDA = sda; tdp_table->ucPlx_I2C_address = power_tune_table_v3->ucPlx_I2C_address; get_scl_sda_value(power_tune_table_v3->ucPlx_I2C_Line, &scl, &sda); tdp_table->ucPlx_I2C_Line = scl; tdp_table->ucPlx_I2C_LineSDA = sda; hwmgr->platform_descriptor.LoadLineSlope = le16_to_cpu(power_tune_table_v3->usLoadLineResistance); } *info_tdp_table = tdp_table; return 0; } static int get_socclk_voltage_dependency_table( struct pp_hwmgr *hwmgr, phm_ppt_v1_clock_voltage_dependency_table **pp_vega10_clk_dep_table, const ATOM_Vega10_SOCCLK_Dependency_Table *clk_dep_table) { uint32_t i; phm_ppt_v1_clock_voltage_dependency_table *clk_table; PP_ASSERT_WITH_CODE(clk_dep_table->ucNumEntries, "Invalid PowerPlay Table!", return -1); clk_table = kzalloc(struct_size(clk_table, entries, clk_dep_table->ucNumEntries), GFP_KERNEL); if (!clk_table) return -ENOMEM; clk_table->count = (uint32_t)clk_dep_table->ucNumEntries; for (i = 0; i < clk_dep_table->ucNumEntries; i++) { clk_table->entries[i].vddInd = clk_dep_table->entries[i].ucVddInd; clk_table->entries[i].clk = le32_to_cpu(clk_dep_table->entries[i].ulClk); } *pp_vega10_clk_dep_table = clk_table; return 0; } static int get_mclk_voltage_dependency_table( struct pp_hwmgr *hwmgr, phm_ppt_v1_clock_voltage_dependency_table **pp_vega10_mclk_dep_table, const ATOM_Vega10_MCLK_Dependency_Table *mclk_dep_table) { uint32_t i; phm_ppt_v1_clock_voltage_dependency_table *mclk_table; PP_ASSERT_WITH_CODE(mclk_dep_table->ucNumEntries, "Invalid PowerPlay Table!", return -1); mclk_table = kzalloc(struct_size(mclk_table, entries, mclk_dep_table->ucNumEntries), GFP_KERNEL); if (!mclk_table) return -ENOMEM; mclk_table->count = (uint32_t)mclk_dep_table->ucNumEntries; for (i = 0; i < mclk_dep_table->ucNumEntries; i++) { mclk_table->entries[i].vddInd = mclk_dep_table->entries[i].ucVddInd; mclk_table->entries[i].vddciInd = mclk_dep_table->entries[i].ucVddciInd; mclk_table->entries[i].mvddInd = mclk_dep_table->entries[i].ucVddMemInd; mclk_table->entries[i].clk = le32_to_cpu(mclk_dep_table->entries[i].ulMemClk); } *pp_vega10_mclk_dep_table = mclk_table; return 0; } static int get_gfxclk_voltage_dependency_table( struct pp_hwmgr *hwmgr, struct phm_ppt_v1_clock_voltage_dependency_table **pp_vega10_clk_dep_table, const ATOM_Vega10_GFXCLK_Dependency_Table *clk_dep_table) { uint32_t i; struct phm_ppt_v1_clock_voltage_dependency_table *clk_table; ATOM_Vega10_GFXCLK_Dependency_Record_V2 *patom_record_v2; PP_ASSERT_WITH_CODE((clk_dep_table->ucNumEntries != 0), "Invalid PowerPlay Table!", return -1); clk_table = kzalloc(struct_size(clk_table, entries, clk_dep_table->ucNumEntries), GFP_KERNEL); if (!clk_table) return -ENOMEM; clk_table->count = clk_dep_table->ucNumEntries; if (clk_dep_table->ucRevId == 0) { for (i = 0; i < clk_table->count; i++) { clk_table->entries[i].vddInd = clk_dep_table->entries[i].ucVddInd; clk_table->entries[i].clk = le32_to_cpu(clk_dep_table->entries[i].ulClk); clk_table->entries[i].cks_enable = (((le16_to_cpu(clk_dep_table->entries[i].usCKSVOffsetandDisable) & 0x8000) >> 15) == 0) ? 1 : 0; clk_table->entries[i].cks_voffset = le16_to_cpu(clk_dep_table->entries[i].usCKSVOffsetandDisable) & 0x7F; clk_table->entries[i].sclk_offset = le16_to_cpu(clk_dep_table->entries[i].usAVFSOffset); } } else if (clk_dep_table->ucRevId == 1) { patom_record_v2 = (ATOM_Vega10_GFXCLK_Dependency_Record_V2 *)clk_dep_table->entries; for (i = 0; i < clk_table->count; i++) { clk_table->entries[i].vddInd = patom_record_v2->ucVddInd; clk_table->entries[i].clk = le32_to_cpu(patom_record_v2->ulClk); clk_table->entries[i].cks_enable = (((le16_to_cpu(patom_record_v2->usCKSVOffsetandDisable) & 0x8000) >> 15) == 0) ? 1 : 0; clk_table->entries[i].cks_voffset = le16_to_cpu(patom_record_v2->usCKSVOffsetandDisable) & 0x7F; clk_table->entries[i].sclk_offset = le16_to_cpu(patom_record_v2->usAVFSOffset); patom_record_v2++; } } else { kfree(clk_table); PP_ASSERT_WITH_CODE(false, "Unsupported GFXClockDependencyTable Revision!", return -EINVAL); } *pp_vega10_clk_dep_table = clk_table; return 0; } static int get_pix_clk_voltage_dependency_table( struct pp_hwmgr *hwmgr, struct phm_ppt_v1_clock_voltage_dependency_table **pp_vega10_clk_dep_table, const ATOM_Vega10_PIXCLK_Dependency_Table *clk_dep_table) { uint32_t i; struct phm_ppt_v1_clock_voltage_dependency_table *clk_table; PP_ASSERT_WITH_CODE((clk_dep_table->ucNumEntries != 0), "Invalid PowerPlay Table!", return -1); clk_table = kzalloc(struct_size(clk_table, entries, clk_dep_table->ucNumEntries), GFP_KERNEL); if (!clk_table) return -ENOMEM; clk_table->count = clk_dep_table->ucNumEntries; for (i = 0; i < clk_table->count; i++) { clk_table->entries[i].vddInd = clk_dep_table->entries[i].ucVddInd; clk_table->entries[i].clk = le32_to_cpu(clk_dep_table->entries[i].ulClk); } *pp_vega10_clk_dep_table = clk_table; return 0; } static int get_dcefclk_voltage_dependency_table( struct pp_hwmgr *hwmgr, struct phm_ppt_v1_clock_voltage_dependency_table **pp_vega10_clk_dep_table, const ATOM_Vega10_DCEFCLK_Dependency_Table *clk_dep_table) { uint32_t i; uint8_t num_entries; struct phm_ppt_v1_clock_voltage_dependency_table *clk_table; uint32_t dev_id; uint32_t rev_id; struct amdgpu_device *adev = hwmgr->adev; PP_ASSERT_WITH_CODE((clk_dep_table->ucNumEntries != 0), "Invalid PowerPlay Table!", return -1); /* * workaround needed to add another DPM level for pioneer cards * as VBIOS is locked down. * This DPM level was added to support 3DPM monitors @ 4K120Hz * */ dev_id = adev->pdev->device; rev_id = adev->pdev->revision; if (dev_id == 0x6863 && rev_id == 0 && clk_dep_table->entries[clk_dep_table->ucNumEntries - 1].ulClk < 90000) num_entries = clk_dep_table->ucNumEntries + 1 > NUM_DSPCLK_LEVELS ? NUM_DSPCLK_LEVELS : clk_dep_table->ucNumEntries + 1; else num_entries = clk_dep_table->ucNumEntries; clk_table = kzalloc(struct_size(clk_table, entries, num_entries), GFP_KERNEL); if (!clk_table) return -ENOMEM; clk_table->count = (uint32_t)num_entries; for (i = 0; i < clk_dep_table->ucNumEntries; i++) { clk_table->entries[i].vddInd = clk_dep_table->entries[i].ucVddInd; clk_table->entries[i].clk = le32_to_cpu(clk_dep_table->entries[i].ulClk); } if (i < num_entries) { clk_table->entries[i].vddInd = clk_dep_table->entries[i-1].ucVddInd; clk_table->entries[i].clk = 90000; } *pp_vega10_clk_dep_table = clk_table; return 0; } static int get_pcie_table(struct pp_hwmgr *hwmgr, struct phm_ppt_v1_pcie_table **vega10_pcie_table, const Vega10_PPTable_Generic_SubTable_Header *table) { uint32_t i, pcie_count; struct phm_ppt_v1_pcie_table *pcie_table; struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); const ATOM_Vega10_PCIE_Table *atom_pcie_table = (ATOM_Vega10_PCIE_Table *)table; PP_ASSERT_WITH_CODE(atom_pcie_table->ucNumEntries, "Invalid PowerPlay Table!", return 0); pcie_table = kzalloc(struct_size(pcie_table, entries, atom_pcie_table->ucNumEntries), GFP_KERNEL); if (!pcie_table) return -ENOMEM; pcie_count = table_info->vdd_dep_on_sclk->count; if (atom_pcie_table->ucNumEntries <= pcie_count) pcie_count = atom_pcie_table->ucNumEntries; else pr_info("Number of Pcie Entries exceed the number of" " GFXCLK Dpm Levels!" " Disregarding the excess entries...\n"); pcie_table->count = pcie_count; for (i = 0; i < pcie_count; i++) { pcie_table->entries[i].gen_speed = atom_pcie_table->entries[i].ucPCIEGenSpeed; pcie_table->entries[i].lane_width = atom_pcie_table->entries[i].ucPCIELaneWidth; pcie_table->entries[i].pcie_sclk = atom_pcie_table->entries[i].ulLCLK; } *vega10_pcie_table = pcie_table; return 0; } static int get_hard_limits( struct pp_hwmgr *hwmgr, struct phm_clock_and_voltage_limits *limits, const ATOM_Vega10_Hard_Limit_Table *limit_table) { PP_ASSERT_WITH_CODE(limit_table->ucNumEntries, "Invalid PowerPlay Table!", return -1); /* currently we always take entries[0] parameters */ limits->sclk = le32_to_cpu(limit_table->entries[0].ulSOCCLKLimit); limits->mclk = le32_to_cpu(limit_table->entries[0].ulMCLKLimit); limits->gfxclk = le32_to_cpu(limit_table->entries[0].ulGFXCLKLimit); limits->vddc = le16_to_cpu(limit_table->entries[0].usVddcLimit); limits->vddci = le16_to_cpu(limit_table->entries[0].usVddciLimit); limits->vddmem = le16_to_cpu(limit_table->entries[0].usVddMemLimit); return 0; } static int get_valid_clk( struct pp_hwmgr *hwmgr, struct phm_clock_array **clk_table, const phm_ppt_v1_clock_voltage_dependency_table *clk_volt_pp_table) { uint32_t i; struct phm_clock_array *table; PP_ASSERT_WITH_CODE(clk_volt_pp_table->count, "Invalid PowerPlay Table!", return -1); table = kzalloc(struct_size(table, values, clk_volt_pp_table->count), GFP_KERNEL); if (!table) return -ENOMEM; table->count = (uint32_t)clk_volt_pp_table->count; for (i = 0; i < table->count; i++) table->values[i] = (uint32_t)clk_volt_pp_table->entries[i].clk; *clk_table = table; return 0; } static int init_powerplay_extended_tables( struct pp_hwmgr *hwmgr, const ATOM_Vega10_POWERPLAYTABLE *powerplay_table) { int result = 0; struct phm_ppt_v2_information *pp_table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); const ATOM_Vega10_MM_Dependency_Table *mm_dependency_table = (const ATOM_Vega10_MM_Dependency_Table *) (((unsigned long) powerplay_table) + le16_to_cpu(powerplay_table->usMMDependencyTableOffset)); const Vega10_PPTable_Generic_SubTable_Header *power_tune_table = (const Vega10_PPTable_Generic_SubTable_Header *) (((unsigned long) powerplay_table) + le16_to_cpu(powerplay_table->usPowerTuneTableOffset)); const ATOM_Vega10_SOCCLK_Dependency_Table *socclk_dep_table = (const ATOM_Vega10_SOCCLK_Dependency_Table *) (((unsigned long) powerplay_table) + le16_to_cpu(powerplay_table->usSocclkDependencyTableOffset)); const ATOM_Vega10_GFXCLK_Dependency_Table *gfxclk_dep_table = (const ATOM_Vega10_GFXCLK_Dependency_Table *) (((unsigned long) powerplay_table) + le16_to_cpu(powerplay_table->usGfxclkDependencyTableOffset)); const ATOM_Vega10_DCEFCLK_Dependency_Table *dcefclk_dep_table = (const ATOM_Vega10_DCEFCLK_Dependency_Table *) (((unsigned long) powerplay_table) + le16_to_cpu(powerplay_table->usDcefclkDependencyTableOffset)); const ATOM_Vega10_MCLK_Dependency_Table *mclk_dep_table = (const ATOM_Vega10_MCLK_Dependency_Table *) (((unsigned long) powerplay_table) + le16_to_cpu(powerplay_table->usMclkDependencyTableOffset)); const ATOM_Vega10_Hard_Limit_Table *hard_limits = (const ATOM_Vega10_Hard_Limit_Table *) (((unsigned long) powerplay_table) + le16_to_cpu(powerplay_table->usHardLimitTableOffset)); const Vega10_PPTable_Generic_SubTable_Header *pcie_table = (const Vega10_PPTable_Generic_SubTable_Header *) (((unsigned long) powerplay_table) + le16_to_cpu(powerplay_table->usPCIETableOffset)); const ATOM_Vega10_PIXCLK_Dependency_Table *pixclk_dep_table = (const ATOM_Vega10_PIXCLK_Dependency_Table *) (((unsigned long) powerplay_table) + le16_to_cpu(powerplay_table->usPixclkDependencyTableOffset)); const ATOM_Vega10_PHYCLK_Dependency_Table *phyclk_dep_table = (const ATOM_Vega10_PHYCLK_Dependency_Table *) (((unsigned long) powerplay_table) + le16_to_cpu(powerplay_table->usPhyClkDependencyTableOffset)); const ATOM_Vega10_DISPCLK_Dependency_Table *dispclk_dep_table = (const ATOM_Vega10_DISPCLK_Dependency_Table *) (((unsigned long) powerplay_table) + le16_to_cpu(powerplay_table->usDispClkDependencyTableOffset)); pp_table_info->vdd_dep_on_socclk = NULL; pp_table_info->vdd_dep_on_sclk = NULL; pp_table_info->vdd_dep_on_mclk = NULL; pp_table_info->vdd_dep_on_dcefclk = NULL; pp_table_info->mm_dep_table = NULL; pp_table_info->tdp_table = NULL; pp_table_info->vdd_dep_on_pixclk = NULL; pp_table_info->vdd_dep_on_phyclk = NULL; pp_table_info->vdd_dep_on_dispclk = NULL; if (powerplay_table->usMMDependencyTableOffset) result = get_mm_clock_voltage_table(hwmgr, &pp_table_info->mm_dep_table, mm_dependency_table); if (!result && powerplay_table->usPowerTuneTableOffset) result = get_tdp_table(hwmgr, &pp_table_info->tdp_table, power_tune_table); if (!result && powerplay_table->usSocclkDependencyTableOffset) result = get_socclk_voltage_dependency_table(hwmgr, &pp_table_info->vdd_dep_on_socclk, socclk_dep_table); if (!result && powerplay_table->usGfxclkDependencyTableOffset) result = get_gfxclk_voltage_dependency_table(hwmgr, &pp_table_info->vdd_dep_on_sclk, gfxclk_dep_table); if (!result && powerplay_table->usPixclkDependencyTableOffset) result = get_pix_clk_voltage_dependency_table(hwmgr, &pp_table_info->vdd_dep_on_pixclk, (const ATOM_Vega10_PIXCLK_Dependency_Table*) pixclk_dep_table); if (!result && powerplay_table->usPhyClkDependencyTableOffset) result = get_pix_clk_voltage_dependency_table(hwmgr, &pp_table_info->vdd_dep_on_phyclk, (const ATOM_Vega10_PIXCLK_Dependency_Table *) phyclk_dep_table); if (!result && powerplay_table->usDispClkDependencyTableOffset) result = get_pix_clk_voltage_dependency_table(hwmgr, &pp_table_info->vdd_dep_on_dispclk, (const ATOM_Vega10_PIXCLK_Dependency_Table *) dispclk_dep_table); if (!result && powerplay_table->usDcefclkDependencyTableOffset) result = get_dcefclk_voltage_dependency_table(hwmgr, &pp_table_info->vdd_dep_on_dcefclk, dcefclk_dep_table); if (!result && powerplay_table->usMclkDependencyTableOffset) result = get_mclk_voltage_dependency_table(hwmgr, &pp_table_info->vdd_dep_on_mclk, mclk_dep_table); if (!result && powerplay_table->usPCIETableOffset) result = get_pcie_table(hwmgr, &pp_table_info->pcie_table, pcie_table); if (!result && powerplay_table->usHardLimitTableOffset) result = get_hard_limits(hwmgr, &pp_table_info->max_clock_voltage_on_dc, hard_limits); hwmgr->dyn_state.max_clock_voltage_on_dc.sclk = pp_table_info->max_clock_voltage_on_dc.sclk; hwmgr->dyn_state.max_clock_voltage_on_dc.mclk = pp_table_info->max_clock_voltage_on_dc.mclk; hwmgr->dyn_state.max_clock_voltage_on_dc.vddc = pp_table_info->max_clock_voltage_on_dc.vddc; hwmgr->dyn_state.max_clock_voltage_on_dc.vddci = pp_table_info->max_clock_voltage_on_dc.vddci; if (!result && pp_table_info->vdd_dep_on_socclk && pp_table_info->vdd_dep_on_socclk->count) result = get_valid_clk(hwmgr, &pp_table_info->valid_socclk_values, pp_table_info->vdd_dep_on_socclk); if (!result && pp_table_info->vdd_dep_on_sclk && pp_table_info->vdd_dep_on_sclk->count) result = get_valid_clk(hwmgr, &pp_table_info->valid_sclk_values, pp_table_info->vdd_dep_on_sclk); if (!result && pp_table_info->vdd_dep_on_dcefclk && pp_table_info->vdd_dep_on_dcefclk->count) result = get_valid_clk(hwmgr, &pp_table_info->valid_dcefclk_values, pp_table_info->vdd_dep_on_dcefclk); if (!result && pp_table_info->vdd_dep_on_mclk && pp_table_info->vdd_dep_on_mclk->count) result = get_valid_clk(hwmgr, &pp_table_info->valid_mclk_values, pp_table_info->vdd_dep_on_mclk); return result; } static int get_vddc_lookup_table( struct pp_hwmgr *hwmgr, phm_ppt_v1_voltage_lookup_table **lookup_table, const ATOM_Vega10_Voltage_Lookup_Table *vddc_lookup_pp_tables, uint32_t max_levels) { uint32_t i; phm_ppt_v1_voltage_lookup_table *table; PP_ASSERT_WITH_CODE((vddc_lookup_pp_tables->ucNumEntries != 0), "Invalid SOC_VDDD Lookup Table!", return 1); table = kzalloc(struct_size(table, entries, max_levels), GFP_KERNEL); if (!table) return -ENOMEM; table->count = vddc_lookup_pp_tables->ucNumEntries; for (i = 0; i < vddc_lookup_pp_tables->ucNumEntries; i++) table->entries[i].us_vdd = le16_to_cpu(vddc_lookup_pp_tables->entries[i].usVdd); *lookup_table = table; return 0; } static int init_dpm_2_parameters( struct pp_hwmgr *hwmgr, const ATOM_Vega10_POWERPLAYTABLE *powerplay_table) { int result = 0; struct phm_ppt_v2_information *pp_table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); uint32_t disable_power_control = 0; pp_table_info->us_ulv_voltage_offset = le16_to_cpu(powerplay_table->usUlvVoltageOffset); pp_table_info->us_ulv_smnclk_did = le16_to_cpu(powerplay_table->usUlvSmnclkDid); pp_table_info->us_ulv_mp1clk_did = le16_to_cpu(powerplay_table->usUlvMp1clkDid); pp_table_info->us_ulv_gfxclk_bypass = le16_to_cpu(powerplay_table->usUlvGfxclkBypass); pp_table_info->us_gfxclk_slew_rate = le16_to_cpu(powerplay_table->usGfxclkSlewRate); pp_table_info->uc_gfx_dpm_voltage_mode = le16_to_cpu(powerplay_table->ucGfxVoltageMode); pp_table_info->uc_soc_dpm_voltage_mode = le16_to_cpu(powerplay_table->ucSocVoltageMode); pp_table_info->uc_uclk_dpm_voltage_mode = le16_to_cpu(powerplay_table->ucUclkVoltageMode); pp_table_info->uc_uvd_dpm_voltage_mode = le16_to_cpu(powerplay_table->ucUvdVoltageMode); pp_table_info->uc_vce_dpm_voltage_mode = le16_to_cpu(powerplay_table->ucVceVoltageMode); pp_table_info->uc_mp0_dpm_voltage_mode = le16_to_cpu(powerplay_table->ucMp0VoltageMode); pp_table_info->uc_dcef_dpm_voltage_mode = le16_to_cpu(powerplay_table->ucDcefVoltageMode); pp_table_info->ppm_parameter_table = NULL; pp_table_info->vddc_lookup_table = NULL; pp_table_info->vddmem_lookup_table = NULL; pp_table_info->vddci_lookup_table = NULL; /* TDP limits */ hwmgr->platform_descriptor.TDPODLimit = le16_to_cpu(powerplay_table->usPowerControlLimit); hwmgr->platform_descriptor.TDPAdjustment = 0; hwmgr->platform_descriptor.VidAdjustment = 0; hwmgr->platform_descriptor.VidAdjustmentPolarity = 0; hwmgr->platform_descriptor.VidMinLimit = 0; hwmgr->platform_descriptor.VidMaxLimit = 1500000; hwmgr->platform_descriptor.VidStep = 6250; disable_power_control = 0; if (!disable_power_control) { /* enable TDP overdrive (PowerControl) feature as well if supported */ if (hwmgr->platform_descriptor.TDPODLimit) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PowerControl); } if (powerplay_table->usVddcLookupTableOffset) { const ATOM_Vega10_Voltage_Lookup_Table *vddc_table = (ATOM_Vega10_Voltage_Lookup_Table *) (((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usVddcLookupTableOffset)); result = get_vddc_lookup_table(hwmgr, &pp_table_info->vddc_lookup_table, vddc_table, 8); } if (powerplay_table->usVddmemLookupTableOffset) { const ATOM_Vega10_Voltage_Lookup_Table *vdd_mem_table = (ATOM_Vega10_Voltage_Lookup_Table *) (((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usVddmemLookupTableOffset)); result = get_vddc_lookup_table(hwmgr, &pp_table_info->vddmem_lookup_table, vdd_mem_table, 4); } if (powerplay_table->usVddciLookupTableOffset) { const ATOM_Vega10_Voltage_Lookup_Table *vddci_table = (ATOM_Vega10_Voltage_Lookup_Table *) (((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usVddciLookupTableOffset)); result = get_vddc_lookup_table(hwmgr, &pp_table_info->vddci_lookup_table, vddci_table, 4); } return result; } static int vega10_pp_tables_initialize(struct pp_hwmgr *hwmgr) { int result = 0; const ATOM_Vega10_POWERPLAYTABLE *powerplay_table; hwmgr->pptable = kzalloc(sizeof(struct phm_ppt_v2_information), GFP_KERNEL); PP_ASSERT_WITH_CODE((hwmgr->pptable != NULL), "Failed to allocate hwmgr->pptable!", return -ENOMEM); powerplay_table = get_powerplay_table(hwmgr); PP_ASSERT_WITH_CODE((powerplay_table != NULL), "Missing PowerPlay Table!", return -1); result = check_powerplay_tables(hwmgr, powerplay_table); PP_ASSERT_WITH_CODE((result == 0), "check_powerplay_tables failed", return result); result = set_platform_caps(hwmgr, le32_to_cpu(powerplay_table->ulPlatformCaps)); PP_ASSERT_WITH_CODE((result == 0), "set_platform_caps failed", return result); result = init_thermal_controller(hwmgr, powerplay_table); PP_ASSERT_WITH_CODE((result == 0), "init_thermal_controller failed", return result); result = init_over_drive_limits(hwmgr, powerplay_table); PP_ASSERT_WITH_CODE((result == 0), "init_over_drive_limits failed", return result); result = init_powerplay_extended_tables(hwmgr, powerplay_table); PP_ASSERT_WITH_CODE((result == 0), "init_powerplay_extended_tables failed", return result); result = init_dpm_2_parameters(hwmgr, powerplay_table); PP_ASSERT_WITH_CODE((result == 0), "init_dpm_2_parameters failed", return result); return result; } static int vega10_pp_tables_uninitialize(struct pp_hwmgr *hwmgr) { struct phm_ppt_v2_information *pp_table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); kfree(pp_table_info->vdd_dep_on_sclk); pp_table_info->vdd_dep_on_sclk = NULL; kfree(pp_table_info->vdd_dep_on_mclk); pp_table_info->vdd_dep_on_mclk = NULL; kfree(pp_table_info->valid_mclk_values); pp_table_info->valid_mclk_values = NULL; kfree(pp_table_info->valid_sclk_values); pp_table_info->valid_sclk_values = NULL; kfree(pp_table_info->vddc_lookup_table); pp_table_info->vddc_lookup_table = NULL; kfree(pp_table_info->vddmem_lookup_table); pp_table_info->vddmem_lookup_table = NULL; kfree(pp_table_info->vddci_lookup_table); pp_table_info->vddci_lookup_table = NULL; kfree(pp_table_info->ppm_parameter_table); pp_table_info->ppm_parameter_table = NULL; kfree(pp_table_info->mm_dep_table); pp_table_info->mm_dep_table = NULL; kfree(pp_table_info->cac_dtp_table); pp_table_info->cac_dtp_table = NULL; kfree(hwmgr->dyn_state.cac_dtp_table); hwmgr->dyn_state.cac_dtp_table = NULL; kfree(pp_table_info->tdp_table); pp_table_info->tdp_table = NULL; kfree(hwmgr->pptable); hwmgr->pptable = NULL; return 0; } const struct pp_table_func vega10_pptable_funcs = { .pptable_init = vega10_pp_tables_initialize, .pptable_fini = vega10_pp_tables_uninitialize, }; int vega10_get_number_of_powerplay_table_entries(struct pp_hwmgr *hwmgr) { const ATOM_Vega10_State_Array *state_arrays; const ATOM_Vega10_POWERPLAYTABLE *pp_table = get_powerplay_table(hwmgr); PP_ASSERT_WITH_CODE((pp_table != NULL), "Missing PowerPlay Table!", return -1); PP_ASSERT_WITH_CODE((pp_table->sHeader.format_revision >= ATOM_Vega10_TABLE_REVISION_VEGA10), "Incorrect PowerPlay table revision!", return -1); state_arrays = (ATOM_Vega10_State_Array *)(((unsigned long)pp_table) + le16_to_cpu(pp_table->usStateArrayOffset)); return (uint32_t)(state_arrays->ucNumEntries); } static uint32_t make_classification_flags(struct pp_hwmgr *hwmgr, uint16_t classification, uint16_t classification2) { uint32_t result = 0; if (classification & ATOM_PPLIB_CLASSIFICATION_BOOT) result |= PP_StateClassificationFlag_Boot; if (classification & ATOM_PPLIB_CLASSIFICATION_THERMAL) result |= PP_StateClassificationFlag_Thermal; if (classification & ATOM_PPLIB_CLASSIFICATION_LIMITEDPOWERSOURCE) result |= PP_StateClassificationFlag_LimitedPowerSource; if (classification & ATOM_PPLIB_CLASSIFICATION_REST) result |= PP_StateClassificationFlag_Rest; if (classification & ATOM_PPLIB_CLASSIFICATION_FORCED) result |= PP_StateClassificationFlag_Forced; if (classification & ATOM_PPLIB_CLASSIFICATION_ACPI) result |= PP_StateClassificationFlag_ACPI; if (classification2 & ATOM_PPLIB_CLASSIFICATION2_LIMITEDPOWERSOURCE_2) result |= PP_StateClassificationFlag_LimitedPowerSource_2; return result; } int vega10_get_powerplay_table_entry(struct pp_hwmgr *hwmgr, uint32_t entry_index, struct pp_power_state *power_state, int (*call_back_func)(struct pp_hwmgr *, void *, struct pp_power_state *, void *, uint32_t)) { int result = 0; const ATOM_Vega10_State_Array *state_arrays; const ATOM_Vega10_State *state_entry; const ATOM_Vega10_POWERPLAYTABLE *pp_table = get_powerplay_table(hwmgr); PP_ASSERT_WITH_CODE(pp_table, "Missing PowerPlay Table!", return -1;); power_state->classification.bios_index = entry_index; if (pp_table->sHeader.format_revision >= ATOM_Vega10_TABLE_REVISION_VEGA10) { state_arrays = (ATOM_Vega10_State_Array *) (((unsigned long)pp_table) + le16_to_cpu(pp_table->usStateArrayOffset)); PP_ASSERT_WITH_CODE(pp_table->usStateArrayOffset > 0, "Invalid PowerPlay Table State Array Offset.", return -1); PP_ASSERT_WITH_CODE(state_arrays->ucNumEntries > 0, "Invalid PowerPlay Table State Array.", return -1); PP_ASSERT_WITH_CODE((entry_index <= state_arrays->ucNumEntries), "Invalid PowerPlay Table State Array Entry.", return -1); state_entry = &(state_arrays->states[entry_index]); result = call_back_func(hwmgr, (void *)state_entry, power_state, (void *)pp_table, make_classification_flags(hwmgr, le16_to_cpu(state_entry->usClassification), le16_to_cpu(state_entry->usClassification2))); } if (!result && (power_state->classification.flags & PP_StateClassificationFlag_Boot)) result = hwmgr->hwmgr_func->patch_boot_state(hwmgr, &(power_state->hardware)); return result; } int vega10_baco_set_cap(struct pp_hwmgr *hwmgr) { int result = 0; const ATOM_Vega10_POWERPLAYTABLE *powerplay_table; powerplay_table = get_powerplay_table(hwmgr); PP_ASSERT_WITH_CODE((powerplay_table != NULL), "Missing PowerPlay Table!", return -1); result = check_powerplay_tables(hwmgr, powerplay_table); PP_ASSERT_WITH_CODE((result == 0), "check_powerplay_tables failed", return result); set_hw_cap( hwmgr, 0 != (le32_to_cpu(powerplay_table->ulPlatformCaps) & ATOM_VEGA10_PP_PLATFORM_CAP_BACO), PHM_PlatformCaps_BACO); return result; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1