Contributors: 30
Author Tokens Token Proportion Commits Commit Proportion
Prike Liang 1853 26.06% 19 15.70%
Evan Quan 1574 22.14% 31 25.62%
Aaron Liu 806 11.34% 10 8.26%
Xiaojian Du 708 9.96% 6 4.96%
Alex Deucher 509 7.16% 9 7.44%
Hersen Wu 430 6.05% 2 1.65%
Sathishkumar S 240 3.38% 2 1.65%
changzhu 166 2.33% 1 0.83%
David M Nieto 160 2.25% 1 0.83%
Graham Sider 130 1.83% 1 0.83%
Xiaomeng Hou 85 1.20% 3 2.48%
Kevin Wang 82 1.15% 11 9.09%
Jesse Zhang 78 1.10% 1 0.83%
Zhan Liu 58 0.82% 1 0.83%
Leo Liu 52 0.73% 1 0.83%
Yuxian Dai 37 0.52% 2 1.65%
Matt Coffin 26 0.37% 1 0.83%
Darren Powell 21 0.30% 2 1.65%
Harry Wentland 18 0.25% 1 0.83%
Huang Rui 16 0.23% 2 1.65%
Chengming Gui 16 0.23% 1 0.83%
Raul E Rangel 13 0.18% 1 0.83%
Chen Gong 10 0.14% 4 3.31%
Lang Yu 9 0.13% 1 0.83%
Jinzhou.Su 5 0.07% 1 0.83%
Likun Gao 2 0.03% 1 0.83%
Lee Jones 2 0.03% 1 0.83%
Colin Ian King 2 0.03% 2 1.65%
Nirmoy Das 1 0.01% 1 0.83%
John Clements 1 0.01% 1 0.83%
Total 7110 121


/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */

#define SWSMU_CODE_LAYER_L2

#include "amdgpu.h"
#include "amdgpu_smu.h"
#include "smu_v12_0_ppsmc.h"
#include "smu12_driver_if.h"
#include "smu_v12_0.h"
#include "renoir_ppt.h"
#include "smu_cmn.h"

/*
 * DO NOT use these for err/warn/info/debug messages.
 * Use dev_err, dev_warn, dev_info and dev_dbg instead.
 * They are more MGPU friendly.
 */
#undef pr_err
#undef pr_warn
#undef pr_info
#undef pr_debug

#define mmMP1_SMN_C2PMSG_66                                                                            0x0282
#define mmMP1_SMN_C2PMSG_66_BASE_IDX                                                                   0

#define mmMP1_SMN_C2PMSG_82                                                                            0x0292
#define mmMP1_SMN_C2PMSG_82_BASE_IDX                                                                   0

#define mmMP1_SMN_C2PMSG_90                                                                            0x029a
#define mmMP1_SMN_C2PMSG_90_BASE_IDX                                                                   0

static struct cmn2asic_msg_mapping renoir_message_map[SMU_MSG_MAX_COUNT] = {
	MSG_MAP(TestMessage,                    PPSMC_MSG_TestMessage,                  1),
	MSG_MAP(GetSmuVersion,                  PPSMC_MSG_GetSmuVersion,                1),
	MSG_MAP(GetDriverIfVersion,             PPSMC_MSG_GetDriverIfVersion,           1),
	MSG_MAP(PowerUpGfx,                     PPSMC_MSG_PowerUpGfx,                   1),
	MSG_MAP(AllowGfxOff,                    PPSMC_MSG_EnableGfxOff,                 1),
	MSG_MAP(DisallowGfxOff,                 PPSMC_MSG_DisableGfxOff,                1),
	MSG_MAP(PowerDownIspByTile,             PPSMC_MSG_PowerDownIspByTile,           1),
	MSG_MAP(PowerUpIspByTile,               PPSMC_MSG_PowerUpIspByTile,             1),
	MSG_MAP(PowerDownVcn,                   PPSMC_MSG_PowerDownVcn,                 1),
	MSG_MAP(PowerUpVcn,                     PPSMC_MSG_PowerUpVcn,                   1),
	MSG_MAP(PowerDownSdma,                  PPSMC_MSG_PowerDownSdma,                1),
	MSG_MAP(PowerUpSdma,                    PPSMC_MSG_PowerUpSdma,                  1),
	MSG_MAP(SetHardMinIspclkByFreq,         PPSMC_MSG_SetHardMinIspclkByFreq,       1),
	MSG_MAP(SetHardMinVcn,                  PPSMC_MSG_SetHardMinVcn,                1),
	MSG_MAP(SetAllowFclkSwitch,             PPSMC_MSG_SetAllowFclkSwitch,           1),
	MSG_MAP(SetMinVideoGfxclkFreq,          PPSMC_MSG_SetMinVideoGfxclkFreq,        1),
	MSG_MAP(ActiveProcessNotify,            PPSMC_MSG_ActiveProcessNotify,          1),
	MSG_MAP(SetCustomPolicy,                PPSMC_MSG_SetCustomPolicy,              1),
	MSG_MAP(SetVideoFps,                    PPSMC_MSG_SetVideoFps,                  1),
	MSG_MAP(NumOfDisplays,                  PPSMC_MSG_SetDisplayCount,              1),
	MSG_MAP(QueryPowerLimit,                PPSMC_MSG_QueryPowerLimit,              1),
	MSG_MAP(SetDriverDramAddrHigh,          PPSMC_MSG_SetDriverDramAddrHigh,        1),
	MSG_MAP(SetDriverDramAddrLow,           PPSMC_MSG_SetDriverDramAddrLow,         1),
	MSG_MAP(TransferTableSmu2Dram,          PPSMC_MSG_TransferTableSmu2Dram,        1),
	MSG_MAP(TransferTableDram2Smu,          PPSMC_MSG_TransferTableDram2Smu,        1),
	MSG_MAP(GfxDeviceDriverReset,           PPSMC_MSG_GfxDeviceDriverReset,         1),
	MSG_MAP(SetGfxclkOverdriveByFreqVid,    PPSMC_MSG_SetGfxclkOverdriveByFreqVid,  1),
	MSG_MAP(SetHardMinDcfclkByFreq,         PPSMC_MSG_SetHardMinDcfclkByFreq,       1),
	MSG_MAP(SetHardMinSocclkByFreq,         PPSMC_MSG_SetHardMinSocclkByFreq,       1),
	MSG_MAP(ControlIgpuATS,                 PPSMC_MSG_ControlIgpuATS,               1),
	MSG_MAP(SetMinVideoFclkFreq,            PPSMC_MSG_SetMinVideoFclkFreq,          1),
	MSG_MAP(SetMinDeepSleepDcfclk,          PPSMC_MSG_SetMinDeepSleepDcfclk,        1),
	MSG_MAP(ForcePowerDownGfx,              PPSMC_MSG_ForcePowerDownGfx,            1),
	MSG_MAP(SetPhyclkVoltageByFreq,         PPSMC_MSG_SetPhyclkVoltageByFreq,       1),
	MSG_MAP(SetDppclkVoltageByFreq,         PPSMC_MSG_SetDppclkVoltageByFreq,       1),
	MSG_MAP(SetSoftMinVcn,                  PPSMC_MSG_SetSoftMinVcn,                1),
	MSG_MAP(EnablePostCode,                 PPSMC_MSG_EnablePostCode,               1),
	MSG_MAP(GetGfxclkFrequency,             PPSMC_MSG_GetGfxclkFrequency,           1),
	MSG_MAP(GetFclkFrequency,               PPSMC_MSG_GetFclkFrequency,             1),
	MSG_MAP(GetMinGfxclkFrequency,          PPSMC_MSG_GetMinGfxclkFrequency,        1),
	MSG_MAP(GetMaxGfxclkFrequency,          PPSMC_MSG_GetMaxGfxclkFrequency,        1),
	MSG_MAP(SoftReset,                      PPSMC_MSG_SoftReset,                    1),
	MSG_MAP(SetGfxCGPG,                     PPSMC_MSG_SetGfxCGPG,                   1),
	MSG_MAP(SetSoftMaxGfxClk,               PPSMC_MSG_SetSoftMaxGfxClk,             1),
	MSG_MAP(SetHardMinGfxClk,               PPSMC_MSG_SetHardMinGfxClk,             1),
	MSG_MAP(SetSoftMaxSocclkByFreq,         PPSMC_MSG_SetSoftMaxSocclkByFreq,       1),
	MSG_MAP(SetSoftMaxFclkByFreq,           PPSMC_MSG_SetSoftMaxFclkByFreq,         1),
	MSG_MAP(SetSoftMaxVcn,                  PPSMC_MSG_SetSoftMaxVcn,                1),
	MSG_MAP(PowerGateMmHub,                 PPSMC_MSG_PowerGateMmHub,               1),
	MSG_MAP(UpdatePmeRestore,               PPSMC_MSG_UpdatePmeRestore,             1),
	MSG_MAP(GpuChangeState,                 PPSMC_MSG_GpuChangeState,               1),
	MSG_MAP(SetPowerLimitPercentage,        PPSMC_MSG_SetPowerLimitPercentage,      1),
	MSG_MAP(ForceGfxContentSave,            PPSMC_MSG_ForceGfxContentSave,          1),
	MSG_MAP(EnableTmdp48MHzRefclkPwrDown,   PPSMC_MSG_EnableTmdp48MHzRefclkPwrDown, 1),
	MSG_MAP(PowerDownJpeg,                  PPSMC_MSG_PowerDownJpeg,                1),
	MSG_MAP(PowerUpJpeg,                    PPSMC_MSG_PowerUpJpeg,                  1),
	MSG_MAP(PowerGateAtHub,                 PPSMC_MSG_PowerGateAtHub,               1),
	MSG_MAP(SetSoftMinJpeg,                 PPSMC_MSG_SetSoftMinJpeg,               1),
	MSG_MAP(SetHardMinFclkByFreq,           PPSMC_MSG_SetHardMinFclkByFreq,         1),
};

static struct cmn2asic_mapping renoir_clk_map[SMU_CLK_COUNT] = {
	CLK_MAP(GFXCLK, CLOCK_GFXCLK),
	CLK_MAP(SCLK,	CLOCK_GFXCLK),
	CLK_MAP(SOCCLK, CLOCK_SOCCLK),
	CLK_MAP(UCLK, CLOCK_FCLK),
	CLK_MAP(MCLK, CLOCK_FCLK),
	CLK_MAP(VCLK, CLOCK_VCLK),
	CLK_MAP(DCLK, CLOCK_DCLK),
};

static struct cmn2asic_mapping renoir_table_map[SMU_TABLE_COUNT] = {
	TAB_MAP_VALID(WATERMARKS),
	TAB_MAP_INVALID(CUSTOM_DPM),
	TAB_MAP_VALID(DPMCLOCKS),
	TAB_MAP_VALID(SMU_METRICS),
};

static struct cmn2asic_mapping renoir_workload_map[PP_SMC_POWER_PROFILE_COUNT] = {
	WORKLOAD_MAP(PP_SMC_POWER_PROFILE_FULLSCREEN3D,		WORKLOAD_PPLIB_FULL_SCREEN_3D_BIT),
	WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VIDEO,		WORKLOAD_PPLIB_VIDEO_BIT),
	WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VR,			WORKLOAD_PPLIB_VR_BIT),
	WORKLOAD_MAP(PP_SMC_POWER_PROFILE_COMPUTE,		WORKLOAD_PPLIB_COMPUTE_BIT),
	WORKLOAD_MAP(PP_SMC_POWER_PROFILE_CUSTOM,		WORKLOAD_PPLIB_CUSTOM_BIT),
};

static const uint8_t renoir_throttler_map[] = {
	[THROTTLER_STATUS_BIT_SPL]		= (SMU_THROTTLER_SPL_BIT),
	[THROTTLER_STATUS_BIT_FPPT]		= (SMU_THROTTLER_FPPT_BIT),
	[THROTTLER_STATUS_BIT_SPPT]		= (SMU_THROTTLER_SPPT_BIT),
	[THROTTLER_STATUS_BIT_SPPT_APU]		= (SMU_THROTTLER_SPPT_APU_BIT),
	[THROTTLER_STATUS_BIT_THM_CORE]		= (SMU_THROTTLER_TEMP_CORE_BIT),
	[THROTTLER_STATUS_BIT_THM_GFX]		= (SMU_THROTTLER_TEMP_GPU_BIT),
	[THROTTLER_STATUS_BIT_THM_SOC]		= (SMU_THROTTLER_TEMP_SOC_BIT),
	[THROTTLER_STATUS_BIT_TDC_VDD]		= (SMU_THROTTLER_TDC_VDD_BIT),
	[THROTTLER_STATUS_BIT_TDC_SOC]		= (SMU_THROTTLER_TDC_SOC_BIT),
	[THROTTLER_STATUS_BIT_PROCHOT_CPU]	= (SMU_THROTTLER_PROCHOT_CPU_BIT),
	[THROTTLER_STATUS_BIT_PROCHOT_GFX]	= (SMU_THROTTLER_PROCHOT_GFX_BIT),
	[THROTTLER_STATUS_BIT_EDC_CPU]		= (SMU_THROTTLER_EDC_CPU_BIT),
	[THROTTLER_STATUS_BIT_EDC_GFX]		= (SMU_THROTTLER_EDC_GFX_BIT),
};

static int renoir_init_smc_tables(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = smu_table->tables;

	SMU_TABLE_INIT(tables, SMU_TABLE_WATERMARKS, sizeof(Watermarks_t),
		PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
	SMU_TABLE_INIT(tables, SMU_TABLE_DPMCLOCKS, sizeof(DpmClocks_t),
		PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
	SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetrics_t),
		PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);

	smu_table->clocks_table = kzalloc(sizeof(DpmClocks_t), GFP_KERNEL);
	if (!smu_table->clocks_table)
		goto err0_out;

	smu_table->metrics_table = kzalloc(sizeof(SmuMetrics_t), GFP_KERNEL);
	if (!smu_table->metrics_table)
		goto err1_out;
	smu_table->metrics_time = 0;

	smu_table->watermarks_table = kzalloc(sizeof(Watermarks_t), GFP_KERNEL);
	if (!smu_table->watermarks_table)
		goto err2_out;

	smu_table->gpu_metrics_table_size = sizeof(struct gpu_metrics_v2_2);
	smu_table->gpu_metrics_table = kzalloc(smu_table->gpu_metrics_table_size, GFP_KERNEL);
	if (!smu_table->gpu_metrics_table)
		goto err3_out;

	return 0;

err3_out:
	kfree(smu_table->watermarks_table);
err2_out:
	kfree(smu_table->metrics_table);
err1_out:
	kfree(smu_table->clocks_table);
err0_out:
	return -ENOMEM;
}

/*
 * This interface just for getting uclk ultimate freq and should't introduce
 * other likewise function result in overmuch callback.
 */
static int renoir_get_dpm_clk_limited(struct smu_context *smu, enum smu_clk_type clk_type,
						uint32_t dpm_level, uint32_t *freq)
{
	DpmClocks_t *clk_table = smu->smu_table.clocks_table;

	if (!clk_table || clk_type >= SMU_CLK_COUNT)
		return -EINVAL;

	switch (clk_type) {
	case SMU_SOCCLK:
		if (dpm_level >= NUM_SOCCLK_DPM_LEVELS)
			return -EINVAL;
		*freq = clk_table->SocClocks[dpm_level].Freq;
		break;
	case SMU_UCLK:
	case SMU_MCLK:
		if (dpm_level >= NUM_FCLK_DPM_LEVELS)
			return -EINVAL;
		*freq = clk_table->FClocks[dpm_level].Freq;
		break;
	case SMU_DCEFCLK:
		if (dpm_level >= NUM_DCFCLK_DPM_LEVELS)
			return -EINVAL;
		*freq = clk_table->DcfClocks[dpm_level].Freq;
		break;
	case SMU_FCLK:
		if (dpm_level >= NUM_FCLK_DPM_LEVELS)
			return -EINVAL;
		*freq = clk_table->FClocks[dpm_level].Freq;
		break;
	case SMU_VCLK:
		if (dpm_level >= NUM_VCN_DPM_LEVELS)
			return -EINVAL;
		*freq = clk_table->VClocks[dpm_level].Freq;
		break;
	case SMU_DCLK:
		if (dpm_level >= NUM_VCN_DPM_LEVELS)
			return -EINVAL;
		*freq = clk_table->DClocks[dpm_level].Freq;
		break;

	default:
		return -EINVAL;
	}

	return 0;
}

static int renoir_get_profiling_clk_mask(struct smu_context *smu,
					 enum amd_dpm_forced_level level,
					 uint32_t *sclk_mask,
					 uint32_t *mclk_mask,
					 uint32_t *soc_mask)
{

	if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
		if (sclk_mask)
			*sclk_mask = 0;
	} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) {
		if (mclk_mask)
			/* mclk levels are in reverse order */
			*mclk_mask = NUM_MEMCLK_DPM_LEVELS - 1;
	} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
		if(sclk_mask)
			/* The sclk as gfxclk and has three level about max/min/current */
			*sclk_mask = 3 - 1;

		if(mclk_mask)
			/* mclk levels are in reverse order */
			*mclk_mask = 0;

		if(soc_mask)
			*soc_mask = NUM_SOCCLK_DPM_LEVELS - 1;
	}

	return 0;
}

static int renoir_get_dpm_ultimate_freq(struct smu_context *smu,
					enum smu_clk_type clk_type,
					uint32_t *min,
					uint32_t *max)
{
	int ret = 0;
	uint32_t mclk_mask, soc_mask;
	uint32_t clock_limit;

	if (!smu_cmn_clk_dpm_is_enabled(smu, clk_type)) {
		switch (clk_type) {
		case SMU_MCLK:
		case SMU_UCLK:
			clock_limit = smu->smu_table.boot_values.uclk;
			break;
		case SMU_GFXCLK:
		case SMU_SCLK:
			clock_limit = smu->smu_table.boot_values.gfxclk;
			break;
		case SMU_SOCCLK:
			clock_limit = smu->smu_table.boot_values.socclk;
			break;
		default:
			clock_limit = 0;
			break;
		}

		/* clock in Mhz unit */
		if (min)
			*min = clock_limit / 100;
		if (max)
			*max = clock_limit / 100;

		return 0;
	}

	if (max) {
		ret = renoir_get_profiling_clk_mask(smu,
						    AMD_DPM_FORCED_LEVEL_PROFILE_PEAK,
						    NULL,
						    &mclk_mask,
						    &soc_mask);
		if (ret)
			goto failed;

		switch (clk_type) {
		case SMU_GFXCLK:
		case SMU_SCLK:
			ret = smu_cmn_send_smc_msg(smu, SMU_MSG_GetMaxGfxclkFrequency, max);
			if (ret) {
				dev_err(smu->adev->dev, "Attempt to get max GX frequency from SMC Failed !\n");
				goto failed;
			}
			break;
		case SMU_UCLK:
		case SMU_FCLK:
		case SMU_MCLK:
			ret = renoir_get_dpm_clk_limited(smu, clk_type, mclk_mask, max);
			if (ret)
				goto failed;
			break;
		case SMU_SOCCLK:
			ret = renoir_get_dpm_clk_limited(smu, clk_type, soc_mask, max);
			if (ret)
				goto failed;
			break;
		default:
			ret = -EINVAL;
			goto failed;
		}
	}

	if (min) {
		switch (clk_type) {
		case SMU_GFXCLK:
		case SMU_SCLK:
			ret = smu_cmn_send_smc_msg(smu, SMU_MSG_GetMinGfxclkFrequency, min);
			if (ret) {
				dev_err(smu->adev->dev, "Attempt to get min GX frequency from SMC Failed !\n");
				goto failed;
			}
			break;
		case SMU_UCLK:
		case SMU_FCLK:
		case SMU_MCLK:
			ret = renoir_get_dpm_clk_limited(smu, clk_type, NUM_MEMCLK_DPM_LEVELS - 1, min);
			if (ret)
				goto failed;
			break;
		case SMU_SOCCLK:
			ret = renoir_get_dpm_clk_limited(smu, clk_type, 0, min);
			if (ret)
				goto failed;
			break;
		default:
			ret = -EINVAL;
			goto failed;
		}
	}
failed:
	return ret;
}

static int renoir_od_edit_dpm_table(struct smu_context *smu,
							enum PP_OD_DPM_TABLE_COMMAND type,
							long input[], uint32_t size)
{
	int ret = 0;
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);

	if (!(smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_MANUAL)) {
		dev_warn(smu->adev->dev,
			"pp_od_clk_voltage is not accessible if power_dpm_force_performance_level is not in manual mode!\n");
		return -EINVAL;
	}

	switch (type) {
	case PP_OD_EDIT_SCLK_VDDC_TABLE:
		if (size != 2) {
			dev_err(smu->adev->dev, "Input parameter number not correct\n");
			return -EINVAL;
		}

		if (input[0] == 0) {
			if (input[1] < smu->gfx_default_hard_min_freq) {
				dev_warn(smu->adev->dev,
					"Fine grain setting minimum sclk (%ld) MHz is less than the minimum allowed (%d) MHz\n",
					input[1], smu->gfx_default_hard_min_freq);
				return -EINVAL;
			}
			smu->gfx_actual_hard_min_freq = input[1];
		} else if (input[0] == 1) {
			if (input[1] > smu->gfx_default_soft_max_freq) {
				dev_warn(smu->adev->dev,
					"Fine grain setting maximum sclk (%ld) MHz is greater than the maximum allowed (%d) MHz\n",
					input[1], smu->gfx_default_soft_max_freq);
				return -EINVAL;
			}
			smu->gfx_actual_soft_max_freq = input[1];
		} else {
			return -EINVAL;
		}
		break;
	case PP_OD_RESTORE_DEFAULT_TABLE:
		if (size != 0) {
			dev_err(smu->adev->dev, "Input parameter number not correct\n");
			return -EINVAL;
		}
		smu->gfx_actual_hard_min_freq = smu->gfx_default_hard_min_freq;
		smu->gfx_actual_soft_max_freq = smu->gfx_default_soft_max_freq;
		break;
	case PP_OD_COMMIT_DPM_TABLE:
		if (size != 0) {
			dev_err(smu->adev->dev, "Input parameter number not correct\n");
			return -EINVAL;
		} else {
			if (smu->gfx_actual_hard_min_freq > smu->gfx_actual_soft_max_freq) {
				dev_err(smu->adev->dev,
					"The setting minimum sclk (%d) MHz is greater than the setting maximum sclk (%d) MHz\n",
					smu->gfx_actual_hard_min_freq,
					smu->gfx_actual_soft_max_freq);
				return -EINVAL;
			}

			ret = smu_cmn_send_smc_msg_with_param(smu,
								SMU_MSG_SetHardMinGfxClk,
								smu->gfx_actual_hard_min_freq,
								NULL);
			if (ret) {
				dev_err(smu->adev->dev, "Set hard min sclk failed!");
				return ret;
			}

			ret = smu_cmn_send_smc_msg_with_param(smu,
								SMU_MSG_SetSoftMaxGfxClk,
								smu->gfx_actual_soft_max_freq,
								NULL);
			if (ret) {
				dev_err(smu->adev->dev, "Set soft max sclk failed!");
				return ret;
			}
		}
		break;
	default:
		return -ENOSYS;
	}

	return ret;
}

static int renoir_set_fine_grain_gfx_freq_parameters(struct smu_context *smu)
{
	uint32_t min = 0, max = 0;
	uint32_t ret = 0;

	ret = smu_cmn_send_smc_msg_with_param(smu,
								SMU_MSG_GetMinGfxclkFrequency,
								0, &min);
	if (ret)
		return ret;
	ret = smu_cmn_send_smc_msg_with_param(smu,
								SMU_MSG_GetMaxGfxclkFrequency,
								0, &max);
	if (ret)
		return ret;

	smu->gfx_default_hard_min_freq = min;
	smu->gfx_default_soft_max_freq = max;
	smu->gfx_actual_hard_min_freq = 0;
	smu->gfx_actual_soft_max_freq = 0;

	return 0;
}

static int renoir_print_clk_levels(struct smu_context *smu,
			enum smu_clk_type clk_type, char *buf)
{
	int i, size = 0, ret = 0;
	uint32_t cur_value = 0, value = 0, count = 0, min = 0, max = 0;
	SmuMetrics_t metrics;
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
	bool cur_value_match_level = false;

	memset(&metrics, 0, sizeof(metrics));

	ret = smu_cmn_get_metrics_table(smu, &metrics, false);
	if (ret)
		return ret;

	smu_cmn_get_sysfs_buf(&buf, &size);

	switch (clk_type) {
	case SMU_OD_RANGE:
		if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_MANUAL) {
			ret = smu_cmn_send_smc_msg_with_param(smu,
						SMU_MSG_GetMinGfxclkFrequency,
						0, &min);
			if (ret)
				return ret;
			ret = smu_cmn_send_smc_msg_with_param(smu,
						SMU_MSG_GetMaxGfxclkFrequency,
						0, &max);
			if (ret)
				return ret;
			size += sysfs_emit_at(buf, size, "OD_RANGE\nSCLK: %10uMhz %10uMhz\n", min, max);
		}
		break;
	case SMU_OD_SCLK:
		if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_MANUAL) {
			min = (smu->gfx_actual_hard_min_freq > 0) ? smu->gfx_actual_hard_min_freq : smu->gfx_default_hard_min_freq;
			max = (smu->gfx_actual_soft_max_freq > 0) ? smu->gfx_actual_soft_max_freq : smu->gfx_default_soft_max_freq;
			size += sysfs_emit_at(buf, size, "OD_SCLK\n");
			size += sysfs_emit_at(buf, size, "0:%10uMhz\n", min);
			size += sysfs_emit_at(buf, size, "1:%10uMhz\n", max);
		}
		break;
	case SMU_GFXCLK:
	case SMU_SCLK:
		/* retirve table returned paramters unit is MHz */
		cur_value = metrics.ClockFrequency[CLOCK_GFXCLK];
		ret = renoir_get_dpm_ultimate_freq(smu, SMU_GFXCLK, &min, &max);
		if (!ret) {
			/* driver only know min/max gfx_clk, Add level 1 for all other gfx clks */
			if (cur_value  == max)
				i = 2;
			else if (cur_value == min)
				i = 0;
			else
				i = 1;

			size += sysfs_emit_at(buf, size, "0: %uMhz %s\n", min,
					i == 0 ? "*" : "");
			size += sysfs_emit_at(buf, size, "1: %uMhz %s\n",
					i == 1 ? cur_value : RENOIR_UMD_PSTATE_GFXCLK,
					i == 1 ? "*" : "");
			size += sysfs_emit_at(buf, size, "2: %uMhz %s\n", max,
					i == 2 ? "*" : "");
		}
		return size;
	case SMU_SOCCLK:
		count = NUM_SOCCLK_DPM_LEVELS;
		cur_value = metrics.ClockFrequency[CLOCK_SOCCLK];
		break;
	case SMU_MCLK:
		count = NUM_MEMCLK_DPM_LEVELS;
		cur_value = metrics.ClockFrequency[CLOCK_FCLK];
		break;
	case SMU_DCEFCLK:
		count = NUM_DCFCLK_DPM_LEVELS;
		cur_value = metrics.ClockFrequency[CLOCK_DCFCLK];
		break;
	case SMU_FCLK:
		count = NUM_FCLK_DPM_LEVELS;
		cur_value = metrics.ClockFrequency[CLOCK_FCLK];
		break;
	case SMU_VCLK:
		count = NUM_VCN_DPM_LEVELS;
		cur_value = metrics.ClockFrequency[CLOCK_VCLK];
		break;
	case SMU_DCLK:
		count = NUM_VCN_DPM_LEVELS;
		cur_value = metrics.ClockFrequency[CLOCK_DCLK];
		break;
	default:
		break;
	}

	switch (clk_type) {
	case SMU_GFXCLK:
	case SMU_SCLK:
	case SMU_SOCCLK:
	case SMU_MCLK:
	case SMU_DCEFCLK:
	case SMU_FCLK:
	case SMU_VCLK:
	case SMU_DCLK:
		for (i = 0; i < count; i++) {
			ret = renoir_get_dpm_clk_limited(smu, clk_type, i, &value);
			if (ret)
				return ret;
			if (!value)
				continue;
			size += sysfs_emit_at(buf, size, "%d: %uMhz %s\n", i, value,
					cur_value == value ? "*" : "");
			if (cur_value == value)
				cur_value_match_level = true;
		}

		if (!cur_value_match_level)
			size += sysfs_emit_at(buf, size, "   %uMhz *\n", cur_value);

		break;
	default:
		break;
	}

	return size;
}

static enum amd_pm_state_type renoir_get_current_power_state(struct smu_context *smu)
{
	enum amd_pm_state_type pm_type;
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);

	if (!smu_dpm_ctx->dpm_context ||
	    !smu_dpm_ctx->dpm_current_power_state)
		return -EINVAL;

	switch (smu_dpm_ctx->dpm_current_power_state->classification.ui_label) {
	case SMU_STATE_UI_LABEL_BATTERY:
		pm_type = POWER_STATE_TYPE_BATTERY;
		break;
	case SMU_STATE_UI_LABEL_BALLANCED:
		pm_type = POWER_STATE_TYPE_BALANCED;
		break;
	case SMU_STATE_UI_LABEL_PERFORMANCE:
		pm_type = POWER_STATE_TYPE_PERFORMANCE;
		break;
	default:
		if (smu_dpm_ctx->dpm_current_power_state->classification.flags & SMU_STATE_CLASSIFICATION_FLAG_BOOT)
			pm_type = POWER_STATE_TYPE_INTERNAL_BOOT;
		else
			pm_type = POWER_STATE_TYPE_DEFAULT;
		break;
	}

	return pm_type;
}

static int renoir_dpm_set_vcn_enable(struct smu_context *smu, bool enable)
{
	int ret = 0;

	if (enable) {
		/* vcn dpm on is a prerequisite for vcn power gate messages */
		if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) {
			ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerUpVcn, 0, NULL);
			if (ret)
				return ret;
		}
	} else {
		if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) {
			ret = smu_cmn_send_smc_msg(smu, SMU_MSG_PowerDownVcn, NULL);
			if (ret)
				return ret;
		}
	}

	return ret;
}

static int renoir_dpm_set_jpeg_enable(struct smu_context *smu, bool enable)
{
	int ret = 0;

	if (enable) {
		if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_JPEG_PG_BIT)) {
			ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerUpJpeg, 0, NULL);
			if (ret)
				return ret;
		}
	} else {
		if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_JPEG_PG_BIT)) {
			ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerDownJpeg, 0, NULL);
			if (ret)
				return ret;
		}
	}

	return ret;
}

static int renoir_force_dpm_limit_value(struct smu_context *smu, bool highest)
{
	int ret = 0, i = 0;
	uint32_t min_freq, max_freq, force_freq;
	enum smu_clk_type clk_type;

	enum smu_clk_type clks[] = {
		SMU_GFXCLK,
		SMU_MCLK,
		SMU_SOCCLK,
	};

	for (i = 0; i < ARRAY_SIZE(clks); i++) {
		clk_type = clks[i];
		ret = renoir_get_dpm_ultimate_freq(smu, clk_type, &min_freq, &max_freq);
		if (ret)
			return ret;

		force_freq = highest ? max_freq : min_freq;
		ret = smu_v12_0_set_soft_freq_limited_range(smu, clk_type, force_freq, force_freq);
		if (ret)
			return ret;
	}

	return ret;
}

static int renoir_unforce_dpm_levels(struct smu_context *smu) {

	int ret = 0, i = 0;
	uint32_t min_freq, max_freq;
	enum smu_clk_type clk_type;

	struct clk_feature_map {
		enum smu_clk_type clk_type;
		uint32_t	feature;
	} clk_feature_map[] = {
		{SMU_GFXCLK, SMU_FEATURE_DPM_GFXCLK_BIT},
		{SMU_MCLK,   SMU_FEATURE_DPM_UCLK_BIT},
		{SMU_SOCCLK, SMU_FEATURE_DPM_SOCCLK_BIT},
	};

	for (i = 0; i < ARRAY_SIZE(clk_feature_map); i++) {
		if (!smu_cmn_feature_is_enabled(smu, clk_feature_map[i].feature))
		    continue;

		clk_type = clk_feature_map[i].clk_type;

		ret = renoir_get_dpm_ultimate_freq(smu, clk_type, &min_freq, &max_freq);
		if (ret)
			return ret;

		ret = smu_v12_0_set_soft_freq_limited_range(smu, clk_type, min_freq, max_freq);
		if (ret)
			return ret;
	}

	return ret;
}

/*
 * This interface get dpm clock table for dc
 */
static int renoir_get_dpm_clock_table(struct smu_context *smu, struct dpm_clocks *clock_table)
{
	DpmClocks_t *table = smu->smu_table.clocks_table;
	int i;

	if (!clock_table || !table)
		return -EINVAL;

	for (i = 0; i < NUM_DCFCLK_DPM_LEVELS; i++) {
		clock_table->DcfClocks[i].Freq = table->DcfClocks[i].Freq;
		clock_table->DcfClocks[i].Vol = table->DcfClocks[i].Vol;
	}

	for (i = 0; i < NUM_SOCCLK_DPM_LEVELS; i++) {
		clock_table->SocClocks[i].Freq = table->SocClocks[i].Freq;
		clock_table->SocClocks[i].Vol = table->SocClocks[i].Vol;
	}

	for (i = 0; i < NUM_FCLK_DPM_LEVELS; i++) {
		clock_table->FClocks[i].Freq = table->FClocks[i].Freq;
		clock_table->FClocks[i].Vol = table->FClocks[i].Vol;
	}

	for (i = 0; i<  NUM_MEMCLK_DPM_LEVELS; i++) {
		clock_table->MemClocks[i].Freq = table->MemClocks[i].Freq;
		clock_table->MemClocks[i].Vol = table->MemClocks[i].Vol;
	}

	for (i = 0; i < NUM_VCN_DPM_LEVELS; i++) {
		clock_table->VClocks[i].Freq = table->VClocks[i].Freq;
		clock_table->VClocks[i].Vol = table->VClocks[i].Vol;
	}

	for (i = 0; i < NUM_VCN_DPM_LEVELS; i++) {
		clock_table->DClocks[i].Freq = table->DClocks[i].Freq;
		clock_table->DClocks[i].Vol = table->DClocks[i].Vol;
	}

	return 0;
}

static int renoir_force_clk_levels(struct smu_context *smu,
				   enum smu_clk_type clk_type, uint32_t mask)
{

	int ret = 0 ;
	uint32_t soft_min_level = 0, soft_max_level = 0, min_freq = 0, max_freq = 0;

	soft_min_level = mask ? (ffs(mask) - 1) : 0;
	soft_max_level = mask ? (fls(mask) - 1) : 0;

	switch (clk_type) {
	case SMU_GFXCLK:
	case SMU_SCLK:
		if (soft_min_level > 2 || soft_max_level > 2) {
			dev_info(smu->adev->dev, "Currently sclk only support 3 levels on APU\n");
			return -EINVAL;
		}

		ret = renoir_get_dpm_ultimate_freq(smu, SMU_GFXCLK, &min_freq, &max_freq);
		if (ret)
			return ret;
		ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxGfxClk,
					soft_max_level == 0 ? min_freq :
					soft_max_level == 1 ? RENOIR_UMD_PSTATE_GFXCLK : max_freq,
					NULL);
		if (ret)
			return ret;
		ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinGfxClk,
					soft_min_level == 2 ? max_freq :
					soft_min_level == 1 ? RENOIR_UMD_PSTATE_GFXCLK : min_freq,
					NULL);
		if (ret)
			return ret;
		break;
	case SMU_SOCCLK:
		ret = renoir_get_dpm_clk_limited(smu, clk_type, soft_min_level, &min_freq);
		if (ret)
			return ret;
		ret = renoir_get_dpm_clk_limited(smu, clk_type, soft_max_level, &max_freq);
		if (ret)
			return ret;
		ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxSocclkByFreq, max_freq, NULL);
		if (ret)
			return ret;
		ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinSocclkByFreq, min_freq, NULL);
		if (ret)
			return ret;
		break;
	case SMU_MCLK:
	case SMU_FCLK:
		ret = renoir_get_dpm_clk_limited(smu, clk_type, soft_min_level, &min_freq);
		if (ret)
			return ret;
		ret = renoir_get_dpm_clk_limited(smu, clk_type, soft_max_level, &max_freq);
		if (ret)
			return ret;
		ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxFclkByFreq, max_freq, NULL);
		if (ret)
			return ret;
		ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinFclkByFreq, min_freq, NULL);
		if (ret)
			return ret;
		break;
	default:
		break;
	}

	return ret;
}

static int renoir_set_power_profile_mode(struct smu_context *smu, long *input, uint32_t size)
{
	int workload_type, ret;
	uint32_t profile_mode = input[size];

	if (profile_mode > PP_SMC_POWER_PROFILE_CUSTOM) {
		dev_err(smu->adev->dev, "Invalid power profile mode %d\n", profile_mode);
		return -EINVAL;
	}

	if (profile_mode == PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT ||
			profile_mode == PP_SMC_POWER_PROFILE_POWERSAVING)
		return 0;

	/* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */
	workload_type = smu_cmn_to_asic_specific_index(smu,
						       CMN2ASIC_MAPPING_WORKLOAD,
						       profile_mode);
	if (workload_type < 0) {
		/*
		 * TODO: If some case need switch to powersave/default power mode
		 * then can consider enter WORKLOAD_COMPUTE/WORKLOAD_CUSTOM for power saving.
		 */
		dev_dbg(smu->adev->dev, "Unsupported power profile mode %d on RENOIR\n", profile_mode);
		return -EINVAL;
	}

	ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_ActiveProcessNotify,
				    1 << workload_type,
				    NULL);
	if (ret) {
		dev_err_once(smu->adev->dev, "Fail to set workload type %d\n", workload_type);
		return ret;
	}

	smu->power_profile_mode = profile_mode;

	return 0;
}

static int renoir_set_peak_clock_by_device(struct smu_context *smu)
{
	int ret = 0;
	uint32_t sclk_freq = 0, uclk_freq = 0;

	ret = renoir_get_dpm_ultimate_freq(smu, SMU_SCLK, NULL, &sclk_freq);
	if (ret)
		return ret;

	ret = smu_v12_0_set_soft_freq_limited_range(smu, SMU_SCLK, sclk_freq, sclk_freq);
	if (ret)
		return ret;

	ret = renoir_get_dpm_ultimate_freq(smu, SMU_UCLK, NULL, &uclk_freq);
	if (ret)
		return ret;

	ret = smu_v12_0_set_soft_freq_limited_range(smu, SMU_UCLK, uclk_freq, uclk_freq);
	if (ret)
		return ret;

	return ret;
}

static int renoir_set_performance_level(struct smu_context *smu,
					enum amd_dpm_forced_level level)
{
	int ret = 0;
	uint32_t sclk_mask, mclk_mask, soc_mask;

	switch (level) {
	case AMD_DPM_FORCED_LEVEL_HIGH:
		smu->gfx_actual_hard_min_freq = smu->gfx_default_hard_min_freq;
		smu->gfx_actual_soft_max_freq = smu->gfx_default_soft_max_freq;

		ret = renoir_force_dpm_limit_value(smu, true);
		break;
	case AMD_DPM_FORCED_LEVEL_LOW:
		smu->gfx_actual_hard_min_freq = smu->gfx_default_hard_min_freq;
		smu->gfx_actual_soft_max_freq = smu->gfx_default_soft_max_freq;

		ret = renoir_force_dpm_limit_value(smu, false);
		break;
	case AMD_DPM_FORCED_LEVEL_AUTO:
		smu->gfx_actual_hard_min_freq = smu->gfx_default_hard_min_freq;
		smu->gfx_actual_soft_max_freq = smu->gfx_default_soft_max_freq;

		ret = renoir_unforce_dpm_levels(smu);
		break;
	case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
		smu->gfx_actual_hard_min_freq = smu->gfx_default_hard_min_freq;
		smu->gfx_actual_soft_max_freq = smu->gfx_default_soft_max_freq;

		ret = smu_cmn_send_smc_msg_with_param(smu,
						      SMU_MSG_SetHardMinGfxClk,
						      RENOIR_UMD_PSTATE_GFXCLK,
						      NULL);
		if (ret)
			return ret;
		ret = smu_cmn_send_smc_msg_with_param(smu,
						      SMU_MSG_SetHardMinFclkByFreq,
						      RENOIR_UMD_PSTATE_FCLK,
						      NULL);
		if (ret)
			return ret;
		ret = smu_cmn_send_smc_msg_with_param(smu,
						      SMU_MSG_SetHardMinSocclkByFreq,
						      RENOIR_UMD_PSTATE_SOCCLK,
						      NULL);
		if (ret)
			return ret;
		ret = smu_cmn_send_smc_msg_with_param(smu,
						      SMU_MSG_SetHardMinVcn,
						      RENOIR_UMD_PSTATE_VCNCLK,
						      NULL);
		if (ret)
			return ret;

		ret = smu_cmn_send_smc_msg_with_param(smu,
						      SMU_MSG_SetSoftMaxGfxClk,
						      RENOIR_UMD_PSTATE_GFXCLK,
						      NULL);
		if (ret)
			return ret;
		ret = smu_cmn_send_smc_msg_with_param(smu,
						      SMU_MSG_SetSoftMaxFclkByFreq,
						      RENOIR_UMD_PSTATE_FCLK,
						      NULL);
		if (ret)
			return ret;
		ret = smu_cmn_send_smc_msg_with_param(smu,
						      SMU_MSG_SetSoftMaxSocclkByFreq,
						      RENOIR_UMD_PSTATE_SOCCLK,
						      NULL);
		if (ret)
			return ret;
		ret = smu_cmn_send_smc_msg_with_param(smu,
						      SMU_MSG_SetSoftMaxVcn,
						      RENOIR_UMD_PSTATE_VCNCLK,
						      NULL);
		if (ret)
			return ret;
		break;
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
		smu->gfx_actual_hard_min_freq = smu->gfx_default_hard_min_freq;
		smu->gfx_actual_soft_max_freq = smu->gfx_default_soft_max_freq;

		ret = renoir_get_profiling_clk_mask(smu, level,
						    &sclk_mask,
						    &mclk_mask,
						    &soc_mask);
		if (ret)
			return ret;
		renoir_force_clk_levels(smu, SMU_SCLK, 1 << sclk_mask);
		renoir_force_clk_levels(smu, SMU_MCLK, 1 << mclk_mask);
		renoir_force_clk_levels(smu, SMU_SOCCLK, 1 << soc_mask);
		break;
	case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
		smu->gfx_actual_hard_min_freq = smu->gfx_default_hard_min_freq;
		smu->gfx_actual_soft_max_freq = smu->gfx_default_soft_max_freq;

		ret = renoir_set_peak_clock_by_device(smu);
		break;
	case AMD_DPM_FORCED_LEVEL_MANUAL:
	case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
	default:
		break;
	}
	return ret;
}

/* save watermark settings into pplib smu structure,
 * also pass data to smu controller
 */
static int renoir_set_watermarks_table(
		struct smu_context *smu,
		struct pp_smu_wm_range_sets *clock_ranges)
{
	Watermarks_t *table = smu->smu_table.watermarks_table;
	int ret = 0;
	int i;

	if (clock_ranges) {
		if (clock_ranges->num_reader_wm_sets > NUM_WM_RANGES ||
		    clock_ranges->num_writer_wm_sets > NUM_WM_RANGES)
			return -EINVAL;

		/* save into smu->smu_table.tables[SMU_TABLE_WATERMARKS]->cpu_addr*/
		for (i = 0; i < clock_ranges->num_reader_wm_sets; i++) {
			table->WatermarkRow[WM_DCFCLK][i].MinClock =
				clock_ranges->reader_wm_sets[i].min_drain_clk_mhz;
			table->WatermarkRow[WM_DCFCLK][i].MaxClock =
				clock_ranges->reader_wm_sets[i].max_drain_clk_mhz;
			table->WatermarkRow[WM_DCFCLK][i].MinMclk =
				clock_ranges->reader_wm_sets[i].min_fill_clk_mhz;
			table->WatermarkRow[WM_DCFCLK][i].MaxMclk =
				clock_ranges->reader_wm_sets[i].max_fill_clk_mhz;

			table->WatermarkRow[WM_DCFCLK][i].WmSetting =
				clock_ranges->reader_wm_sets[i].wm_inst;
			table->WatermarkRow[WM_DCFCLK][i].WmType =
				clock_ranges->reader_wm_sets[i].wm_type;
		}

		for (i = 0; i < clock_ranges->num_writer_wm_sets; i++) {
			table->WatermarkRow[WM_SOCCLK][i].MinClock =
				clock_ranges->writer_wm_sets[i].min_fill_clk_mhz;
			table->WatermarkRow[WM_SOCCLK][i].MaxClock =
				clock_ranges->writer_wm_sets[i].max_fill_clk_mhz;
			table->WatermarkRow[WM_SOCCLK][i].MinMclk =
				clock_ranges->writer_wm_sets[i].min_drain_clk_mhz;
			table->WatermarkRow[WM_SOCCLK][i].MaxMclk =
				clock_ranges->writer_wm_sets[i].max_drain_clk_mhz;

			table->WatermarkRow[WM_SOCCLK][i].WmSetting =
				clock_ranges->writer_wm_sets[i].wm_inst;
			table->WatermarkRow[WM_SOCCLK][i].WmType =
				clock_ranges->writer_wm_sets[i].wm_type;
		}

		smu->watermarks_bitmap |= WATERMARKS_EXIST;
	}

	/* pass data to smu controller */
	if ((smu->watermarks_bitmap & WATERMARKS_EXIST) &&
	     !(smu->watermarks_bitmap & WATERMARKS_LOADED)) {
		ret = smu_cmn_write_watermarks_table(smu);
		if (ret) {
			dev_err(smu->adev->dev, "Failed to update WMTABLE!");
			return ret;
		}
		smu->watermarks_bitmap |= WATERMARKS_LOADED;
	}

	return 0;
}

static int renoir_get_power_profile_mode(struct smu_context *smu,
					   char *buf)
{
	uint32_t i, size = 0;
	int16_t workload_type = 0;

	if (!buf)
		return -EINVAL;

	for (i = 0; i <= PP_SMC_POWER_PROFILE_CUSTOM; i++) {
		/*
		 * Conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT
		 * Not all profile modes are supported on arcturus.
		 */
		workload_type = smu_cmn_to_asic_specific_index(smu,
							       CMN2ASIC_MAPPING_WORKLOAD,
							       i);
		if (workload_type < 0)
			continue;

		size += sysfs_emit_at(buf, size, "%2d %14s%s\n",
			i, amdgpu_pp_profile_name[i], (i == smu->power_profile_mode) ? "*" : " ");
	}

	return size;
}

static void renoir_get_ss_power_percent(SmuMetrics_t *metrics,
					uint32_t *apu_percent, uint32_t *dgpu_percent)
{
	uint32_t apu_boost = 0;
	uint32_t dgpu_boost = 0;
	uint16_t apu_limit = 0;
	uint16_t dgpu_limit = 0;
	uint16_t apu_power = 0;
	uint16_t dgpu_power = 0;

	apu_power = metrics->ApuPower;
	apu_limit = metrics->StapmOriginalLimit;
	if (apu_power > apu_limit && apu_limit != 0)
		apu_boost =  ((apu_power - apu_limit) * 100) / apu_limit;
	apu_boost = (apu_boost > 100) ? 100 : apu_boost;

	dgpu_power = metrics->dGpuPower;
	if (metrics->StapmCurrentLimit > metrics->StapmOriginalLimit)
		dgpu_limit = metrics->StapmCurrentLimit - metrics->StapmOriginalLimit;
	if (dgpu_power > dgpu_limit && dgpu_limit != 0)
		dgpu_boost = ((dgpu_power - dgpu_limit) * 100) / dgpu_limit;
	dgpu_boost = (dgpu_boost > 100) ? 100 : dgpu_boost;

	if (dgpu_boost >= apu_boost)
		apu_boost = 0;
	else
		dgpu_boost = 0;

	*apu_percent = apu_boost;
	*dgpu_percent = dgpu_boost;
}


static int renoir_get_smu_metrics_data(struct smu_context *smu,
				       MetricsMember_t member,
				       uint32_t *value)
{
	struct smu_table_context *smu_table = &smu->smu_table;

	SmuMetrics_t *metrics = (SmuMetrics_t *)smu_table->metrics_table;
	int ret = 0;
	uint32_t apu_percent = 0;
	uint32_t dgpu_percent = 0;
	struct amdgpu_device *adev = smu->adev;


	ret = smu_cmn_get_metrics_table(smu,
					NULL,
					false);
	if (ret)
		return ret;

	switch (member) {
	case METRICS_AVERAGE_GFXCLK:
		*value = metrics->ClockFrequency[CLOCK_GFXCLK];
		break;
	case METRICS_AVERAGE_SOCCLK:
		*value = metrics->ClockFrequency[CLOCK_SOCCLK];
		break;
	case METRICS_AVERAGE_UCLK:
		*value = metrics->ClockFrequency[CLOCK_FCLK];
		break;
	case METRICS_AVERAGE_GFXACTIVITY:
		*value = metrics->AverageGfxActivity / 100;
		break;
	case METRICS_AVERAGE_VCNACTIVITY:
		*value = metrics->AverageUvdActivity / 100;
		break;
	case METRICS_AVERAGE_SOCKETPOWER:
		if (((adev->ip_versions[MP1_HWIP][0] == IP_VERSION(12, 0, 1)) && (adev->pm.fw_version >= 0x40000f)) ||
		((adev->ip_versions[MP1_HWIP][0] == IP_VERSION(12, 0, 0)) && (adev->pm.fw_version >= 0x373200)))
			*value = metrics->CurrentSocketPower << 8;
		else
			*value = (metrics->CurrentSocketPower << 8) / 1000;
		break;
	case METRICS_TEMPERATURE_EDGE:
		*value = (metrics->GfxTemperature / 100) *
			SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
		break;
	case METRICS_TEMPERATURE_HOTSPOT:
		*value = (metrics->SocTemperature / 100) *
			SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
		break;
	case METRICS_THROTTLER_STATUS:
		*value = metrics->ThrottlerStatus;
		break;
	case METRICS_VOLTAGE_VDDGFX:
		*value = metrics->Voltage[0];
		break;
	case METRICS_VOLTAGE_VDDSOC:
		*value = metrics->Voltage[1];
		break;
	case METRICS_SS_APU_SHARE:
		/* return the percentage of APU power boost
		 * with respect to APU's power limit.
		 */
		renoir_get_ss_power_percent(metrics, &apu_percent, &dgpu_percent);
		*value = apu_percent;
		break;
	case METRICS_SS_DGPU_SHARE:
		/* return the percentage of dGPU power boost
		 * with respect to dGPU's power limit.
		 */
		renoir_get_ss_power_percent(metrics, &apu_percent, &dgpu_percent);
		*value = dgpu_percent;
		break;
	default:
		*value = UINT_MAX;
		break;
	}

	return ret;
}

static int renoir_read_sensor(struct smu_context *smu,
				 enum amd_pp_sensors sensor,
				 void *data, uint32_t *size)
{
	int ret = 0;

	if (!data || !size)
		return -EINVAL;

	switch (sensor) {
	case AMDGPU_PP_SENSOR_GPU_LOAD:
		ret = renoir_get_smu_metrics_data(smu,
						  METRICS_AVERAGE_GFXACTIVITY,
						  (uint32_t *)data);
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_EDGE_TEMP:
		ret = renoir_get_smu_metrics_data(smu,
						  METRICS_TEMPERATURE_EDGE,
						  (uint32_t *)data);
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
		ret = renoir_get_smu_metrics_data(smu,
						  METRICS_TEMPERATURE_HOTSPOT,
						  (uint32_t *)data);
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_GFX_MCLK:
		ret = renoir_get_smu_metrics_data(smu,
						  METRICS_AVERAGE_UCLK,
						  (uint32_t *)data);
		*(uint32_t *)data *= 100;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_GFX_SCLK:
		ret = renoir_get_smu_metrics_data(smu,
						  METRICS_AVERAGE_GFXCLK,
						  (uint32_t *)data);
		*(uint32_t *)data *= 100;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_VDDGFX:
		ret = renoir_get_smu_metrics_data(smu,
						  METRICS_VOLTAGE_VDDGFX,
						  (uint32_t *)data);
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_VDDNB:
		ret = renoir_get_smu_metrics_data(smu,
						  METRICS_VOLTAGE_VDDSOC,
						  (uint32_t *)data);
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_GPU_POWER:
		ret = renoir_get_smu_metrics_data(smu,
						  METRICS_AVERAGE_SOCKETPOWER,
						  (uint32_t *)data);
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_SS_APU_SHARE:
		ret = renoir_get_smu_metrics_data(smu,
						  METRICS_SS_APU_SHARE,
						  (uint32_t *)data);
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_SS_DGPU_SHARE:
		ret = renoir_get_smu_metrics_data(smu,
						  METRICS_SS_DGPU_SHARE,
						  (uint32_t *)data);
		*size = 4;
		break;
	default:
		ret = -EOPNOTSUPP;
		break;
	}

	return ret;
}

static bool renoir_is_dpm_running(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;

	/*
	 * Until now, the pmfw hasn't exported the interface of SMU
	 * feature mask to APU SKU so just force on all the feature
	 * at early initial stage.
	 */
	if (adev->in_suspend)
		return false;
	else
		return true;

}

static ssize_t renoir_get_gpu_metrics(struct smu_context *smu,
				      void **table)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct gpu_metrics_v2_2 *gpu_metrics =
		(struct gpu_metrics_v2_2 *)smu_table->gpu_metrics_table;
	SmuMetrics_t metrics;
	int ret = 0;

	ret = smu_cmn_get_metrics_table(smu, &metrics, true);
	if (ret)
		return ret;

	smu_cmn_init_soft_gpu_metrics(gpu_metrics, 2, 2);

	gpu_metrics->temperature_gfx = metrics.GfxTemperature;
	gpu_metrics->temperature_soc = metrics.SocTemperature;
	memcpy(&gpu_metrics->temperature_core[0],
		&metrics.CoreTemperature[0],
		sizeof(uint16_t) * 8);
	gpu_metrics->temperature_l3[0] = metrics.L3Temperature[0];
	gpu_metrics->temperature_l3[1] = metrics.L3Temperature[1];

	gpu_metrics->average_gfx_activity = metrics.AverageGfxActivity;
	gpu_metrics->average_mm_activity = metrics.AverageUvdActivity;

	gpu_metrics->average_socket_power = metrics.CurrentSocketPower;
	gpu_metrics->average_cpu_power = metrics.Power[0];
	gpu_metrics->average_soc_power = metrics.Power[1];
	memcpy(&gpu_metrics->average_core_power[0],
		&metrics.CorePower[0],
		sizeof(uint16_t) * 8);

	gpu_metrics->average_gfxclk_frequency = metrics.AverageGfxclkFrequency;
	gpu_metrics->average_socclk_frequency = metrics.AverageSocclkFrequency;
	gpu_metrics->average_fclk_frequency = metrics.AverageFclkFrequency;
	gpu_metrics->average_vclk_frequency = metrics.AverageVclkFrequency;

	gpu_metrics->current_gfxclk = metrics.ClockFrequency[CLOCK_GFXCLK];
	gpu_metrics->current_socclk = metrics.ClockFrequency[CLOCK_SOCCLK];
	gpu_metrics->current_uclk = metrics.ClockFrequency[CLOCK_UMCCLK];
	gpu_metrics->current_fclk = metrics.ClockFrequency[CLOCK_FCLK];
	gpu_metrics->current_vclk = metrics.ClockFrequency[CLOCK_VCLK];
	gpu_metrics->current_dclk = metrics.ClockFrequency[CLOCK_DCLK];
	memcpy(&gpu_metrics->current_coreclk[0],
		&metrics.CoreFrequency[0],
		sizeof(uint16_t) * 8);
	gpu_metrics->current_l3clk[0] = metrics.L3Frequency[0];
	gpu_metrics->current_l3clk[1] = metrics.L3Frequency[1];

	gpu_metrics->throttle_status = metrics.ThrottlerStatus;
	gpu_metrics->indep_throttle_status =
		smu_cmn_get_indep_throttler_status(metrics.ThrottlerStatus,
						   renoir_throttler_map);

	gpu_metrics->fan_pwm = metrics.FanPwm;

	gpu_metrics->system_clock_counter = ktime_get_boottime_ns();

	*table = (void *)gpu_metrics;

	return sizeof(struct gpu_metrics_v2_2);
}

static int renoir_gfx_state_change_set(struct smu_context *smu, uint32_t state)
{

	return 0;
}

static int renoir_get_enabled_mask(struct smu_context *smu,
				   uint64_t *feature_mask)
{
	if (!feature_mask)
		return -EINVAL;
	memset(feature_mask, 0xff, sizeof(*feature_mask));

	return 0;
}

static const struct pptable_funcs renoir_ppt_funcs = {
	.set_power_state = NULL,
	.print_clk_levels = renoir_print_clk_levels,
	.get_current_power_state = renoir_get_current_power_state,
	.dpm_set_vcn_enable = renoir_dpm_set_vcn_enable,
	.dpm_set_jpeg_enable = renoir_dpm_set_jpeg_enable,
	.force_clk_levels = renoir_force_clk_levels,
	.set_power_profile_mode = renoir_set_power_profile_mode,
	.set_performance_level = renoir_set_performance_level,
	.get_dpm_clock_table = renoir_get_dpm_clock_table,
	.set_watermarks_table = renoir_set_watermarks_table,
	.get_power_profile_mode = renoir_get_power_profile_mode,
	.read_sensor = renoir_read_sensor,
	.check_fw_status = smu_v12_0_check_fw_status,
	.check_fw_version = smu_v12_0_check_fw_version,
	.powergate_sdma = smu_v12_0_powergate_sdma,
	.send_smc_msg_with_param = smu_cmn_send_smc_msg_with_param,
	.send_smc_msg = smu_cmn_send_smc_msg,
	.set_gfx_cgpg = smu_v12_0_set_gfx_cgpg,
	.gfx_off_control = smu_v12_0_gfx_off_control,
	.get_gfx_off_status = smu_v12_0_get_gfxoff_status,
	.init_smc_tables = renoir_init_smc_tables,
	.fini_smc_tables = smu_v12_0_fini_smc_tables,
	.set_default_dpm_table = smu_v12_0_set_default_dpm_tables,
	.get_enabled_mask = renoir_get_enabled_mask,
	.feature_is_enabled = smu_cmn_feature_is_enabled,
	.disable_all_features_with_exception = smu_cmn_disable_all_features_with_exception,
	.get_dpm_ultimate_freq = renoir_get_dpm_ultimate_freq,
	.mode2_reset = smu_v12_0_mode2_reset,
	.set_soft_freq_limited_range = smu_v12_0_set_soft_freq_limited_range,
	.set_driver_table_location = smu_v12_0_set_driver_table_location,
	.is_dpm_running = renoir_is_dpm_running,
	.get_pp_feature_mask = smu_cmn_get_pp_feature_mask,
	.set_pp_feature_mask = smu_cmn_set_pp_feature_mask,
	.get_gpu_metrics = renoir_get_gpu_metrics,
	.gfx_state_change_set = renoir_gfx_state_change_set,
	.set_fine_grain_gfx_freq_parameters = renoir_set_fine_grain_gfx_freq_parameters,
	.od_edit_dpm_table = renoir_od_edit_dpm_table,
	.get_vbios_bootup_values = smu_v12_0_get_vbios_bootup_values,
};

void renoir_set_ppt_funcs(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;

	smu->ppt_funcs = &renoir_ppt_funcs;
	smu->message_map = renoir_message_map;
	smu->clock_map = renoir_clk_map;
	smu->table_map = renoir_table_map;
	smu->workload_map = renoir_workload_map;
	smu->smc_driver_if_version = SMU12_DRIVER_IF_VERSION;
	smu->is_apu = true;
	smu->param_reg = SOC15_REG_OFFSET(MP1, 0, mmMP1_SMN_C2PMSG_82);
	smu->msg_reg = SOC15_REG_OFFSET(MP1, 0, mmMP1_SMN_C2PMSG_66);
	smu->resp_reg = SOC15_REG_OFFSET(MP1, 0, mmMP1_SMN_C2PMSG_90);
}