Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kevin Wang | 7249 | 63.91% | 14 | 12.07% |
Evan Quan | 1872 | 16.51% | 31 | 26.72% |
Huang Rui | 430 | 3.79% | 3 | 2.59% |
Tim Huang | 413 | 3.64% | 4 | 3.45% |
Alex Deucher | 406 | 3.58% | 10 | 8.62% |
Lijo Lazar | 185 | 1.63% | 4 | 3.45% |
lyndonli | 169 | 1.49% | 1 | 0.86% |
Darren Powell | 124 | 1.09% | 5 | 4.31% |
Feifei Xu | 81 | 0.71% | 2 | 1.72% |
Mario Limonciello | 77 | 0.68% | 4 | 3.45% |
Kenneth Feng | 72 | 0.63% | 7 | 6.03% |
Aaron Liu | 62 | 0.55% | 2 | 1.72% |
Yifan Zha | 34 | 0.30% | 1 | 0.86% |
Xiaomeng Hou | 28 | 0.25% | 2 | 1.72% |
Likun Gao | 22 | 0.19% | 2 | 1.72% |
Yifan Zhang | 16 | 0.14% | 3 | 2.59% |
Chengming Gui | 16 | 0.14% | 4 | 3.45% |
Stanley.Yang | 13 | 0.11% | 1 | 0.86% |
Luben Tuikov | 12 | 0.11% | 1 | 0.86% |
Prike Liang | 12 | 0.11% | 3 | 2.59% |
Yang Wang | 11 | 0.10% | 2 | 1.72% |
changzhu | 10 | 0.09% | 1 | 0.86% |
Andrey Grodzovsky | 7 | 0.06% | 1 | 0.86% |
Guchun Chen | 6 | 0.05% | 1 | 0.86% |
Wenhui Sheng | 5 | 0.04% | 1 | 0.86% |
John Clements | 4 | 0.04% | 2 | 1.72% |
Jinzhou.Su | 2 | 0.02% | 1 | 0.86% |
Matt Coffin | 2 | 0.02% | 1 | 0.86% |
Colin Ian King | 1 | 0.01% | 1 | 0.86% |
Linus Torvalds | 1 | 0.01% | 1 | 0.86% |
Total | 11342 | 116 |
/* * Copyright 2020 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include <linux/firmware.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/reboot.h> #define SMU_13_0_PARTIAL_PPTABLE #define SWSMU_CODE_LAYER_L3 #include "amdgpu.h" #include "amdgpu_smu.h" #include "atomfirmware.h" #include "amdgpu_atomfirmware.h" #include "amdgpu_atombios.h" #include "smu_v13_0.h" #include "soc15_common.h" #include "atom.h" #include "amdgpu_ras.h" #include "smu_cmn.h" #include "asic_reg/thm/thm_13_0_2_offset.h" #include "asic_reg/thm/thm_13_0_2_sh_mask.h" #include "asic_reg/mp/mp_13_0_2_offset.h" #include "asic_reg/mp/mp_13_0_2_sh_mask.h" #include "asic_reg/smuio/smuio_13_0_2_offset.h" #include "asic_reg/smuio/smuio_13_0_2_sh_mask.h" /* * DO NOT use these for err/warn/info/debug messages. * Use dev_err, dev_warn, dev_info and dev_dbg instead. * They are more MGPU friendly. */ #undef pr_err #undef pr_warn #undef pr_info #undef pr_debug MODULE_FIRMWARE("amdgpu/aldebaran_smc.bin"); MODULE_FIRMWARE("amdgpu/smu_13_0_0.bin"); MODULE_FIRMWARE("amdgpu/smu_13_0_7.bin"); MODULE_FIRMWARE("amdgpu/smu_13_0_10.bin"); #define mmMP1_SMN_C2PMSG_66 0x0282 #define mmMP1_SMN_C2PMSG_66_BASE_IDX 0 #define mmMP1_SMN_C2PMSG_82 0x0292 #define mmMP1_SMN_C2PMSG_82_BASE_IDX 0 #define mmMP1_SMN_C2PMSG_90 0x029a #define mmMP1_SMN_C2PMSG_90_BASE_IDX 0 #define SMU13_VOLTAGE_SCALE 4 #define LINK_WIDTH_MAX 6 #define LINK_SPEED_MAX 3 #define smnPCIE_LC_LINK_WIDTH_CNTL 0x11140288 #define PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD_MASK 0x00000070L #define PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD__SHIFT 0x4 #define smnPCIE_LC_SPEED_CNTL 0x11140290 #define PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE_MASK 0xC000 #define PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE__SHIFT 0xE static const int link_width[] = {0, 1, 2, 4, 8, 12, 16}; static const int link_speed[] = {25, 50, 80, 160}; int smu_v13_0_init_microcode(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; const char *chip_name; char fw_name[30]; char ucode_prefix[30]; int err = 0; const struct smc_firmware_header_v1_0 *hdr; const struct common_firmware_header *header; struct amdgpu_firmware_info *ucode = NULL; /* doesn't need to load smu firmware in IOV mode */ if (amdgpu_sriov_vf(adev)) return 0; switch (adev->ip_versions[MP1_HWIP][0]) { case IP_VERSION(13, 0, 2): chip_name = "aldebaran_smc"; break; default: amdgpu_ucode_ip_version_decode(adev, MP1_HWIP, ucode_prefix, sizeof(ucode_prefix)); chip_name = ucode_prefix; } snprintf(fw_name, sizeof(fw_name), "amdgpu/%s.bin", chip_name); err = request_firmware(&adev->pm.fw, fw_name, adev->dev); if (err) goto out; err = amdgpu_ucode_validate(adev->pm.fw); if (err) goto out; hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data; amdgpu_ucode_print_smc_hdr(&hdr->header); adev->pm.fw_version = le32_to_cpu(hdr->header.ucode_version); if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { ucode = &adev->firmware.ucode[AMDGPU_UCODE_ID_SMC]; ucode->ucode_id = AMDGPU_UCODE_ID_SMC; ucode->fw = adev->pm.fw; header = (const struct common_firmware_header *)ucode->fw->data; adev->firmware.fw_size += ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); } out: if (err) { DRM_ERROR("smu_v13_0: Failed to load firmware \"%s\"\n", fw_name); release_firmware(adev->pm.fw); adev->pm.fw = NULL; } return err; } void smu_v13_0_fini_microcode(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; release_firmware(adev->pm.fw); adev->pm.fw = NULL; adev->pm.fw_version = 0; } int smu_v13_0_load_microcode(struct smu_context *smu) { #if 0 struct amdgpu_device *adev = smu->adev; const uint32_t *src; const struct smc_firmware_header_v1_0 *hdr; uint32_t addr_start = MP1_SRAM; uint32_t i; uint32_t smc_fw_size; uint32_t mp1_fw_flags; hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data; src = (const uint32_t *)(adev->pm.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); smc_fw_size = hdr->header.ucode_size_bytes; for (i = 1; i < smc_fw_size/4 - 1; i++) { WREG32_PCIE(addr_start, src[i]); addr_start += 4; } WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff), 1 & MP1_SMN_PUB_CTRL__RESET_MASK); WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff), 1 & ~MP1_SMN_PUB_CTRL__RESET_MASK); for (i = 0; i < adev->usec_timeout; i++) { mp1_fw_flags = RREG32_PCIE(MP1_Public | (smnMP1_FIRMWARE_FLAGS & 0xffffffff)); if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >> MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT) break; udelay(1); } if (i == adev->usec_timeout) return -ETIME; #endif return 0; } int smu_v13_0_init_pptable_microcode(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; struct amdgpu_firmware_info *ucode = NULL; uint32_t size = 0, pptable_id = 0; int ret = 0; void *table; /* doesn't need to load smu firmware in IOV mode */ if (amdgpu_sriov_vf(adev)) return 0; if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) return 0; if (!adev->scpm_enabled) return 0; if ((adev->ip_versions[MP1_HWIP][0] == IP_VERSION(13, 0, 7)) || (adev->ip_versions[MP1_HWIP][0] == IP_VERSION(13, 0, 0)) || (adev->ip_versions[MP1_HWIP][0] == IP_VERSION(13, 0, 10))) return 0; /* override pptable_id from driver parameter */ if (amdgpu_smu_pptable_id >= 0) { pptable_id = amdgpu_smu_pptable_id; dev_info(adev->dev, "override pptable id %d\n", pptable_id); } else { pptable_id = smu->smu_table.boot_values.pp_table_id; } /* "pptable_id == 0" means vbios carries the pptable. */ if (!pptable_id) return 0; ret = smu_v13_0_get_pptable_from_firmware(smu, &table, &size, pptable_id); if (ret) return ret; smu->pptable_firmware.data = table; smu->pptable_firmware.size = size; ucode = &adev->firmware.ucode[AMDGPU_UCODE_ID_PPTABLE]; ucode->ucode_id = AMDGPU_UCODE_ID_PPTABLE; ucode->fw = &smu->pptable_firmware; adev->firmware.fw_size += ALIGN(smu->pptable_firmware.size, PAGE_SIZE); return 0; } int smu_v13_0_check_fw_status(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; uint32_t mp1_fw_flags; switch (adev->ip_versions[MP1_HWIP][0]) { case IP_VERSION(13, 0, 4): case IP_VERSION(13, 0, 11): mp1_fw_flags = RREG32_PCIE(MP1_Public | (smnMP1_V13_0_4_FIRMWARE_FLAGS & 0xffffffff)); break; default: mp1_fw_flags = RREG32_PCIE(MP1_Public | (smnMP1_FIRMWARE_FLAGS & 0xffffffff)); break; } if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >> MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT) return 0; return -EIO; } int smu_v13_0_check_fw_version(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; uint32_t if_version = 0xff, smu_version = 0xff; uint8_t smu_program, smu_major, smu_minor, smu_debug; int ret = 0; ret = smu_cmn_get_smc_version(smu, &if_version, &smu_version); if (ret) return ret; smu_program = (smu_version >> 24) & 0xff; smu_major = (smu_version >> 16) & 0xff; smu_minor = (smu_version >> 8) & 0xff; smu_debug = (smu_version >> 0) & 0xff; if (smu->is_apu) adev->pm.fw_version = smu_version; switch (adev->ip_versions[MP1_HWIP][0]) { case IP_VERSION(13, 0, 2): smu->smc_driver_if_version = SMU13_DRIVER_IF_VERSION_ALDE; break; case IP_VERSION(13, 0, 0): smu->smc_driver_if_version = SMU13_DRIVER_IF_VERSION_SMU_V13_0_0_0; break; case IP_VERSION(13, 0, 10): smu->smc_driver_if_version = SMU13_DRIVER_IF_VERSION_SMU_V13_0_0_10; break; case IP_VERSION(13, 0, 7): smu->smc_driver_if_version = SMU13_DRIVER_IF_VERSION_SMU_V13_0_7; break; case IP_VERSION(13, 0, 1): case IP_VERSION(13, 0, 3): case IP_VERSION(13, 0, 8): smu->smc_driver_if_version = SMU13_DRIVER_IF_VERSION_YELLOW_CARP; break; case IP_VERSION(13, 0, 4): case IP_VERSION(13, 0, 11): smu->smc_driver_if_version = SMU13_DRIVER_IF_VERSION_SMU_V13_0_4; break; case IP_VERSION(13, 0, 5): smu->smc_driver_if_version = SMU13_DRIVER_IF_VERSION_SMU_V13_0_5; break; default: dev_err(adev->dev, "smu unsupported IP version: 0x%x.\n", adev->ip_versions[MP1_HWIP][0]); smu->smc_driver_if_version = SMU13_DRIVER_IF_VERSION_INV; break; } /* only for dGPU w/ SMU13*/ if (adev->pm.fw) dev_dbg(smu->adev->dev, "smu fw reported program %d, version = 0x%08x (%d.%d.%d)\n", smu_program, smu_version, smu_major, smu_minor, smu_debug); /* * 1. if_version mismatch is not critical as our fw is designed * to be backward compatible. * 2. New fw usually brings some optimizations. But that's visible * only on the paired driver. * Considering above, we just leave user a warning message instead * of halt driver loading. */ if (if_version != smu->smc_driver_if_version) { dev_info(adev->dev, "smu driver if version = 0x%08x, smu fw if version = 0x%08x, " "smu fw program = %d, smu fw version = 0x%08x (%d.%d.%d)\n", smu->smc_driver_if_version, if_version, smu_program, smu_version, smu_major, smu_minor, smu_debug); dev_warn(adev->dev, "SMU driver if version not matched\n"); } return ret; } static int smu_v13_0_set_pptable_v2_0(struct smu_context *smu, void **table, uint32_t *size) { struct amdgpu_device *adev = smu->adev; uint32_t ppt_offset_bytes; const struct smc_firmware_header_v2_0 *v2; v2 = (const struct smc_firmware_header_v2_0 *) adev->pm.fw->data; ppt_offset_bytes = le32_to_cpu(v2->ppt_offset_bytes); *size = le32_to_cpu(v2->ppt_size_bytes); *table = (uint8_t *)v2 + ppt_offset_bytes; return 0; } static int smu_v13_0_set_pptable_v2_1(struct smu_context *smu, void **table, uint32_t *size, uint32_t pptable_id) { struct amdgpu_device *adev = smu->adev; const struct smc_firmware_header_v2_1 *v2_1; struct smc_soft_pptable_entry *entries; uint32_t pptable_count = 0; int i = 0; v2_1 = (const struct smc_firmware_header_v2_1 *) adev->pm.fw->data; entries = (struct smc_soft_pptable_entry *) ((uint8_t *)v2_1 + le32_to_cpu(v2_1->pptable_entry_offset)); pptable_count = le32_to_cpu(v2_1->pptable_count); for (i = 0; i < pptable_count; i++) { if (le32_to_cpu(entries[i].id) == pptable_id) { *table = ((uint8_t *)v2_1 + le32_to_cpu(entries[i].ppt_offset_bytes)); *size = le32_to_cpu(entries[i].ppt_size_bytes); break; } } if (i == pptable_count) return -EINVAL; return 0; } static int smu_v13_0_get_pptable_from_vbios(struct smu_context *smu, void **table, uint32_t *size) { struct amdgpu_device *adev = smu->adev; uint16_t atom_table_size; uint8_t frev, crev; int ret, index; dev_info(adev->dev, "use vbios provided pptable\n"); index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, powerplayinfo); ret = amdgpu_atombios_get_data_table(adev, index, &atom_table_size, &frev, &crev, (uint8_t **)table); if (ret) return ret; if (size) *size = atom_table_size; return 0; } int smu_v13_0_get_pptable_from_firmware(struct smu_context *smu, void **table, uint32_t *size, uint32_t pptable_id) { const struct smc_firmware_header_v1_0 *hdr; struct amdgpu_device *adev = smu->adev; uint16_t version_major, version_minor; int ret; hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data; if (!hdr) return -EINVAL; dev_info(adev->dev, "use driver provided pptable %d\n", pptable_id); version_major = le16_to_cpu(hdr->header.header_version_major); version_minor = le16_to_cpu(hdr->header.header_version_minor); if (version_major != 2) { dev_err(adev->dev, "Unsupported smu firmware version %d.%d\n", version_major, version_minor); return -EINVAL; } switch (version_minor) { case 0: ret = smu_v13_0_set_pptable_v2_0(smu, table, size); break; case 1: ret = smu_v13_0_set_pptable_v2_1(smu, table, size, pptable_id); break; default: ret = -EINVAL; break; } return ret; } int smu_v13_0_setup_pptable(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; uint32_t size = 0, pptable_id = 0; void *table; int ret = 0; /* override pptable_id from driver parameter */ if (amdgpu_smu_pptable_id >= 0) { pptable_id = amdgpu_smu_pptable_id; dev_info(adev->dev, "override pptable id %d\n", pptable_id); } else { pptable_id = smu->smu_table.boot_values.pp_table_id; } /* force using vbios pptable in sriov mode */ if ((amdgpu_sriov_vf(adev) || !pptable_id) && (amdgpu_emu_mode != 1)) ret = smu_v13_0_get_pptable_from_vbios(smu, &table, &size); else ret = smu_v13_0_get_pptable_from_firmware(smu, &table, &size, pptable_id); if (ret) return ret; if (!smu->smu_table.power_play_table) smu->smu_table.power_play_table = table; if (!smu->smu_table.power_play_table_size) smu->smu_table.power_play_table_size = size; return 0; } int smu_v13_0_init_smc_tables(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *tables = smu_table->tables; int ret = 0; smu_table->driver_pptable = kzalloc(tables[SMU_TABLE_PPTABLE].size, GFP_KERNEL); if (!smu_table->driver_pptable) { ret = -ENOMEM; goto err0_out; } smu_table->max_sustainable_clocks = kzalloc(sizeof(struct smu_13_0_max_sustainable_clocks), GFP_KERNEL); if (!smu_table->max_sustainable_clocks) { ret = -ENOMEM; goto err1_out; } /* Aldebaran does not support OVERDRIVE */ if (tables[SMU_TABLE_OVERDRIVE].size) { smu_table->overdrive_table = kzalloc(tables[SMU_TABLE_OVERDRIVE].size, GFP_KERNEL); if (!smu_table->overdrive_table) { ret = -ENOMEM; goto err2_out; } smu_table->boot_overdrive_table = kzalloc(tables[SMU_TABLE_OVERDRIVE].size, GFP_KERNEL); if (!smu_table->boot_overdrive_table) { ret = -ENOMEM; goto err3_out; } } smu_table->combo_pptable = kzalloc(tables[SMU_TABLE_COMBO_PPTABLE].size, GFP_KERNEL); if (!smu_table->combo_pptable) { ret = -ENOMEM; goto err4_out; } return 0; err4_out: kfree(smu_table->boot_overdrive_table); err3_out: kfree(smu_table->overdrive_table); err2_out: kfree(smu_table->max_sustainable_clocks); err1_out: kfree(smu_table->driver_pptable); err0_out: return ret; } int smu_v13_0_fini_smc_tables(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; struct smu_dpm_context *smu_dpm = &smu->smu_dpm; kfree(smu_table->gpu_metrics_table); kfree(smu_table->combo_pptable); kfree(smu_table->boot_overdrive_table); kfree(smu_table->overdrive_table); kfree(smu_table->max_sustainable_clocks); kfree(smu_table->driver_pptable); smu_table->gpu_metrics_table = NULL; smu_table->combo_pptable = NULL; smu_table->boot_overdrive_table = NULL; smu_table->overdrive_table = NULL; smu_table->max_sustainable_clocks = NULL; smu_table->driver_pptable = NULL; kfree(smu_table->hardcode_pptable); smu_table->hardcode_pptable = NULL; kfree(smu_table->ecc_table); kfree(smu_table->metrics_table); kfree(smu_table->watermarks_table); smu_table->ecc_table = NULL; smu_table->metrics_table = NULL; smu_table->watermarks_table = NULL; smu_table->metrics_time = 0; kfree(smu_dpm->dpm_context); kfree(smu_dpm->golden_dpm_context); kfree(smu_dpm->dpm_current_power_state); kfree(smu_dpm->dpm_request_power_state); smu_dpm->dpm_context = NULL; smu_dpm->golden_dpm_context = NULL; smu_dpm->dpm_context_size = 0; smu_dpm->dpm_current_power_state = NULL; smu_dpm->dpm_request_power_state = NULL; return 0; } int smu_v13_0_init_power(struct smu_context *smu) { struct smu_power_context *smu_power = &smu->smu_power; if (smu_power->power_context || smu_power->power_context_size != 0) return -EINVAL; smu_power->power_context = kzalloc(sizeof(struct smu_13_0_dpm_context), GFP_KERNEL); if (!smu_power->power_context) return -ENOMEM; smu_power->power_context_size = sizeof(struct smu_13_0_dpm_context); return 0; } int smu_v13_0_fini_power(struct smu_context *smu) { struct smu_power_context *smu_power = &smu->smu_power; if (!smu_power->power_context || smu_power->power_context_size == 0) return -EINVAL; kfree(smu_power->power_context); smu_power->power_context = NULL; smu_power->power_context_size = 0; return 0; } int smu_v13_0_get_vbios_bootup_values(struct smu_context *smu) { int ret, index; uint16_t size; uint8_t frev, crev; struct atom_common_table_header *header; struct atom_firmware_info_v3_4 *v_3_4; struct atom_firmware_info_v3_3 *v_3_3; struct atom_firmware_info_v3_1 *v_3_1; struct atom_smu_info_v3_6 *smu_info_v3_6; struct atom_smu_info_v4_0 *smu_info_v4_0; index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, firmwareinfo); ret = amdgpu_atombios_get_data_table(smu->adev, index, &size, &frev, &crev, (uint8_t **)&header); if (ret) return ret; if (header->format_revision != 3) { dev_err(smu->adev->dev, "unknown atom_firmware_info version! for smu13\n"); return -EINVAL; } switch (header->content_revision) { case 0: case 1: case 2: v_3_1 = (struct atom_firmware_info_v3_1 *)header; smu->smu_table.boot_values.revision = v_3_1->firmware_revision; smu->smu_table.boot_values.gfxclk = v_3_1->bootup_sclk_in10khz; smu->smu_table.boot_values.uclk = v_3_1->bootup_mclk_in10khz; smu->smu_table.boot_values.socclk = 0; smu->smu_table.boot_values.dcefclk = 0; smu->smu_table.boot_values.vddc = v_3_1->bootup_vddc_mv; smu->smu_table.boot_values.vddci = v_3_1->bootup_vddci_mv; smu->smu_table.boot_values.mvddc = v_3_1->bootup_mvddc_mv; smu->smu_table.boot_values.vdd_gfx = v_3_1->bootup_vddgfx_mv; smu->smu_table.boot_values.cooling_id = v_3_1->coolingsolution_id; smu->smu_table.boot_values.pp_table_id = 0; break; case 3: v_3_3 = (struct atom_firmware_info_v3_3 *)header; smu->smu_table.boot_values.revision = v_3_3->firmware_revision; smu->smu_table.boot_values.gfxclk = v_3_3->bootup_sclk_in10khz; smu->smu_table.boot_values.uclk = v_3_3->bootup_mclk_in10khz; smu->smu_table.boot_values.socclk = 0; smu->smu_table.boot_values.dcefclk = 0; smu->smu_table.boot_values.vddc = v_3_3->bootup_vddc_mv; smu->smu_table.boot_values.vddci = v_3_3->bootup_vddci_mv; smu->smu_table.boot_values.mvddc = v_3_3->bootup_mvddc_mv; smu->smu_table.boot_values.vdd_gfx = v_3_3->bootup_vddgfx_mv; smu->smu_table.boot_values.cooling_id = v_3_3->coolingsolution_id; smu->smu_table.boot_values.pp_table_id = v_3_3->pplib_pptable_id; break; case 4: default: v_3_4 = (struct atom_firmware_info_v3_4 *)header; smu->smu_table.boot_values.revision = v_3_4->firmware_revision; smu->smu_table.boot_values.gfxclk = v_3_4->bootup_sclk_in10khz; smu->smu_table.boot_values.uclk = v_3_4->bootup_mclk_in10khz; smu->smu_table.boot_values.socclk = 0; smu->smu_table.boot_values.dcefclk = 0; smu->smu_table.boot_values.vddc = v_3_4->bootup_vddc_mv; smu->smu_table.boot_values.vddci = v_3_4->bootup_vddci_mv; smu->smu_table.boot_values.mvddc = v_3_4->bootup_mvddc_mv; smu->smu_table.boot_values.vdd_gfx = v_3_4->bootup_vddgfx_mv; smu->smu_table.boot_values.cooling_id = v_3_4->coolingsolution_id; smu->smu_table.boot_values.pp_table_id = v_3_4->pplib_pptable_id; break; } smu->smu_table.boot_values.format_revision = header->format_revision; smu->smu_table.boot_values.content_revision = header->content_revision; index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, smu_info); if (!amdgpu_atombios_get_data_table(smu->adev, index, &size, &frev, &crev, (uint8_t **)&header)) { if ((frev == 3) && (crev == 6)) { smu_info_v3_6 = (struct atom_smu_info_v3_6 *)header; smu->smu_table.boot_values.socclk = smu_info_v3_6->bootup_socclk_10khz; smu->smu_table.boot_values.vclk = smu_info_v3_6->bootup_vclk_10khz; smu->smu_table.boot_values.dclk = smu_info_v3_6->bootup_dclk_10khz; smu->smu_table.boot_values.fclk = smu_info_v3_6->bootup_fclk_10khz; } else if ((frev == 3) && (crev == 1)) { return 0; } else if ((frev == 4) && (crev == 0)) { smu_info_v4_0 = (struct atom_smu_info_v4_0 *)header; smu->smu_table.boot_values.socclk = smu_info_v4_0->bootup_socclk_10khz; smu->smu_table.boot_values.dcefclk = smu_info_v4_0->bootup_dcefclk_10khz; smu->smu_table.boot_values.vclk = smu_info_v4_0->bootup_vclk0_10khz; smu->smu_table.boot_values.dclk = smu_info_v4_0->bootup_dclk0_10khz; smu->smu_table.boot_values.fclk = smu_info_v4_0->bootup_fclk_10khz; } else { dev_warn(smu->adev->dev, "Unexpected and unhandled version: %d.%d\n", (uint32_t)frev, (uint32_t)crev); } } return 0; } int smu_v13_0_notify_memory_pool_location(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *memory_pool = &smu_table->memory_pool; int ret = 0; uint64_t address; uint32_t address_low, address_high; if (memory_pool->size == 0 || memory_pool->cpu_addr == NULL) return ret; address = memory_pool->mc_address; address_high = (uint32_t)upper_32_bits(address); address_low = (uint32_t)lower_32_bits(address); ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrHigh, address_high, NULL); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrLow, address_low, NULL); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramSize, (uint32_t)memory_pool->size, NULL); if (ret) return ret; return ret; } int smu_v13_0_set_min_deep_sleep_dcefclk(struct smu_context *smu, uint32_t clk) { int ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetMinDeepSleepDcefclk, clk, NULL); if (ret) dev_err(smu->adev->dev, "SMU13 attempt to set divider for DCEFCLK Failed!"); return ret; } int smu_v13_0_set_driver_table_location(struct smu_context *smu) { struct smu_table *driver_table = &smu->smu_table.driver_table; int ret = 0; if (driver_table->mc_address) { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetDriverDramAddrHigh, upper_32_bits(driver_table->mc_address), NULL); if (!ret) ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetDriverDramAddrLow, lower_32_bits(driver_table->mc_address), NULL); } return ret; } int smu_v13_0_set_tool_table_location(struct smu_context *smu) { int ret = 0; struct smu_table *tool_table = &smu->smu_table.tables[SMU_TABLE_PMSTATUSLOG]; if (tool_table->mc_address) { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetToolsDramAddrHigh, upper_32_bits(tool_table->mc_address), NULL); if (!ret) ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetToolsDramAddrLow, lower_32_bits(tool_table->mc_address), NULL); } return ret; } int smu_v13_0_init_display_count(struct smu_context *smu, uint32_t count) { int ret = 0; if (!smu->pm_enabled) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, count, NULL); return ret; } int smu_v13_0_set_allowed_mask(struct smu_context *smu) { struct smu_feature *feature = &smu->smu_feature; int ret = 0; uint32_t feature_mask[2]; if (bitmap_empty(feature->allowed, SMU_FEATURE_MAX) || feature->feature_num < 64) return -EINVAL; bitmap_to_arr32(feature_mask, feature->allowed, 64); ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskHigh, feature_mask[1], NULL); if (ret) return ret; return smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskLow, feature_mask[0], NULL); } int smu_v13_0_gfx_off_control(struct smu_context *smu, bool enable) { int ret = 0; struct amdgpu_device *adev = smu->adev; switch (adev->ip_versions[MP1_HWIP][0]) { case IP_VERSION(13, 0, 0): case IP_VERSION(13, 0, 1): case IP_VERSION(13, 0, 3): case IP_VERSION(13, 0, 4): case IP_VERSION(13, 0, 5): case IP_VERSION(13, 0, 7): case IP_VERSION(13, 0, 8): case IP_VERSION(13, 0, 10): case IP_VERSION(13, 0, 11): if (!(adev->pm.pp_feature & PP_GFXOFF_MASK)) return 0; if (enable) ret = smu_cmn_send_smc_msg(smu, SMU_MSG_AllowGfxOff, NULL); else ret = smu_cmn_send_smc_msg(smu, SMU_MSG_DisallowGfxOff, NULL); break; default: break; } return ret; } int smu_v13_0_system_features_control(struct smu_context *smu, bool en) { return smu_cmn_send_smc_msg(smu, (en ? SMU_MSG_EnableAllSmuFeatures : SMU_MSG_DisableAllSmuFeatures), NULL); } int smu_v13_0_notify_display_change(struct smu_context *smu) { int ret = 0; if (!smu->pm_enabled) return ret; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) && smu->adev->gmc.vram_type == AMDGPU_VRAM_TYPE_HBM) ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetUclkFastSwitch, 1, NULL); return ret; } static int smu_v13_0_get_max_sustainable_clock(struct smu_context *smu, uint32_t *clock, enum smu_clk_type clock_select) { int ret = 0; int clk_id; if ((smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_MSG, SMU_MSG_GetDcModeMaxDpmFreq) < 0) || (smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_MSG, SMU_MSG_GetMaxDpmFreq) < 0)) return 0; clk_id = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_CLK, clock_select); if (clk_id < 0) return -EINVAL; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GetDcModeMaxDpmFreq, clk_id << 16, clock); if (ret) { dev_err(smu->adev->dev, "[GetMaxSustainableClock] Failed to get max DC clock from SMC!"); return ret; } if (*clock != 0) return 0; /* if DC limit is zero, return AC limit */ ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq, clk_id << 16, clock); if (ret) { dev_err(smu->adev->dev, "[GetMaxSustainableClock] failed to get max AC clock from SMC!"); return ret; } return 0; } int smu_v13_0_init_max_sustainable_clocks(struct smu_context *smu) { struct smu_13_0_max_sustainable_clocks *max_sustainable_clocks = smu->smu_table.max_sustainable_clocks; int ret = 0; max_sustainable_clocks->uclock = smu->smu_table.boot_values.uclk / 100; max_sustainable_clocks->soc_clock = smu->smu_table.boot_values.socclk / 100; max_sustainable_clocks->dcef_clock = smu->smu_table.boot_values.dcefclk / 100; max_sustainable_clocks->display_clock = 0xFFFFFFFF; max_sustainable_clocks->phy_clock = 0xFFFFFFFF; max_sustainable_clocks->pixel_clock = 0xFFFFFFFF; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) { ret = smu_v13_0_get_max_sustainable_clock(smu, &(max_sustainable_clocks->uclock), SMU_UCLK); if (ret) { dev_err(smu->adev->dev, "[%s] failed to get max UCLK from SMC!", __func__); return ret; } } if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) { ret = smu_v13_0_get_max_sustainable_clock(smu, &(max_sustainable_clocks->soc_clock), SMU_SOCCLK); if (ret) { dev_err(smu->adev->dev, "[%s] failed to get max SOCCLK from SMC!", __func__); return ret; } } if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) { ret = smu_v13_0_get_max_sustainable_clock(smu, &(max_sustainable_clocks->dcef_clock), SMU_DCEFCLK); if (ret) { dev_err(smu->adev->dev, "[%s] failed to get max DCEFCLK from SMC!", __func__); return ret; } ret = smu_v13_0_get_max_sustainable_clock(smu, &(max_sustainable_clocks->display_clock), SMU_DISPCLK); if (ret) { dev_err(smu->adev->dev, "[%s] failed to get max DISPCLK from SMC!", __func__); return ret; } ret = smu_v13_0_get_max_sustainable_clock(smu, &(max_sustainable_clocks->phy_clock), SMU_PHYCLK); if (ret) { dev_err(smu->adev->dev, "[%s] failed to get max PHYCLK from SMC!", __func__); return ret; } ret = smu_v13_0_get_max_sustainable_clock(smu, &(max_sustainable_clocks->pixel_clock), SMU_PIXCLK); if (ret) { dev_err(smu->adev->dev, "[%s] failed to get max PIXCLK from SMC!", __func__); return ret; } } if (max_sustainable_clocks->soc_clock < max_sustainable_clocks->uclock) max_sustainable_clocks->uclock = max_sustainable_clocks->soc_clock; return 0; } int smu_v13_0_get_current_power_limit(struct smu_context *smu, uint32_t *power_limit) { int power_src; int ret = 0; if (!smu_cmn_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT)) return -EINVAL; power_src = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_PWR, smu->adev->pm.ac_power ? SMU_POWER_SOURCE_AC : SMU_POWER_SOURCE_DC); if (power_src < 0) return -EINVAL; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GetPptLimit, power_src << 16, power_limit); if (ret) dev_err(smu->adev->dev, "[%s] get PPT limit failed!", __func__); return ret; } int smu_v13_0_set_power_limit(struct smu_context *smu, enum smu_ppt_limit_type limit_type, uint32_t limit) { int ret = 0; if (limit_type != SMU_DEFAULT_PPT_LIMIT) return -EINVAL; if (!smu_cmn_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT)) { dev_err(smu->adev->dev, "Setting new power limit is not supported!\n"); return -EOPNOTSUPP; } ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetPptLimit, limit, NULL); if (ret) { dev_err(smu->adev->dev, "[%s] Set power limit Failed!\n", __func__); return ret; } smu->current_power_limit = limit; return 0; } static int smu_v13_0_allow_ih_interrupt(struct smu_context *smu) { return smu_cmn_send_smc_msg(smu, SMU_MSG_AllowIHHostInterrupt, NULL); } static int smu_v13_0_process_pending_interrupt(struct smu_context *smu) { int ret = 0; if (smu->dc_controlled_by_gpio && smu_cmn_feature_is_enabled(smu, SMU_FEATURE_ACDC_BIT)) ret = smu_v13_0_allow_ih_interrupt(smu); return ret; } int smu_v13_0_enable_thermal_alert(struct smu_context *smu) { int ret = 0; if (!smu->irq_source.num_types) return 0; ret = amdgpu_irq_get(smu->adev, &smu->irq_source, 0); if (ret) return ret; return smu_v13_0_process_pending_interrupt(smu); } int smu_v13_0_disable_thermal_alert(struct smu_context *smu) { if (!smu->irq_source.num_types) return 0; return amdgpu_irq_put(smu->adev, &smu->irq_source, 0); } static uint16_t convert_to_vddc(uint8_t vid) { return (uint16_t) ((6200 - (vid * 25)) / SMU13_VOLTAGE_SCALE); } int smu_v13_0_get_gfx_vdd(struct smu_context *smu, uint32_t *value) { struct amdgpu_device *adev = smu->adev; uint32_t vdd = 0, val_vid = 0; if (!value) return -EINVAL; val_vid = (RREG32_SOC15(SMUIO, 0, regSMUSVI0_TEL_PLANE0) & SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR_MASK) >> SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR__SHIFT; vdd = (uint32_t)convert_to_vddc((uint8_t)val_vid); *value = vdd; return 0; } int smu_v13_0_display_clock_voltage_request(struct smu_context *smu, struct pp_display_clock_request *clock_req) { enum amd_pp_clock_type clk_type = clock_req->clock_type; int ret = 0; enum smu_clk_type clk_select = 0; uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) || smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) { switch (clk_type) { case amd_pp_dcef_clock: clk_select = SMU_DCEFCLK; break; case amd_pp_disp_clock: clk_select = SMU_DISPCLK; break; case amd_pp_pixel_clock: clk_select = SMU_PIXCLK; break; case amd_pp_phy_clock: clk_select = SMU_PHYCLK; break; case amd_pp_mem_clock: clk_select = SMU_UCLK; break; default: dev_info(smu->adev->dev, "[%s] Invalid Clock Type!", __func__); ret = -EINVAL; break; } if (ret) goto failed; if (clk_select == SMU_UCLK && smu->disable_uclk_switch) return 0; ret = smu_v13_0_set_hard_freq_limited_range(smu, clk_select, clk_freq, 0); if(clk_select == SMU_UCLK) smu->hard_min_uclk_req_from_dal = clk_freq; } failed: return ret; } uint32_t smu_v13_0_get_fan_control_mode(struct smu_context *smu) { if (!smu_cmn_feature_is_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT)) return AMD_FAN_CTRL_MANUAL; else return AMD_FAN_CTRL_AUTO; } static int smu_v13_0_auto_fan_control(struct smu_context *smu, bool auto_fan_control) { int ret = 0; if (!smu_cmn_feature_is_supported(smu, SMU_FEATURE_FAN_CONTROL_BIT)) return 0; ret = smu_cmn_feature_set_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT, auto_fan_control); if (ret) dev_err(smu->adev->dev, "[%s]%s smc FAN CONTROL feature failed!", __func__, (auto_fan_control ? "Start" : "Stop")); return ret; } static int smu_v13_0_set_fan_static_mode(struct smu_context *smu, uint32_t mode) { struct amdgpu_device *adev = smu->adev; WREG32_SOC15(THM, 0, regCG_FDO_CTRL2, REG_SET_FIELD(RREG32_SOC15(THM, 0, regCG_FDO_CTRL2), CG_FDO_CTRL2, TMIN, 0)); WREG32_SOC15(THM, 0, regCG_FDO_CTRL2, REG_SET_FIELD(RREG32_SOC15(THM, 0, regCG_FDO_CTRL2), CG_FDO_CTRL2, FDO_PWM_MODE, mode)); return 0; } int smu_v13_0_set_fan_speed_pwm(struct smu_context *smu, uint32_t speed) { struct amdgpu_device *adev = smu->adev; uint32_t duty100, duty; uint64_t tmp64; speed = MIN(speed, 255); if (smu_v13_0_auto_fan_control(smu, 0)) return -EINVAL; duty100 = REG_GET_FIELD(RREG32_SOC15(THM, 0, regCG_FDO_CTRL1), CG_FDO_CTRL1, FMAX_DUTY100); if (!duty100) return -EINVAL; tmp64 = (uint64_t)speed * duty100; do_div(tmp64, 255); duty = (uint32_t)tmp64; WREG32_SOC15(THM, 0, regCG_FDO_CTRL0, REG_SET_FIELD(RREG32_SOC15(THM, 0, regCG_FDO_CTRL0), CG_FDO_CTRL0, FDO_STATIC_DUTY, duty)); return smu_v13_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC); } int smu_v13_0_set_fan_control_mode(struct smu_context *smu, uint32_t mode) { int ret = 0; switch (mode) { case AMD_FAN_CTRL_NONE: ret = smu_v13_0_set_fan_speed_pwm(smu, 255); break; case AMD_FAN_CTRL_MANUAL: ret = smu_v13_0_auto_fan_control(smu, 0); break; case AMD_FAN_CTRL_AUTO: ret = smu_v13_0_auto_fan_control(smu, 1); break; default: break; } if (ret) { dev_err(smu->adev->dev, "[%s]Set fan control mode failed!", __func__); return -EINVAL; } return ret; } int smu_v13_0_set_fan_speed_rpm(struct smu_context *smu, uint32_t speed) { struct amdgpu_device *adev = smu->adev; uint32_t crystal_clock_freq = 2500; uint32_t tach_period; int ret; if (!speed) return -EINVAL; ret = smu_v13_0_auto_fan_control(smu, 0); if (ret) return ret; tach_period = 60 * crystal_clock_freq * 10000 / (8 * speed); WREG32_SOC15(THM, 0, regCG_TACH_CTRL, REG_SET_FIELD(RREG32_SOC15(THM, 0, regCG_TACH_CTRL), CG_TACH_CTRL, TARGET_PERIOD, tach_period)); return smu_v13_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC_RPM); } int smu_v13_0_set_xgmi_pstate(struct smu_context *smu, uint32_t pstate) { int ret = 0; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetXgmiMode, pstate ? XGMI_MODE_PSTATE_D0 : XGMI_MODE_PSTATE_D3, NULL); return ret; } static int smu_v13_0_set_irq_state(struct amdgpu_device *adev, struct amdgpu_irq_src *source, unsigned tyep, enum amdgpu_interrupt_state state) { struct smu_context *smu = adev->powerplay.pp_handle; uint32_t low, high; uint32_t val = 0; switch (state) { case AMDGPU_IRQ_STATE_DISABLE: /* For THM irqs */ val = RREG32_SOC15(THM, 0, regTHM_THERMAL_INT_CTRL); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTH_MASK, 1); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTL_MASK, 1); WREG32_SOC15(THM, 0, regTHM_THERMAL_INT_CTRL, val); WREG32_SOC15(THM, 0, regTHM_THERMAL_INT_ENA, 0); /* For MP1 SW irqs */ val = RREG32_SOC15(MP1, 0, regMP1_SMN_IH_SW_INT_CTRL); val = REG_SET_FIELD(val, MP1_SMN_IH_SW_INT_CTRL, INT_MASK, 1); WREG32_SOC15(MP1, 0, regMP1_SMN_IH_SW_INT_CTRL, val); break; case AMDGPU_IRQ_STATE_ENABLE: /* For THM irqs */ low = max(SMU_THERMAL_MINIMUM_ALERT_TEMP, smu->thermal_range.min / SMU_TEMPERATURE_UNITS_PER_CENTIGRADES); high = min(SMU_THERMAL_MAXIMUM_ALERT_TEMP, smu->thermal_range.software_shutdown_temp); val = RREG32_SOC15(THM, 0, regTHM_THERMAL_INT_CTRL); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, MAX_IH_CREDIT, 5); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_IH_HW_ENA, 1); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTH_MASK, 0); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTL_MASK, 0); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTH, (high & 0xff)); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTL, (low & 0xff)); val = val & (~THM_THERMAL_INT_CTRL__THERM_TRIGGER_MASK_MASK); WREG32_SOC15(THM, 0, regTHM_THERMAL_INT_CTRL, val); val = (1 << THM_THERMAL_INT_ENA__THERM_INTH_CLR__SHIFT); val |= (1 << THM_THERMAL_INT_ENA__THERM_INTL_CLR__SHIFT); val |= (1 << THM_THERMAL_INT_ENA__THERM_TRIGGER_CLR__SHIFT); WREG32_SOC15(THM, 0, regTHM_THERMAL_INT_ENA, val); /* For MP1 SW irqs */ val = RREG32_SOC15(MP1, 0, regMP1_SMN_IH_SW_INT); val = REG_SET_FIELD(val, MP1_SMN_IH_SW_INT, ID, 0xFE); val = REG_SET_FIELD(val, MP1_SMN_IH_SW_INT, VALID, 0); WREG32_SOC15(MP1, 0, regMP1_SMN_IH_SW_INT, val); val = RREG32_SOC15(MP1, 0, regMP1_SMN_IH_SW_INT_CTRL); val = REG_SET_FIELD(val, MP1_SMN_IH_SW_INT_CTRL, INT_MASK, 0); WREG32_SOC15(MP1, 0, regMP1_SMN_IH_SW_INT_CTRL, val); break; default: break; } return 0; } static int smu_v13_0_ack_ac_dc_interrupt(struct smu_context *smu) { return smu_cmn_send_smc_msg(smu, SMU_MSG_ReenableAcDcInterrupt, NULL); } #define THM_11_0__SRCID__THM_DIG_THERM_L2H 0 /* ASIC_TEMP > CG_THERMAL_INT.DIG_THERM_INTH */ #define THM_11_0__SRCID__THM_DIG_THERM_H2L 1 /* ASIC_TEMP < CG_THERMAL_INT.DIG_THERM_INTL */ #define SMUIO_11_0__SRCID__SMUIO_GPIO19 83 static int smu_v13_0_irq_process(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { struct smu_context *smu = adev->powerplay.pp_handle; uint32_t client_id = entry->client_id; uint32_t src_id = entry->src_id; /* * ctxid is used to distinguish different * events for SMCToHost interrupt. */ uint32_t ctxid = entry->src_data[0]; uint32_t data; uint32_t high; if (client_id == SOC15_IH_CLIENTID_THM) { switch (src_id) { case THM_11_0__SRCID__THM_DIG_THERM_L2H: dev_emerg(adev->dev, "ERROR: GPU over temperature range(SW CTF) detected!\n"); /* * SW CTF just occurred. * Try to do a graceful shutdown to prevent further damage. */ dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU SW CTF!\n"); orderly_poweroff(true); break; case THM_11_0__SRCID__THM_DIG_THERM_H2L: dev_emerg(adev->dev, "ERROR: GPU under temperature range detected\n"); break; default: dev_emerg(adev->dev, "ERROR: GPU under temperature range unknown src id (%d)\n", src_id); break; } } else if (client_id == SOC15_IH_CLIENTID_ROM_SMUIO) { dev_emerg(adev->dev, "ERROR: GPU HW Critical Temperature Fault(aka CTF) detected!\n"); /* * HW CTF just occurred. Shutdown to prevent further damage. */ dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU HW CTF!\n"); orderly_poweroff(true); } else if (client_id == SOC15_IH_CLIENTID_MP1) { if (src_id == 0xfe) { /* ACK SMUToHost interrupt */ data = RREG32_SOC15(MP1, 0, regMP1_SMN_IH_SW_INT_CTRL); data = REG_SET_FIELD(data, MP1_SMN_IH_SW_INT_CTRL, INT_ACK, 1); WREG32_SOC15(MP1, 0, regMP1_SMN_IH_SW_INT_CTRL, data); switch (ctxid) { case 0x3: dev_dbg(adev->dev, "Switched to AC mode!\n"); smu_v13_0_ack_ac_dc_interrupt(smu); break; case 0x4: dev_dbg(adev->dev, "Switched to DC mode!\n"); smu_v13_0_ack_ac_dc_interrupt(smu); break; case 0x7: /* * Increment the throttle interrupt counter */ atomic64_inc(&smu->throttle_int_counter); if (!atomic_read(&adev->throttling_logging_enabled)) return 0; if (__ratelimit(&adev->throttling_logging_rs)) schedule_work(&smu->throttling_logging_work); break; case 0x8: high = smu->thermal_range.software_shutdown_temp + smu->thermal_range.software_shutdown_temp_offset; high = min_t(typeof(high), SMU_THERMAL_MAXIMUM_ALERT_TEMP, high); dev_emerg(adev->dev, "Reduce soft CTF limit to %d (by an offset %d)\n", high, smu->thermal_range.software_shutdown_temp_offset); data = RREG32_SOC15(THM, 0, regTHM_THERMAL_INT_CTRL); data = REG_SET_FIELD(data, THM_THERMAL_INT_CTRL, DIG_THERM_INTH, (high & 0xff)); data = data & (~THM_THERMAL_INT_CTRL__THERM_TRIGGER_MASK_MASK); WREG32_SOC15(THM, 0, regTHM_THERMAL_INT_CTRL, data); break; case 0x9: high = min_t(typeof(high), SMU_THERMAL_MAXIMUM_ALERT_TEMP, smu->thermal_range.software_shutdown_temp); dev_emerg(adev->dev, "Recover soft CTF limit to %d\n", high); data = RREG32_SOC15(THM, 0, regTHM_THERMAL_INT_CTRL); data = REG_SET_FIELD(data, THM_THERMAL_INT_CTRL, DIG_THERM_INTH, (high & 0xff)); data = data & (~THM_THERMAL_INT_CTRL__THERM_TRIGGER_MASK_MASK); WREG32_SOC15(THM, 0, regTHM_THERMAL_INT_CTRL, data); break; } } } return 0; } static const struct amdgpu_irq_src_funcs smu_v13_0_irq_funcs = { .set = smu_v13_0_set_irq_state, .process = smu_v13_0_irq_process, }; int smu_v13_0_register_irq_handler(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; struct amdgpu_irq_src *irq_src = &smu->irq_source; int ret = 0; if (amdgpu_sriov_vf(adev)) return 0; irq_src->num_types = 1; irq_src->funcs = &smu_v13_0_irq_funcs; ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM, THM_11_0__SRCID__THM_DIG_THERM_L2H, irq_src); if (ret) return ret; ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM, THM_11_0__SRCID__THM_DIG_THERM_H2L, irq_src); if (ret) return ret; /* Register CTF(GPIO_19) interrupt */ ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_ROM_SMUIO, SMUIO_11_0__SRCID__SMUIO_GPIO19, irq_src); if (ret) return ret; ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_MP1, 0xfe, irq_src); if (ret) return ret; return ret; } int smu_v13_0_get_max_sustainable_clocks_by_dc(struct smu_context *smu, struct pp_smu_nv_clock_table *max_clocks) { struct smu_table_context *table_context = &smu->smu_table; struct smu_13_0_max_sustainable_clocks *sustainable_clocks = NULL; if (!max_clocks || !table_context->max_sustainable_clocks) return -EINVAL; sustainable_clocks = table_context->max_sustainable_clocks; max_clocks->dcfClockInKhz = (unsigned int) sustainable_clocks->dcef_clock * 1000; max_clocks->displayClockInKhz = (unsigned int) sustainable_clocks->display_clock * 1000; max_clocks->phyClockInKhz = (unsigned int) sustainable_clocks->phy_clock * 1000; max_clocks->pixelClockInKhz = (unsigned int) sustainable_clocks->pixel_clock * 1000; max_clocks->uClockInKhz = (unsigned int) sustainable_clocks->uclock * 1000; max_clocks->socClockInKhz = (unsigned int) sustainable_clocks->soc_clock * 1000; max_clocks->dscClockInKhz = 0; max_clocks->dppClockInKhz = 0; max_clocks->fabricClockInKhz = 0; return 0; } int smu_v13_0_set_azalia_d3_pme(struct smu_context *smu) { int ret = 0; ret = smu_cmn_send_smc_msg(smu, SMU_MSG_BacoAudioD3PME, NULL); return ret; } static int smu_v13_0_wait_for_reset_complete(struct smu_context *smu, uint64_t event_arg) { int ret = 0; dev_dbg(smu->adev->dev, "waiting for smu reset complete\n"); ret = smu_cmn_send_smc_msg(smu, SMU_MSG_GfxDriverResetRecovery, NULL); return ret; } int smu_v13_0_wait_for_event(struct smu_context *smu, enum smu_event_type event, uint64_t event_arg) { int ret = -EINVAL; switch (event) { case SMU_EVENT_RESET_COMPLETE: ret = smu_v13_0_wait_for_reset_complete(smu, event_arg); break; default: break; } return ret; } int smu_v13_0_get_dpm_ultimate_freq(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t *min, uint32_t *max) { int ret = 0, clk_id = 0; uint32_t param = 0; uint32_t clock_limit; if (!smu_cmn_clk_dpm_is_enabled(smu, clk_type)) { switch (clk_type) { case SMU_MCLK: case SMU_UCLK: clock_limit = smu->smu_table.boot_values.uclk; break; case SMU_GFXCLK: case SMU_SCLK: clock_limit = smu->smu_table.boot_values.gfxclk; break; case SMU_SOCCLK: clock_limit = smu->smu_table.boot_values.socclk; break; default: clock_limit = 0; break; } /* clock in Mhz unit */ if (min) *min = clock_limit / 100; if (max) *max = clock_limit / 100; return 0; } clk_id = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_CLK, clk_type); if (clk_id < 0) { ret = -EINVAL; goto failed; } param = (clk_id & 0xffff) << 16; if (max) { if (smu->adev->pm.ac_power) ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq, param, max); else ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GetDcModeMaxDpmFreq, param, max); if (ret) goto failed; } if (min) { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GetMinDpmFreq, param, min); if (ret) goto failed; } failed: return ret; } int smu_v13_0_set_soft_freq_limited_range(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t min, uint32_t max) { int ret = 0, clk_id = 0; uint32_t param; if (!smu_cmn_clk_dpm_is_enabled(smu, clk_type)) return 0; clk_id = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_CLK, clk_type); if (clk_id < 0) return clk_id; if (max > 0) { param = (uint32_t)((clk_id << 16) | (max & 0xffff)); ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxByFreq, param, NULL); if (ret) goto out; } if (min > 0) { param = (uint32_t)((clk_id << 16) | (min & 0xffff)); ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMinByFreq, param, NULL); if (ret) goto out; } out: return ret; } int smu_v13_0_set_hard_freq_limited_range(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t min, uint32_t max) { int ret = 0, clk_id = 0; uint32_t param; if (min <= 0 && max <= 0) return -EINVAL; if (!smu_cmn_clk_dpm_is_enabled(smu, clk_type)) return 0; clk_id = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_CLK, clk_type); if (clk_id < 0) return clk_id; if (max > 0) { param = (uint32_t)((clk_id << 16) | (max & 0xffff)); ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMaxByFreq, param, NULL); if (ret) return ret; } if (min > 0) { param = (uint32_t)((clk_id << 16) | (min & 0xffff)); ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinByFreq, param, NULL); if (ret) return ret; } return ret; } int smu_v13_0_set_performance_level(struct smu_context *smu, enum amd_dpm_forced_level level) { struct smu_13_0_dpm_context *dpm_context = smu->smu_dpm.dpm_context; struct smu_13_0_dpm_table *gfx_table = &dpm_context->dpm_tables.gfx_table; struct smu_13_0_dpm_table *mem_table = &dpm_context->dpm_tables.uclk_table; struct smu_13_0_dpm_table *soc_table = &dpm_context->dpm_tables.soc_table; struct smu_13_0_dpm_table *vclk_table = &dpm_context->dpm_tables.vclk_table; struct smu_13_0_dpm_table *dclk_table = &dpm_context->dpm_tables.dclk_table; struct smu_13_0_dpm_table *fclk_table = &dpm_context->dpm_tables.fclk_table; struct smu_umd_pstate_table *pstate_table = &smu->pstate_table; struct amdgpu_device *adev = smu->adev; uint32_t sclk_min = 0, sclk_max = 0; uint32_t mclk_min = 0, mclk_max = 0; uint32_t socclk_min = 0, socclk_max = 0; uint32_t vclk_min = 0, vclk_max = 0; uint32_t dclk_min = 0, dclk_max = 0; uint32_t fclk_min = 0, fclk_max = 0; int ret = 0, i; switch (level) { case AMD_DPM_FORCED_LEVEL_HIGH: sclk_min = sclk_max = gfx_table->max; mclk_min = mclk_max = mem_table->max; socclk_min = socclk_max = soc_table->max; vclk_min = vclk_max = vclk_table->max; dclk_min = dclk_max = dclk_table->max; fclk_min = fclk_max = fclk_table->max; break; case AMD_DPM_FORCED_LEVEL_LOW: sclk_min = sclk_max = gfx_table->min; mclk_min = mclk_max = mem_table->min; socclk_min = socclk_max = soc_table->min; vclk_min = vclk_max = vclk_table->min; dclk_min = dclk_max = dclk_table->min; fclk_min = fclk_max = fclk_table->min; break; case AMD_DPM_FORCED_LEVEL_AUTO: sclk_min = gfx_table->min; sclk_max = gfx_table->max; mclk_min = mem_table->min; mclk_max = mem_table->max; socclk_min = soc_table->min; socclk_max = soc_table->max; vclk_min = vclk_table->min; vclk_max = vclk_table->max; dclk_min = dclk_table->min; dclk_max = dclk_table->max; fclk_min = fclk_table->min; fclk_max = fclk_table->max; break; case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD: sclk_min = sclk_max = pstate_table->gfxclk_pstate.standard; mclk_min = mclk_max = pstate_table->uclk_pstate.standard; socclk_min = socclk_max = pstate_table->socclk_pstate.standard; vclk_min = vclk_max = pstate_table->vclk_pstate.standard; dclk_min = dclk_max = pstate_table->dclk_pstate.standard; fclk_min = fclk_max = pstate_table->fclk_pstate.standard; break; case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK: sclk_min = sclk_max = pstate_table->gfxclk_pstate.min; break; case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK: mclk_min = mclk_max = pstate_table->uclk_pstate.min; break; case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK: sclk_min = sclk_max = pstate_table->gfxclk_pstate.peak; mclk_min = mclk_max = pstate_table->uclk_pstate.peak; socclk_min = socclk_max = pstate_table->socclk_pstate.peak; vclk_min = vclk_max = pstate_table->vclk_pstate.peak; dclk_min = dclk_max = pstate_table->dclk_pstate.peak; fclk_min = fclk_max = pstate_table->fclk_pstate.peak; break; case AMD_DPM_FORCED_LEVEL_MANUAL: case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT: return 0; default: dev_err(adev->dev, "Invalid performance level %d\n", level); return -EINVAL; } /* * Unset those settings for SMU 13.0.2. As soft limits settings * for those clock domains are not supported. */ if (smu->adev->ip_versions[MP1_HWIP][0] == IP_VERSION(13, 0, 2)) { mclk_min = mclk_max = 0; socclk_min = socclk_max = 0; vclk_min = vclk_max = 0; dclk_min = dclk_max = 0; fclk_min = fclk_max = 0; } if (sclk_min && sclk_max) { ret = smu_v13_0_set_soft_freq_limited_range(smu, SMU_GFXCLK, sclk_min, sclk_max); if (ret) return ret; pstate_table->gfxclk_pstate.curr.min = sclk_min; pstate_table->gfxclk_pstate.curr.max = sclk_max; } if (mclk_min && mclk_max) { ret = smu_v13_0_set_soft_freq_limited_range(smu, SMU_MCLK, mclk_min, mclk_max); if (ret) return ret; pstate_table->uclk_pstate.curr.min = mclk_min; pstate_table->uclk_pstate.curr.max = mclk_max; } if (socclk_min && socclk_max) { ret = smu_v13_0_set_soft_freq_limited_range(smu, SMU_SOCCLK, socclk_min, socclk_max); if (ret) return ret; pstate_table->socclk_pstate.curr.min = socclk_min; pstate_table->socclk_pstate.curr.max = socclk_max; } if (vclk_min && vclk_max) { for (i = 0; i < adev->vcn.num_vcn_inst; i++) { if (adev->vcn.harvest_config & (1 << i)) continue; ret = smu_v13_0_set_soft_freq_limited_range(smu, i ? SMU_VCLK1 : SMU_VCLK, vclk_min, vclk_max); if (ret) return ret; } pstate_table->vclk_pstate.curr.min = vclk_min; pstate_table->vclk_pstate.curr.max = vclk_max; } if (dclk_min && dclk_max) { for (i = 0; i < adev->vcn.num_vcn_inst; i++) { if (adev->vcn.harvest_config & (1 << i)) continue; ret = smu_v13_0_set_soft_freq_limited_range(smu, i ? SMU_DCLK1 : SMU_DCLK, dclk_min, dclk_max); if (ret) return ret; } pstate_table->dclk_pstate.curr.min = dclk_min; pstate_table->dclk_pstate.curr.max = dclk_max; } if (fclk_min && fclk_max) { ret = smu_v13_0_set_soft_freq_limited_range(smu, SMU_FCLK, fclk_min, fclk_max); if (ret) return ret; pstate_table->fclk_pstate.curr.min = fclk_min; pstate_table->fclk_pstate.curr.max = fclk_max; } return ret; } int smu_v13_0_set_power_source(struct smu_context *smu, enum smu_power_src_type power_src) { int pwr_source; pwr_source = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_PWR, (uint32_t)power_src); if (pwr_source < 0) return -EINVAL; return smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_NotifyPowerSource, pwr_source, NULL); } static int smu_v13_0_get_dpm_freq_by_index(struct smu_context *smu, enum smu_clk_type clk_type, uint16_t level, uint32_t *value) { int ret = 0, clk_id = 0; uint32_t param; if (!value) return -EINVAL; if (!smu_cmn_clk_dpm_is_enabled(smu, clk_type)) return 0; clk_id = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_CLK, clk_type); if (clk_id < 0) return clk_id; param = (uint32_t)(((clk_id & 0xffff) << 16) | (level & 0xffff)); ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GetDpmFreqByIndex, param, value); if (ret) return ret; *value = *value & 0x7fffffff; return ret; } static int smu_v13_0_get_dpm_level_count(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t *value) { int ret; ret = smu_v13_0_get_dpm_freq_by_index(smu, clk_type, 0xff, value); /* SMU v13.0.2 FW returns 0 based max level, increment by one for it */ if((smu->adev->ip_versions[MP1_HWIP][0] == IP_VERSION(13, 0, 2)) && (!ret && value)) ++(*value); return ret; } static int smu_v13_0_get_fine_grained_status(struct smu_context *smu, enum smu_clk_type clk_type, bool *is_fine_grained_dpm) { int ret = 0, clk_id = 0; uint32_t param; uint32_t value; if (!is_fine_grained_dpm) return -EINVAL; if (!smu_cmn_clk_dpm_is_enabled(smu, clk_type)) return 0; clk_id = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_CLK, clk_type); if (clk_id < 0) return clk_id; param = (uint32_t)(((clk_id & 0xffff) << 16) | 0xff); ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GetDpmFreqByIndex, param, &value); if (ret) return ret; /* * BIT31: 1 - Fine grained DPM, 0 - Dicrete DPM * now, we un-support it */ *is_fine_grained_dpm = value & 0x80000000; return 0; } int smu_v13_0_set_single_dpm_table(struct smu_context *smu, enum smu_clk_type clk_type, struct smu_13_0_dpm_table *single_dpm_table) { int ret = 0; uint32_t clk; int i; ret = smu_v13_0_get_dpm_level_count(smu, clk_type, &single_dpm_table->count); if (ret) { dev_err(smu->adev->dev, "[%s] failed to get dpm levels!\n", __func__); return ret; } if (smu->adev->ip_versions[MP1_HWIP][0] != IP_VERSION(13, 0, 2)) { ret = smu_v13_0_get_fine_grained_status(smu, clk_type, &single_dpm_table->is_fine_grained); if (ret) { dev_err(smu->adev->dev, "[%s] failed to get fine grained status!\n", __func__); return ret; } } for (i = 0; i < single_dpm_table->count; i++) { ret = smu_v13_0_get_dpm_freq_by_index(smu, clk_type, i, &clk); if (ret) { dev_err(smu->adev->dev, "[%s] failed to get dpm freq by index!\n", __func__); return ret; } single_dpm_table->dpm_levels[i].value = clk; single_dpm_table->dpm_levels[i].enabled = true; if (i == 0) single_dpm_table->min = clk; else if (i == single_dpm_table->count - 1) single_dpm_table->max = clk; } return 0; } int smu_v13_0_get_dpm_level_range(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t *min_value, uint32_t *max_value) { uint32_t level_count = 0; int ret = 0; if (!min_value && !max_value) return -EINVAL; if (min_value) { /* by default, level 0 clock value as min value */ ret = smu_v13_0_get_dpm_freq_by_index(smu, clk_type, 0, min_value); if (ret) return ret; } if (max_value) { ret = smu_v13_0_get_dpm_level_count(smu, clk_type, &level_count); if (ret) return ret; ret = smu_v13_0_get_dpm_freq_by_index(smu, clk_type, level_count - 1, max_value); if (ret) return ret; } return ret; } int smu_v13_0_get_current_pcie_link_width_level(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; return (RREG32_PCIE(smnPCIE_LC_LINK_WIDTH_CNTL) & PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD_MASK) >> PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD__SHIFT; } int smu_v13_0_get_current_pcie_link_width(struct smu_context *smu) { uint32_t width_level; width_level = smu_v13_0_get_current_pcie_link_width_level(smu); if (width_level > LINK_WIDTH_MAX) width_level = 0; return link_width[width_level]; } int smu_v13_0_get_current_pcie_link_speed_level(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; return (RREG32_PCIE(smnPCIE_LC_SPEED_CNTL) & PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE_MASK) >> PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE__SHIFT; } int smu_v13_0_get_current_pcie_link_speed(struct smu_context *smu) { uint32_t speed_level; speed_level = smu_v13_0_get_current_pcie_link_speed_level(smu); if (speed_level > LINK_SPEED_MAX) speed_level = 0; return link_speed[speed_level]; } int smu_v13_0_set_vcn_enable(struct smu_context *smu, bool enable) { struct amdgpu_device *adev = smu->adev; int i, ret = 0; for (i = 0; i < adev->vcn.num_vcn_inst; i++) { if (adev->vcn.harvest_config & (1 << i)) continue; ret = smu_cmn_send_smc_msg_with_param(smu, enable ? SMU_MSG_PowerUpVcn : SMU_MSG_PowerDownVcn, i << 16U, NULL); if (ret) return ret; } return ret; } int smu_v13_0_set_jpeg_enable(struct smu_context *smu, bool enable) { return smu_cmn_send_smc_msg_with_param(smu, enable ? SMU_MSG_PowerUpJpeg : SMU_MSG_PowerDownJpeg, 0, NULL); } int smu_v13_0_run_btc(struct smu_context *smu) { int res; res = smu_cmn_send_smc_msg(smu, SMU_MSG_RunDcBtc, NULL); if (res) dev_err(smu->adev->dev, "RunDcBtc failed!\n"); return res; } int smu_v13_0_gpo_control(struct smu_context *smu, bool enablement) { int res; res = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_AllowGpo, enablement ? 1 : 0, NULL); if (res) dev_err(smu->adev->dev, "SetGpoAllow %d failed!\n", enablement); return res; } int smu_v13_0_deep_sleep_control(struct smu_context *smu, bool enablement) { struct amdgpu_device *adev = smu->adev; int ret = 0; if (smu_cmn_feature_is_supported(smu, SMU_FEATURE_DS_GFXCLK_BIT)) { ret = smu_cmn_feature_set_enabled(smu, SMU_FEATURE_DS_GFXCLK_BIT, enablement); if (ret) { dev_err(adev->dev, "Failed to %s GFXCLK DS!\n", enablement ? "enable" : "disable"); return ret; } } if (smu_cmn_feature_is_supported(smu, SMU_FEATURE_DS_UCLK_BIT)) { ret = smu_cmn_feature_set_enabled(smu, SMU_FEATURE_DS_UCLK_BIT, enablement); if (ret) { dev_err(adev->dev, "Failed to %s UCLK DS!\n", enablement ? "enable" : "disable"); return ret; } } if (smu_cmn_feature_is_supported(smu, SMU_FEATURE_DS_FCLK_BIT)) { ret = smu_cmn_feature_set_enabled(smu, SMU_FEATURE_DS_FCLK_BIT, enablement); if (ret) { dev_err(adev->dev, "Failed to %s FCLK DS!\n", enablement ? "enable" : "disable"); return ret; } } if (smu_cmn_feature_is_supported(smu, SMU_FEATURE_DS_SOCCLK_BIT)) { ret = smu_cmn_feature_set_enabled(smu, SMU_FEATURE_DS_SOCCLK_BIT, enablement); if (ret) { dev_err(adev->dev, "Failed to %s SOCCLK DS!\n", enablement ? "enable" : "disable"); return ret; } } if (smu_cmn_feature_is_supported(smu, SMU_FEATURE_DS_LCLK_BIT)) { ret = smu_cmn_feature_set_enabled(smu, SMU_FEATURE_DS_LCLK_BIT, enablement); if (ret) { dev_err(adev->dev, "Failed to %s LCLK DS!\n", enablement ? "enable" : "disable"); return ret; } } if (smu_cmn_feature_is_supported(smu, SMU_FEATURE_DS_VCN_BIT)) { ret = smu_cmn_feature_set_enabled(smu, SMU_FEATURE_DS_VCN_BIT, enablement); if (ret) { dev_err(adev->dev, "Failed to %s VCN DS!\n", enablement ? "enable" : "disable"); return ret; } } if (smu_cmn_feature_is_supported(smu, SMU_FEATURE_DS_MP0CLK_BIT)) { ret = smu_cmn_feature_set_enabled(smu, SMU_FEATURE_DS_MP0CLK_BIT, enablement); if (ret) { dev_err(adev->dev, "Failed to %s MP0/MPIOCLK DS!\n", enablement ? "enable" : "disable"); return ret; } } if (smu_cmn_feature_is_supported(smu, SMU_FEATURE_DS_MP1CLK_BIT)) { ret = smu_cmn_feature_set_enabled(smu, SMU_FEATURE_DS_MP1CLK_BIT, enablement); if (ret) { dev_err(adev->dev, "Failed to %s MP1CLK DS!\n", enablement ? "enable" : "disable"); return ret; } } return ret; } int smu_v13_0_gfx_ulv_control(struct smu_context *smu, bool enablement) { int ret = 0; if (smu_cmn_feature_is_supported(smu, SMU_FEATURE_GFX_ULV_BIT)) ret = smu_cmn_feature_set_enabled(smu, SMU_FEATURE_GFX_ULV_BIT, enablement); return ret; } int smu_v13_0_baco_set_armd3_sequence(struct smu_context *smu, enum smu_baco_seq baco_seq) { return smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_ArmD3, baco_seq, NULL); } bool smu_v13_0_baco_is_support(struct smu_context *smu) { struct smu_baco_context *smu_baco = &smu->smu_baco; if (amdgpu_sriov_vf(smu->adev) || !smu_baco->platform_support) return false; /* return true if ASIC is in BACO state already */ if (smu_v13_0_baco_get_state(smu) == SMU_BACO_STATE_ENTER) return true; if (smu_cmn_feature_is_supported(smu, SMU_FEATURE_BACO_BIT) && !smu_cmn_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT)) return false; return true; } enum smu_baco_state smu_v13_0_baco_get_state(struct smu_context *smu) { struct smu_baco_context *smu_baco = &smu->smu_baco; return smu_baco->state; } int smu_v13_0_baco_set_state(struct smu_context *smu, enum smu_baco_state state) { struct smu_baco_context *smu_baco = &smu->smu_baco; struct amdgpu_device *adev = smu->adev; int ret = 0; if (smu_v13_0_baco_get_state(smu) == state) return 0; if (state == SMU_BACO_STATE_ENTER) { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_EnterBaco, smu_baco->maco_support ? BACO_SEQ_BAMACO : BACO_SEQ_BACO, NULL); } else { ret = smu_cmn_send_smc_msg(smu, SMU_MSG_ExitBaco, NULL); if (ret) return ret; /* clear vbios scratch 6 and 7 for coming asic reinit */ WREG32(adev->bios_scratch_reg_offset + 6, 0); WREG32(adev->bios_scratch_reg_offset + 7, 0); } if (!ret) smu_baco->state = state; return ret; } int smu_v13_0_baco_enter(struct smu_context *smu) { int ret = 0; ret = smu_v13_0_baco_set_state(smu, SMU_BACO_STATE_ENTER); if (ret) return ret; msleep(10); return ret; } int smu_v13_0_baco_exit(struct smu_context *smu) { return smu_v13_0_baco_set_state(smu, SMU_BACO_STATE_EXIT); } int smu_v13_0_set_gfx_power_up_by_imu(struct smu_context *smu) { uint16_t index; index = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_MSG, SMU_MSG_EnableGfxImu); /* Param 1 to tell PMFW to enable GFXOFF feature */ return smu_cmn_send_msg_without_waiting(smu, index, 1); } int smu_v13_0_od_edit_dpm_table(struct smu_context *smu, enum PP_OD_DPM_TABLE_COMMAND type, long input[], uint32_t size) { struct smu_dpm_context *smu_dpm = &(smu->smu_dpm); int ret = 0; /* Only allowed in manual mode */ if (smu_dpm->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) return -EINVAL; switch (type) { case PP_OD_EDIT_SCLK_VDDC_TABLE: if (size != 2) { dev_err(smu->adev->dev, "Input parameter number not correct\n"); return -EINVAL; } if (input[0] == 0) { if (input[1] < smu->gfx_default_hard_min_freq) { dev_warn(smu->adev->dev, "Fine grain setting minimum sclk (%ld) MHz is less than the minimum allowed (%d) MHz\n", input[1], smu->gfx_default_hard_min_freq); return -EINVAL; } smu->gfx_actual_hard_min_freq = input[1]; } else if (input[0] == 1) { if (input[1] > smu->gfx_default_soft_max_freq) { dev_warn(smu->adev->dev, "Fine grain setting maximum sclk (%ld) MHz is greater than the maximum allowed (%d) MHz\n", input[1], smu->gfx_default_soft_max_freq); return -EINVAL; } smu->gfx_actual_soft_max_freq = input[1]; } else { return -EINVAL; } break; case PP_OD_RESTORE_DEFAULT_TABLE: if (size != 0) { dev_err(smu->adev->dev, "Input parameter number not correct\n"); return -EINVAL; } smu->gfx_actual_hard_min_freq = smu->gfx_default_hard_min_freq; smu->gfx_actual_soft_max_freq = smu->gfx_default_soft_max_freq; break; case PP_OD_COMMIT_DPM_TABLE: if (size != 0) { dev_err(smu->adev->dev, "Input parameter number not correct\n"); return -EINVAL; } if (smu->gfx_actual_hard_min_freq > smu->gfx_actual_soft_max_freq) { dev_err(smu->adev->dev, "The setting minimum sclk (%d) MHz is greater than the setting maximum sclk (%d) MHz\n", smu->gfx_actual_hard_min_freq, smu->gfx_actual_soft_max_freq); return -EINVAL; } ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinGfxClk, smu->gfx_actual_hard_min_freq, NULL); if (ret) { dev_err(smu->adev->dev, "Set hard min sclk failed!"); return ret; } ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxGfxClk, smu->gfx_actual_soft_max_freq, NULL); if (ret) { dev_err(smu->adev->dev, "Set soft max sclk failed!"); return ret; } break; default: return -ENOSYS; } return ret; } int smu_v13_0_set_default_dpm_tables(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; return smu_cmn_update_table(smu, SMU_TABLE_DPMCLOCKS, 0, smu_table->clocks_table, false); } void smu_v13_0_set_smu_mailbox_registers(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; smu->param_reg = SOC15_REG_OFFSET(MP1, 0, mmMP1_SMN_C2PMSG_82); smu->msg_reg = SOC15_REG_OFFSET(MP1, 0, mmMP1_SMN_C2PMSG_66); smu->resp_reg = SOC15_REG_OFFSET(MP1, 0, mmMP1_SMN_C2PMSG_90); } int smu_v13_0_mode1_reset(struct smu_context *smu) { int ret = 0; ret = smu_cmn_send_smc_msg(smu, SMU_MSG_Mode1Reset, NULL); if (!ret) msleep(SMU13_MODE1_RESET_WAIT_TIME_IN_MS); return ret; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1