Contributors: 4
Author Tokens Token Proportion Commits Commit Proportion
Tim Huang 4518 98.03% 3 50.00%
Alex Deucher 73 1.58% 1 16.67%
Zhen Ni 13 0.28% 1 16.67%
Huang Rui 5 0.11% 1 16.67%
Total 4609 6


/*
 * Copyright 2022 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */

#include "smu_types.h"
#define SWSMU_CODE_LAYER_L2

#include "amdgpu.h"
#include "amdgpu_smu.h"
#include "smu_v13_0.h"
#include "smu13_driver_if_v13_0_4.h"
#include "smu_v13_0_4_ppt.h"
#include "smu_v13_0_4_ppsmc.h"
#include "smu_v13_0_4_pmfw.h"
#include "smu_cmn.h"

/*
 * DO NOT use these for err/warn/info/debug messages.
 * Use dev_err, dev_warn, dev_info and dev_dbg instead.
 * They are more MGPU friendly.
 */
#undef pr_err
#undef pr_warn
#undef pr_info
#undef pr_debug

#define mmMP1_SMN_C2PMSG_66			0x0282
#define mmMP1_SMN_C2PMSG_66_BASE_IDX            1

#define mmMP1_SMN_C2PMSG_82			0x0292
#define mmMP1_SMN_C2PMSG_82_BASE_IDX            1

#define mmMP1_SMN_C2PMSG_90			0x029a
#define mmMP1_SMN_C2PMSG_90_BASE_IDX		1

#define FEATURE_MASK(feature) (1ULL << feature)

#define SMC_DPM_FEATURE ( \
	FEATURE_MASK(FEATURE_CCLK_DPM_BIT) | \
	FEATURE_MASK(FEATURE_VCN_DPM_BIT)	 | \
	FEATURE_MASK(FEATURE_FCLK_DPM_BIT)	 | \
	FEATURE_MASK(FEATURE_SOCCLK_DPM_BIT)	 | \
	FEATURE_MASK(FEATURE_MP0CLK_DPM_BIT)	 | \
	FEATURE_MASK(FEATURE_LCLK_DPM_BIT)	 | \
	FEATURE_MASK(FEATURE_SHUBCLK_DPM_BIT)	 | \
	FEATURE_MASK(FEATURE_DCFCLK_DPM_BIT)	 | \
	FEATURE_MASK(FEATURE_ISP_DPM_BIT)	 | \
	FEATURE_MASK(FEATURE_IPU_DPM_BIT)	 | \
	FEATURE_MASK(FEATURE_GFX_DPM_BIT))

static struct cmn2asic_msg_mapping smu_v13_0_4_message_map[SMU_MSG_MAX_COUNT] = {
	MSG_MAP(TestMessage,                    PPSMC_MSG_TestMessage,			1),
	MSG_MAP(GetSmuVersion,                  PPSMC_MSG_GetPmfwVersion,		1),
	MSG_MAP(GetDriverIfVersion,             PPSMC_MSG_GetDriverIfVersion,		1),
	MSG_MAP(AllowGfxOff,                    PPSMC_MSG_AllowGfxOff,			1),
	MSG_MAP(DisallowGfxOff,                 PPSMC_MSG_DisallowGfxOff,		1),
	MSG_MAP(PowerDownVcn,                   PPSMC_MSG_PowerDownVcn,			1),
	MSG_MAP(PowerUpVcn,                     PPSMC_MSG_PowerUpVcn,			1),
	MSG_MAP(SetHardMinVcn,                  PPSMC_MSG_SetHardMinVcn,		1),
	MSG_MAP(PrepareMp1ForUnload,            PPSMC_MSG_PrepareMp1ForUnload,		1),
	MSG_MAP(SetDriverDramAddrHigh,          PPSMC_MSG_SetDriverDramAddrHigh,	1),
	MSG_MAP(SetDriverDramAddrLow,           PPSMC_MSG_SetDriverDramAddrLow,		1),
	MSG_MAP(TransferTableSmu2Dram,          PPSMC_MSG_TransferTableSmu2Dram,	1),
	MSG_MAP(TransferTableDram2Smu,          PPSMC_MSG_TransferTableDram2Smu,	1),
	MSG_MAP(GfxDeviceDriverReset,           PPSMC_MSG_GfxDeviceDriverReset,		1),
	MSG_MAP(GetEnabledSmuFeatures,          PPSMC_MSG_GetEnabledSmuFeatures,	1),
	MSG_MAP(SetHardMinSocclkByFreq,         PPSMC_MSG_SetHardMinSocclkByFreq,	1),
	MSG_MAP(SetSoftMinVcn,                  PPSMC_MSG_SetSoftMinVcn,		1),
	MSG_MAP(GetGfxclkFrequency,             PPSMC_MSG_GetGfxclkFrequency,		1),
	MSG_MAP(GetFclkFrequency,               PPSMC_MSG_GetFclkFrequency,		1),
	MSG_MAP(SetSoftMaxGfxClk,               PPSMC_MSG_SetSoftMaxGfxClk,		1),
	MSG_MAP(SetHardMinGfxClk,               PPSMC_MSG_SetHardMinGfxClk,		1),
	MSG_MAP(SetSoftMaxSocclkByFreq,         PPSMC_MSG_SetSoftMaxSocclkByFreq,	1),
	MSG_MAP(SetSoftMaxFclkByFreq,           PPSMC_MSG_SetSoftMaxFclkByFreq,		1),
	MSG_MAP(SetSoftMaxVcn,                  PPSMC_MSG_SetSoftMaxVcn,		1),
	MSG_MAP(SetPowerLimitPercentage,        PPSMC_MSG_SetPowerLimitPercentage,	1),
	MSG_MAP(PowerDownJpeg,                  PPSMC_MSG_PowerDownJpeg,		1),
	MSG_MAP(PowerUpJpeg,                    PPSMC_MSG_PowerUpJpeg,			1),
	MSG_MAP(SetHardMinFclkByFreq,           PPSMC_MSG_SetHardMinFclkByFreq,		1),
	MSG_MAP(SetSoftMinSocclkByFreq,         PPSMC_MSG_SetSoftMinSocclkByFreq,	1),
	MSG_MAP(EnableGfxImu,                   PPSMC_MSG_EnableGfxImu,			1),
	MSG_MAP(PowerUpIspByTile,               PPSMC_MSG_PowerUpIspByTile,		1),
	MSG_MAP(PowerDownIspByTile,             PPSMC_MSG_PowerDownIspByTile,		1),
};

static struct cmn2asic_mapping smu_v13_0_4_feature_mask_map[SMU_FEATURE_COUNT] = {
	FEA_MAP(CCLK_DPM),
	FEA_MAP(FAN_CONTROLLER),
	FEA_MAP(PPT),
	FEA_MAP(TDC),
	FEA_MAP(THERMAL),
	FEA_MAP(VCN_DPM),
	FEA_MAP_REVERSE(FCLK),
	FEA_MAP_REVERSE(SOCCLK),
	FEA_MAP(LCLK_DPM),
	FEA_MAP(SHUBCLK_DPM),
	FEA_MAP(DCFCLK_DPM),
	FEA_MAP_HALF_REVERSE(GFX),
	FEA_MAP(DS_GFXCLK),
	FEA_MAP(DS_SOCCLK),
	FEA_MAP(DS_LCLK),
	FEA_MAP(DS_DCFCLK),
	FEA_MAP(DS_FCLK),
	FEA_MAP(DS_MP1CLK),
	FEA_MAP(DS_MP0CLK),
	FEA_MAP(GFX_DEM),
	FEA_MAP(PSI),
	FEA_MAP(PROCHOT),
	FEA_MAP(CPUOFF),
	FEA_MAP(STAPM),
	FEA_MAP(S0I3),
	FEA_MAP(PERF_LIMIT),
	FEA_MAP(CORE_DLDO),
	FEA_MAP(DS_VCN),
	FEA_MAP(CPPC),
	FEA_MAP(DF_CSTATES),
	FEA_MAP(ATHUB_PG),
};

static struct cmn2asic_mapping smu_v13_0_4_table_map[SMU_TABLE_COUNT] = {
	TAB_MAP_VALID(WATERMARKS),
	TAB_MAP_VALID(SMU_METRICS),
	TAB_MAP_VALID(CUSTOM_DPM),
	TAB_MAP_VALID(DPMCLOCKS),
};

static int smu_v13_0_4_init_smc_tables(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = smu_table->tables;

	SMU_TABLE_INIT(tables, SMU_TABLE_WATERMARKS, sizeof(Watermarks_t),
		PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
	SMU_TABLE_INIT(tables, SMU_TABLE_DPMCLOCKS, sizeof(DpmClocks_t),
		PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
	SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetrics_t),
		PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);

	smu_table->clocks_table = kzalloc(sizeof(DpmClocks_t), GFP_KERNEL);
	if (!smu_table->clocks_table)
		goto err0_out;

	smu_table->metrics_table = kzalloc(sizeof(SmuMetrics_t), GFP_KERNEL);
	if (!smu_table->metrics_table)
		goto err1_out;
	smu_table->metrics_time = 0;

	smu_table->watermarks_table = kzalloc(sizeof(Watermarks_t), GFP_KERNEL);
	if (!smu_table->watermarks_table)
		goto err2_out;

	smu_table->gpu_metrics_table_size = sizeof(struct gpu_metrics_v2_1);
	smu_table->gpu_metrics_table = kzalloc(smu_table->gpu_metrics_table_size, GFP_KERNEL);
	if (!smu_table->gpu_metrics_table)
		goto err3_out;

	return 0;

err3_out:
	kfree(smu_table->watermarks_table);
err2_out:
	kfree(smu_table->metrics_table);
err1_out:
	kfree(smu_table->clocks_table);
err0_out:
	return -ENOMEM;
}

static int smu_v13_0_4_fini_smc_tables(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;

	kfree(smu_table->clocks_table);
	smu_table->clocks_table = NULL;

	kfree(smu_table->metrics_table);
	smu_table->metrics_table = NULL;

	kfree(smu_table->watermarks_table);
	smu_table->watermarks_table = NULL;

	kfree(smu_table->gpu_metrics_table);
	smu_table->gpu_metrics_table = NULL;

	return 0;
}

static bool smu_v13_0_4_is_dpm_running(struct smu_context *smu)
{
	int ret = 0;
	uint64_t feature_enabled;

	ret = smu_cmn_get_enabled_mask(smu, &feature_enabled);

	if (ret)
		return false;

	return !!(feature_enabled & SMC_DPM_FEATURE);
}

static int smu_v13_0_4_system_features_control(struct smu_context *smu, bool en)
{
	struct amdgpu_device *adev = smu->adev;
	int ret = 0;

	if (!en && !adev->in_s0ix)
		ret = smu_cmn_send_smc_msg(smu, SMU_MSG_PrepareMp1ForUnload, NULL);

	return ret;
}

static ssize_t smu_v13_0_4_get_gpu_metrics(struct smu_context *smu,
					   void **table)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct gpu_metrics_v2_1 *gpu_metrics =
		(struct gpu_metrics_v2_1 *)smu_table->gpu_metrics_table;
	SmuMetrics_t metrics;
	int ret = 0;

	ret = smu_cmn_get_metrics_table(smu, &metrics, true);
	if (ret)
		return ret;

	smu_cmn_init_soft_gpu_metrics(gpu_metrics, 2, 1);

	gpu_metrics->temperature_gfx = metrics.GfxTemperature;
	gpu_metrics->temperature_soc = metrics.SocTemperature;
	memcpy(&gpu_metrics->temperature_core[0],
		&metrics.CoreTemperature[0],
		sizeof(uint16_t) * 8);
	gpu_metrics->temperature_l3[0] = metrics.L3Temperature;

	gpu_metrics->average_gfx_activity = metrics.GfxActivity;
	gpu_metrics->average_mm_activity = metrics.UvdActivity;

	gpu_metrics->average_socket_power = metrics.CurrentSocketPower;
	gpu_metrics->average_gfx_power = metrics.Power[0];
	gpu_metrics->average_soc_power = metrics.Power[1];
	memcpy(&gpu_metrics->average_core_power[0],
		&metrics.CorePower[0],
		sizeof(uint16_t) * 8);

	gpu_metrics->average_gfxclk_frequency = metrics.GfxclkFrequency;
	gpu_metrics->average_socclk_frequency = metrics.SocclkFrequency;
	gpu_metrics->average_uclk_frequency = metrics.MemclkFrequency;
	gpu_metrics->average_fclk_frequency = metrics.MemclkFrequency;
	gpu_metrics->average_vclk_frequency = metrics.VclkFrequency;
	gpu_metrics->average_dclk_frequency = metrics.DclkFrequency;

	memcpy(&gpu_metrics->current_coreclk[0],
		&metrics.CoreFrequency[0],
		sizeof(uint16_t) * 8);
	gpu_metrics->current_l3clk[0] = metrics.L3Frequency;

	gpu_metrics->throttle_status = metrics.ThrottlerStatus;

	gpu_metrics->system_clock_counter = ktime_get_boottime_ns();

	*table = (void *)gpu_metrics;

	return sizeof(struct gpu_metrics_v2_1);
}

static int smu_v13_0_4_get_smu_metrics_data(struct smu_context *smu,
					    MetricsMember_t member,
					    uint32_t *value)
{
	struct smu_table_context *smu_table = &smu->smu_table;

	SmuMetrics_t *metrics = (SmuMetrics_t *)smu_table->metrics_table;
	int ret = 0;

	ret = smu_cmn_get_metrics_table(smu, NULL, false);
	if (ret)
		return ret;

	switch (member) {
	case METRICS_AVERAGE_GFXCLK:
		*value = metrics->GfxclkFrequency;
		break;
	case METRICS_AVERAGE_SOCCLK:
		*value = metrics->SocclkFrequency;
		break;
	case METRICS_AVERAGE_VCLK:
		*value = metrics->VclkFrequency;
		break;
	case METRICS_AVERAGE_DCLK:
		*value = metrics->DclkFrequency;
		break;
	case METRICS_AVERAGE_UCLK:
		*value = metrics->MemclkFrequency;
		break;
	case METRICS_AVERAGE_GFXACTIVITY:
		*value = metrics->GfxActivity / 100;
		break;
	case METRICS_AVERAGE_VCNACTIVITY:
		*value = metrics->UvdActivity;
		break;
	case METRICS_AVERAGE_SOCKETPOWER:
		*value = (metrics->CurrentSocketPower << 8) / 1000;
		break;
	case METRICS_TEMPERATURE_EDGE:
		*value = metrics->GfxTemperature / 100 *
		SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
		break;
	case METRICS_TEMPERATURE_HOTSPOT:
		*value = metrics->SocTemperature / 100 *
		SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
		break;
	case METRICS_THROTTLER_STATUS:
		*value = metrics->ThrottlerStatus;
		break;
	case METRICS_VOLTAGE_VDDGFX:
		*value = metrics->Voltage[0];
		break;
	case METRICS_VOLTAGE_VDDSOC:
		*value = metrics->Voltage[1];
		break;
	case METRICS_SS_APU_SHARE:
		/* return the percentage of APU power with respect to APU's power limit.
		 * percentage is reported, this isn't boost value. Smartshift power
		 * boost/shift is only when the percentage is more than 100.
		 */
		if (metrics->StapmOpnLimit > 0)
			*value =  (metrics->ApuPower * 100) / metrics->StapmOpnLimit;
		else
			*value = 0;
		break;
	case METRICS_SS_DGPU_SHARE:
		/* return the percentage of dGPU power with respect to dGPU's power limit.
		 * percentage is reported, this isn't boost value. Smartshift power
		 * boost/shift is only when the percentage is more than 100.
		 */
		if ((metrics->dGpuPower > 0) &&
		    (metrics->StapmCurrentLimit > metrics->StapmOpnLimit))
			*value = (metrics->dGpuPower * 100) /
				 (metrics->StapmCurrentLimit - metrics->StapmOpnLimit);
		else
			*value = 0;
		break;
	default:
		*value = UINT_MAX;
		break;
	}

	return ret;
}

static int smu_v13_0_4_get_current_clk_freq(struct smu_context *smu,
					    enum smu_clk_type clk_type,
					    uint32_t *value)
{
	MetricsMember_t member_type;

	switch (clk_type) {
	case SMU_SOCCLK:
		member_type = METRICS_AVERAGE_SOCCLK;
		break;
	case SMU_VCLK:
		member_type = METRICS_AVERAGE_VCLK;
		break;
	case SMU_DCLK:
		member_type = METRICS_AVERAGE_DCLK;
		break;
	case SMU_MCLK:
		member_type = METRICS_AVERAGE_UCLK;
		break;
	case SMU_FCLK:
		return smu_cmn_send_smc_msg_with_param(smu,
						       SMU_MSG_GetFclkFrequency,
						       0, value);
	case SMU_GFXCLK:
	case SMU_SCLK:
		return smu_cmn_send_smc_msg_with_param(smu,
						       SMU_MSG_GetGfxclkFrequency,
						       0, value);
		break;
	default:
		return -EINVAL;
	}

	return smu_v13_0_4_get_smu_metrics_data(smu, member_type, value);
}

static int smu_v13_0_4_get_dpm_freq_by_index(struct smu_context *smu,
					     enum smu_clk_type clk_type,
					     uint32_t dpm_level,
					     uint32_t *freq)
{
	DpmClocks_t *clk_table = smu->smu_table.clocks_table;

	if (!clk_table || clk_type >= SMU_CLK_COUNT)
		return -EINVAL;

	switch (clk_type) {
	case SMU_SOCCLK:
		if (dpm_level >= clk_table->NumSocClkLevelsEnabled)
			return -EINVAL;
		*freq = clk_table->SocClocks[dpm_level];
		break;
	case SMU_VCLK:
		if (dpm_level >= clk_table->VcnClkLevelsEnabled)
			return -EINVAL;
		*freq = clk_table->VClocks[dpm_level];
		break;
	case SMU_DCLK:
		if (dpm_level >= clk_table->VcnClkLevelsEnabled)
			return -EINVAL;
		*freq = clk_table->DClocks[dpm_level];
		break;
	case SMU_UCLK:
	case SMU_MCLK:
		if (dpm_level >= clk_table->NumDfPstatesEnabled)
			return -EINVAL;
		*freq = clk_table->DfPstateTable[dpm_level].MemClk;
		break;
	case SMU_FCLK:
		if (dpm_level >= clk_table->NumDfPstatesEnabled)
			return -EINVAL;
		*freq = clk_table->DfPstateTable[dpm_level].FClk;
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int smu_v13_0_4_get_dpm_level_count(struct smu_context *smu,
					   enum smu_clk_type clk_type,
					   uint32_t *count)
{
	DpmClocks_t *clk_table = smu->smu_table.clocks_table;

	switch (clk_type) {
	case SMU_SOCCLK:
		*count = clk_table->NumSocClkLevelsEnabled;
		break;
	case SMU_VCLK:
		*count = clk_table->VcnClkLevelsEnabled;
		break;
	case SMU_DCLK:
		*count = clk_table->VcnClkLevelsEnabled;
		break;
	case SMU_MCLK:
		*count = clk_table->NumDfPstatesEnabled;
		break;
	case SMU_FCLK:
		*count = clk_table->NumDfPstatesEnabled;
		break;
	default:
		break;
	}

	return 0;
}

static int smu_v13_0_4_print_clk_levels(struct smu_context *smu,
					enum smu_clk_type clk_type, char *buf)
{
	int i, size = 0, ret = 0;
	uint32_t cur_value = 0, value = 0, count = 0;
	uint32_t min, max;

	smu_cmn_get_sysfs_buf(&buf, &size);

	switch (clk_type) {
	case SMU_OD_SCLK:
		size += sysfs_emit_at(buf, size, "%s:\n", "OD_SCLK");
		size += sysfs_emit_at(buf, size, "0: %10uMhz\n",
		(smu->gfx_actual_hard_min_freq > 0) ? smu->gfx_actual_hard_min_freq : smu->gfx_default_hard_min_freq);
		size += sysfs_emit_at(buf, size, "1: %10uMhz\n",
		(smu->gfx_actual_soft_max_freq > 0) ? smu->gfx_actual_soft_max_freq : smu->gfx_default_soft_max_freq);
		break;
	case SMU_OD_RANGE:
		size += sysfs_emit_at(buf, size, "%s:\n", "OD_RANGE");
		size += sysfs_emit_at(buf, size, "SCLK: %7uMhz %10uMhz\n",
				      smu->gfx_default_hard_min_freq,
				      smu->gfx_default_soft_max_freq);
		break;
	case SMU_SOCCLK:
	case SMU_VCLK:
	case SMU_DCLK:
	case SMU_MCLK:
	case SMU_FCLK:
		ret = smu_v13_0_4_get_current_clk_freq(smu, clk_type, &cur_value);
		if (ret)
			break;

		ret = smu_v13_0_4_get_dpm_level_count(smu, clk_type, &count);
		if (ret)
			break;

		for (i = 0; i < count; i++) {
			ret = smu_v13_0_4_get_dpm_freq_by_index(smu, clk_type, i, &value);
			if (ret)
				break;

			size += sysfs_emit_at(buf, size, "%d: %uMhz %s\n", i, value,
					      cur_value == value ? "*" : "");
		}
		break;
	case SMU_GFXCLK:
	case SMU_SCLK:
		ret = smu_v13_0_4_get_current_clk_freq(smu, clk_type, &cur_value);
		if (ret)
			break;
		min = (smu->gfx_actual_hard_min_freq > 0) ? smu->gfx_actual_hard_min_freq : smu->gfx_default_hard_min_freq;
		max = (smu->gfx_actual_soft_max_freq > 0) ? smu->gfx_actual_soft_max_freq : smu->gfx_default_soft_max_freq;
		if (cur_value  == max)
			i = 2;
		else if (cur_value == min)
			i = 0;
		else
			i = 1;
		size += sysfs_emit_at(buf, size, "0: %uMhz %s\n", min,
				      i == 0 ? "*" : "");
		size += sysfs_emit_at(buf, size, "1: %uMhz %s\n",
				      i == 1 ? cur_value : 1100, /* UMD PSTATE GFXCLK 1100 */
				      i == 1 ? "*" : "");
		size += sysfs_emit_at(buf, size, "2: %uMhz %s\n", max,
				      i == 2 ? "*" : "");
		break;
	default:
		break;
	}

	return size;
}

static int smu_v13_0_4_read_sensor(struct smu_context *smu,
				   enum amd_pp_sensors sensor,
				   void *data, uint32_t *size)
{
	int ret = 0;

	if (!data || !size)
		return -EINVAL;

	switch (sensor) {
	case AMDGPU_PP_SENSOR_GPU_LOAD:
		ret = smu_v13_0_4_get_smu_metrics_data(smu,
						       METRICS_AVERAGE_GFXACTIVITY,
						       (uint32_t *)data);
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_GPU_POWER:
		ret = smu_v13_0_4_get_smu_metrics_data(smu,
						       METRICS_AVERAGE_SOCKETPOWER,
						       (uint32_t *)data);
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_EDGE_TEMP:
		ret = smu_v13_0_4_get_smu_metrics_data(smu,
						       METRICS_TEMPERATURE_EDGE,
						       (uint32_t *)data);
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
		ret = smu_v13_0_4_get_smu_metrics_data(smu,
						       METRICS_TEMPERATURE_HOTSPOT,
						       (uint32_t *)data);
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_GFX_MCLK:
		ret = smu_v13_0_4_get_smu_metrics_data(smu,
						       METRICS_AVERAGE_UCLK,
						       (uint32_t *)data);
		*(uint32_t *)data *= 100;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_GFX_SCLK:
		ret = smu_v13_0_4_get_smu_metrics_data(smu,
						       METRICS_AVERAGE_GFXCLK,
						       (uint32_t *)data);
		*(uint32_t *)data *= 100;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_VDDGFX:
		ret = smu_v13_0_4_get_smu_metrics_data(smu,
						       METRICS_VOLTAGE_VDDGFX,
						       (uint32_t *)data);
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_VDDNB:
		ret = smu_v13_0_4_get_smu_metrics_data(smu,
						       METRICS_VOLTAGE_VDDSOC,
						       (uint32_t *)data);
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_SS_APU_SHARE:
		ret = smu_v13_0_4_get_smu_metrics_data(smu,
						       METRICS_SS_APU_SHARE,
						       (uint32_t *)data);
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_SS_DGPU_SHARE:
		ret = smu_v13_0_4_get_smu_metrics_data(smu,
						       METRICS_SS_DGPU_SHARE,
						       (uint32_t *)data);
		*size = 4;
		break;
	default:
		ret = -EOPNOTSUPP;
		break;
	}

	return ret;
}

static int smu_v13_0_4_set_watermarks_table(struct smu_context *smu,
					    struct pp_smu_wm_range_sets *clock_ranges)
{
	int i;
	int ret = 0;
	Watermarks_t *table = smu->smu_table.watermarks_table;

	if (!table || !clock_ranges)
		return -EINVAL;

	if (clock_ranges->num_reader_wm_sets > NUM_WM_RANGES ||
		clock_ranges->num_writer_wm_sets > NUM_WM_RANGES)
		return -EINVAL;

	for (i = 0; i < clock_ranges->num_reader_wm_sets; i++) {
		table->WatermarkRow[WM_DCFCLK][i].MinClock =
			clock_ranges->reader_wm_sets[i].min_drain_clk_mhz;
		table->WatermarkRow[WM_DCFCLK][i].MaxClock =
			clock_ranges->reader_wm_sets[i].max_drain_clk_mhz;
		table->WatermarkRow[WM_DCFCLK][i].MinMclk =
			clock_ranges->reader_wm_sets[i].min_fill_clk_mhz;
		table->WatermarkRow[WM_DCFCLK][i].MaxMclk =
			clock_ranges->reader_wm_sets[i].max_fill_clk_mhz;

		table->WatermarkRow[WM_DCFCLK][i].WmSetting =
			clock_ranges->reader_wm_sets[i].wm_inst;
	}

	for (i = 0; i < clock_ranges->num_writer_wm_sets; i++) {
		table->WatermarkRow[WM_SOCCLK][i].MinClock =
			clock_ranges->writer_wm_sets[i].min_fill_clk_mhz;
		table->WatermarkRow[WM_SOCCLK][i].MaxClock =
			clock_ranges->writer_wm_sets[i].max_fill_clk_mhz;
		table->WatermarkRow[WM_SOCCLK][i].MinMclk =
			clock_ranges->writer_wm_sets[i].min_drain_clk_mhz;
		table->WatermarkRow[WM_SOCCLK][i].MaxMclk =
			clock_ranges->writer_wm_sets[i].max_drain_clk_mhz;

		table->WatermarkRow[WM_SOCCLK][i].WmSetting =
			clock_ranges->writer_wm_sets[i].wm_inst;
	}

	smu->watermarks_bitmap |= WATERMARKS_EXIST;

	/* pass data to smu controller */
	if ((smu->watermarks_bitmap & WATERMARKS_EXIST) &&
	     !(smu->watermarks_bitmap & WATERMARKS_LOADED)) {
		ret = smu_cmn_write_watermarks_table(smu);
		if (ret) {
			dev_err(smu->adev->dev, "Failed to update WMTABLE!");
			return ret;
		}
		smu->watermarks_bitmap |= WATERMARKS_LOADED;
	}

	return 0;
}

static bool smu_v13_0_4_clk_dpm_is_enabled(struct smu_context *smu,
					   enum smu_clk_type clk_type)
{
	enum smu_feature_mask feature_id = 0;

	switch (clk_type) {
	case SMU_MCLK:
	case SMU_UCLK:
	case SMU_FCLK:
		feature_id = SMU_FEATURE_DPM_FCLK_BIT;
		break;
	case SMU_GFXCLK:
	case SMU_SCLK:
		feature_id = SMU_FEATURE_DPM_GFXCLK_BIT;
		break;
	case SMU_SOCCLK:
		feature_id = SMU_FEATURE_DPM_SOCCLK_BIT;
		break;
	case SMU_VCLK:
	case SMU_DCLK:
		feature_id = SMU_FEATURE_VCN_DPM_BIT;
		break;
	default:
		return true;
	}

	return smu_cmn_feature_is_enabled(smu, feature_id);
}

static int smu_v13_0_4_get_dpm_ultimate_freq(struct smu_context *smu,
					     enum smu_clk_type clk_type,
					     uint32_t *min,
					     uint32_t *max)
{
	DpmClocks_t *clk_table = smu->smu_table.clocks_table;
	uint32_t clock_limit;
	uint32_t max_dpm_level, min_dpm_level;
	int ret = 0;

	if (!smu_v13_0_4_clk_dpm_is_enabled(smu, clk_type)) {
		switch (clk_type) {
		case SMU_MCLK:
		case SMU_UCLK:
			clock_limit = smu->smu_table.boot_values.uclk;
			break;
		case SMU_FCLK:
			clock_limit = smu->smu_table.boot_values.fclk;
			break;
		case SMU_GFXCLK:
		case SMU_SCLK:
			clock_limit = smu->smu_table.boot_values.gfxclk;
			break;
		case SMU_SOCCLK:
			clock_limit = smu->smu_table.boot_values.socclk;
			break;
		case SMU_VCLK:
			clock_limit = smu->smu_table.boot_values.vclk;
			break;
		case SMU_DCLK:
			clock_limit = smu->smu_table.boot_values.dclk;
			break;
		default:
			clock_limit = 0;
			break;
		}

		/* clock in Mhz unit */
		if (min)
			*min = clock_limit / 100;
		if (max)
			*max = clock_limit / 100;

		return 0;
	}

	if (max) {
		switch (clk_type) {
		case SMU_GFXCLK:
		case SMU_SCLK:
			*max = clk_table->MaxGfxClk;
			break;
		case SMU_MCLK:
		case SMU_UCLK:
		case SMU_FCLK:
			max_dpm_level = 0;
			break;
		case SMU_SOCCLK:
			max_dpm_level = clk_table->NumSocClkLevelsEnabled - 1;
			break;
		case SMU_VCLK:
		case SMU_DCLK:
			max_dpm_level = clk_table->VcnClkLevelsEnabled - 1;
			break;
		default:
			return -EINVAL;
		}

		if (clk_type != SMU_GFXCLK && clk_type != SMU_SCLK) {
			ret = smu_v13_0_4_get_dpm_freq_by_index(smu, clk_type,
								max_dpm_level,
								max);
			if (ret)
				return ret;
		}
	}

	if (min) {
		switch (clk_type) {
		case SMU_GFXCLK:
		case SMU_SCLK:
			*min = clk_table->MinGfxClk;
			break;
		case SMU_MCLK:
		case SMU_UCLK:
		case SMU_FCLK:
			min_dpm_level = clk_table->NumDfPstatesEnabled - 1;
			break;
		case SMU_SOCCLK:
			min_dpm_level = 0;
			break;
		case SMU_VCLK:
		case SMU_DCLK:
			min_dpm_level = 0;
			break;
		default:
			return -EINVAL;
		}

		if (clk_type != SMU_GFXCLK && clk_type != SMU_SCLK) {
			ret = smu_v13_0_4_get_dpm_freq_by_index(smu, clk_type,
								min_dpm_level,
								min);
		}
	}

	return ret;
}

static int smu_v13_0_4_set_soft_freq_limited_range(struct smu_context *smu,
						   enum smu_clk_type clk_type,
						   uint32_t min,
						   uint32_t max)
{
	enum smu_message_type msg_set_min, msg_set_max;
	int ret = 0;

	if (!smu_v13_0_4_clk_dpm_is_enabled(smu, clk_type))
		return -EINVAL;

	switch (clk_type) {
	case SMU_GFXCLK:
	case SMU_SCLK:
		msg_set_min = SMU_MSG_SetHardMinGfxClk;
		msg_set_max = SMU_MSG_SetSoftMaxGfxClk;
		break;
	case SMU_FCLK:
		msg_set_min = SMU_MSG_SetHardMinFclkByFreq;
		msg_set_max = SMU_MSG_SetSoftMaxFclkByFreq;
		break;
	case SMU_SOCCLK:
		msg_set_min = SMU_MSG_SetHardMinSocclkByFreq;
		msg_set_max = SMU_MSG_SetSoftMaxSocclkByFreq;
		break;
	case SMU_VCLK:
	case SMU_DCLK:
		msg_set_min = SMU_MSG_SetHardMinVcn;
		msg_set_max = SMU_MSG_SetSoftMaxVcn;
		break;
	default:
		return -EINVAL;
	}

	ret = smu_cmn_send_smc_msg_with_param(smu, msg_set_min, min, NULL);
	if (ret)
		return ret;

	return smu_cmn_send_smc_msg_with_param(smu, msg_set_max,
					       max, NULL);
}

static int smu_v13_0_4_force_clk_levels(struct smu_context *smu,
					enum smu_clk_type clk_type,
					uint32_t mask)
{
	uint32_t soft_min_level = 0, soft_max_level = 0;
	uint32_t min_freq = 0, max_freq = 0;
	int ret = 0;

	soft_min_level = mask ? (ffs(mask) - 1) : 0;
	soft_max_level = mask ? (fls(mask) - 1) : 0;

	switch (clk_type) {
	case SMU_SOCCLK:
	case SMU_FCLK:
	case SMU_VCLK:
	case SMU_DCLK:
		ret = smu_v13_0_4_get_dpm_freq_by_index(smu, clk_type, soft_min_level, &min_freq);
		if (ret)
			break;

		ret = smu_v13_0_4_get_dpm_freq_by_index(smu, clk_type, soft_max_level, &max_freq);
		if (ret)
			break;

		ret = smu_v13_0_4_set_soft_freq_limited_range(smu, clk_type, min_freq, max_freq);
		break;
	default:
		ret = -EINVAL;
		break;
	}

	return ret;
}

static int smu_v13_0_4_set_performance_level(struct smu_context *smu,
					     enum amd_dpm_forced_level level)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t sclk_min = 0, sclk_max = 0;
	uint32_t fclk_min = 0, fclk_max = 0;
	uint32_t socclk_min = 0, socclk_max = 0;
	int ret = 0;

	switch (level) {
	case AMD_DPM_FORCED_LEVEL_HIGH:
		smu_v13_0_4_get_dpm_ultimate_freq(smu, SMU_SCLK, NULL, &sclk_max);
		smu_v13_0_4_get_dpm_ultimate_freq(smu, SMU_FCLK, NULL, &fclk_max);
		smu_v13_0_4_get_dpm_ultimate_freq(smu, SMU_SOCCLK, NULL, &socclk_max);
		sclk_min = sclk_max;
		fclk_min = fclk_max;
		socclk_min = socclk_max;
		break;
	case AMD_DPM_FORCED_LEVEL_LOW:
		smu_v13_0_4_get_dpm_ultimate_freq(smu, SMU_SCLK, &sclk_min, NULL);
		smu_v13_0_4_get_dpm_ultimate_freq(smu, SMU_FCLK, &fclk_min, NULL);
		smu_v13_0_4_get_dpm_ultimate_freq(smu, SMU_SOCCLK, &socclk_min, NULL);
		sclk_max = sclk_min;
		fclk_max = fclk_min;
		socclk_max = socclk_min;
		break;
	case AMD_DPM_FORCED_LEVEL_AUTO:
		smu_v13_0_4_get_dpm_ultimate_freq(smu, SMU_SCLK, &sclk_min, &sclk_max);
		smu_v13_0_4_get_dpm_ultimate_freq(smu, SMU_FCLK, &fclk_min, &fclk_max);
		smu_v13_0_4_get_dpm_ultimate_freq(smu, SMU_SOCCLK, &socclk_min, &socclk_max);
		break;
	case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
		/* Temporarily do nothing since the optimal clocks haven't been provided yet */
		break;
	case AMD_DPM_FORCED_LEVEL_MANUAL:
	case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
		return 0;
	default:
		dev_err(adev->dev, "Invalid performance level %d\n", level);
		return -EINVAL;
	}

	if (sclk_min && sclk_max) {
		ret = smu_v13_0_4_set_soft_freq_limited_range(smu,
							      SMU_SCLK,
							      sclk_min,
							      sclk_max);
		if (ret)
			return ret;

		smu->gfx_actual_hard_min_freq = sclk_min;
		smu->gfx_actual_soft_max_freq = sclk_max;
	}

	if (fclk_min && fclk_max) {
		ret = smu_v13_0_4_set_soft_freq_limited_range(smu,
							      SMU_FCLK,
							      fclk_min,
							      fclk_max);
		if (ret)
			return ret;
	}

	if (socclk_min && socclk_max) {
		ret = smu_v13_0_4_set_soft_freq_limited_range(smu,
							      SMU_SOCCLK,
							      socclk_min,
							      socclk_max);
		if (ret)
			return ret;
	}

	return ret;
}

static int smu_v13_0_4_mode2_reset(struct smu_context *smu)
{
	return smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GfxDeviceDriverReset,
					       SMU_RESET_MODE_2, NULL);
}

static int smu_v13_0_4_set_fine_grain_gfx_freq_parameters(struct smu_context *smu)
{
	DpmClocks_t *clk_table = smu->smu_table.clocks_table;

	smu->gfx_default_hard_min_freq = clk_table->MinGfxClk;
	smu->gfx_default_soft_max_freq = clk_table->MaxGfxClk;
	smu->gfx_actual_hard_min_freq = 0;
	smu->gfx_actual_soft_max_freq = 0;

	return 0;
}

static const struct pptable_funcs smu_v13_0_4_ppt_funcs = {
	.check_fw_status = smu_v13_0_check_fw_status,
	.check_fw_version = smu_v13_0_check_fw_version,
	.init_smc_tables = smu_v13_0_4_init_smc_tables,
	.fini_smc_tables = smu_v13_0_4_fini_smc_tables,
	.get_vbios_bootup_values = smu_v13_0_get_vbios_bootup_values,
	.system_features_control = smu_v13_0_4_system_features_control,
	.send_smc_msg_with_param = smu_cmn_send_smc_msg_with_param,
	.send_smc_msg = smu_cmn_send_smc_msg,
	.dpm_set_vcn_enable = smu_v13_0_set_vcn_enable,
	.dpm_set_jpeg_enable = smu_v13_0_set_jpeg_enable,
	.set_default_dpm_table = smu_v13_0_set_default_dpm_tables,
	.read_sensor = smu_v13_0_4_read_sensor,
	.is_dpm_running = smu_v13_0_4_is_dpm_running,
	.set_watermarks_table = smu_v13_0_4_set_watermarks_table,
	.get_gpu_metrics = smu_v13_0_4_get_gpu_metrics,
	.get_enabled_mask = smu_cmn_get_enabled_mask,
	.get_pp_feature_mask = smu_cmn_get_pp_feature_mask,
	.set_driver_table_location = smu_v13_0_set_driver_table_location,
	.gfx_off_control = smu_v13_0_gfx_off_control,
	.mode2_reset = smu_v13_0_4_mode2_reset,
	.get_dpm_ultimate_freq = smu_v13_0_4_get_dpm_ultimate_freq,
	.od_edit_dpm_table = smu_v13_0_od_edit_dpm_table,
	.print_clk_levels = smu_v13_0_4_print_clk_levels,
	.force_clk_levels = smu_v13_0_4_force_clk_levels,
	.set_performance_level = smu_v13_0_4_set_performance_level,
	.set_fine_grain_gfx_freq_parameters = smu_v13_0_4_set_fine_grain_gfx_freq_parameters,
	.set_gfx_power_up_by_imu = smu_v13_0_set_gfx_power_up_by_imu,
};

static void smu_v13_0_4_set_smu_mailbox_registers(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;

	smu->param_reg = SOC15_REG_OFFSET(MP1, 0, mmMP1_SMN_C2PMSG_82);
	smu->msg_reg = SOC15_REG_OFFSET(MP1, 0, mmMP1_SMN_C2PMSG_66);
	smu->resp_reg = SOC15_REG_OFFSET(MP1, 0, mmMP1_SMN_C2PMSG_90);
}

void smu_v13_0_4_set_ppt_funcs(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;

	smu->ppt_funcs = &smu_v13_0_4_ppt_funcs;
	smu->message_map = smu_v13_0_4_message_map;
	smu->feature_map = smu_v13_0_4_feature_mask_map;
	smu->table_map = smu_v13_0_4_table_map;
	smu->is_apu = true;

	if (adev->ip_versions[MP1_HWIP][0] == IP_VERSION(13, 0, 4))
		smu_v13_0_4_set_smu_mailbox_registers(smu);
	else
		smu_v13_0_set_smu_mailbox_registers(smu);
}