Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Zhi Wang | 936 | 47.61% | 9 | 24.32% |
Ping Gao | 517 | 26.30% | 8 | 21.62% |
Zhenyu Wang | 160 | 8.14% | 5 | 13.51% |
Colin Xu | 125 | 6.36% | 1 | 2.70% |
Zhipeng Gong | 83 | 4.22% | 2 | 5.41% |
Changbin Du | 57 | 2.90% | 4 | 10.81% |
Weinan Li | 32 | 1.63% | 1 | 2.70% |
Chris Wilson | 29 | 1.48% | 3 | 8.11% |
Hang Yuan | 19 | 0.97% | 1 | 2.70% |
Daniele Ceraolo Spurio | 6 | 0.31% | 1 | 2.70% |
Rikard Falkeborn | 1 | 0.05% | 1 | 2.70% |
Jani Nikula | 1 | 0.05% | 1 | 2.70% |
Total | 1966 | 37 |
/* * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Anhua Xu * Kevin Tian <kevin.tian@intel.com> * * Contributors: * Min He <min.he@intel.com> * Bing Niu <bing.niu@intel.com> * Zhi Wang <zhi.a.wang@intel.com> * */ #include "i915_drv.h" #include "gvt.h" static bool vgpu_has_pending_workload(struct intel_vgpu *vgpu) { enum intel_engine_id i; struct intel_engine_cs *engine; for_each_engine(engine, vgpu->gvt->gt, i) { if (!list_empty(workload_q_head(vgpu, engine))) return true; } return false; } /* We give 2 seconds higher prio for vGPU during start */ #define GVT_SCHED_VGPU_PRI_TIME 2 struct vgpu_sched_data { struct list_head lru_list; struct intel_vgpu *vgpu; bool active; bool pri_sched; ktime_t pri_time; ktime_t sched_in_time; ktime_t sched_time; ktime_t left_ts; ktime_t allocated_ts; struct vgpu_sched_ctl sched_ctl; }; struct gvt_sched_data { struct intel_gvt *gvt; struct hrtimer timer; unsigned long period; struct list_head lru_runq_head; ktime_t expire_time; }; static void vgpu_update_timeslice(struct intel_vgpu *vgpu, ktime_t cur_time) { ktime_t delta_ts; struct vgpu_sched_data *vgpu_data; if (!vgpu || vgpu == vgpu->gvt->idle_vgpu) return; vgpu_data = vgpu->sched_data; delta_ts = ktime_sub(cur_time, vgpu_data->sched_in_time); vgpu_data->sched_time = ktime_add(vgpu_data->sched_time, delta_ts); vgpu_data->left_ts = ktime_sub(vgpu_data->left_ts, delta_ts); vgpu_data->sched_in_time = cur_time; } #define GVT_TS_BALANCE_PERIOD_MS 100 #define GVT_TS_BALANCE_STAGE_NUM 10 static void gvt_balance_timeslice(struct gvt_sched_data *sched_data) { struct vgpu_sched_data *vgpu_data; struct list_head *pos; static u64 stage_check; int stage = stage_check++ % GVT_TS_BALANCE_STAGE_NUM; /* The timeslice accumulation reset at stage 0, which is * allocated again without adding previous debt. */ if (stage == 0) { int total_weight = 0; ktime_t fair_timeslice; list_for_each(pos, &sched_data->lru_runq_head) { vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list); total_weight += vgpu_data->sched_ctl.weight; } list_for_each(pos, &sched_data->lru_runq_head) { vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list); fair_timeslice = ktime_divns(ms_to_ktime(GVT_TS_BALANCE_PERIOD_MS), total_weight) * vgpu_data->sched_ctl.weight; vgpu_data->allocated_ts = fair_timeslice; vgpu_data->left_ts = vgpu_data->allocated_ts; } } else { list_for_each(pos, &sched_data->lru_runq_head) { vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list); /* timeslice for next 100ms should add the left/debt * slice of previous stages. */ vgpu_data->left_ts += vgpu_data->allocated_ts; } } } static void try_to_schedule_next_vgpu(struct intel_gvt *gvt) { struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; enum intel_engine_id i; struct intel_engine_cs *engine; struct vgpu_sched_data *vgpu_data; ktime_t cur_time; /* no need to schedule if next_vgpu is the same with current_vgpu, * let scheduler chose next_vgpu again by setting it to NULL. */ if (scheduler->next_vgpu == scheduler->current_vgpu) { scheduler->next_vgpu = NULL; return; } /* * after the flag is set, workload dispatch thread will * stop dispatching workload for current vgpu */ scheduler->need_reschedule = true; /* still have uncompleted workload? */ for_each_engine(engine, gvt->gt, i) { if (scheduler->current_workload[engine->id]) return; } cur_time = ktime_get(); vgpu_update_timeslice(scheduler->current_vgpu, cur_time); vgpu_data = scheduler->next_vgpu->sched_data; vgpu_data->sched_in_time = cur_time; /* switch current vgpu */ scheduler->current_vgpu = scheduler->next_vgpu; scheduler->next_vgpu = NULL; scheduler->need_reschedule = false; /* wake up workload dispatch thread */ for_each_engine(engine, gvt->gt, i) wake_up(&scheduler->waitq[engine->id]); } static struct intel_vgpu *find_busy_vgpu(struct gvt_sched_data *sched_data) { struct vgpu_sched_data *vgpu_data; struct intel_vgpu *vgpu = NULL; struct list_head *head = &sched_data->lru_runq_head; struct list_head *pos; /* search a vgpu with pending workload */ list_for_each(pos, head) { vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list); if (!vgpu_has_pending_workload(vgpu_data->vgpu)) continue; if (vgpu_data->pri_sched) { if (ktime_before(ktime_get(), vgpu_data->pri_time)) { vgpu = vgpu_data->vgpu; break; } else vgpu_data->pri_sched = false; } /* Return the vGPU only if it has time slice left */ if (vgpu_data->left_ts > 0) { vgpu = vgpu_data->vgpu; break; } } return vgpu; } /* in nanosecond */ #define GVT_DEFAULT_TIME_SLICE 1000000 static void tbs_sched_func(struct gvt_sched_data *sched_data) { struct intel_gvt *gvt = sched_data->gvt; struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; struct vgpu_sched_data *vgpu_data; struct intel_vgpu *vgpu = NULL; /* no active vgpu or has already had a target */ if (list_empty(&sched_data->lru_runq_head) || scheduler->next_vgpu) goto out; vgpu = find_busy_vgpu(sched_data); if (vgpu) { scheduler->next_vgpu = vgpu; vgpu_data = vgpu->sched_data; if (!vgpu_data->pri_sched) { /* Move the last used vGPU to the tail of lru_list */ list_del_init(&vgpu_data->lru_list); list_add_tail(&vgpu_data->lru_list, &sched_data->lru_runq_head); } } else { scheduler->next_vgpu = gvt->idle_vgpu; } out: if (scheduler->next_vgpu) try_to_schedule_next_vgpu(gvt); } void intel_gvt_schedule(struct intel_gvt *gvt) { struct gvt_sched_data *sched_data = gvt->scheduler.sched_data; ktime_t cur_time; mutex_lock(&gvt->sched_lock); cur_time = ktime_get(); if (test_and_clear_bit(INTEL_GVT_REQUEST_SCHED, (void *)&gvt->service_request)) { if (cur_time >= sched_data->expire_time) { gvt_balance_timeslice(sched_data); sched_data->expire_time = ktime_add_ms( cur_time, GVT_TS_BALANCE_PERIOD_MS); } } clear_bit(INTEL_GVT_REQUEST_EVENT_SCHED, (void *)&gvt->service_request); vgpu_update_timeslice(gvt->scheduler.current_vgpu, cur_time); tbs_sched_func(sched_data); mutex_unlock(&gvt->sched_lock); } static enum hrtimer_restart tbs_timer_fn(struct hrtimer *timer_data) { struct gvt_sched_data *data; data = container_of(timer_data, struct gvt_sched_data, timer); intel_gvt_request_service(data->gvt, INTEL_GVT_REQUEST_SCHED); hrtimer_add_expires_ns(&data->timer, data->period); return HRTIMER_RESTART; } static int tbs_sched_init(struct intel_gvt *gvt) { struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; struct gvt_sched_data *data; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; INIT_LIST_HEAD(&data->lru_runq_head); hrtimer_init(&data->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); data->timer.function = tbs_timer_fn; data->period = GVT_DEFAULT_TIME_SLICE; data->gvt = gvt; scheduler->sched_data = data; return 0; } static void tbs_sched_clean(struct intel_gvt *gvt) { struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; struct gvt_sched_data *data = scheduler->sched_data; hrtimer_cancel(&data->timer); kfree(data); scheduler->sched_data = NULL; } static int tbs_sched_init_vgpu(struct intel_vgpu *vgpu) { struct vgpu_sched_data *data; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; data->sched_ctl.weight = vgpu->sched_ctl.weight; data->vgpu = vgpu; INIT_LIST_HEAD(&data->lru_list); vgpu->sched_data = data; return 0; } static void tbs_sched_clean_vgpu(struct intel_vgpu *vgpu) { struct intel_gvt *gvt = vgpu->gvt; struct gvt_sched_data *sched_data = gvt->scheduler.sched_data; kfree(vgpu->sched_data); vgpu->sched_data = NULL; /* this vgpu id has been removed */ if (idr_is_empty(&gvt->vgpu_idr)) hrtimer_cancel(&sched_data->timer); } static void tbs_sched_start_schedule(struct intel_vgpu *vgpu) { struct gvt_sched_data *sched_data = vgpu->gvt->scheduler.sched_data; struct vgpu_sched_data *vgpu_data = vgpu->sched_data; ktime_t now; if (!list_empty(&vgpu_data->lru_list)) return; now = ktime_get(); vgpu_data->pri_time = ktime_add(now, ktime_set(GVT_SCHED_VGPU_PRI_TIME, 0)); vgpu_data->pri_sched = true; list_add(&vgpu_data->lru_list, &sched_data->lru_runq_head); if (!hrtimer_active(&sched_data->timer)) hrtimer_start(&sched_data->timer, ktime_add_ns(ktime_get(), sched_data->period), HRTIMER_MODE_ABS); vgpu_data->active = true; } static void tbs_sched_stop_schedule(struct intel_vgpu *vgpu) { struct vgpu_sched_data *vgpu_data = vgpu->sched_data; list_del_init(&vgpu_data->lru_list); vgpu_data->active = false; } static const struct intel_gvt_sched_policy_ops tbs_schedule_ops = { .init = tbs_sched_init, .clean = tbs_sched_clean, .init_vgpu = tbs_sched_init_vgpu, .clean_vgpu = tbs_sched_clean_vgpu, .start_schedule = tbs_sched_start_schedule, .stop_schedule = tbs_sched_stop_schedule, }; int intel_gvt_init_sched_policy(struct intel_gvt *gvt) { int ret; mutex_lock(&gvt->sched_lock); gvt->scheduler.sched_ops = &tbs_schedule_ops; ret = gvt->scheduler.sched_ops->init(gvt); mutex_unlock(&gvt->sched_lock); return ret; } void intel_gvt_clean_sched_policy(struct intel_gvt *gvt) { mutex_lock(&gvt->sched_lock); gvt->scheduler.sched_ops->clean(gvt); mutex_unlock(&gvt->sched_lock); } /* for per-vgpu scheduler policy, there are 2 per-vgpu data: * sched_data, and sched_ctl. We see these 2 data as part of * the global scheduler which are proteced by gvt->sched_lock. * Caller should make their decision if the vgpu_lock should * be hold outside. */ int intel_vgpu_init_sched_policy(struct intel_vgpu *vgpu) { int ret; mutex_lock(&vgpu->gvt->sched_lock); ret = vgpu->gvt->scheduler.sched_ops->init_vgpu(vgpu); mutex_unlock(&vgpu->gvt->sched_lock); return ret; } void intel_vgpu_clean_sched_policy(struct intel_vgpu *vgpu) { mutex_lock(&vgpu->gvt->sched_lock); vgpu->gvt->scheduler.sched_ops->clean_vgpu(vgpu); mutex_unlock(&vgpu->gvt->sched_lock); } void intel_vgpu_start_schedule(struct intel_vgpu *vgpu) { struct vgpu_sched_data *vgpu_data = vgpu->sched_data; mutex_lock(&vgpu->gvt->sched_lock); if (!vgpu_data->active) { gvt_dbg_core("vgpu%d: start schedule\n", vgpu->id); vgpu->gvt->scheduler.sched_ops->start_schedule(vgpu); } mutex_unlock(&vgpu->gvt->sched_lock); } void intel_gvt_kick_schedule(struct intel_gvt *gvt) { mutex_lock(&gvt->sched_lock); intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED); mutex_unlock(&gvt->sched_lock); } void intel_vgpu_stop_schedule(struct intel_vgpu *vgpu) { struct intel_gvt_workload_scheduler *scheduler = &vgpu->gvt->scheduler; struct vgpu_sched_data *vgpu_data = vgpu->sched_data; struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915; struct intel_engine_cs *engine; enum intel_engine_id id; if (!vgpu_data->active) return; gvt_dbg_core("vgpu%d: stop schedule\n", vgpu->id); mutex_lock(&vgpu->gvt->sched_lock); scheduler->sched_ops->stop_schedule(vgpu); if (scheduler->next_vgpu == vgpu) scheduler->next_vgpu = NULL; if (scheduler->current_vgpu == vgpu) { /* stop workload dispatching */ scheduler->need_reschedule = true; scheduler->current_vgpu = NULL; } intel_runtime_pm_get(&dev_priv->runtime_pm); spin_lock_bh(&scheduler->mmio_context_lock); for_each_engine(engine, vgpu->gvt->gt, id) { if (scheduler->engine_owner[engine->id] == vgpu) { intel_gvt_switch_mmio(vgpu, NULL, engine); scheduler->engine_owner[engine->id] = NULL; } } spin_unlock_bh(&scheduler->mmio_context_lock); intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm); mutex_unlock(&vgpu->gvt->sched_lock); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1