Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Brad Volkin | 3485 | 54.48% | 20 | 16.95% |
Chris Wilson | 812 | 12.69% | 39 | 33.05% |
Jon Bloomfield | 679 | 10.61% | 7 | 5.93% |
Jordan Justen | 286 | 4.47% | 6 | 5.08% |
Francisco Jerez | 224 | 3.50% | 2 | 1.69% |
Jason Ekstrand | 223 | 3.49% | 3 | 2.54% |
Matt Roper | 152 | 2.38% | 4 | 3.39% |
Matthew Auld | 116 | 1.81% | 2 | 1.69% |
Tvrtko A. Ursulin | 100 | 1.56% | 4 | 3.39% |
Mika Kuoppala | 51 | 0.80% | 1 | 0.85% |
Ville Syrjälä | 43 | 0.67% | 2 | 1.69% |
Wambui Karuga | 40 | 0.63% | 1 | 0.85% |
Michael H. Nguyen | 36 | 0.56% | 1 | 0.85% |
Michal Srb | 25 | 0.39% | 2 | 1.69% |
Dave Airlie | 24 | 0.38% | 1 | 0.85% |
Kenneth Graunke | 14 | 0.22% | 1 | 0.85% |
Lucas De Marchi | 13 | 0.20% | 1 | 0.85% |
Jani Nikula | 10 | 0.16% | 4 | 3.39% |
Maarten Lankhorst | 10 | 0.16% | 1 | 0.85% |
Oscar Mateo | 10 | 0.16% | 1 | 0.85% |
Hanno Böck | 8 | 0.13% | 2 | 1.69% |
Neil Roberts | 8 | 0.13% | 1 | 0.85% |
Daniel Vetter | 7 | 0.11% | 4 | 3.39% |
Arun Siluvery | 6 | 0.09% | 1 | 0.85% |
Gabriel Krisman Bertazi | 3 | 0.05% | 1 | 0.85% |
Michal Wajdeczko | 3 | 0.05% | 1 | 0.85% |
Dave Gordon | 3 | 0.05% | 1 | 0.85% |
Zou Nan hai | 2 | 0.03% | 1 | 0.85% |
Eric Anholt | 2 | 0.03% | 1 | 0.85% |
Maya Rashish | 1 | 0.02% | 1 | 0.85% |
Robert Bragg | 1 | 0.02% | 1 | 0.85% |
Total | 6397 | 118 |
/* * Copyright © 2013 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Brad Volkin <bradley.d.volkin@intel.com> * */ #include <linux/highmem.h> #include <drm/drm_cache.h> #include "gt/intel_engine.h" #include "gt/intel_engine_regs.h" #include "gt/intel_gpu_commands.h" #include "gt/intel_gt_regs.h" #include "i915_cmd_parser.h" #include "i915_drv.h" #include "i915_memcpy.h" #include "i915_reg.h" /** * DOC: batch buffer command parser * * Motivation: * Certain OpenGL features (e.g. transform feedback, performance monitoring) * require userspace code to submit batches containing commands such as * MI_LOAD_REGISTER_IMM to access various registers. Unfortunately, some * generations of the hardware will noop these commands in "unsecure" batches * (which includes all userspace batches submitted via i915) even though the * commands may be safe and represent the intended programming model of the * device. * * The software command parser is similar in operation to the command parsing * done in hardware for unsecure batches. However, the software parser allows * some operations that would be noop'd by hardware, if the parser determines * the operation is safe, and submits the batch as "secure" to prevent hardware * parsing. * * Threats: * At a high level, the hardware (and software) checks attempt to prevent * granting userspace undue privileges. There are three categories of privilege. * * First, commands which are explicitly defined as privileged or which should * only be used by the kernel driver. The parser rejects such commands * * Second, commands which access registers. To support correct/enhanced * userspace functionality, particularly certain OpenGL extensions, the parser * provides a whitelist of registers which userspace may safely access * * Third, commands which access privileged memory (i.e. GGTT, HWS page, etc). * The parser always rejects such commands. * * The majority of the problematic commands fall in the MI_* range, with only a * few specific commands on each engine (e.g. PIPE_CONTROL and MI_FLUSH_DW). * * Implementation: * Each engine maintains tables of commands and registers which the parser * uses in scanning batch buffers submitted to that engine. * * Since the set of commands that the parser must check for is significantly * smaller than the number of commands supported, the parser tables contain only * those commands required by the parser. This generally works because command * opcode ranges have standard command length encodings. So for commands that * the parser does not need to check, it can easily skip them. This is * implemented via a per-engine length decoding vfunc. * * Unfortunately, there are a number of commands that do not follow the standard * length encoding for their opcode range, primarily amongst the MI_* commands. * To handle this, the parser provides a way to define explicit "skip" entries * in the per-engine command tables. * * Other command table entries map fairly directly to high level categories * mentioned above: rejected, register whitelist. The parser implements a number * of checks, including the privileged memory checks, via a general bitmasking * mechanism. */ /* * A command that requires special handling by the command parser. */ struct drm_i915_cmd_descriptor { /* * Flags describing how the command parser processes the command. * * CMD_DESC_FIXED: The command has a fixed length if this is set, * a length mask if not set * CMD_DESC_SKIP: The command is allowed but does not follow the * standard length encoding for the opcode range in * which it falls * CMD_DESC_REJECT: The command is never allowed * CMD_DESC_REGISTER: The command should be checked against the * register whitelist for the appropriate ring */ u32 flags; #define CMD_DESC_FIXED (1<<0) #define CMD_DESC_SKIP (1<<1) #define CMD_DESC_REJECT (1<<2) #define CMD_DESC_REGISTER (1<<3) #define CMD_DESC_BITMASK (1<<4) /* * The command's unique identification bits and the bitmask to get them. * This isn't strictly the opcode field as defined in the spec and may * also include type, subtype, and/or subop fields. */ struct { u32 value; u32 mask; } cmd; /* * The command's length. The command is either fixed length (i.e. does * not include a length field) or has a length field mask. The flag * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has * a length mask. All command entries in a command table must include * length information. */ union { u32 fixed; u32 mask; } length; /* * Describes where to find a register address in the command to check * against the ring's register whitelist. Only valid if flags has the * CMD_DESC_REGISTER bit set. * * A non-zero step value implies that the command may access multiple * registers in sequence (e.g. LRI), in that case step gives the * distance in dwords between individual offset fields. */ struct { u32 offset; u32 mask; u32 step; } reg; #define MAX_CMD_DESC_BITMASKS 3 /* * Describes command checks where a particular dword is masked and * compared against an expected value. If the command does not match * the expected value, the parser rejects it. Only valid if flags has * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero * are valid. * * If the check specifies a non-zero condition_mask then the parser * only performs the check when the bits specified by condition_mask * are non-zero. */ struct { u32 offset; u32 mask; u32 expected; u32 condition_offset; u32 condition_mask; } bits[MAX_CMD_DESC_BITMASKS]; }; /* * A table of commands requiring special handling by the command parser. * * Each engine has an array of tables. Each table consists of an array of * command descriptors, which must be sorted with command opcodes in * ascending order. */ struct drm_i915_cmd_table { const struct drm_i915_cmd_descriptor *table; int count; }; #define STD_MI_OPCODE_SHIFT (32 - 9) #define STD_3D_OPCODE_SHIFT (32 - 16) #define STD_2D_OPCODE_SHIFT (32 - 10) #define STD_MFX_OPCODE_SHIFT (32 - 16) #define MIN_OPCODE_SHIFT 16 #define CMD(op, opm, f, lm, fl, ...) \ { \ .flags = (fl) | ((f) ? CMD_DESC_FIXED : 0), \ .cmd = { (op & ~0u << (opm)), ~0u << (opm) }, \ .length = { (lm) }, \ __VA_ARGS__ \ } /* Convenience macros to compress the tables */ #define SMI STD_MI_OPCODE_SHIFT #define S3D STD_3D_OPCODE_SHIFT #define S2D STD_2D_OPCODE_SHIFT #define SMFX STD_MFX_OPCODE_SHIFT #define F true #define S CMD_DESC_SKIP #define R CMD_DESC_REJECT #define W CMD_DESC_REGISTER #define B CMD_DESC_BITMASK /* Command Mask Fixed Len Action ---------------------------------------------------------- */ static const struct drm_i915_cmd_descriptor gen7_common_cmds[] = { CMD( MI_NOOP, SMI, F, 1, S ), CMD( MI_USER_INTERRUPT, SMI, F, 1, R ), CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, R ), CMD( MI_ARB_CHECK, SMI, F, 1, S ), CMD( MI_REPORT_HEAD, SMI, F, 1, S ), CMD( MI_SUSPEND_FLUSH, SMI, F, 1, S ), CMD( MI_SEMAPHORE_MBOX, SMI, !F, 0xFF, R ), CMD( MI_STORE_DWORD_INDEX, SMI, !F, 0xFF, R ), CMD( MI_LOAD_REGISTER_IMM(1), SMI, !F, 0xFF, W, .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 } ), CMD( MI_STORE_REGISTER_MEM, SMI, F, 3, W | B, .reg = { .offset = 1, .mask = 0x007FFFFC }, .bits = {{ .offset = 0, .mask = MI_GLOBAL_GTT, .expected = 0, }}, ), CMD( MI_LOAD_REGISTER_MEM, SMI, F, 3, W | B, .reg = { .offset = 1, .mask = 0x007FFFFC }, .bits = {{ .offset = 0, .mask = MI_GLOBAL_GTT, .expected = 0, }}, ), /* * MI_BATCH_BUFFER_START requires some special handling. It's not * really a 'skip' action but it doesn't seem like it's worth adding * a new action. See intel_engine_cmd_parser(). */ CMD( MI_BATCH_BUFFER_START, SMI, !F, 0xFF, S ), }; static const struct drm_i915_cmd_descriptor gen7_render_cmds[] = { CMD( MI_FLUSH, SMI, F, 1, S ), CMD( MI_ARB_ON_OFF, SMI, F, 1, R ), CMD( MI_PREDICATE, SMI, F, 1, S ), CMD( MI_TOPOLOGY_FILTER, SMI, F, 1, S ), CMD( MI_SET_APPID, SMI, F, 1, S ), CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ), CMD( MI_SET_CONTEXT, SMI, !F, 0xFF, R ), CMD( MI_URB_CLEAR, SMI, !F, 0xFF, S ), CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3F, B, .bits = {{ .offset = 0, .mask = MI_GLOBAL_GTT, .expected = 0, }}, ), CMD( MI_UPDATE_GTT, SMI, !F, 0xFF, R ), CMD( MI_CLFLUSH, SMI, !F, 0x3FF, B, .bits = {{ .offset = 0, .mask = MI_GLOBAL_GTT, .expected = 0, }}, ), CMD( MI_REPORT_PERF_COUNT, SMI, !F, 0x3F, B, .bits = {{ .offset = 1, .mask = MI_REPORT_PERF_COUNT_GGTT, .expected = 0, }}, ), CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B, .bits = {{ .offset = 0, .mask = MI_GLOBAL_GTT, .expected = 0, }}, ), CMD( GFX_OP_3DSTATE_VF_STATISTICS, S3D, F, 1, S ), CMD( PIPELINE_SELECT, S3D, F, 1, S ), CMD( MEDIA_VFE_STATE, S3D, !F, 0xFFFF, B, .bits = {{ .offset = 2, .mask = MEDIA_VFE_STATE_MMIO_ACCESS_MASK, .expected = 0, }}, ), CMD( GPGPU_OBJECT, S3D, !F, 0xFF, S ), CMD( GPGPU_WALKER, S3D, !F, 0xFF, S ), CMD( GFX_OP_3DSTATE_SO_DECL_LIST, S3D, !F, 0x1FF, S ), CMD( GFX_OP_PIPE_CONTROL(5), S3D, !F, 0xFF, B, .bits = {{ .offset = 1, .mask = (PIPE_CONTROL_MMIO_WRITE | PIPE_CONTROL_NOTIFY), .expected = 0, }, { .offset = 1, .mask = (PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_STORE_DATA_INDEX), .expected = 0, .condition_offset = 1, .condition_mask = PIPE_CONTROL_POST_SYNC_OP_MASK, }}, ), }; static const struct drm_i915_cmd_descriptor hsw_render_cmds[] = { CMD( MI_SET_PREDICATE, SMI, F, 1, S ), CMD( MI_RS_CONTROL, SMI, F, 1, S ), CMD( MI_URB_ATOMIC_ALLOC, SMI, F, 1, S ), CMD( MI_SET_APPID, SMI, F, 1, S ), CMD( MI_RS_CONTEXT, SMI, F, 1, S ), CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, R ), CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ), CMD( MI_LOAD_REGISTER_REG, SMI, !F, 0xFF, W, .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 } ), CMD( MI_RS_STORE_DATA_IMM, SMI, !F, 0xFF, S ), CMD( MI_LOAD_URB_MEM, SMI, !F, 0xFF, S ), CMD( MI_STORE_URB_MEM, SMI, !F, 0xFF, S ), CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_VS, S3D, !F, 0x7FF, S ), CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_PS, S3D, !F, 0x7FF, S ), CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_VS, S3D, !F, 0x1FF, S ), CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_GS, S3D, !F, 0x1FF, S ), CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_HS, S3D, !F, 0x1FF, S ), CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_DS, S3D, !F, 0x1FF, S ), CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_PS, S3D, !F, 0x1FF, S ), }; static const struct drm_i915_cmd_descriptor gen7_video_cmds[] = { CMD( MI_ARB_ON_OFF, SMI, F, 1, R ), CMD( MI_SET_APPID, SMI, F, 1, S ), CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B, .bits = {{ .offset = 0, .mask = MI_GLOBAL_GTT, .expected = 0, }}, ), CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ), CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B, .bits = {{ .offset = 0, .mask = MI_FLUSH_DW_NOTIFY, .expected = 0, }, { .offset = 1, .mask = MI_FLUSH_DW_USE_GTT, .expected = 0, .condition_offset = 0, .condition_mask = MI_FLUSH_DW_OP_MASK, }, { .offset = 0, .mask = MI_FLUSH_DW_STORE_INDEX, .expected = 0, .condition_offset = 0, .condition_mask = MI_FLUSH_DW_OP_MASK, }}, ), CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B, .bits = {{ .offset = 0, .mask = MI_GLOBAL_GTT, .expected = 0, }}, ), /* * MFX_WAIT doesn't fit the way we handle length for most commands. * It has a length field but it uses a non-standard length bias. * It is always 1 dword though, so just treat it as fixed length. */ CMD( MFX_WAIT, SMFX, F, 1, S ), }; static const struct drm_i915_cmd_descriptor gen7_vecs_cmds[] = { CMD( MI_ARB_ON_OFF, SMI, F, 1, R ), CMD( MI_SET_APPID, SMI, F, 1, S ), CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B, .bits = {{ .offset = 0, .mask = MI_GLOBAL_GTT, .expected = 0, }}, ), CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ), CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B, .bits = {{ .offset = 0, .mask = MI_FLUSH_DW_NOTIFY, .expected = 0, }, { .offset = 1, .mask = MI_FLUSH_DW_USE_GTT, .expected = 0, .condition_offset = 0, .condition_mask = MI_FLUSH_DW_OP_MASK, }, { .offset = 0, .mask = MI_FLUSH_DW_STORE_INDEX, .expected = 0, .condition_offset = 0, .condition_mask = MI_FLUSH_DW_OP_MASK, }}, ), CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B, .bits = {{ .offset = 0, .mask = MI_GLOBAL_GTT, .expected = 0, }}, ), }; static const struct drm_i915_cmd_descriptor gen7_blt_cmds[] = { CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ), CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3FF, B, .bits = {{ .offset = 0, .mask = MI_GLOBAL_GTT, .expected = 0, }}, ), CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ), CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B, .bits = {{ .offset = 0, .mask = MI_FLUSH_DW_NOTIFY, .expected = 0, }, { .offset = 1, .mask = MI_FLUSH_DW_USE_GTT, .expected = 0, .condition_offset = 0, .condition_mask = MI_FLUSH_DW_OP_MASK, }, { .offset = 0, .mask = MI_FLUSH_DW_STORE_INDEX, .expected = 0, .condition_offset = 0, .condition_mask = MI_FLUSH_DW_OP_MASK, }}, ), CMD( COLOR_BLT, S2D, !F, 0x3F, S ), CMD( SRC_COPY_BLT, S2D, !F, 0x3F, S ), }; static const struct drm_i915_cmd_descriptor hsw_blt_cmds[] = { CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, R ), CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ), }; /* * For Gen9 we can still rely on the h/w to enforce cmd security, and only * need to re-enforce the register access checks. We therefore only need to * teach the cmdparser how to find the end of each command, and identify * register accesses. The table doesn't need to reject any commands, and so * the only commands listed here are: * 1) Those that touch registers * 2) Those that do not have the default 8-bit length * * Note that the default MI length mask chosen for this table is 0xFF, not * the 0x3F used on older devices. This is because the vast majority of MI * cmds on Gen9 use a standard 8-bit Length field. * All the Gen9 blitter instructions are standard 0xFF length mask, and * none allow access to non-general registers, so in fact no BLT cmds are * included in the table at all. * */ static const struct drm_i915_cmd_descriptor gen9_blt_cmds[] = { CMD( MI_NOOP, SMI, F, 1, S ), CMD( MI_USER_INTERRUPT, SMI, F, 1, S ), CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, S ), CMD( MI_FLUSH, SMI, F, 1, S ), CMD( MI_ARB_CHECK, SMI, F, 1, S ), CMD( MI_REPORT_HEAD, SMI, F, 1, S ), CMD( MI_ARB_ON_OFF, SMI, F, 1, S ), CMD( MI_SUSPEND_FLUSH, SMI, F, 1, S ), CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, S ), CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, S ), CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3FF, S ), CMD( MI_LOAD_REGISTER_IMM(1), SMI, !F, 0xFF, W, .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 } ), CMD( MI_UPDATE_GTT, SMI, !F, 0x3FF, S ), CMD( MI_STORE_REGISTER_MEM_GEN8, SMI, F, 4, W, .reg = { .offset = 1, .mask = 0x007FFFFC } ), CMD( MI_FLUSH_DW, SMI, !F, 0x3F, S ), CMD( MI_LOAD_REGISTER_MEM_GEN8, SMI, F, 4, W, .reg = { .offset = 1, .mask = 0x007FFFFC } ), CMD( MI_LOAD_REGISTER_REG, SMI, !F, 0xFF, W, .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 } ), /* * We allow BB_START but apply further checks. We just sanitize the * basic fields here. */ #define MI_BB_START_OPERAND_MASK GENMASK(SMI-1, 0) #define MI_BB_START_OPERAND_EXPECT (MI_BATCH_PPGTT_HSW | 1) CMD( MI_BATCH_BUFFER_START_GEN8, SMI, !F, 0xFF, B, .bits = {{ .offset = 0, .mask = MI_BB_START_OPERAND_MASK, .expected = MI_BB_START_OPERAND_EXPECT, }}, ), }; static const struct drm_i915_cmd_descriptor noop_desc = CMD(MI_NOOP, SMI, F, 1, S); #undef CMD #undef SMI #undef S3D #undef S2D #undef SMFX #undef F #undef S #undef R #undef W #undef B static const struct drm_i915_cmd_table gen7_render_cmd_table[] = { { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, { gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) }, }; static const struct drm_i915_cmd_table hsw_render_ring_cmd_table[] = { { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, { gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) }, { hsw_render_cmds, ARRAY_SIZE(hsw_render_cmds) }, }; static const struct drm_i915_cmd_table gen7_video_cmd_table[] = { { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, { gen7_video_cmds, ARRAY_SIZE(gen7_video_cmds) }, }; static const struct drm_i915_cmd_table hsw_vebox_cmd_table[] = { { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, { gen7_vecs_cmds, ARRAY_SIZE(gen7_vecs_cmds) }, }; static const struct drm_i915_cmd_table gen7_blt_cmd_table[] = { { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, { gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) }, }; static const struct drm_i915_cmd_table hsw_blt_ring_cmd_table[] = { { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, { gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) }, { hsw_blt_cmds, ARRAY_SIZE(hsw_blt_cmds) }, }; static const struct drm_i915_cmd_table gen9_blt_cmd_table[] = { { gen9_blt_cmds, ARRAY_SIZE(gen9_blt_cmds) }, }; /* * Register whitelists, sorted by increasing register offset. */ /* * An individual whitelist entry granting access to register addr. If * mask is non-zero the argument of immediate register writes will be * AND-ed with mask, and the command will be rejected if the result * doesn't match value. * * Registers with non-zero mask are only allowed to be written using * LRI. */ struct drm_i915_reg_descriptor { i915_reg_t addr; u32 mask; u32 value; }; /* Convenience macro for adding 32-bit registers. */ #define REG32(_reg, ...) \ { .addr = (_reg), __VA_ARGS__ } #define REG32_IDX(_reg, idx) \ { .addr = _reg(idx) } /* * Convenience macro for adding 64-bit registers. * * Some registers that userspace accesses are 64 bits. The register * access commands only allow 32-bit accesses. Hence, we have to include * entries for both halves of the 64-bit registers. */ #define REG64(_reg) \ { .addr = _reg }, \ { .addr = _reg ## _UDW } #define REG64_IDX(_reg, idx) \ { .addr = _reg(idx) }, \ { .addr = _reg ## _UDW(idx) } #define REG64_BASE_IDX(_reg, base, idx) \ { .addr = _reg(base, idx) }, \ { .addr = _reg ## _UDW(base, idx) } static const struct drm_i915_reg_descriptor gen7_render_regs[] = { REG64(GPGPU_THREADS_DISPATCHED), REG64(HS_INVOCATION_COUNT), REG64(DS_INVOCATION_COUNT), REG64(IA_VERTICES_COUNT), REG64(IA_PRIMITIVES_COUNT), REG64(VS_INVOCATION_COUNT), REG64(GS_INVOCATION_COUNT), REG64(GS_PRIMITIVES_COUNT), REG64(CL_INVOCATION_COUNT), REG64(CL_PRIMITIVES_COUNT), REG64(PS_INVOCATION_COUNT), REG64(PS_DEPTH_COUNT), REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE), REG64_IDX(MI_PREDICATE_SRC0, RENDER_RING_BASE), REG64_IDX(MI_PREDICATE_SRC1, RENDER_RING_BASE), REG32(GEN7_3DPRIM_END_OFFSET), REG32(GEN7_3DPRIM_START_VERTEX), REG32(GEN7_3DPRIM_VERTEX_COUNT), REG32(GEN7_3DPRIM_INSTANCE_COUNT), REG32(GEN7_3DPRIM_START_INSTANCE), REG32(GEN7_3DPRIM_BASE_VERTEX), REG32(GEN7_GPGPU_DISPATCHDIMX), REG32(GEN7_GPGPU_DISPATCHDIMY), REG32(GEN7_GPGPU_DISPATCHDIMZ), REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE), REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 0), REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 1), REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 2), REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 3), REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 0), REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 1), REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 2), REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 3), REG32(GEN7_SO_WRITE_OFFSET(0)), REG32(GEN7_SO_WRITE_OFFSET(1)), REG32(GEN7_SO_WRITE_OFFSET(2)), REG32(GEN7_SO_WRITE_OFFSET(3)), REG32(GEN7_L3SQCREG1), REG32(GEN7_L3CNTLREG2), REG32(GEN7_L3CNTLREG3), REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE), }; static const struct drm_i915_reg_descriptor hsw_render_regs[] = { REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 0), REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 1), REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 2), REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 3), REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 4), REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 5), REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 6), REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 7), REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 8), REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 9), REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 10), REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 11), REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 12), REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 13), REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 14), REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 15), REG32(HSW_SCRATCH1, .mask = ~HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE, .value = 0), REG32(HSW_ROW_CHICKEN3, .mask = ~(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE << 16 | HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE), .value = 0), }; static const struct drm_i915_reg_descriptor gen7_blt_regs[] = { REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE), REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE), REG32(BCS_SWCTRL), REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE), }; static const struct drm_i915_reg_descriptor gen9_blt_regs[] = { REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE), REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE), REG32(BCS_SWCTRL), REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE), REG32_IDX(RING_CTX_TIMESTAMP, BLT_RING_BASE), REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 0), REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 1), REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 2), REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 3), REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 4), REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 5), REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 6), REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 7), REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 8), REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 9), REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 10), REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 11), REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 12), REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 13), REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 14), REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 15), }; #undef REG64 #undef REG32 struct drm_i915_reg_table { const struct drm_i915_reg_descriptor *regs; int num_regs; }; static const struct drm_i915_reg_table ivb_render_reg_tables[] = { { gen7_render_regs, ARRAY_SIZE(gen7_render_regs) }, }; static const struct drm_i915_reg_table ivb_blt_reg_tables[] = { { gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) }, }; static const struct drm_i915_reg_table hsw_render_reg_tables[] = { { gen7_render_regs, ARRAY_SIZE(gen7_render_regs) }, { hsw_render_regs, ARRAY_SIZE(hsw_render_regs) }, }; static const struct drm_i915_reg_table hsw_blt_reg_tables[] = { { gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) }, }; static const struct drm_i915_reg_table gen9_blt_reg_tables[] = { { gen9_blt_regs, ARRAY_SIZE(gen9_blt_regs) }, }; static u32 gen7_render_get_cmd_length_mask(u32 cmd_header) { u32 client = cmd_header >> INSTR_CLIENT_SHIFT; u32 subclient = (cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT; if (client == INSTR_MI_CLIENT) return 0x3F; else if (client == INSTR_RC_CLIENT) { if (subclient == INSTR_MEDIA_SUBCLIENT) return 0xFFFF; else return 0xFF; } DRM_DEBUG("CMD: Abnormal rcs cmd length! 0x%08X\n", cmd_header); return 0; } static u32 gen7_bsd_get_cmd_length_mask(u32 cmd_header) { u32 client = cmd_header >> INSTR_CLIENT_SHIFT; u32 subclient = (cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT; u32 op = (cmd_header & INSTR_26_TO_24_MASK) >> INSTR_26_TO_24_SHIFT; if (client == INSTR_MI_CLIENT) return 0x3F; else if (client == INSTR_RC_CLIENT) { if (subclient == INSTR_MEDIA_SUBCLIENT) { if (op == 6) return 0xFFFF; else return 0xFFF; } else return 0xFF; } DRM_DEBUG("CMD: Abnormal bsd cmd length! 0x%08X\n", cmd_header); return 0; } static u32 gen7_blt_get_cmd_length_mask(u32 cmd_header) { u32 client = cmd_header >> INSTR_CLIENT_SHIFT; if (client == INSTR_MI_CLIENT) return 0x3F; else if (client == INSTR_BC_CLIENT) return 0xFF; DRM_DEBUG("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header); return 0; } static u32 gen9_blt_get_cmd_length_mask(u32 cmd_header) { u32 client = cmd_header >> INSTR_CLIENT_SHIFT; if (client == INSTR_MI_CLIENT || client == INSTR_BC_CLIENT) return 0xFF; DRM_DEBUG("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header); return 0; } static bool validate_cmds_sorted(const struct intel_engine_cs *engine, const struct drm_i915_cmd_table *cmd_tables, int cmd_table_count) { int i; bool ret = true; if (!cmd_tables || cmd_table_count == 0) return true; for (i = 0; i < cmd_table_count; i++) { const struct drm_i915_cmd_table *table = &cmd_tables[i]; u32 previous = 0; int j; for (j = 0; j < table->count; j++) { const struct drm_i915_cmd_descriptor *desc = &table->table[j]; u32 curr = desc->cmd.value & desc->cmd.mask; if (curr < previous) { drm_err(&engine->i915->drm, "CMD: %s [%d] command table not sorted: " "table=%d entry=%d cmd=0x%08X prev=0x%08X\n", engine->name, engine->id, i, j, curr, previous); ret = false; } previous = curr; } } return ret; } static bool check_sorted(const struct intel_engine_cs *engine, const struct drm_i915_reg_descriptor *reg_table, int reg_count) { int i; u32 previous = 0; bool ret = true; for (i = 0; i < reg_count; i++) { u32 curr = i915_mmio_reg_offset(reg_table[i].addr); if (curr < previous) { drm_err(&engine->i915->drm, "CMD: %s [%d] register table not sorted: " "entry=%d reg=0x%08X prev=0x%08X\n", engine->name, engine->id, i, curr, previous); ret = false; } previous = curr; } return ret; } static bool validate_regs_sorted(struct intel_engine_cs *engine) { int i; const struct drm_i915_reg_table *table; for (i = 0; i < engine->reg_table_count; i++) { table = &engine->reg_tables[i]; if (!check_sorted(engine, table->regs, table->num_regs)) return false; } return true; } struct cmd_node { const struct drm_i915_cmd_descriptor *desc; struct hlist_node node; }; /* * Different command ranges have different numbers of bits for the opcode. For * example, MI commands use bits 31:23 while 3D commands use bits 31:16. The * problem is that, for example, MI commands use bits 22:16 for other fields * such as GGTT vs PPGTT bits. If we include those bits in the mask then when * we mask a command from a batch it could hash to the wrong bucket due to * non-opcode bits being set. But if we don't include those bits, some 3D * commands may hash to the same bucket due to not including opcode bits that * make the command unique. For now, we will risk hashing to the same bucket. */ static inline u32 cmd_header_key(u32 x) { switch (x >> INSTR_CLIENT_SHIFT) { default: case INSTR_MI_CLIENT: return x >> STD_MI_OPCODE_SHIFT; case INSTR_RC_CLIENT: return x >> STD_3D_OPCODE_SHIFT; case INSTR_BC_CLIENT: return x >> STD_2D_OPCODE_SHIFT; } } static int init_hash_table(struct intel_engine_cs *engine, const struct drm_i915_cmd_table *cmd_tables, int cmd_table_count) { int i, j; hash_init(engine->cmd_hash); for (i = 0; i < cmd_table_count; i++) { const struct drm_i915_cmd_table *table = &cmd_tables[i]; for (j = 0; j < table->count; j++) { const struct drm_i915_cmd_descriptor *desc = &table->table[j]; struct cmd_node *desc_node = kmalloc(sizeof(*desc_node), GFP_KERNEL); if (!desc_node) return -ENOMEM; desc_node->desc = desc; hash_add(engine->cmd_hash, &desc_node->node, cmd_header_key(desc->cmd.value)); } } return 0; } static void fini_hash_table(struct intel_engine_cs *engine) { struct hlist_node *tmp; struct cmd_node *desc_node; int i; hash_for_each_safe(engine->cmd_hash, i, tmp, desc_node, node) { hash_del(&desc_node->node); kfree(desc_node); } } /** * intel_engine_init_cmd_parser() - set cmd parser related fields for an engine * @engine: the engine to initialize * * Optionally initializes fields related to batch buffer command parsing in the * struct intel_engine_cs based on whether the platform requires software * command parsing. */ int intel_engine_init_cmd_parser(struct intel_engine_cs *engine) { const struct drm_i915_cmd_table *cmd_tables; int cmd_table_count; int ret; if (GRAPHICS_VER(engine->i915) != 7 && !(GRAPHICS_VER(engine->i915) == 9 && engine->class == COPY_ENGINE_CLASS)) return 0; switch (engine->class) { case RENDER_CLASS: if (IS_HASWELL(engine->i915)) { cmd_tables = hsw_render_ring_cmd_table; cmd_table_count = ARRAY_SIZE(hsw_render_ring_cmd_table); } else { cmd_tables = gen7_render_cmd_table; cmd_table_count = ARRAY_SIZE(gen7_render_cmd_table); } if (IS_HASWELL(engine->i915)) { engine->reg_tables = hsw_render_reg_tables; engine->reg_table_count = ARRAY_SIZE(hsw_render_reg_tables); } else { engine->reg_tables = ivb_render_reg_tables; engine->reg_table_count = ARRAY_SIZE(ivb_render_reg_tables); } engine->get_cmd_length_mask = gen7_render_get_cmd_length_mask; break; case VIDEO_DECODE_CLASS: cmd_tables = gen7_video_cmd_table; cmd_table_count = ARRAY_SIZE(gen7_video_cmd_table); engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask; break; case COPY_ENGINE_CLASS: engine->get_cmd_length_mask = gen7_blt_get_cmd_length_mask; if (GRAPHICS_VER(engine->i915) == 9) { cmd_tables = gen9_blt_cmd_table; cmd_table_count = ARRAY_SIZE(gen9_blt_cmd_table); engine->get_cmd_length_mask = gen9_blt_get_cmd_length_mask; /* BCS Engine unsafe without parser */ engine->flags |= I915_ENGINE_REQUIRES_CMD_PARSER; } else if (IS_HASWELL(engine->i915)) { cmd_tables = hsw_blt_ring_cmd_table; cmd_table_count = ARRAY_SIZE(hsw_blt_ring_cmd_table); } else { cmd_tables = gen7_blt_cmd_table; cmd_table_count = ARRAY_SIZE(gen7_blt_cmd_table); } if (GRAPHICS_VER(engine->i915) == 9) { engine->reg_tables = gen9_blt_reg_tables; engine->reg_table_count = ARRAY_SIZE(gen9_blt_reg_tables); } else if (IS_HASWELL(engine->i915)) { engine->reg_tables = hsw_blt_reg_tables; engine->reg_table_count = ARRAY_SIZE(hsw_blt_reg_tables); } else { engine->reg_tables = ivb_blt_reg_tables; engine->reg_table_count = ARRAY_SIZE(ivb_blt_reg_tables); } break; case VIDEO_ENHANCEMENT_CLASS: cmd_tables = hsw_vebox_cmd_table; cmd_table_count = ARRAY_SIZE(hsw_vebox_cmd_table); /* VECS can use the same length_mask function as VCS */ engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask; break; default: MISSING_CASE(engine->class); goto out; } if (!validate_cmds_sorted(engine, cmd_tables, cmd_table_count)) { drm_err(&engine->i915->drm, "%s: command descriptions are not sorted\n", engine->name); goto out; } if (!validate_regs_sorted(engine)) { drm_err(&engine->i915->drm, "%s: registers are not sorted\n", engine->name); goto out; } ret = init_hash_table(engine, cmd_tables, cmd_table_count); if (ret) { drm_err(&engine->i915->drm, "%s: initialised failed!\n", engine->name); fini_hash_table(engine); goto out; } engine->flags |= I915_ENGINE_USING_CMD_PARSER; out: if (intel_engine_requires_cmd_parser(engine) && !intel_engine_using_cmd_parser(engine)) return -EINVAL; return 0; } /** * intel_engine_cleanup_cmd_parser() - clean up cmd parser related fields * @engine: the engine to clean up * * Releases any resources related to command parsing that may have been * initialized for the specified engine. */ void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine) { if (!intel_engine_using_cmd_parser(engine)) return; fini_hash_table(engine); } static const struct drm_i915_cmd_descriptor* find_cmd_in_table(struct intel_engine_cs *engine, u32 cmd_header) { struct cmd_node *desc_node; hash_for_each_possible(engine->cmd_hash, desc_node, node, cmd_header_key(cmd_header)) { const struct drm_i915_cmd_descriptor *desc = desc_node->desc; if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0) return desc; } return NULL; } /* * Returns a pointer to a descriptor for the command specified by cmd_header. * * The caller must supply space for a default descriptor via the default_desc * parameter. If no descriptor for the specified command exists in the engine's * command parser tables, this function fills in default_desc based on the * engine's default length encoding and returns default_desc. */ static const struct drm_i915_cmd_descriptor* find_cmd(struct intel_engine_cs *engine, u32 cmd_header, const struct drm_i915_cmd_descriptor *desc, struct drm_i915_cmd_descriptor *default_desc) { u32 mask; if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0) return desc; desc = find_cmd_in_table(engine, cmd_header); if (desc) return desc; mask = engine->get_cmd_length_mask(cmd_header); if (!mask) return NULL; default_desc->cmd.value = cmd_header; default_desc->cmd.mask = ~0u << MIN_OPCODE_SHIFT; default_desc->length.mask = mask; default_desc->flags = CMD_DESC_SKIP; return default_desc; } static const struct drm_i915_reg_descriptor * __find_reg(const struct drm_i915_reg_descriptor *table, int count, u32 addr) { int start = 0, end = count; while (start < end) { int mid = start + (end - start) / 2; int ret = addr - i915_mmio_reg_offset(table[mid].addr); if (ret < 0) end = mid; else if (ret > 0) start = mid + 1; else return &table[mid]; } return NULL; } static const struct drm_i915_reg_descriptor * find_reg(const struct intel_engine_cs *engine, u32 addr) { const struct drm_i915_reg_table *table = engine->reg_tables; const struct drm_i915_reg_descriptor *reg = NULL; int count = engine->reg_table_count; for (; !reg && (count > 0); ++table, --count) reg = __find_reg(table->regs, table->num_regs, addr); return reg; } /* Returns a vmap'd pointer to dst_obj, which the caller must unmap */ static u32 *copy_batch(struct drm_i915_gem_object *dst_obj, struct drm_i915_gem_object *src_obj, unsigned long offset, unsigned long length, bool *needs_clflush_after) { unsigned int src_needs_clflush; unsigned int dst_needs_clflush; void *dst, *src; int ret; ret = i915_gem_object_prepare_write(dst_obj, &dst_needs_clflush); if (ret) return ERR_PTR(ret); dst = i915_gem_object_pin_map(dst_obj, I915_MAP_WB); i915_gem_object_finish_access(dst_obj); if (IS_ERR(dst)) return dst; ret = i915_gem_object_prepare_read(src_obj, &src_needs_clflush); if (ret) { i915_gem_object_unpin_map(dst_obj); return ERR_PTR(ret); } src = ERR_PTR(-ENODEV); if (src_needs_clflush && i915_has_memcpy_from_wc()) { src = i915_gem_object_pin_map(src_obj, I915_MAP_WC); if (!IS_ERR(src)) { i915_unaligned_memcpy_from_wc(dst, src + offset, length); i915_gem_object_unpin_map(src_obj); } } if (IS_ERR(src)) { unsigned long x, n, remain; void *ptr; /* * We can avoid clflushing partial cachelines before the write * if we only every write full cache-lines. Since we know that * both the source and destination are in multiples of * PAGE_SIZE, we can simply round up to the next cacheline. * We don't care about copying too much here as we only * validate up to the end of the batch. */ remain = length; if (dst_needs_clflush & CLFLUSH_BEFORE) remain = round_up(remain, boot_cpu_data.x86_clflush_size); ptr = dst; x = offset_in_page(offset); for (n = offset >> PAGE_SHIFT; remain; n++) { int len = min(remain, PAGE_SIZE - x); src = kmap_atomic(i915_gem_object_get_page(src_obj, n)); if (src_needs_clflush) drm_clflush_virt_range(src + x, len); memcpy(ptr, src + x, len); kunmap_atomic(src); ptr += len; remain -= len; x = 0; } } i915_gem_object_finish_access(src_obj); memset32(dst + length, 0, (dst_obj->base.size - length) / sizeof(u32)); /* dst_obj is returned with vmap pinned */ *needs_clflush_after = dst_needs_clflush & CLFLUSH_AFTER; return dst; } static inline bool cmd_desc_is(const struct drm_i915_cmd_descriptor * const desc, const u32 cmd) { return desc->cmd.value == (cmd & desc->cmd.mask); } static bool check_cmd(const struct intel_engine_cs *engine, const struct drm_i915_cmd_descriptor *desc, const u32 *cmd, u32 length) { if (desc->flags & CMD_DESC_SKIP) return true; if (desc->flags & CMD_DESC_REJECT) { DRM_DEBUG("CMD: Rejected command: 0x%08X\n", *cmd); return false; } if (desc->flags & CMD_DESC_REGISTER) { /* * Get the distance between individual register offset * fields if the command can perform more than one * access at a time. */ const u32 step = desc->reg.step ? desc->reg.step : length; u32 offset; for (offset = desc->reg.offset; offset < length; offset += step) { const u32 reg_addr = cmd[offset] & desc->reg.mask; const struct drm_i915_reg_descriptor *reg = find_reg(engine, reg_addr); if (!reg) { DRM_DEBUG("CMD: Rejected register 0x%08X in command: 0x%08X (%s)\n", reg_addr, *cmd, engine->name); return false; } /* * Check the value written to the register against the * allowed mask/value pair given in the whitelist entry. */ if (reg->mask) { if (cmd_desc_is(desc, MI_LOAD_REGISTER_MEM)) { DRM_DEBUG("CMD: Rejected LRM to masked register 0x%08X\n", reg_addr); return false; } if (cmd_desc_is(desc, MI_LOAD_REGISTER_REG)) { DRM_DEBUG("CMD: Rejected LRR to masked register 0x%08X\n", reg_addr); return false; } if (cmd_desc_is(desc, MI_LOAD_REGISTER_IMM(1)) && (offset + 2 > length || (cmd[offset + 1] & reg->mask) != reg->value)) { DRM_DEBUG("CMD: Rejected LRI to masked register 0x%08X\n", reg_addr); return false; } } } } if (desc->flags & CMD_DESC_BITMASK) { int i; for (i = 0; i < MAX_CMD_DESC_BITMASKS; i++) { u32 dword; if (desc->bits[i].mask == 0) break; if (desc->bits[i].condition_mask != 0) { u32 offset = desc->bits[i].condition_offset; u32 condition = cmd[offset] & desc->bits[i].condition_mask; if (condition == 0) continue; } if (desc->bits[i].offset >= length) { DRM_DEBUG("CMD: Rejected command 0x%08X, too short to check bitmask (%s)\n", *cmd, engine->name); return false; } dword = cmd[desc->bits[i].offset] & desc->bits[i].mask; if (dword != desc->bits[i].expected) { DRM_DEBUG("CMD: Rejected command 0x%08X for bitmask 0x%08X (exp=0x%08X act=0x%08X) (%s)\n", *cmd, desc->bits[i].mask, desc->bits[i].expected, dword, engine->name); return false; } } } return true; } static int check_bbstart(u32 *cmd, u32 offset, u32 length, u32 batch_length, u64 batch_addr, u64 shadow_addr, const unsigned long *jump_whitelist) { u64 jump_offset, jump_target; u32 target_cmd_offset, target_cmd_index; /* For igt compatibility on older platforms */ if (!jump_whitelist) { DRM_DEBUG("CMD: Rejecting BB_START for ggtt based submission\n"); return -EACCES; } if (length != 3) { DRM_DEBUG("CMD: Recursive BB_START with bad length(%u)\n", length); return -EINVAL; } jump_target = *(u64 *)(cmd + 1); jump_offset = jump_target - batch_addr; /* * Any underflow of jump_target is guaranteed to be outside the range * of a u32, so >= test catches both too large and too small */ if (jump_offset >= batch_length) { DRM_DEBUG("CMD: BB_START to 0x%llx jumps out of BB\n", jump_target); return -EINVAL; } /* * This cannot overflow a u32 because we already checked jump_offset * is within the BB, and the batch_length is a u32 */ target_cmd_offset = lower_32_bits(jump_offset); target_cmd_index = target_cmd_offset / sizeof(u32); *(u64 *)(cmd + 1) = shadow_addr + target_cmd_offset; if (target_cmd_index == offset) return 0; if (IS_ERR(jump_whitelist)) return PTR_ERR(jump_whitelist); if (!test_bit(target_cmd_index, jump_whitelist)) { DRM_DEBUG("CMD: BB_START to 0x%llx not a previously executed cmd\n", jump_target); return -EINVAL; } return 0; } static unsigned long *alloc_whitelist(u32 batch_length) { unsigned long *jmp; /* * We expect batch_length to be less than 256KiB for known users, * i.e. we need at most an 8KiB bitmap allocation which should be * reasonably cheap due to kmalloc caches. */ /* Prefer to report transient allocation failure rather than hit oom */ jmp = bitmap_zalloc(DIV_ROUND_UP(batch_length, sizeof(u32)), GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); if (!jmp) return ERR_PTR(-ENOMEM); return jmp; } #define LENGTH_BIAS 2 /** * intel_engine_cmd_parser() - parse a batch buffer for privilege violations * @engine: the engine on which the batch is to execute * @batch: the batch buffer in question * @batch_offset: byte offset in the batch at which execution starts * @batch_length: length of the commands in batch_obj * @shadow: validated copy of the batch buffer in question * @trampoline: true if we need to trampoline into privileged execution * * Parses the specified batch buffer looking for privilege violations as * described in the overview. * * Return: non-zero if the parser finds violations or otherwise fails; -EACCES * if the batch appears legal but should use hardware parsing */ int intel_engine_cmd_parser(struct intel_engine_cs *engine, struct i915_vma *batch, unsigned long batch_offset, unsigned long batch_length, struct i915_vma *shadow, bool trampoline) { u32 *cmd, *batch_end, offset = 0; struct drm_i915_cmd_descriptor default_desc = noop_desc; const struct drm_i915_cmd_descriptor *desc = &default_desc; bool needs_clflush_after = false; unsigned long *jump_whitelist; u64 batch_addr, shadow_addr; int ret = 0; GEM_BUG_ON(!IS_ALIGNED(batch_offset, sizeof(*cmd))); GEM_BUG_ON(!IS_ALIGNED(batch_length, sizeof(*cmd))); GEM_BUG_ON(range_overflows_t(u64, batch_offset, batch_length, batch->size)); GEM_BUG_ON(!batch_length); cmd = copy_batch(shadow->obj, batch->obj, batch_offset, batch_length, &needs_clflush_after); if (IS_ERR(cmd)) { DRM_DEBUG("CMD: Failed to copy batch\n"); return PTR_ERR(cmd); } jump_whitelist = NULL; if (!trampoline) /* Defer failure until attempted use */ jump_whitelist = alloc_whitelist(batch_length); shadow_addr = gen8_canonical_addr(shadow->node.start); batch_addr = gen8_canonical_addr(batch->node.start + batch_offset); /* * We use the batch length as size because the shadow object is as * large or larger and copy_batch() will write MI_NOPs to the extra * space. Parsing should be faster in some cases this way. */ batch_end = cmd + batch_length / sizeof(*batch_end); do { u32 length; if (*cmd == MI_BATCH_BUFFER_END) break; desc = find_cmd(engine, *cmd, desc, &default_desc); if (!desc) { DRM_DEBUG("CMD: Unrecognized command: 0x%08X\n", *cmd); ret = -EINVAL; break; } if (desc->flags & CMD_DESC_FIXED) length = desc->length.fixed; else length = (*cmd & desc->length.mask) + LENGTH_BIAS; if ((batch_end - cmd) < length) { DRM_DEBUG("CMD: Command length exceeds batch length: 0x%08X length=%u batchlen=%td\n", *cmd, length, batch_end - cmd); ret = -EINVAL; break; } if (!check_cmd(engine, desc, cmd, length)) { ret = -EACCES; break; } if (cmd_desc_is(desc, MI_BATCH_BUFFER_START)) { ret = check_bbstart(cmd, offset, length, batch_length, batch_addr, shadow_addr, jump_whitelist); break; } if (!IS_ERR_OR_NULL(jump_whitelist)) __set_bit(offset, jump_whitelist); cmd += length; offset += length; if (cmd >= batch_end) { DRM_DEBUG("CMD: Got to the end of the buffer w/o a BBE cmd!\n"); ret = -EINVAL; break; } } while (1); if (trampoline) { /* * With the trampoline, the shadow is executed twice. * * 1 - starting at offset 0, in privileged mode * 2 - starting at offset batch_len, as non-privileged * * Only if the batch is valid and safe to execute, do we * allow the first privileged execution to proceed. If not, * we terminate the first batch and use the second batchbuffer * entry to chain to the original unsafe non-privileged batch, * leaving it to the HW to validate. */ *batch_end = MI_BATCH_BUFFER_END; if (ret) { /* Batch unsafe to execute with privileges, cancel! */ cmd = page_mask_bits(shadow->obj->mm.mapping); *cmd = MI_BATCH_BUFFER_END; /* If batch is unsafe but valid, jump to the original */ if (ret == -EACCES) { unsigned int flags; flags = MI_BATCH_NON_SECURE_I965; if (IS_HASWELL(engine->i915)) flags = MI_BATCH_NON_SECURE_HSW; GEM_BUG_ON(!IS_GRAPHICS_VER(engine->i915, 6, 7)); __gen6_emit_bb_start(batch_end, batch_addr, flags); ret = 0; /* allow execution */ } } } i915_gem_object_flush_map(shadow->obj); if (!IS_ERR_OR_NULL(jump_whitelist)) kfree(jump_whitelist); i915_gem_object_unpin_map(shadow->obj); return ret; } /** * i915_cmd_parser_get_version() - get the cmd parser version number * @dev_priv: i915 device private * * The cmd parser maintains a simple increasing integer version number suitable * for passing to userspace clients to determine what operations are permitted. * * Return: the current version number of the cmd parser */ int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv) { struct intel_engine_cs *engine; bool active = false; /* If the command parser is not enabled, report 0 - unsupported */ for_each_uabi_engine(engine, dev_priv) { if (intel_engine_using_cmd_parser(engine)) { active = true; break; } } if (!active) return 0; /* * Command parser version history * * 1. Initial version. Checks batches and reports violations, but leaves * hardware parsing enabled (so does not allow new use cases). * 2. Allow access to the MI_PREDICATE_SRC0 and * MI_PREDICATE_SRC1 registers. * 3. Allow access to the GPGPU_THREADS_DISPATCHED register. * 4. L3 atomic chicken bits of HSW_SCRATCH1 and HSW_ROW_CHICKEN3. * 5. GPGPU dispatch compute indirect registers. * 6. TIMESTAMP register and Haswell CS GPR registers * 7. Allow MI_LOAD_REGISTER_REG between whitelisted registers. * 8. Don't report cmd_check() failures as EINVAL errors to userspace; * rely on the HW to NOOP disallowed commands as it would without * the parser enabled. * 9. Don't whitelist or handle oacontrol specially, as ownership * for oacontrol state is moving to i915-perf. * 10. Support for Gen9 BCS Parsing */ return 10; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1