Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jordan Crouse | 2167 | 42.47% | 40 | 29.85% |
Rob Clark | 2063 | 40.43% | 53 | 39.55% |
Sharat Masetty | 199 | 3.90% | 2 | 1.49% |
Akhil P Oommen | 152 | 2.98% | 4 | 2.99% |
Brian Masney | 136 | 2.67% | 1 | 0.75% |
Arnd Bergmann | 90 | 1.76% | 3 | 2.24% |
Kees Cook | 64 | 1.25% | 1 | 0.75% |
Jonathan Marek | 59 | 1.16% | 6 | 4.48% |
Dmitry Eremin-Solenikov | 38 | 0.74% | 2 | 1.49% |
Archit Taneja | 35 | 0.69% | 2 | 1.49% |
Craig Stout | 21 | 0.41% | 1 | 0.75% |
Wen Yang | 16 | 0.31% | 1 | 0.75% |
Luca Weiss | 15 | 0.29% | 2 | 1.49% |
Aravind Ganesan | 11 | 0.22% | 1 | 0.75% |
Mamta Shukla | 9 | 0.18% | 1 | 0.75% |
Johan Hovold | 6 | 0.12% | 1 | 0.75% |
Maximilian Luz | 4 | 0.08% | 1 | 0.75% |
Björn Andersson | 4 | 0.08% | 1 | 0.75% |
Dan Carpenter | 3 | 0.06% | 1 | 0.75% |
Doug Anderson | 3 | 0.06% | 3 | 2.24% |
Thomas Gleixner | 2 | 0.04% | 1 | 0.75% |
Stephen Boyd | 1 | 0.02% | 1 | 0.75% |
Yangtao Li | 1 | 0.02% | 1 | 0.75% |
Russell King | 1 | 0.02% | 1 | 0.75% |
Fabio Estevam | 1 | 0.02% | 1 | 0.75% |
Takashi Iwai | 1 | 0.02% | 1 | 0.75% |
Colin Ian King | 1 | 0.02% | 1 | 0.75% |
Total | 5103 | 134 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2013 Red Hat * Author: Rob Clark <robdclark@gmail.com> * * Copyright (c) 2014 The Linux Foundation. All rights reserved. */ #include <linux/ascii85.h> #include <linux/interconnect.h> #include <linux/qcom_scm.h> #include <linux/kernel.h> #include <linux/of_address.h> #include <linux/pm_opp.h> #include <linux/slab.h> #include <linux/soc/qcom/mdt_loader.h> #include <linux/nvmem-consumer.h> #include <soc/qcom/ocmem.h> #include "adreno_gpu.h" #include "a6xx_gpu.h" #include "msm_gem.h" #include "msm_mmu.h" static u64 address_space_size = 0; MODULE_PARM_DESC(address_space_size, "Override for size of processes private GPU address space"); module_param(address_space_size, ullong, 0600); static bool zap_available = true; static int zap_shader_load_mdt(struct msm_gpu *gpu, const char *fwname, u32 pasid) { struct device *dev = &gpu->pdev->dev; const struct firmware *fw; const char *signed_fwname = NULL; struct device_node *np, *mem_np; struct resource r; phys_addr_t mem_phys; ssize_t mem_size; void *mem_region = NULL; int ret; if (!IS_ENABLED(CONFIG_ARCH_QCOM)) { zap_available = false; return -EINVAL; } np = of_get_child_by_name(dev->of_node, "zap-shader"); if (!np) { zap_available = false; return -ENODEV; } mem_np = of_parse_phandle(np, "memory-region", 0); of_node_put(np); if (!mem_np) { zap_available = false; return -EINVAL; } ret = of_address_to_resource(mem_np, 0, &r); of_node_put(mem_np); if (ret) return ret; mem_phys = r.start; /* * Check for a firmware-name property. This is the new scheme * to handle firmware that may be signed with device specific * keys, allowing us to have a different zap fw path for different * devices. * * If the firmware-name property is found, we bypass the * adreno_request_fw() mechanism, because we don't need to handle * the /lib/firmware/qcom/... vs /lib/firmware/... case. * * If the firmware-name property is not found, for backwards * compatibility we fall back to the fwname from the gpulist * table. */ of_property_read_string_index(np, "firmware-name", 0, &signed_fwname); if (signed_fwname) { fwname = signed_fwname; ret = request_firmware_direct(&fw, fwname, gpu->dev->dev); if (ret) fw = ERR_PTR(ret); } else if (fwname) { /* Request the MDT file from the default location: */ fw = adreno_request_fw(to_adreno_gpu(gpu), fwname); } else { /* * For new targets, we require the firmware-name property, * if a zap-shader is required, rather than falling back * to a firmware name specified in gpulist. * * Because the firmware is signed with a (potentially) * device specific key, having the name come from gpulist * was a bad idea, and is only provided for backwards * compatibility for older targets. */ return -ENODEV; } if (IS_ERR(fw)) { DRM_DEV_ERROR(dev, "Unable to load %s\n", fwname); return PTR_ERR(fw); } /* Figure out how much memory we need */ mem_size = qcom_mdt_get_size(fw); if (mem_size < 0) { ret = mem_size; goto out; } if (mem_size > resource_size(&r)) { DRM_DEV_ERROR(dev, "memory region is too small to load the MDT\n"); ret = -E2BIG; goto out; } /* Allocate memory for the firmware image */ mem_region = memremap(mem_phys, mem_size, MEMREMAP_WC); if (!mem_region) { ret = -ENOMEM; goto out; } /* * Load the rest of the MDT * * Note that we could be dealing with two different paths, since * with upstream linux-firmware it would be in a qcom/ subdir.. * adreno_request_fw() handles this, but qcom_mdt_load() does * not. But since we've already gotten through adreno_request_fw() * we know which of the two cases it is: */ if (signed_fwname || (to_adreno_gpu(gpu)->fwloc == FW_LOCATION_LEGACY)) { ret = qcom_mdt_load(dev, fw, fwname, pasid, mem_region, mem_phys, mem_size, NULL); } else { char *newname; newname = kasprintf(GFP_KERNEL, "qcom/%s", fwname); ret = qcom_mdt_load(dev, fw, newname, pasid, mem_region, mem_phys, mem_size, NULL); kfree(newname); } if (ret) goto out; /* Send the image to the secure world */ ret = qcom_scm_pas_auth_and_reset(pasid); /* * If the scm call returns -EOPNOTSUPP we assume that this target * doesn't need/support the zap shader so quietly fail */ if (ret == -EOPNOTSUPP) zap_available = false; else if (ret) DRM_DEV_ERROR(dev, "Unable to authorize the image\n"); out: if (mem_region) memunmap(mem_region); release_firmware(fw); return ret; } int adreno_zap_shader_load(struct msm_gpu *gpu, u32 pasid) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct platform_device *pdev = gpu->pdev; /* Short cut if we determine the zap shader isn't available/needed */ if (!zap_available) return -ENODEV; /* We need SCM to be able to load the firmware */ if (!qcom_scm_is_available()) { DRM_DEV_ERROR(&pdev->dev, "SCM is not available\n"); return -EPROBE_DEFER; } return zap_shader_load_mdt(gpu, adreno_gpu->info->zapfw, pasid); } struct msm_gem_address_space * adreno_create_address_space(struct msm_gpu *gpu, struct platform_device *pdev) { return adreno_iommu_create_address_space(gpu, pdev, 0); } struct msm_gem_address_space * adreno_iommu_create_address_space(struct msm_gpu *gpu, struct platform_device *pdev, unsigned long quirks) { struct iommu_domain_geometry *geometry; struct msm_mmu *mmu; struct msm_gem_address_space *aspace; u64 start, size; mmu = msm_iommu_new(&pdev->dev, quirks); if (IS_ERR_OR_NULL(mmu)) return ERR_CAST(mmu); geometry = msm_iommu_get_geometry(mmu); if (IS_ERR(geometry)) return ERR_CAST(geometry); /* * Use the aperture start or SZ_16M, whichever is greater. This will * ensure that we align with the allocated pagetable range while still * allowing room in the lower 32 bits for GMEM and whatnot */ start = max_t(u64, SZ_16M, geometry->aperture_start); size = geometry->aperture_end - start + 1; aspace = msm_gem_address_space_create(mmu, "gpu", start & GENMASK_ULL(48, 0), size); if (IS_ERR(aspace) && !IS_ERR(mmu)) mmu->funcs->destroy(mmu); return aspace; } u64 adreno_private_address_space_size(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); if (address_space_size) return address_space_size; if (adreno_gpu->info->address_space_size) return adreno_gpu->info->address_space_size; return SZ_4G; } int adreno_get_param(struct msm_gpu *gpu, struct msm_file_private *ctx, uint32_t param, uint64_t *value, uint32_t *len) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); /* No pointer params yet */ if (*len != 0) return -EINVAL; switch (param) { case MSM_PARAM_GPU_ID: *value = adreno_gpu->info->revn; return 0; case MSM_PARAM_GMEM_SIZE: *value = adreno_gpu->gmem; return 0; case MSM_PARAM_GMEM_BASE: *value = !adreno_is_a650_family(adreno_gpu) ? 0x100000 : 0; return 0; case MSM_PARAM_CHIP_ID: *value = (uint64_t)adreno_gpu->rev.patchid | ((uint64_t)adreno_gpu->rev.minor << 8) | ((uint64_t)adreno_gpu->rev.major << 16) | ((uint64_t)adreno_gpu->rev.core << 24); if (!adreno_gpu->info->revn) *value |= ((uint64_t) adreno_gpu->speedbin) << 32; return 0; case MSM_PARAM_MAX_FREQ: *value = adreno_gpu->base.fast_rate; return 0; case MSM_PARAM_TIMESTAMP: if (adreno_gpu->funcs->get_timestamp) { int ret; pm_runtime_get_sync(&gpu->pdev->dev); ret = adreno_gpu->funcs->get_timestamp(gpu, value); pm_runtime_put_autosuspend(&gpu->pdev->dev); return ret; } return -EINVAL; case MSM_PARAM_PRIORITIES: *value = gpu->nr_rings * NR_SCHED_PRIORITIES; return 0; case MSM_PARAM_PP_PGTABLE: *value = 0; return 0; case MSM_PARAM_FAULTS: if (ctx->aspace) *value = gpu->global_faults + ctx->aspace->faults; else *value = gpu->global_faults; return 0; case MSM_PARAM_SUSPENDS: *value = gpu->suspend_count; return 0; case MSM_PARAM_VA_START: if (ctx->aspace == gpu->aspace) return -EINVAL; *value = ctx->aspace->va_start; return 0; case MSM_PARAM_VA_SIZE: if (ctx->aspace == gpu->aspace) return -EINVAL; *value = ctx->aspace->va_size; return 0; default: DBG("%s: invalid param: %u", gpu->name, param); return -EINVAL; } } int adreno_set_param(struct msm_gpu *gpu, struct msm_file_private *ctx, uint32_t param, uint64_t value, uint32_t len) { switch (param) { case MSM_PARAM_COMM: case MSM_PARAM_CMDLINE: /* kstrdup_quotable_cmdline() limits to PAGE_SIZE, so * that should be a reasonable upper bound */ if (len > PAGE_SIZE) return -EINVAL; break; default: if (len != 0) return -EINVAL; } switch (param) { case MSM_PARAM_COMM: case MSM_PARAM_CMDLINE: { char *str, **paramp; str = kmalloc(len + 1, GFP_KERNEL); if (!str) return -ENOMEM; if (copy_from_user(str, u64_to_user_ptr(value), len)) { kfree(str); return -EFAULT; } /* Ensure string is null terminated: */ str[len] = '\0'; mutex_lock(&gpu->lock); if (param == MSM_PARAM_COMM) { paramp = &ctx->comm; } else { paramp = &ctx->cmdline; } kfree(*paramp); *paramp = str; mutex_unlock(&gpu->lock); return 0; } case MSM_PARAM_SYSPROF: if (!capable(CAP_SYS_ADMIN)) return -EPERM; return msm_file_private_set_sysprof(ctx, gpu, value); default: DBG("%s: invalid param: %u", gpu->name, param); return -EINVAL; } } const struct firmware * adreno_request_fw(struct adreno_gpu *adreno_gpu, const char *fwname) { struct drm_device *drm = adreno_gpu->base.dev; const struct firmware *fw = NULL; char *newname; int ret; newname = kasprintf(GFP_KERNEL, "qcom/%s", fwname); if (!newname) return ERR_PTR(-ENOMEM); /* * Try first to load from qcom/$fwfile using a direct load (to avoid * a potential timeout waiting for usermode helper) */ if ((adreno_gpu->fwloc == FW_LOCATION_UNKNOWN) || (adreno_gpu->fwloc == FW_LOCATION_NEW)) { ret = request_firmware_direct(&fw, newname, drm->dev); if (!ret) { DRM_DEV_INFO(drm->dev, "loaded %s from new location\n", newname); adreno_gpu->fwloc = FW_LOCATION_NEW; goto out; } else if (adreno_gpu->fwloc != FW_LOCATION_UNKNOWN) { DRM_DEV_ERROR(drm->dev, "failed to load %s: %d\n", newname, ret); fw = ERR_PTR(ret); goto out; } } /* * Then try the legacy location without qcom/ prefix */ if ((adreno_gpu->fwloc == FW_LOCATION_UNKNOWN) || (adreno_gpu->fwloc == FW_LOCATION_LEGACY)) { ret = request_firmware_direct(&fw, fwname, drm->dev); if (!ret) { DRM_DEV_INFO(drm->dev, "loaded %s from legacy location\n", newname); adreno_gpu->fwloc = FW_LOCATION_LEGACY; goto out; } else if (adreno_gpu->fwloc != FW_LOCATION_UNKNOWN) { DRM_DEV_ERROR(drm->dev, "failed to load %s: %d\n", fwname, ret); fw = ERR_PTR(ret); goto out; } } /* * Finally fall back to request_firmware() for cases where the * usermode helper is needed (I think mainly android) */ if ((adreno_gpu->fwloc == FW_LOCATION_UNKNOWN) || (adreno_gpu->fwloc == FW_LOCATION_HELPER)) { ret = request_firmware(&fw, newname, drm->dev); if (!ret) { DRM_DEV_INFO(drm->dev, "loaded %s with helper\n", newname); adreno_gpu->fwloc = FW_LOCATION_HELPER; goto out; } else if (adreno_gpu->fwloc != FW_LOCATION_UNKNOWN) { DRM_DEV_ERROR(drm->dev, "failed to load %s: %d\n", newname, ret); fw = ERR_PTR(ret); goto out; } } DRM_DEV_ERROR(drm->dev, "failed to load %s\n", fwname); fw = ERR_PTR(-ENOENT); out: kfree(newname); return fw; } int adreno_load_fw(struct adreno_gpu *adreno_gpu) { int i; for (i = 0; i < ARRAY_SIZE(adreno_gpu->info->fw); i++) { const struct firmware *fw; if (!adreno_gpu->info->fw[i]) continue; /* Skip if the firmware has already been loaded */ if (adreno_gpu->fw[i]) continue; fw = adreno_request_fw(adreno_gpu, adreno_gpu->info->fw[i]); if (IS_ERR(fw)) return PTR_ERR(fw); adreno_gpu->fw[i] = fw; } return 0; } struct drm_gem_object *adreno_fw_create_bo(struct msm_gpu *gpu, const struct firmware *fw, u64 *iova) { struct drm_gem_object *bo; void *ptr; ptr = msm_gem_kernel_new(gpu->dev, fw->size - 4, MSM_BO_WC | MSM_BO_GPU_READONLY, gpu->aspace, &bo, iova); if (IS_ERR(ptr)) return ERR_CAST(ptr); memcpy(ptr, &fw->data[4], fw->size - 4); msm_gem_put_vaddr(bo); return bo; } int adreno_hw_init(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); int ret, i; VERB("%s", gpu->name); ret = adreno_load_fw(adreno_gpu); if (ret) return ret; for (i = 0; i < gpu->nr_rings; i++) { struct msm_ringbuffer *ring = gpu->rb[i]; if (!ring) continue; ring->cur = ring->start; ring->next = ring->start; ring->memptrs->rptr = 0; /* Detect and clean up an impossible fence, ie. if GPU managed * to scribble something invalid, we don't want that to confuse * us into mistakingly believing that submits have completed. */ if (fence_before(ring->fctx->last_fence, ring->memptrs->fence)) { ring->memptrs->fence = ring->fctx->last_fence; } } return 0; } /* Use this helper to read rptr, since a430 doesn't update rptr in memory */ static uint32_t get_rptr(struct adreno_gpu *adreno_gpu, struct msm_ringbuffer *ring) { struct msm_gpu *gpu = &adreno_gpu->base; return gpu->funcs->get_rptr(gpu, ring); } struct msm_ringbuffer *adreno_active_ring(struct msm_gpu *gpu) { return gpu->rb[0]; } void adreno_recover(struct msm_gpu *gpu) { struct drm_device *dev = gpu->dev; int ret; // XXX pm-runtime?? we *need* the device to be off after this // so maybe continuing to call ->pm_suspend/resume() is better? gpu->funcs->pm_suspend(gpu); gpu->funcs->pm_resume(gpu); ret = msm_gpu_hw_init(gpu); if (ret) { DRM_DEV_ERROR(dev->dev, "gpu hw init failed: %d\n", ret); /* hmm, oh well? */ } } void adreno_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring, u32 reg) { uint32_t wptr; /* Copy the shadow to the actual register */ ring->cur = ring->next; /* * Mask wptr value that we calculate to fit in the HW range. This is * to account for the possibility that the last command fit exactly into * the ringbuffer and rb->next hasn't wrapped to zero yet */ wptr = get_wptr(ring); /* ensure writes to ringbuffer have hit system memory: */ mb(); gpu_write(gpu, reg, wptr); } bool adreno_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); uint32_t wptr = get_wptr(ring); /* wait for CP to drain ringbuffer: */ if (!spin_until(get_rptr(adreno_gpu, ring) == wptr)) return true; /* TODO maybe we need to reset GPU here to recover from hang? */ DRM_ERROR("%s: timeout waiting to drain ringbuffer %d rptr/wptr = %X/%X\n", gpu->name, ring->id, get_rptr(adreno_gpu, ring), wptr); return false; } int adreno_gpu_state_get(struct msm_gpu *gpu, struct msm_gpu_state *state) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); int i, count = 0; WARN_ON(!mutex_is_locked(&gpu->lock)); kref_init(&state->ref); ktime_get_real_ts64(&state->time); for (i = 0; i < gpu->nr_rings; i++) { int size = 0, j; state->ring[i].fence = gpu->rb[i]->memptrs->fence; state->ring[i].iova = gpu->rb[i]->iova; state->ring[i].seqno = gpu->rb[i]->fctx->last_fence; state->ring[i].rptr = get_rptr(adreno_gpu, gpu->rb[i]); state->ring[i].wptr = get_wptr(gpu->rb[i]); /* Copy at least 'wptr' dwords of the data */ size = state->ring[i].wptr; /* After wptr find the last non zero dword to save space */ for (j = state->ring[i].wptr; j < MSM_GPU_RINGBUFFER_SZ >> 2; j++) if (gpu->rb[i]->start[j]) size = j + 1; if (size) { state->ring[i].data = kvmalloc(size << 2, GFP_KERNEL); if (state->ring[i].data) { memcpy(state->ring[i].data, gpu->rb[i]->start, size << 2); state->ring[i].data_size = size << 2; } } } /* Some targets prefer to collect their own registers */ if (!adreno_gpu->registers) return 0; /* Count the number of registers */ for (i = 0; adreno_gpu->registers[i] != ~0; i += 2) count += adreno_gpu->registers[i + 1] - adreno_gpu->registers[i] + 1; state->registers = kcalloc(count * 2, sizeof(u32), GFP_KERNEL); if (state->registers) { int pos = 0; for (i = 0; adreno_gpu->registers[i] != ~0; i += 2) { u32 start = adreno_gpu->registers[i]; u32 end = adreno_gpu->registers[i + 1]; u32 addr; for (addr = start; addr <= end; addr++) { state->registers[pos++] = addr; state->registers[pos++] = gpu_read(gpu, addr); } } state->nr_registers = count; } return 0; } void adreno_gpu_state_destroy(struct msm_gpu_state *state) { int i; for (i = 0; i < ARRAY_SIZE(state->ring); i++) kvfree(state->ring[i].data); for (i = 0; state->bos && i < state->nr_bos; i++) kvfree(state->bos[i].data); kfree(state->bos); kfree(state->comm); kfree(state->cmd); kfree(state->registers); } static void adreno_gpu_state_kref_destroy(struct kref *kref) { struct msm_gpu_state *state = container_of(kref, struct msm_gpu_state, ref); adreno_gpu_state_destroy(state); kfree(state); } int adreno_gpu_state_put(struct msm_gpu_state *state) { if (IS_ERR_OR_NULL(state)) return 1; return kref_put(&state->ref, adreno_gpu_state_kref_destroy); } #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP) static char *adreno_gpu_ascii85_encode(u32 *src, size_t len) { void *buf; size_t buf_itr = 0, buffer_size; char out[ASCII85_BUFSZ]; long l; int i; if (!src || !len) return NULL; l = ascii85_encode_len(len); /* * Ascii85 outputs either a 5 byte string or a 1 byte string. So we * account for the worst case of 5 bytes per dword plus the 1 for '\0' */ buffer_size = (l * 5) + 1; buf = kvmalloc(buffer_size, GFP_KERNEL); if (!buf) return NULL; for (i = 0; i < l; i++) buf_itr += scnprintf(buf + buf_itr, buffer_size - buf_itr, "%s", ascii85_encode(src[i], out)); return buf; } /* len is expected to be in bytes * * WARNING: *ptr should be allocated with kvmalloc or friends. It can be free'd * with kvfree() and replaced with a newly kvmalloc'd buffer on the first call * when the unencoded raw data is encoded */ void adreno_show_object(struct drm_printer *p, void **ptr, int len, bool *encoded) { if (!*ptr || !len) return; if (!*encoded) { long datalen, i; u32 *buf = *ptr; /* * Only dump the non-zero part of the buffer - rarely will * any data completely fill the entire allocated size of * the buffer. */ for (datalen = 0, i = 0; i < len >> 2; i++) if (buf[i]) datalen = ((i + 1) << 2); /* * If we reach here, then the originally captured binary buffer * will be replaced with the ascii85 encoded string */ *ptr = adreno_gpu_ascii85_encode(buf, datalen); kvfree(buf); *encoded = true; } if (!*ptr) return; drm_puts(p, " data: !!ascii85 |\n"); drm_puts(p, " "); drm_puts(p, *ptr); drm_puts(p, "\n"); } void adreno_show(struct msm_gpu *gpu, struct msm_gpu_state *state, struct drm_printer *p) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); int i; if (IS_ERR_OR_NULL(state)) return; drm_printf(p, "revision: %d (%d.%d.%d.%d)\n", adreno_gpu->info->revn, adreno_gpu->rev.core, adreno_gpu->rev.major, adreno_gpu->rev.minor, adreno_gpu->rev.patchid); /* * If this is state collected due to iova fault, so fault related info * * TTBR0 would not be zero, so this is a good way to distinguish */ if (state->fault_info.ttbr0) { const struct msm_gpu_fault_info *info = &state->fault_info; drm_puts(p, "fault-info:\n"); drm_printf(p, " - ttbr0=%.16llx\n", info->ttbr0); drm_printf(p, " - iova=%.16lx\n", info->iova); drm_printf(p, " - dir=%s\n", info->flags & IOMMU_FAULT_WRITE ? "WRITE" : "READ"); drm_printf(p, " - type=%s\n", info->type); drm_printf(p, " - source=%s\n", info->block); } drm_printf(p, "rbbm-status: 0x%08x\n", state->rbbm_status); drm_puts(p, "ringbuffer:\n"); for (i = 0; i < gpu->nr_rings; i++) { drm_printf(p, " - id: %d\n", i); drm_printf(p, " iova: 0x%016llx\n", state->ring[i].iova); drm_printf(p, " last-fence: %u\n", state->ring[i].seqno); drm_printf(p, " retired-fence: %u\n", state->ring[i].fence); drm_printf(p, " rptr: %u\n", state->ring[i].rptr); drm_printf(p, " wptr: %u\n", state->ring[i].wptr); drm_printf(p, " size: %u\n", MSM_GPU_RINGBUFFER_SZ); adreno_show_object(p, &state->ring[i].data, state->ring[i].data_size, &state->ring[i].encoded); } if (state->bos) { drm_puts(p, "bos:\n"); for (i = 0; i < state->nr_bos; i++) { drm_printf(p, " - iova: 0x%016llx\n", state->bos[i].iova); drm_printf(p, " size: %zd\n", state->bos[i].size); drm_printf(p, " name: %-32s\n", state->bos[i].name); adreno_show_object(p, &state->bos[i].data, state->bos[i].size, &state->bos[i].encoded); } } if (state->nr_registers) { drm_puts(p, "registers:\n"); for (i = 0; i < state->nr_registers; i++) { drm_printf(p, " - { offset: 0x%04x, value: 0x%08x }\n", state->registers[i * 2] << 2, state->registers[(i * 2) + 1]); } } } #endif /* Dump common gpu status and scratch registers on any hang, to make * the hangcheck logs more useful. The scratch registers seem always * safe to read when GPU has hung (unlike some other regs, depending * on how the GPU hung), and they are useful to match up to cmdstream * dumps when debugging hangs: */ void adreno_dump_info(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); int i; printk("revision: %d (%d.%d.%d.%d)\n", adreno_gpu->info->revn, adreno_gpu->rev.core, adreno_gpu->rev.major, adreno_gpu->rev.minor, adreno_gpu->rev.patchid); for (i = 0; i < gpu->nr_rings; i++) { struct msm_ringbuffer *ring = gpu->rb[i]; printk("rb %d: fence: %d/%d\n", i, ring->memptrs->fence, ring->fctx->last_fence); printk("rptr: %d\n", get_rptr(adreno_gpu, ring)); printk("rb wptr: %d\n", get_wptr(ring)); } } /* would be nice to not have to duplicate the _show() stuff with printk(): */ void adreno_dump(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); int i; if (!adreno_gpu->registers) return; /* dump these out in a form that can be parsed by demsm: */ printk("IO:region %s 00000000 00020000\n", gpu->name); for (i = 0; adreno_gpu->registers[i] != ~0; i += 2) { uint32_t start = adreno_gpu->registers[i]; uint32_t end = adreno_gpu->registers[i+1]; uint32_t addr; for (addr = start; addr <= end; addr++) { uint32_t val = gpu_read(gpu, addr); printk("IO:R %08x %08x\n", addr<<2, val); } } } static uint32_t ring_freewords(struct msm_ringbuffer *ring) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(ring->gpu); uint32_t size = MSM_GPU_RINGBUFFER_SZ >> 2; /* Use ring->next to calculate free size */ uint32_t wptr = ring->next - ring->start; uint32_t rptr = get_rptr(adreno_gpu, ring); return (rptr + (size - 1) - wptr) % size; } void adreno_wait_ring(struct msm_ringbuffer *ring, uint32_t ndwords) { if (spin_until(ring_freewords(ring) >= ndwords)) DRM_DEV_ERROR(ring->gpu->dev->dev, "timeout waiting for space in ringbuffer %d\n", ring->id); } /* Get legacy powerlevels from qcom,gpu-pwrlevels and populate the opp table */ static int adreno_get_legacy_pwrlevels(struct device *dev) { struct device_node *child, *node; int ret; node = of_get_compatible_child(dev->of_node, "qcom,gpu-pwrlevels"); if (!node) { DRM_DEV_DEBUG(dev, "Could not find the GPU powerlevels\n"); return -ENXIO; } for_each_child_of_node(node, child) { unsigned int val; ret = of_property_read_u32(child, "qcom,gpu-freq", &val); if (ret) continue; /* * Skip the intentionally bogus clock value found at the bottom * of most legacy frequency tables */ if (val != 27000000) dev_pm_opp_add(dev, val, 0); } of_node_put(node); return 0; } static void adreno_get_pwrlevels(struct device *dev, struct msm_gpu *gpu) { unsigned long freq = ULONG_MAX; struct dev_pm_opp *opp; int ret; gpu->fast_rate = 0; /* You down with OPP? */ if (!of_find_property(dev->of_node, "operating-points-v2", NULL)) ret = adreno_get_legacy_pwrlevels(dev); else { ret = devm_pm_opp_of_add_table(dev); if (ret) DRM_DEV_ERROR(dev, "Unable to set the OPP table\n"); } if (!ret) { /* Find the fastest defined rate */ opp = dev_pm_opp_find_freq_floor(dev, &freq); if (!IS_ERR(opp)) { gpu->fast_rate = freq; dev_pm_opp_put(opp); } } if (!gpu->fast_rate) { dev_warn(dev, "Could not find a clock rate. Using a reasonable default\n"); /* Pick a suitably safe clock speed for any target */ gpu->fast_rate = 200000000; } DBG("fast_rate=%u, slow_rate=27000000", gpu->fast_rate); } int adreno_gpu_ocmem_init(struct device *dev, struct adreno_gpu *adreno_gpu, struct adreno_ocmem *adreno_ocmem) { struct ocmem_buf *ocmem_hdl; struct ocmem *ocmem; ocmem = of_get_ocmem(dev); if (IS_ERR(ocmem)) { if (PTR_ERR(ocmem) == -ENODEV) { /* * Return success since either the ocmem property was * not specified in device tree, or ocmem support is * not compiled into the kernel. */ return 0; } return PTR_ERR(ocmem); } ocmem_hdl = ocmem_allocate(ocmem, OCMEM_GRAPHICS, adreno_gpu->gmem); if (IS_ERR(ocmem_hdl)) return PTR_ERR(ocmem_hdl); adreno_ocmem->ocmem = ocmem; adreno_ocmem->base = ocmem_hdl->addr; adreno_ocmem->hdl = ocmem_hdl; adreno_gpu->gmem = ocmem_hdl->len; return 0; } void adreno_gpu_ocmem_cleanup(struct adreno_ocmem *adreno_ocmem) { if (adreno_ocmem && adreno_ocmem->base) ocmem_free(adreno_ocmem->ocmem, OCMEM_GRAPHICS, adreno_ocmem->hdl); } int adreno_read_speedbin(struct device *dev, u32 *speedbin) { return nvmem_cell_read_variable_le_u32(dev, "speed_bin", speedbin); } int adreno_gpu_init(struct drm_device *drm, struct platform_device *pdev, struct adreno_gpu *adreno_gpu, const struct adreno_gpu_funcs *funcs, int nr_rings) { struct device *dev = &pdev->dev; struct adreno_platform_config *config = dev->platform_data; struct msm_gpu_config adreno_gpu_config = { 0 }; struct msm_gpu *gpu = &adreno_gpu->base; struct adreno_rev *rev = &config->rev; const char *gpu_name; u32 speedbin; adreno_gpu->funcs = funcs; adreno_gpu->info = adreno_info(config->rev); adreno_gpu->gmem = adreno_gpu->info->gmem; adreno_gpu->revn = adreno_gpu->info->revn; adreno_gpu->rev = *rev; if (adreno_read_speedbin(dev, &speedbin) || !speedbin) speedbin = 0xffff; adreno_gpu->speedbin = (uint16_t) (0xffff & speedbin); gpu_name = adreno_gpu->info->name; if (!gpu_name) { gpu_name = devm_kasprintf(dev, GFP_KERNEL, "%d.%d.%d.%d", rev->core, rev->major, rev->minor, rev->patchid); if (!gpu_name) return -ENOMEM; } adreno_gpu_config.ioname = "kgsl_3d0_reg_memory"; adreno_gpu_config.nr_rings = nr_rings; adreno_get_pwrlevels(dev, gpu); pm_runtime_set_autosuspend_delay(dev, adreno_gpu->info->inactive_period); pm_runtime_use_autosuspend(dev); return msm_gpu_init(drm, pdev, &adreno_gpu->base, &funcs->base, gpu_name, &adreno_gpu_config); } void adreno_gpu_cleanup(struct adreno_gpu *adreno_gpu) { struct msm_gpu *gpu = &adreno_gpu->base; struct msm_drm_private *priv = gpu->dev->dev_private; unsigned int i; for (i = 0; i < ARRAY_SIZE(adreno_gpu->info->fw); i++) release_firmware(adreno_gpu->fw[i]); if (pm_runtime_enabled(&priv->gpu_pdev->dev)) pm_runtime_disable(&priv->gpu_pdev->dev); msm_gpu_cleanup(&adreno_gpu->base); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1