Contributors: 10
Author Tokens Token Proportion Commits Commit Proportion
Jeykumar Sankaran 1436 78.86% 1 6.67%
Kuogee Hsieh 120 6.59% 3 20.00%
Kalyan Thota 93 5.11% 2 13.33%
Jessica Zhang 67 3.68% 1 6.67%
Krishna Manikandan 41 2.25% 1 6.67%
Jonathan Marek 34 1.87% 2 13.33%
Rob Clark 23 1.26% 2 13.33%
Stephen Boyd 4 0.22% 1 6.67%
Dmitry Eremin-Solenikov 2 0.11% 1 6.67%
Thomas Gleixner 1 0.05% 1 6.67%
Total 1821 15


// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
 * Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
 */

#include "dpu_hwio.h"
#include "dpu_hw_catalog.h"
#include "dpu_hw_intf.h"
#include "dpu_kms.h"

#define INTF_TIMING_ENGINE_EN           0x000
#define INTF_CONFIG                     0x004
#define INTF_HSYNC_CTL                  0x008
#define INTF_VSYNC_PERIOD_F0            0x00C
#define INTF_VSYNC_PERIOD_F1            0x010
#define INTF_VSYNC_PULSE_WIDTH_F0       0x014
#define INTF_VSYNC_PULSE_WIDTH_F1       0x018
#define INTF_DISPLAY_V_START_F0         0x01C
#define INTF_DISPLAY_V_START_F1         0x020
#define INTF_DISPLAY_V_END_F0           0x024
#define INTF_DISPLAY_V_END_F1           0x028
#define INTF_ACTIVE_V_START_F0          0x02C
#define INTF_ACTIVE_V_START_F1          0x030
#define INTF_ACTIVE_V_END_F0            0x034
#define INTF_ACTIVE_V_END_F1            0x038
#define INTF_DISPLAY_HCTL               0x03C
#define INTF_ACTIVE_HCTL                0x040
#define INTF_BORDER_COLOR               0x044
#define INTF_UNDERFLOW_COLOR            0x048
#define INTF_HSYNC_SKEW                 0x04C
#define INTF_POLARITY_CTL               0x050
#define INTF_TEST_CTL                   0x054
#define INTF_TP_COLOR0                  0x058
#define INTF_TP_COLOR1                  0x05C
#define INTF_CONFIG2                    0x060
#define INTF_DISPLAY_DATA_HCTL          0x064
#define INTF_ACTIVE_DATA_HCTL           0x068
#define INTF_FRAME_LINE_COUNT_EN        0x0A8
#define INTF_FRAME_COUNT                0x0AC
#define   INTF_LINE_COUNT               0x0B0

#define   INTF_DEFLICKER_CONFIG         0x0F0
#define   INTF_DEFLICKER_STRNG_COEFF    0x0F4
#define   INTF_DEFLICKER_WEAK_COEFF     0x0F8

#define   INTF_DSI_CMD_MODE_TRIGGER_EN  0x084
#define   INTF_PANEL_FORMAT             0x090
#define   INTF_TPG_ENABLE               0x100
#define   INTF_TPG_MAIN_CONTROL         0x104
#define   INTF_TPG_VIDEO_CONFIG         0x108
#define   INTF_TPG_COMPONENT_LIMITS     0x10C
#define   INTF_TPG_RECTANGLE            0x110
#define   INTF_TPG_INITIAL_VALUE        0x114
#define   INTF_TPG_BLK_WHITE_PATTERN_FRAMES   0x118
#define   INTF_TPG_RGB_MAPPING          0x11C
#define   INTF_PROG_FETCH_START         0x170
#define   INTF_PROG_ROT_START           0x174

#define   INTF_FRAME_LINE_COUNT_EN      0x0A8
#define   INTF_FRAME_COUNT              0x0AC
#define   INTF_LINE_COUNT               0x0B0

#define   INTF_MUX                      0x25C

#define INTF_CFG_ACTIVE_H_EN	BIT(29)
#define INTF_CFG_ACTIVE_V_EN	BIT(30)

#define INTF_CFG2_DATABUS_WIDEN	BIT(0)
#define INTF_CFG2_DATA_HCTL_EN	BIT(4)

#define INTF_MISR_CTRL			0x180
#define INTF_MISR_SIGNATURE		0x184

static const struct dpu_intf_cfg *_intf_offset(enum dpu_intf intf,
		const struct dpu_mdss_cfg *m,
		void __iomem *addr,
		struct dpu_hw_blk_reg_map *b)
{
	int i;

	for (i = 0; i < m->intf_count; i++) {
		if ((intf == m->intf[i].id) &&
		(m->intf[i].type != INTF_NONE)) {
			b->blk_addr = addr + m->intf[i].base;
			b->log_mask = DPU_DBG_MASK_INTF;
			return &m->intf[i];
		}
	}

	return ERR_PTR(-EINVAL);
}

static void dpu_hw_intf_setup_timing_engine(struct dpu_hw_intf *ctx,
		const struct intf_timing_params *p,
		const struct dpu_format *fmt)
{
	struct dpu_hw_blk_reg_map *c = &ctx->hw;
	u32 hsync_period, vsync_period;
	u32 display_v_start, display_v_end;
	u32 hsync_start_x, hsync_end_x;
	u32 hsync_data_start_x, hsync_data_end_x;
	u32 active_h_start, active_h_end;
	u32 active_v_start, active_v_end;
	u32 active_hctl, display_hctl, hsync_ctl;
	u32 polarity_ctl, den_polarity, hsync_polarity, vsync_polarity;
	u32 panel_format;
	u32 intf_cfg, intf_cfg2 = 0;
	u32 display_data_hctl = 0, active_data_hctl = 0;
	u32 data_width;
	bool dp_intf = false;

	/* read interface_cfg */
	intf_cfg = DPU_REG_READ(c, INTF_CONFIG);

	if (ctx->cap->type == INTF_DP)
		dp_intf = true;

	hsync_period = p->hsync_pulse_width + p->h_back_porch + p->width +
	p->h_front_porch;
	vsync_period = p->vsync_pulse_width + p->v_back_porch + p->height +
	p->v_front_porch;

	display_v_start = ((p->vsync_pulse_width + p->v_back_porch) *
	hsync_period) + p->hsync_skew;
	display_v_end = ((vsync_period - p->v_front_porch) * hsync_period) +
	p->hsync_skew - 1;

	hsync_start_x = p->h_back_porch + p->hsync_pulse_width;
	hsync_end_x = hsync_period - p->h_front_porch - 1;

	if (p->width != p->xres) { /* border fill added */
		active_h_start = hsync_start_x;
		active_h_end = active_h_start + p->xres - 1;
	} else {
		active_h_start = 0;
		active_h_end = 0;
	}

	if (p->height != p->yres) { /* border fill added */
		active_v_start = display_v_start;
		active_v_end = active_v_start + (p->yres * hsync_period) - 1;
	} else {
		active_v_start = 0;
		active_v_end = 0;
	}

	if (active_h_end) {
		active_hctl = (active_h_end << 16) | active_h_start;
		intf_cfg |= INTF_CFG_ACTIVE_H_EN;
	} else {
		active_hctl = 0;
	}

	if (active_v_end)
		intf_cfg |= INTF_CFG_ACTIVE_V_EN;

	hsync_ctl = (hsync_period << 16) | p->hsync_pulse_width;
	display_hctl = (hsync_end_x << 16) | hsync_start_x;

	/*
	 * DATA_HCTL_EN controls data timing which can be different from
	 * video timing. It is recommended to enable it for all cases, except
	 * if compression is enabled in 1 pixel per clock mode
	 */
	if (p->wide_bus_en)
		intf_cfg2 |= INTF_CFG2_DATABUS_WIDEN | INTF_CFG2_DATA_HCTL_EN;

	data_width = p->width;

	hsync_data_start_x = hsync_start_x;
	hsync_data_end_x =  hsync_start_x + data_width - 1;

	display_data_hctl = (hsync_data_end_x << 16) | hsync_data_start_x;

	if (dp_intf) {
		/* DP timing adjustment */
		display_v_start += p->hsync_pulse_width + p->h_back_porch;
		display_v_end   -= p->h_front_porch;

		active_h_start = hsync_start_x;
		active_h_end = active_h_start + p->xres - 1;
		active_v_start = display_v_start;
		active_v_end = active_v_start + (p->yres * hsync_period) - 1;

		active_hctl = (active_h_end << 16) | active_h_start;
		display_hctl = active_hctl;

		intf_cfg |= INTF_CFG_ACTIVE_H_EN | INTF_CFG_ACTIVE_V_EN;
	}

	den_polarity = 0;
	if (ctx->cap->type == INTF_HDMI) {
		hsync_polarity = p->yres >= 720 ? 0 : 1;
		vsync_polarity = p->yres >= 720 ? 0 : 1;
	} else if (ctx->cap->type == INTF_DP) {
		hsync_polarity = p->hsync_polarity;
		vsync_polarity = p->vsync_polarity;
	} else {
		hsync_polarity = 0;
		vsync_polarity = 0;
	}
	polarity_ctl = (den_polarity << 2) | /*  DEN Polarity  */
		(vsync_polarity << 1) | /* VSYNC Polarity */
		(hsync_polarity << 0);  /* HSYNC Polarity */

	if (!DPU_FORMAT_IS_YUV(fmt))
		panel_format = (fmt->bits[C0_G_Y] |
				(fmt->bits[C1_B_Cb] << 2) |
				(fmt->bits[C2_R_Cr] << 4) |
				(0x21 << 8));
	else
		/* Interface treats all the pixel data in RGB888 format */
		panel_format = (COLOR_8BIT |
				(COLOR_8BIT << 2) |
				(COLOR_8BIT << 4) |
				(0x21 << 8));

	DPU_REG_WRITE(c, INTF_HSYNC_CTL, hsync_ctl);
	DPU_REG_WRITE(c, INTF_VSYNC_PERIOD_F0, vsync_period * hsync_period);
	DPU_REG_WRITE(c, INTF_VSYNC_PULSE_WIDTH_F0,
			p->vsync_pulse_width * hsync_period);
	DPU_REG_WRITE(c, INTF_DISPLAY_HCTL, display_hctl);
	DPU_REG_WRITE(c, INTF_DISPLAY_V_START_F0, display_v_start);
	DPU_REG_WRITE(c, INTF_DISPLAY_V_END_F0, display_v_end);
	DPU_REG_WRITE(c, INTF_ACTIVE_HCTL,  active_hctl);
	DPU_REG_WRITE(c, INTF_ACTIVE_V_START_F0, active_v_start);
	DPU_REG_WRITE(c, INTF_ACTIVE_V_END_F0, active_v_end);
	DPU_REG_WRITE(c, INTF_BORDER_COLOR, p->border_clr);
	DPU_REG_WRITE(c, INTF_UNDERFLOW_COLOR, p->underflow_clr);
	DPU_REG_WRITE(c, INTF_HSYNC_SKEW, p->hsync_skew);
	DPU_REG_WRITE(c, INTF_POLARITY_CTL, polarity_ctl);
	DPU_REG_WRITE(c, INTF_FRAME_LINE_COUNT_EN, 0x3);
	DPU_REG_WRITE(c, INTF_CONFIG, intf_cfg);
	DPU_REG_WRITE(c, INTF_PANEL_FORMAT, panel_format);
	if (ctx->cap->features & BIT(DPU_DATA_HCTL_EN)) {
		DPU_REG_WRITE(c, INTF_CONFIG2, intf_cfg2);
		DPU_REG_WRITE(c, INTF_DISPLAY_DATA_HCTL, display_data_hctl);
		DPU_REG_WRITE(c, INTF_ACTIVE_DATA_HCTL, active_data_hctl);
	}
}

static void dpu_hw_intf_enable_timing_engine(
		struct dpu_hw_intf *intf,
		u8 enable)
{
	struct dpu_hw_blk_reg_map *c = &intf->hw;
	/* Note: Display interface select is handled in top block hw layer */
	DPU_REG_WRITE(c, INTF_TIMING_ENGINE_EN, enable != 0);
}

static void dpu_hw_intf_setup_prg_fetch(
		struct dpu_hw_intf *intf,
		const struct intf_prog_fetch *fetch)
{
	struct dpu_hw_blk_reg_map *c = &intf->hw;
	int fetch_enable;

	/*
	 * Fetch should always be outside the active lines. If the fetching
	 * is programmed within active region, hardware behavior is unknown.
	 */

	fetch_enable = DPU_REG_READ(c, INTF_CONFIG);
	if (fetch->enable) {
		fetch_enable |= BIT(31);
		DPU_REG_WRITE(c, INTF_PROG_FETCH_START,
				fetch->fetch_start);
	} else {
		fetch_enable &= ~BIT(31);
	}

	DPU_REG_WRITE(c, INTF_CONFIG, fetch_enable);
}

static void dpu_hw_intf_bind_pingpong_blk(
		struct dpu_hw_intf *intf,
		bool enable,
		const enum dpu_pingpong pp)
{
	struct dpu_hw_blk_reg_map *c = &intf->hw;
	u32 mux_cfg;

	mux_cfg = DPU_REG_READ(c, INTF_MUX);
	mux_cfg &= ~0xf;

	if (enable)
		mux_cfg |= (pp - PINGPONG_0) & 0x7;
	else
		mux_cfg |= 0xf;

	DPU_REG_WRITE(c, INTF_MUX, mux_cfg);
}

static void dpu_hw_intf_get_status(
		struct dpu_hw_intf *intf,
		struct intf_status *s)
{
	struct dpu_hw_blk_reg_map *c = &intf->hw;

	s->is_en = DPU_REG_READ(c, INTF_TIMING_ENGINE_EN);
	s->is_prog_fetch_en = !!(DPU_REG_READ(c, INTF_CONFIG) & BIT(31));
	if (s->is_en) {
		s->frame_count = DPU_REG_READ(c, INTF_FRAME_COUNT);
		s->line_count = DPU_REG_READ(c, INTF_LINE_COUNT);
	} else {
		s->line_count = 0;
		s->frame_count = 0;
	}
}

static u32 dpu_hw_intf_get_line_count(struct dpu_hw_intf *intf)
{
	struct dpu_hw_blk_reg_map *c;

	if (!intf)
		return 0;

	c = &intf->hw;

	return DPU_REG_READ(c, INTF_LINE_COUNT);
}

static void dpu_hw_intf_setup_misr(struct dpu_hw_intf *intf, bool enable, u32 frame_count)
{
	dpu_hw_setup_misr(&intf->hw, INTF_MISR_CTRL, enable, frame_count);
}

static int dpu_hw_intf_collect_misr(struct dpu_hw_intf *intf, u32 *misr_value)
{
	return dpu_hw_collect_misr(&intf->hw, INTF_MISR_CTRL, INTF_MISR_SIGNATURE, misr_value);
}

static void _setup_intf_ops(struct dpu_hw_intf_ops *ops,
		unsigned long cap)
{
	ops->setup_timing_gen = dpu_hw_intf_setup_timing_engine;
	ops->setup_prg_fetch  = dpu_hw_intf_setup_prg_fetch;
	ops->get_status = dpu_hw_intf_get_status;
	ops->enable_timing = dpu_hw_intf_enable_timing_engine;
	ops->get_line_count = dpu_hw_intf_get_line_count;
	if (cap & BIT(DPU_INTF_INPUT_CTRL))
		ops->bind_pingpong_blk = dpu_hw_intf_bind_pingpong_blk;
	ops->setup_misr = dpu_hw_intf_setup_misr;
	ops->collect_misr = dpu_hw_intf_collect_misr;
}

struct dpu_hw_intf *dpu_hw_intf_init(enum dpu_intf idx,
		void __iomem *addr,
		const struct dpu_mdss_cfg *m)
{
	struct dpu_hw_intf *c;
	const struct dpu_intf_cfg *cfg;

	c = kzalloc(sizeof(*c), GFP_KERNEL);
	if (!c)
		return ERR_PTR(-ENOMEM);

	cfg = _intf_offset(idx, m, addr, &c->hw);
	if (IS_ERR_OR_NULL(cfg)) {
		kfree(c);
		pr_err("failed to create dpu_hw_intf %d\n", idx);
		return ERR_PTR(-EINVAL);
	}

	/*
	 * Assign ops
	 */
	c->idx = idx;
	c->cap = cfg;
	c->mdss = m;
	_setup_intf_ops(&c->ops, c->cap->features);

	return c;
}

void dpu_hw_intf_destroy(struct dpu_hw_intf *intf)
{
	kfree(intf);
}