Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Rob Clark | 819 | 51.74% | 14 | 37.84% |
Chia-I Wu | 285 | 18.00% | 2 | 5.41% |
Jordan Crouse | 239 | 15.10% | 6 | 16.22% |
Doug Anderson | 126 | 7.96% | 1 | 2.70% |
Sharat Masetty | 38 | 2.40% | 4 | 10.81% |
Akhil P Oommen | 36 | 2.27% | 1 | 2.70% |
Jonathan Marek | 13 | 0.82% | 1 | 2.70% |
Sean Paul | 11 | 0.69% | 2 | 5.41% |
Stephan Gerhold | 5 | 0.32% | 1 | 2.70% |
Björn Andersson | 3 | 0.19% | 1 | 2.70% |
Wan Jiabing | 3 | 0.19% | 1 | 2.70% |
Thomas Gleixner | 2 | 0.13% | 1 | 2.70% |
Mamta Shukla | 2 | 0.13% | 1 | 2.70% |
Yue Hu | 1 | 0.06% | 1 | 2.70% |
Total | 1583 | 37 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2013 Red Hat * Author: Rob Clark <robdclark@gmail.com> */ #include "msm_gpu.h" #include "msm_gpu_trace.h" #include <linux/devfreq.h> #include <linux/devfreq_cooling.h> #include <linux/math64.h> #include <linux/units.h> /* * Power Management: */ static int msm_devfreq_target(struct device *dev, unsigned long *freq, u32 flags) { struct msm_gpu *gpu = dev_to_gpu(dev); struct msm_gpu_devfreq *df = &gpu->devfreq; struct dev_pm_opp *opp; /* * Note that devfreq_recommended_opp() can modify the freq * to something that actually is in the opp table: */ opp = devfreq_recommended_opp(dev, freq, flags); if (IS_ERR(opp)) return PTR_ERR(opp); trace_msm_gpu_freq_change(dev_pm_opp_get_freq(opp)); if (gpu->funcs->gpu_set_freq) { mutex_lock(&df->lock); gpu->funcs->gpu_set_freq(gpu, opp, df->suspended); mutex_unlock(&df->lock); } else { clk_set_rate(gpu->core_clk, *freq); } dev_pm_opp_put(opp); return 0; } static unsigned long get_freq(struct msm_gpu *gpu) { if (gpu->funcs->gpu_get_freq) return gpu->funcs->gpu_get_freq(gpu); return clk_get_rate(gpu->core_clk); } static void get_raw_dev_status(struct msm_gpu *gpu, struct devfreq_dev_status *status) { struct msm_gpu_devfreq *df = &gpu->devfreq; u64 busy_cycles, busy_time; unsigned long sample_rate; ktime_t time; mutex_lock(&df->lock); status->current_frequency = get_freq(gpu); time = ktime_get(); status->total_time = ktime_us_delta(time, df->time); df->time = time; if (df->suspended) { mutex_unlock(&df->lock); status->busy_time = 0; return; } busy_cycles = gpu->funcs->gpu_busy(gpu, &sample_rate); busy_time = busy_cycles - df->busy_cycles; df->busy_cycles = busy_cycles; mutex_unlock(&df->lock); busy_time *= USEC_PER_SEC; busy_time = div64_ul(busy_time, sample_rate); if (WARN_ON(busy_time > ~0LU)) busy_time = ~0LU; status->busy_time = busy_time; } static void update_average_dev_status(struct msm_gpu *gpu, const struct devfreq_dev_status *raw) { struct msm_gpu_devfreq *df = &gpu->devfreq; const u32 polling_ms = df->devfreq->profile->polling_ms; const u32 max_history_ms = polling_ms * 11 / 10; struct devfreq_dev_status *avg = &df->average_status; u64 avg_freq; /* simple_ondemand governor interacts poorly with gpu->clamp_to_idle. * When we enforce the constraint on idle, it calls get_dev_status * which would normally reset the stats. When we remove the * constraint on active, it calls get_dev_status again where busy_time * would be 0. * * To remedy this, we always return the average load over the past * polling_ms. */ /* raw is longer than polling_ms or avg has no history */ if (div_u64(raw->total_time, USEC_PER_MSEC) >= polling_ms || !avg->total_time) { *avg = *raw; return; } /* Truncate the oldest history first. * * Because we keep the history with a single devfreq_dev_status, * rather than a list of devfreq_dev_status, we have to assume freq * and load are the same over avg->total_time. We can scale down * avg->busy_time and avg->total_time by the same factor to drop * history. */ if (div_u64(avg->total_time + raw->total_time, USEC_PER_MSEC) >= max_history_ms) { const u32 new_total_time = polling_ms * USEC_PER_MSEC - raw->total_time; avg->busy_time = div_u64( mul_u32_u32(avg->busy_time, new_total_time), avg->total_time); avg->total_time = new_total_time; } /* compute the average freq over avg->total_time + raw->total_time */ avg_freq = mul_u32_u32(avg->current_frequency, avg->total_time); avg_freq += mul_u32_u32(raw->current_frequency, raw->total_time); do_div(avg_freq, avg->total_time + raw->total_time); avg->current_frequency = avg_freq; avg->busy_time += raw->busy_time; avg->total_time += raw->total_time; } static int msm_devfreq_get_dev_status(struct device *dev, struct devfreq_dev_status *status) { struct msm_gpu *gpu = dev_to_gpu(dev); struct devfreq_dev_status raw; get_raw_dev_status(gpu, &raw); update_average_dev_status(gpu, &raw); *status = gpu->devfreq.average_status; return 0; } static int msm_devfreq_get_cur_freq(struct device *dev, unsigned long *freq) { *freq = get_freq(dev_to_gpu(dev)); return 0; } static struct devfreq_dev_profile msm_devfreq_profile = { .timer = DEVFREQ_TIMER_DELAYED, .polling_ms = 50, .target = msm_devfreq_target, .get_dev_status = msm_devfreq_get_dev_status, .get_cur_freq = msm_devfreq_get_cur_freq, }; static void msm_devfreq_boost_work(struct kthread_work *work); static void msm_devfreq_idle_work(struct kthread_work *work); static bool has_devfreq(struct msm_gpu *gpu) { struct msm_gpu_devfreq *df = &gpu->devfreq; return !!df->devfreq; } void msm_devfreq_init(struct msm_gpu *gpu) { struct msm_gpu_devfreq *df = &gpu->devfreq; /* We need target support to do devfreq */ if (!gpu->funcs->gpu_busy) return; mutex_init(&df->lock); dev_pm_qos_add_request(&gpu->pdev->dev, &df->idle_freq, DEV_PM_QOS_MAX_FREQUENCY, PM_QOS_MAX_FREQUENCY_DEFAULT_VALUE); dev_pm_qos_add_request(&gpu->pdev->dev, &df->boost_freq, DEV_PM_QOS_MIN_FREQUENCY, 0); msm_devfreq_profile.initial_freq = gpu->fast_rate; /* * Don't set the freq_table or max_state and let devfreq build the table * from OPP * After a deferred probe, these may have be left to non-zero values, * so set them back to zero before creating the devfreq device */ msm_devfreq_profile.freq_table = NULL; msm_devfreq_profile.max_state = 0; df->devfreq = devm_devfreq_add_device(&gpu->pdev->dev, &msm_devfreq_profile, DEVFREQ_GOV_SIMPLE_ONDEMAND, NULL); if (IS_ERR(df->devfreq)) { DRM_DEV_ERROR(&gpu->pdev->dev, "Couldn't initialize GPU devfreq\n"); dev_pm_qos_remove_request(&df->idle_freq); dev_pm_qos_remove_request(&df->boost_freq); df->devfreq = NULL; return; } devfreq_suspend_device(df->devfreq); gpu->cooling = of_devfreq_cooling_register(gpu->pdev->dev.of_node, df->devfreq); if (IS_ERR(gpu->cooling)) { DRM_DEV_ERROR(&gpu->pdev->dev, "Couldn't register GPU cooling device\n"); gpu->cooling = NULL; } msm_hrtimer_work_init(&df->boost_work, gpu->worker, msm_devfreq_boost_work, CLOCK_MONOTONIC, HRTIMER_MODE_REL); msm_hrtimer_work_init(&df->idle_work, gpu->worker, msm_devfreq_idle_work, CLOCK_MONOTONIC, HRTIMER_MODE_REL); } static void cancel_idle_work(struct msm_gpu_devfreq *df) { hrtimer_cancel(&df->idle_work.timer); kthread_cancel_work_sync(&df->idle_work.work); } static void cancel_boost_work(struct msm_gpu_devfreq *df) { hrtimer_cancel(&df->boost_work.timer); kthread_cancel_work_sync(&df->boost_work.work); } void msm_devfreq_cleanup(struct msm_gpu *gpu) { struct msm_gpu_devfreq *df = &gpu->devfreq; if (!has_devfreq(gpu)) return; devfreq_cooling_unregister(gpu->cooling); dev_pm_qos_remove_request(&df->boost_freq); dev_pm_qos_remove_request(&df->idle_freq); } void msm_devfreq_resume(struct msm_gpu *gpu) { struct msm_gpu_devfreq *df = &gpu->devfreq; unsigned long sample_rate; if (!has_devfreq(gpu)) return; mutex_lock(&df->lock); df->busy_cycles = gpu->funcs->gpu_busy(gpu, &sample_rate); df->time = ktime_get(); df->suspended = false; mutex_unlock(&df->lock); devfreq_resume_device(df->devfreq); } void msm_devfreq_suspend(struct msm_gpu *gpu) { struct msm_gpu_devfreq *df = &gpu->devfreq; if (!has_devfreq(gpu)) return; mutex_lock(&df->lock); df->suspended = true; mutex_unlock(&df->lock); devfreq_suspend_device(df->devfreq); cancel_idle_work(df); cancel_boost_work(df); } static void msm_devfreq_boost_work(struct kthread_work *work) { struct msm_gpu_devfreq *df = container_of(work, struct msm_gpu_devfreq, boost_work.work); dev_pm_qos_update_request(&df->boost_freq, 0); } void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor) { struct msm_gpu_devfreq *df = &gpu->devfreq; uint64_t freq; if (!has_devfreq(gpu)) return; freq = get_freq(gpu); freq *= factor; /* * A nice little trap is that PM QoS operates in terms of KHz, * while devfreq operates in terms of Hz: */ do_div(freq, HZ_PER_KHZ); dev_pm_qos_update_request(&df->boost_freq, freq); msm_hrtimer_queue_work(&df->boost_work, ms_to_ktime(msm_devfreq_profile.polling_ms), HRTIMER_MODE_REL); } void msm_devfreq_active(struct msm_gpu *gpu) { struct msm_gpu_devfreq *df = &gpu->devfreq; unsigned int idle_time; if (!has_devfreq(gpu)) return; /* * Cancel any pending transition to idle frequency: */ cancel_idle_work(df); idle_time = ktime_to_ms(ktime_sub(ktime_get(), df->idle_time)); /* * If we've been idle for a significant fraction of a polling * interval, then we won't meet the threshold of busyness for * the governor to ramp up the freq.. so give some boost */ if (idle_time > msm_devfreq_profile.polling_ms) { msm_devfreq_boost(gpu, 2); } dev_pm_qos_update_request(&df->idle_freq, PM_QOS_MAX_FREQUENCY_DEFAULT_VALUE); } static void msm_devfreq_idle_work(struct kthread_work *work) { struct msm_gpu_devfreq *df = container_of(work, struct msm_gpu_devfreq, idle_work.work); struct msm_gpu *gpu = container_of(df, struct msm_gpu, devfreq); df->idle_time = ktime_get(); if (gpu->clamp_to_idle) dev_pm_qos_update_request(&df->idle_freq, 0); } void msm_devfreq_idle(struct msm_gpu *gpu) { struct msm_gpu_devfreq *df = &gpu->devfreq; if (!has_devfreq(gpu)) return; msm_hrtimer_queue_work(&df->idle_work, ms_to_ktime(1), HRTIMER_MODE_REL); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1