Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Torvalds | 3106 | 82.32% | 13 | 22.81% |
Ben Hutchings | 218 | 5.78% | 2 | 3.51% |
Dave Airlie | 206 | 5.46% | 16 | 28.07% |
Eric Anholt | 109 | 2.89% | 4 | 7.02% |
Daniel Vetter | 38 | 1.01% | 4 | 7.02% |
Linus Torvalds (pre-git) | 28 | 0.74% | 4 | 7.02% |
Sam Ravnborg | 28 | 0.74% | 2 | 3.51% |
Benjamin Herrenschmidt | 12 | 0.32% | 1 | 1.75% |
Dan Carpenter | 7 | 0.19% | 1 | 1.75% |
Paul Gortmaker | 5 | 0.13% | 1 | 1.75% |
Thomas Zimmermann | 4 | 0.11% | 2 | 3.51% |
Al Viro | 4 | 0.11% | 1 | 1.75% |
Joe Perches | 3 | 0.08% | 1 | 1.75% |
Harvey Harrison | 1 | 0.03% | 1 | 1.75% |
David Herrmann | 1 | 0.03% | 1 | 1.75% |
David Howells | 1 | 0.03% | 1 | 1.75% |
Nicolas Kaiser | 1 | 0.03% | 1 | 1.75% |
Márton Németh | 1 | 0.03% | 1 | 1.75% |
Total | 3773 | 57 |
/* r128_cce.c -- ATI Rage 128 driver -*- linux-c -*- * Created: Wed Apr 5 19:24:19 2000 by kevin@precisioninsight.com */ /* * Copyright 2000 Precision Insight, Inc., Cedar Park, Texas. * Copyright 2000 VA Linux Systems, Inc., Sunnyvale, California. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Gareth Hughes <gareth@valinux.com> */ #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/firmware.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <drm/drm_device.h> #include <drm/drm_file.h> #include <drm/drm_legacy.h> #include <drm/drm_print.h> #include <drm/r128_drm.h> #include "r128_drv.h" #define R128_FIFO_DEBUG 0 #define FIRMWARE_NAME "r128/r128_cce.bin" MODULE_FIRMWARE(FIRMWARE_NAME); static int R128_READ_PLL(struct drm_device *dev, int addr) { drm_r128_private_t *dev_priv = dev->dev_private; R128_WRITE8(R128_CLOCK_CNTL_INDEX, addr & 0x1f); return R128_READ(R128_CLOCK_CNTL_DATA); } #if R128_FIFO_DEBUG static void r128_status(drm_r128_private_t *dev_priv) { printk("GUI_STAT = 0x%08x\n", (unsigned int)R128_READ(R128_GUI_STAT)); printk("PM4_STAT = 0x%08x\n", (unsigned int)R128_READ(R128_PM4_STAT)); printk("PM4_BUFFER_DL_WPTR = 0x%08x\n", (unsigned int)R128_READ(R128_PM4_BUFFER_DL_WPTR)); printk("PM4_BUFFER_DL_RPTR = 0x%08x\n", (unsigned int)R128_READ(R128_PM4_BUFFER_DL_RPTR)); printk("PM4_MICRO_CNTL = 0x%08x\n", (unsigned int)R128_READ(R128_PM4_MICRO_CNTL)); printk("PM4_BUFFER_CNTL = 0x%08x\n", (unsigned int)R128_READ(R128_PM4_BUFFER_CNTL)); } #endif /* ================================================================ * Engine, FIFO control */ static int r128_do_pixcache_flush(drm_r128_private_t *dev_priv) { u32 tmp; int i; tmp = R128_READ(R128_PC_NGUI_CTLSTAT) | R128_PC_FLUSH_ALL; R128_WRITE(R128_PC_NGUI_CTLSTAT, tmp); for (i = 0; i < dev_priv->usec_timeout; i++) { if (!(R128_READ(R128_PC_NGUI_CTLSTAT) & R128_PC_BUSY)) return 0; udelay(1); } #if R128_FIFO_DEBUG DRM_ERROR("failed!\n"); #endif return -EBUSY; } static int r128_do_wait_for_fifo(drm_r128_private_t *dev_priv, int entries) { int i; for (i = 0; i < dev_priv->usec_timeout; i++) { int slots = R128_READ(R128_GUI_STAT) & R128_GUI_FIFOCNT_MASK; if (slots >= entries) return 0; udelay(1); } #if R128_FIFO_DEBUG DRM_ERROR("failed!\n"); #endif return -EBUSY; } static int r128_do_wait_for_idle(drm_r128_private_t *dev_priv) { int i, ret; ret = r128_do_wait_for_fifo(dev_priv, 64); if (ret) return ret; for (i = 0; i < dev_priv->usec_timeout; i++) { if (!(R128_READ(R128_GUI_STAT) & R128_GUI_ACTIVE)) { r128_do_pixcache_flush(dev_priv); return 0; } udelay(1); } #if R128_FIFO_DEBUG DRM_ERROR("failed!\n"); #endif return -EBUSY; } /* ================================================================ * CCE control, initialization */ /* Load the microcode for the CCE */ static int r128_cce_load_microcode(drm_r128_private_t *dev_priv) { struct platform_device *pdev; const struct firmware *fw; const __be32 *fw_data; int rc, i; DRM_DEBUG("\n"); pdev = platform_device_register_simple("r128_cce", 0, NULL, 0); if (IS_ERR(pdev)) { pr_err("r128_cce: Failed to register firmware\n"); return PTR_ERR(pdev); } rc = request_firmware(&fw, FIRMWARE_NAME, &pdev->dev); platform_device_unregister(pdev); if (rc) { pr_err("r128_cce: Failed to load firmware \"%s\"\n", FIRMWARE_NAME); return rc; } if (fw->size != 256 * 8) { pr_err("r128_cce: Bogus length %zu in firmware \"%s\"\n", fw->size, FIRMWARE_NAME); rc = -EINVAL; goto out_release; } r128_do_wait_for_idle(dev_priv); fw_data = (const __be32 *)fw->data; R128_WRITE(R128_PM4_MICROCODE_ADDR, 0); for (i = 0; i < 256; i++) { R128_WRITE(R128_PM4_MICROCODE_DATAH, be32_to_cpup(&fw_data[i * 2])); R128_WRITE(R128_PM4_MICROCODE_DATAL, be32_to_cpup(&fw_data[i * 2 + 1])); } out_release: release_firmware(fw); return rc; } /* Flush any pending commands to the CCE. This should only be used just * prior to a wait for idle, as it informs the engine that the command * stream is ending. */ static void r128_do_cce_flush(drm_r128_private_t *dev_priv) { u32 tmp; tmp = R128_READ(R128_PM4_BUFFER_DL_WPTR) | R128_PM4_BUFFER_DL_DONE; R128_WRITE(R128_PM4_BUFFER_DL_WPTR, tmp); } /* Wait for the CCE to go idle. */ int r128_do_cce_idle(drm_r128_private_t *dev_priv) { int i; for (i = 0; i < dev_priv->usec_timeout; i++) { if (GET_RING_HEAD(dev_priv) == dev_priv->ring.tail) { int pm4stat = R128_READ(R128_PM4_STAT); if (((pm4stat & R128_PM4_FIFOCNT_MASK) >= dev_priv->cce_fifo_size) && !(pm4stat & (R128_PM4_BUSY | R128_PM4_GUI_ACTIVE))) { return r128_do_pixcache_flush(dev_priv); } } udelay(1); } #if R128_FIFO_DEBUG DRM_ERROR("failed!\n"); r128_status(dev_priv); #endif return -EBUSY; } /* Start the Concurrent Command Engine. */ static void r128_do_cce_start(drm_r128_private_t *dev_priv) { r128_do_wait_for_idle(dev_priv); R128_WRITE(R128_PM4_BUFFER_CNTL, dev_priv->cce_mode | dev_priv->ring.size_l2qw | R128_PM4_BUFFER_CNTL_NOUPDATE); R128_READ(R128_PM4_BUFFER_ADDR); /* as per the sample code */ R128_WRITE(R128_PM4_MICRO_CNTL, R128_PM4_MICRO_FREERUN); dev_priv->cce_running = 1; } /* Reset the Concurrent Command Engine. This will not flush any pending * commands, so you must wait for the CCE command stream to complete * before calling this routine. */ static void r128_do_cce_reset(drm_r128_private_t *dev_priv) { R128_WRITE(R128_PM4_BUFFER_DL_WPTR, 0); R128_WRITE(R128_PM4_BUFFER_DL_RPTR, 0); dev_priv->ring.tail = 0; } /* Stop the Concurrent Command Engine. This will not flush any pending * commands, so you must flush the command stream and wait for the CCE * to go idle before calling this routine. */ static void r128_do_cce_stop(drm_r128_private_t *dev_priv) { R128_WRITE(R128_PM4_MICRO_CNTL, 0); R128_WRITE(R128_PM4_BUFFER_CNTL, R128_PM4_NONPM4 | R128_PM4_BUFFER_CNTL_NOUPDATE); dev_priv->cce_running = 0; } /* Reset the engine. This will stop the CCE if it is running. */ static int r128_do_engine_reset(struct drm_device *dev) { drm_r128_private_t *dev_priv = dev->dev_private; u32 clock_cntl_index, mclk_cntl, gen_reset_cntl; r128_do_pixcache_flush(dev_priv); clock_cntl_index = R128_READ(R128_CLOCK_CNTL_INDEX); mclk_cntl = R128_READ_PLL(dev, R128_MCLK_CNTL); R128_WRITE_PLL(R128_MCLK_CNTL, mclk_cntl | R128_FORCE_GCP | R128_FORCE_PIPE3D_CP); gen_reset_cntl = R128_READ(R128_GEN_RESET_CNTL); /* Taken from the sample code - do not change */ R128_WRITE(R128_GEN_RESET_CNTL, gen_reset_cntl | R128_SOFT_RESET_GUI); R128_READ(R128_GEN_RESET_CNTL); R128_WRITE(R128_GEN_RESET_CNTL, gen_reset_cntl & ~R128_SOFT_RESET_GUI); R128_READ(R128_GEN_RESET_CNTL); R128_WRITE_PLL(R128_MCLK_CNTL, mclk_cntl); R128_WRITE(R128_CLOCK_CNTL_INDEX, clock_cntl_index); R128_WRITE(R128_GEN_RESET_CNTL, gen_reset_cntl); /* Reset the CCE ring */ r128_do_cce_reset(dev_priv); /* The CCE is no longer running after an engine reset */ dev_priv->cce_running = 0; /* Reset any pending vertex, indirect buffers */ r128_freelist_reset(dev); return 0; } static void r128_cce_init_ring_buffer(struct drm_device *dev, drm_r128_private_t *dev_priv) { u32 ring_start; u32 tmp; DRM_DEBUG("\n"); /* The manual (p. 2) says this address is in "VM space". This * means it's an offset from the start of AGP space. */ #if IS_ENABLED(CONFIG_AGP) if (!dev_priv->is_pci) ring_start = dev_priv->cce_ring->offset - dev->agp->base; else #endif ring_start = dev_priv->cce_ring->offset - (unsigned long)dev->sg->virtual; R128_WRITE(R128_PM4_BUFFER_OFFSET, ring_start | R128_AGP_OFFSET); R128_WRITE(R128_PM4_BUFFER_DL_WPTR, 0); R128_WRITE(R128_PM4_BUFFER_DL_RPTR, 0); /* Set watermark control */ R128_WRITE(R128_PM4_BUFFER_WM_CNTL, ((R128_WATERMARK_L / 4) << R128_WMA_SHIFT) | ((R128_WATERMARK_M / 4) << R128_WMB_SHIFT) | ((R128_WATERMARK_N / 4) << R128_WMC_SHIFT) | ((R128_WATERMARK_K / 64) << R128_WB_WM_SHIFT)); /* Force read. Why? Because it's in the examples... */ R128_READ(R128_PM4_BUFFER_ADDR); /* Turn on bus mastering */ tmp = R128_READ(R128_BUS_CNTL) & ~R128_BUS_MASTER_DIS; R128_WRITE(R128_BUS_CNTL, tmp); } static int r128_do_init_cce(struct drm_device *dev, drm_r128_init_t *init) { drm_r128_private_t *dev_priv; int rc; DRM_DEBUG("\n"); if (dev->dev_private) { DRM_DEBUG("called when already initialized\n"); return -EINVAL; } dev_priv = kzalloc(sizeof(drm_r128_private_t), GFP_KERNEL); if (dev_priv == NULL) return -ENOMEM; dev_priv->is_pci = init->is_pci; if (dev_priv->is_pci && !dev->sg) { DRM_ERROR("PCI GART memory not allocated!\n"); dev->dev_private = (void *)dev_priv; r128_do_cleanup_cce(dev); return -EINVAL; } dev_priv->usec_timeout = init->usec_timeout; if (dev_priv->usec_timeout < 1 || dev_priv->usec_timeout > R128_MAX_USEC_TIMEOUT) { DRM_DEBUG("TIMEOUT problem!\n"); dev->dev_private = (void *)dev_priv; r128_do_cleanup_cce(dev); return -EINVAL; } dev_priv->cce_mode = init->cce_mode; /* GH: Simple idle check. */ atomic_set(&dev_priv->idle_count, 0); /* We don't support anything other than bus-mastering ring mode, * but the ring can be in either AGP or PCI space for the ring * read pointer. */ if ((init->cce_mode != R128_PM4_192BM) && (init->cce_mode != R128_PM4_128BM_64INDBM) && (init->cce_mode != R128_PM4_64BM_128INDBM) && (init->cce_mode != R128_PM4_64BM_64VCBM_64INDBM)) { DRM_DEBUG("Bad cce_mode!\n"); dev->dev_private = (void *)dev_priv; r128_do_cleanup_cce(dev); return -EINVAL; } switch (init->cce_mode) { case R128_PM4_NONPM4: dev_priv->cce_fifo_size = 0; break; case R128_PM4_192PIO: case R128_PM4_192BM: dev_priv->cce_fifo_size = 192; break; case R128_PM4_128PIO_64INDBM: case R128_PM4_128BM_64INDBM: dev_priv->cce_fifo_size = 128; break; case R128_PM4_64PIO_128INDBM: case R128_PM4_64BM_128INDBM: case R128_PM4_64PIO_64VCBM_64INDBM: case R128_PM4_64BM_64VCBM_64INDBM: case R128_PM4_64PIO_64VCPIO_64INDPIO: dev_priv->cce_fifo_size = 64; break; } switch (init->fb_bpp) { case 16: dev_priv->color_fmt = R128_DATATYPE_RGB565; break; case 32: default: dev_priv->color_fmt = R128_DATATYPE_ARGB8888; break; } dev_priv->front_offset = init->front_offset; dev_priv->front_pitch = init->front_pitch; dev_priv->back_offset = init->back_offset; dev_priv->back_pitch = init->back_pitch; switch (init->depth_bpp) { case 16: dev_priv->depth_fmt = R128_DATATYPE_RGB565; break; case 24: case 32: default: dev_priv->depth_fmt = R128_DATATYPE_ARGB8888; break; } dev_priv->depth_offset = init->depth_offset; dev_priv->depth_pitch = init->depth_pitch; dev_priv->span_offset = init->span_offset; dev_priv->front_pitch_offset_c = (((dev_priv->front_pitch / 8) << 21) | (dev_priv->front_offset >> 5)); dev_priv->back_pitch_offset_c = (((dev_priv->back_pitch / 8) << 21) | (dev_priv->back_offset >> 5)); dev_priv->depth_pitch_offset_c = (((dev_priv->depth_pitch / 8) << 21) | (dev_priv->depth_offset >> 5) | R128_DST_TILE); dev_priv->span_pitch_offset_c = (((dev_priv->depth_pitch / 8) << 21) | (dev_priv->span_offset >> 5)); dev_priv->sarea = drm_legacy_getsarea(dev); if (!dev_priv->sarea) { DRM_ERROR("could not find sarea!\n"); dev->dev_private = (void *)dev_priv; r128_do_cleanup_cce(dev); return -EINVAL; } dev_priv->mmio = drm_legacy_findmap(dev, init->mmio_offset); if (!dev_priv->mmio) { DRM_ERROR("could not find mmio region!\n"); dev->dev_private = (void *)dev_priv; r128_do_cleanup_cce(dev); return -EINVAL; } dev_priv->cce_ring = drm_legacy_findmap(dev, init->ring_offset); if (!dev_priv->cce_ring) { DRM_ERROR("could not find cce ring region!\n"); dev->dev_private = (void *)dev_priv; r128_do_cleanup_cce(dev); return -EINVAL; } dev_priv->ring_rptr = drm_legacy_findmap(dev, init->ring_rptr_offset); if (!dev_priv->ring_rptr) { DRM_ERROR("could not find ring read pointer!\n"); dev->dev_private = (void *)dev_priv; r128_do_cleanup_cce(dev); return -EINVAL; } dev->agp_buffer_token = init->buffers_offset; dev->agp_buffer_map = drm_legacy_findmap(dev, init->buffers_offset); if (!dev->agp_buffer_map) { DRM_ERROR("could not find dma buffer region!\n"); dev->dev_private = (void *)dev_priv; r128_do_cleanup_cce(dev); return -EINVAL; } if (!dev_priv->is_pci) { dev_priv->agp_textures = drm_legacy_findmap(dev, init->agp_textures_offset); if (!dev_priv->agp_textures) { DRM_ERROR("could not find agp texture region!\n"); dev->dev_private = (void *)dev_priv; r128_do_cleanup_cce(dev); return -EINVAL; } } dev_priv->sarea_priv = (drm_r128_sarea_t *) ((u8 *) dev_priv->sarea->handle + init->sarea_priv_offset); #if IS_ENABLED(CONFIG_AGP) if (!dev_priv->is_pci) { drm_legacy_ioremap_wc(dev_priv->cce_ring, dev); drm_legacy_ioremap_wc(dev_priv->ring_rptr, dev); drm_legacy_ioremap_wc(dev->agp_buffer_map, dev); if (!dev_priv->cce_ring->handle || !dev_priv->ring_rptr->handle || !dev->agp_buffer_map->handle) { DRM_ERROR("Could not ioremap agp regions!\n"); dev->dev_private = (void *)dev_priv; r128_do_cleanup_cce(dev); return -ENOMEM; } } else #endif { dev_priv->cce_ring->handle = (void *)(unsigned long)dev_priv->cce_ring->offset; dev_priv->ring_rptr->handle = (void *)(unsigned long)dev_priv->ring_rptr->offset; dev->agp_buffer_map->handle = (void *)(unsigned long)dev->agp_buffer_map->offset; } #if IS_ENABLED(CONFIG_AGP) if (!dev_priv->is_pci) dev_priv->cce_buffers_offset = dev->agp->base; else #endif dev_priv->cce_buffers_offset = (unsigned long)dev->sg->virtual; dev_priv->ring.start = (u32 *) dev_priv->cce_ring->handle; dev_priv->ring.end = ((u32 *) dev_priv->cce_ring->handle + init->ring_size / sizeof(u32)); dev_priv->ring.size = init->ring_size; dev_priv->ring.size_l2qw = order_base_2(init->ring_size / 8); dev_priv->ring.tail_mask = (dev_priv->ring.size / sizeof(u32)) - 1; dev_priv->ring.high_mark = 128; dev_priv->sarea_priv->last_frame = 0; R128_WRITE(R128_LAST_FRAME_REG, dev_priv->sarea_priv->last_frame); dev_priv->sarea_priv->last_dispatch = 0; R128_WRITE(R128_LAST_DISPATCH_REG, dev_priv->sarea_priv->last_dispatch); #if IS_ENABLED(CONFIG_AGP) if (dev_priv->is_pci) { #endif dev_priv->gart_info.table_mask = DMA_BIT_MASK(32); dev_priv->gart_info.gart_table_location = DRM_ATI_GART_MAIN; dev_priv->gart_info.table_size = R128_PCIGART_TABLE_SIZE; dev_priv->gart_info.addr = NULL; dev_priv->gart_info.bus_addr = 0; dev_priv->gart_info.gart_reg_if = DRM_ATI_GART_PCI; rc = drm_ati_pcigart_init(dev, &dev_priv->gart_info); if (rc) { DRM_ERROR("failed to init PCI GART!\n"); dev->dev_private = (void *)dev_priv; r128_do_cleanup_cce(dev); return rc; } R128_WRITE(R128_PCI_GART_PAGE, dev_priv->gart_info.bus_addr); #if IS_ENABLED(CONFIG_AGP) } #endif r128_cce_init_ring_buffer(dev, dev_priv); rc = r128_cce_load_microcode(dev_priv); dev->dev_private = (void *)dev_priv; r128_do_engine_reset(dev); if (rc) { DRM_ERROR("Failed to load firmware!\n"); r128_do_cleanup_cce(dev); } return rc; } int r128_do_cleanup_cce(struct drm_device *dev) { /* Make sure interrupts are disabled here because the uninstall ioctl * may not have been called from userspace and after dev_private * is freed, it's too late. */ if (dev->irq_enabled) drm_legacy_irq_uninstall(dev); if (dev->dev_private) { drm_r128_private_t *dev_priv = dev->dev_private; #if IS_ENABLED(CONFIG_AGP) if (!dev_priv->is_pci) { if (dev_priv->cce_ring != NULL) drm_legacy_ioremapfree(dev_priv->cce_ring, dev); if (dev_priv->ring_rptr != NULL) drm_legacy_ioremapfree(dev_priv->ring_rptr, dev); if (dev->agp_buffer_map != NULL) { drm_legacy_ioremapfree(dev->agp_buffer_map, dev); dev->agp_buffer_map = NULL; } } else #endif { if (dev_priv->gart_info.bus_addr) if (!drm_ati_pcigart_cleanup(dev, &dev_priv->gart_info)) DRM_ERROR ("failed to cleanup PCI GART!\n"); } kfree(dev->dev_private); dev->dev_private = NULL; } return 0; } int r128_cce_init(struct drm_device *dev, void *data, struct drm_file *file_priv) { drm_r128_init_t *init = data; DRM_DEBUG("\n"); LOCK_TEST_WITH_RETURN(dev, file_priv); switch (init->func) { case R128_INIT_CCE: return r128_do_init_cce(dev, init); case R128_CLEANUP_CCE: return r128_do_cleanup_cce(dev); } return -EINVAL; } int r128_cce_start(struct drm_device *dev, void *data, struct drm_file *file_priv) { drm_r128_private_t *dev_priv = dev->dev_private; DRM_DEBUG("\n"); LOCK_TEST_WITH_RETURN(dev, file_priv); DEV_INIT_TEST_WITH_RETURN(dev_priv); if (dev_priv->cce_running || dev_priv->cce_mode == R128_PM4_NONPM4) { DRM_DEBUG("while CCE running\n"); return 0; } r128_do_cce_start(dev_priv); return 0; } /* Stop the CCE. The engine must have been idled before calling this * routine. */ int r128_cce_stop(struct drm_device *dev, void *data, struct drm_file *file_priv) { drm_r128_private_t *dev_priv = dev->dev_private; drm_r128_cce_stop_t *stop = data; int ret; DRM_DEBUG("\n"); LOCK_TEST_WITH_RETURN(dev, file_priv); DEV_INIT_TEST_WITH_RETURN(dev_priv); /* Flush any pending CCE commands. This ensures any outstanding * commands are exectuted by the engine before we turn it off. */ if (stop->flush) r128_do_cce_flush(dev_priv); /* If we fail to make the engine go idle, we return an error * code so that the DRM ioctl wrapper can try again. */ if (stop->idle) { ret = r128_do_cce_idle(dev_priv); if (ret) return ret; } /* Finally, we can turn off the CCE. If the engine isn't idle, * we will get some dropped triangles as they won't be fully * rendered before the CCE is shut down. */ r128_do_cce_stop(dev_priv); /* Reset the engine */ r128_do_engine_reset(dev); return 0; } /* Just reset the CCE ring. Called as part of an X Server engine reset. */ int r128_cce_reset(struct drm_device *dev, void *data, struct drm_file *file_priv) { drm_r128_private_t *dev_priv = dev->dev_private; DRM_DEBUG("\n"); LOCK_TEST_WITH_RETURN(dev, file_priv); DEV_INIT_TEST_WITH_RETURN(dev_priv); r128_do_cce_reset(dev_priv); /* The CCE is no longer running after an engine reset */ dev_priv->cce_running = 0; return 0; } int r128_cce_idle(struct drm_device *dev, void *data, struct drm_file *file_priv) { drm_r128_private_t *dev_priv = dev->dev_private; DRM_DEBUG("\n"); LOCK_TEST_WITH_RETURN(dev, file_priv); DEV_INIT_TEST_WITH_RETURN(dev_priv); if (dev_priv->cce_running) r128_do_cce_flush(dev_priv); return r128_do_cce_idle(dev_priv); } int r128_engine_reset(struct drm_device *dev, void *data, struct drm_file *file_priv) { DRM_DEBUG("\n"); LOCK_TEST_WITH_RETURN(dev, file_priv); DEV_INIT_TEST_WITH_RETURN(dev->dev_private); return r128_do_engine_reset(dev); } int r128_fullscreen(struct drm_device *dev, void *data, struct drm_file *file_priv) { return -EINVAL; } /* ================================================================ * Freelist management */ #define R128_BUFFER_USED 0xffffffff #define R128_BUFFER_FREE 0 #if 0 static int r128_freelist_init(struct drm_device *dev) { struct drm_device_dma *dma = dev->dma; drm_r128_private_t *dev_priv = dev->dev_private; struct drm_buf *buf; drm_r128_buf_priv_t *buf_priv; drm_r128_freelist_t *entry; int i; dev_priv->head = kzalloc(sizeof(drm_r128_freelist_t), GFP_KERNEL); if (dev_priv->head == NULL) return -ENOMEM; dev_priv->head->age = R128_BUFFER_USED; for (i = 0; i < dma->buf_count; i++) { buf = dma->buflist[i]; buf_priv = buf->dev_private; entry = kmalloc(sizeof(drm_r128_freelist_t), GFP_KERNEL); if (!entry) return -ENOMEM; entry->age = R128_BUFFER_FREE; entry->buf = buf; entry->prev = dev_priv->head; entry->next = dev_priv->head->next; if (!entry->next) dev_priv->tail = entry; buf_priv->discard = 0; buf_priv->dispatched = 0; buf_priv->list_entry = entry; dev_priv->head->next = entry; if (dev_priv->head->next) dev_priv->head->next->prev = entry; } return 0; } #endif static struct drm_buf *r128_freelist_get(struct drm_device * dev) { struct drm_device_dma *dma = dev->dma; drm_r128_private_t *dev_priv = dev->dev_private; drm_r128_buf_priv_t *buf_priv; struct drm_buf *buf; int i, t; /* FIXME: Optimize -- use freelist code */ for (i = 0; i < dma->buf_count; i++) { buf = dma->buflist[i]; buf_priv = buf->dev_private; if (!buf->file_priv) return buf; } for (t = 0; t < dev_priv->usec_timeout; t++) { u32 done_age = R128_READ(R128_LAST_DISPATCH_REG); for (i = 0; i < dma->buf_count; i++) { buf = dma->buflist[i]; buf_priv = buf->dev_private; if (buf->pending && buf_priv->age <= done_age) { /* The buffer has been processed, so it * can now be used. */ buf->pending = 0; return buf; } } udelay(1); } DRM_DEBUG("returning NULL!\n"); return NULL; } void r128_freelist_reset(struct drm_device *dev) { struct drm_device_dma *dma = dev->dma; int i; for (i = 0; i < dma->buf_count; i++) { struct drm_buf *buf = dma->buflist[i]; drm_r128_buf_priv_t *buf_priv = buf->dev_private; buf_priv->age = 0; } } /* ================================================================ * CCE command submission */ int r128_wait_ring(drm_r128_private_t *dev_priv, int n) { drm_r128_ring_buffer_t *ring = &dev_priv->ring; int i; for (i = 0; i < dev_priv->usec_timeout; i++) { r128_update_ring_snapshot(dev_priv); if (ring->space >= n) return 0; udelay(1); } /* FIXME: This is being ignored... */ DRM_ERROR("failed!\n"); return -EBUSY; } static int r128_cce_get_buffers(struct drm_device *dev, struct drm_file *file_priv, struct drm_dma *d) { int i; struct drm_buf *buf; for (i = d->granted_count; i < d->request_count; i++) { buf = r128_freelist_get(dev); if (!buf) return -EAGAIN; buf->file_priv = file_priv; if (copy_to_user(&d->request_indices[i], &buf->idx, sizeof(buf->idx))) return -EFAULT; if (copy_to_user(&d->request_sizes[i], &buf->total, sizeof(buf->total))) return -EFAULT; d->granted_count++; } return 0; } int r128_cce_buffers(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_device_dma *dma = dev->dma; int ret = 0; struct drm_dma *d = data; LOCK_TEST_WITH_RETURN(dev, file_priv); /* Please don't send us buffers. */ if (d->send_count != 0) { DRM_ERROR("Process %d trying to send %d buffers via drmDMA\n", task_pid_nr(current), d->send_count); return -EINVAL; } /* We'll send you buffers. */ if (d->request_count < 0 || d->request_count > dma->buf_count) { DRM_ERROR("Process %d trying to get %d buffers (of %d max)\n", task_pid_nr(current), d->request_count, dma->buf_count); return -EINVAL; } d->granted_count = 0; if (d->request_count) ret = r128_cce_get_buffers(dev, file_priv, d); return ret; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1