Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Thierry Reding | 1340 | 82.46% | 16 | 76.19% |
Dmitry Osipenko | 280 | 17.23% | 3 | 14.29% |
Thomas Zimmermann | 3 | 0.18% | 1 | 4.76% |
Thomas Gleixner | 2 | 0.12% | 1 | 4.76% |
Total | 1625 | 21 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2012 Avionic Design GmbH * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. */ #include <linux/clk.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_bridge_connector.h> #include <drm/drm_simple_kms_helper.h> #include "drm.h" #include "dc.h" struct tegra_rgb { struct tegra_output output; struct tegra_dc *dc; struct clk *pll_d_out0; struct clk *pll_d2_out0; struct clk *clk_parent; struct clk *clk; }; static inline struct tegra_rgb *to_rgb(struct tegra_output *output) { return container_of(output, struct tegra_rgb, output); } struct reg_entry { unsigned long offset; unsigned long value; }; static const struct reg_entry rgb_enable[] = { { DC_COM_PIN_OUTPUT_ENABLE(0), 0x00000000 }, { DC_COM_PIN_OUTPUT_ENABLE(1), 0x00000000 }, { DC_COM_PIN_OUTPUT_ENABLE(2), 0x00000000 }, { DC_COM_PIN_OUTPUT_ENABLE(3), 0x00000000 }, { DC_COM_PIN_OUTPUT_POLARITY(0), 0x00000000 }, { DC_COM_PIN_OUTPUT_POLARITY(1), 0x01000000 }, { DC_COM_PIN_OUTPUT_POLARITY(2), 0x00000000 }, { DC_COM_PIN_OUTPUT_POLARITY(3), 0x00000000 }, { DC_COM_PIN_OUTPUT_DATA(0), 0x00000000 }, { DC_COM_PIN_OUTPUT_DATA(1), 0x00000000 }, { DC_COM_PIN_OUTPUT_DATA(2), 0x00000000 }, { DC_COM_PIN_OUTPUT_DATA(3), 0x00000000 }, { DC_COM_PIN_OUTPUT_SELECT(0), 0x00000000 }, { DC_COM_PIN_OUTPUT_SELECT(1), 0x00000000 }, { DC_COM_PIN_OUTPUT_SELECT(2), 0x00000000 }, { DC_COM_PIN_OUTPUT_SELECT(3), 0x00000000 }, { DC_COM_PIN_OUTPUT_SELECT(4), 0x00210222 }, { DC_COM_PIN_OUTPUT_SELECT(5), 0x00002200 }, { DC_COM_PIN_OUTPUT_SELECT(6), 0x00020000 }, }; static const struct reg_entry rgb_disable[] = { { DC_COM_PIN_OUTPUT_SELECT(6), 0x00000000 }, { DC_COM_PIN_OUTPUT_SELECT(5), 0x00000000 }, { DC_COM_PIN_OUTPUT_SELECT(4), 0x00000000 }, { DC_COM_PIN_OUTPUT_SELECT(3), 0x00000000 }, { DC_COM_PIN_OUTPUT_SELECT(2), 0x00000000 }, { DC_COM_PIN_OUTPUT_SELECT(1), 0x00000000 }, { DC_COM_PIN_OUTPUT_SELECT(0), 0x00000000 }, { DC_COM_PIN_OUTPUT_DATA(3), 0xaaaaaaaa }, { DC_COM_PIN_OUTPUT_DATA(2), 0xaaaaaaaa }, { DC_COM_PIN_OUTPUT_DATA(1), 0xaaaaaaaa }, { DC_COM_PIN_OUTPUT_DATA(0), 0xaaaaaaaa }, { DC_COM_PIN_OUTPUT_POLARITY(3), 0x00000000 }, { DC_COM_PIN_OUTPUT_POLARITY(2), 0x00000000 }, { DC_COM_PIN_OUTPUT_POLARITY(1), 0x00000000 }, { DC_COM_PIN_OUTPUT_POLARITY(0), 0x00000000 }, { DC_COM_PIN_OUTPUT_ENABLE(3), 0x55555555 }, { DC_COM_PIN_OUTPUT_ENABLE(2), 0x55555555 }, { DC_COM_PIN_OUTPUT_ENABLE(1), 0x55150005 }, { DC_COM_PIN_OUTPUT_ENABLE(0), 0x55555555 }, }; static void tegra_dc_write_regs(struct tegra_dc *dc, const struct reg_entry *table, unsigned int num) { unsigned int i; for (i = 0; i < num; i++) tegra_dc_writel(dc, table[i].value, table[i].offset); } static void tegra_rgb_encoder_disable(struct drm_encoder *encoder) { struct tegra_output *output = encoder_to_output(encoder); struct tegra_rgb *rgb = to_rgb(output); tegra_dc_write_regs(rgb->dc, rgb_disable, ARRAY_SIZE(rgb_disable)); tegra_dc_commit(rgb->dc); } static void tegra_rgb_encoder_enable(struct drm_encoder *encoder) { struct tegra_output *output = encoder_to_output(encoder); struct tegra_rgb *rgb = to_rgb(output); u32 value; tegra_dc_write_regs(rgb->dc, rgb_enable, ARRAY_SIZE(rgb_enable)); value = DE_SELECT_ACTIVE | DE_CONTROL_NORMAL; tegra_dc_writel(rgb->dc, value, DC_DISP_DATA_ENABLE_OPTIONS); /* XXX: parameterize? */ value = tegra_dc_readl(rgb->dc, DC_COM_PIN_OUTPUT_POLARITY(1)); value &= ~LVS_OUTPUT_POLARITY_LOW; value &= ~LHS_OUTPUT_POLARITY_LOW; tegra_dc_writel(rgb->dc, value, DC_COM_PIN_OUTPUT_POLARITY(1)); /* XXX: parameterize? */ value = DISP_DATA_FORMAT_DF1P1C | DISP_ALIGNMENT_MSB | DISP_ORDER_RED_BLUE; tegra_dc_writel(rgb->dc, value, DC_DISP_DISP_INTERFACE_CONTROL); tegra_dc_commit(rgb->dc); } static bool tegra_rgb_pll_rate_change_allowed(struct tegra_rgb *rgb) { if (!rgb->pll_d2_out0) return false; if (!clk_is_match(rgb->clk_parent, rgb->pll_d_out0) && !clk_is_match(rgb->clk_parent, rgb->pll_d2_out0)) return false; return true; } static int tegra_rgb_encoder_atomic_check(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct tegra_output *output = encoder_to_output(encoder); struct tegra_dc *dc = to_tegra_dc(conn_state->crtc); unsigned long pclk = crtc_state->mode.clock * 1000; struct tegra_rgb *rgb = to_rgb(output); unsigned int div; int err; /* * We may not want to change the frequency of the parent clock, since * it may be a parent for other peripherals. This is due to the fact * that on Tegra20 there's only a single clock dedicated to display * (pll_d_out0), whereas later generations have a second one that can * be used to independently drive a second output (pll_d2_out0). * * As a way to support multiple outputs on Tegra20 as well, pll_p is * typically used as the parent clock for the display controllers. * But this comes at a cost: pll_p is the parent of several other * peripherals, so its frequency shouldn't change out of the blue. * * The best we can do at this point is to use the shift clock divider * and hope that the desired frequency can be matched (or at least * matched sufficiently close that the panel will still work). */ if (tegra_rgb_pll_rate_change_allowed(rgb)) { /* * Set display controller clock to x2 of PCLK in order to * produce higher resolution pulse positions. */ div = 2; pclk *= 2; } else { div = ((clk_get_rate(rgb->clk) * 2) / pclk) - 2; pclk = 0; } err = tegra_dc_state_setup_clock(dc, crtc_state, rgb->clk_parent, pclk, div); if (err < 0) { dev_err(output->dev, "failed to setup CRTC state: %d\n", err); return err; } return err; } static const struct drm_encoder_helper_funcs tegra_rgb_encoder_helper_funcs = { .disable = tegra_rgb_encoder_disable, .enable = tegra_rgb_encoder_enable, .atomic_check = tegra_rgb_encoder_atomic_check, }; int tegra_dc_rgb_probe(struct tegra_dc *dc) { struct device_node *np; struct tegra_rgb *rgb; int err; np = of_get_child_by_name(dc->dev->of_node, "rgb"); if (!np || !of_device_is_available(np)) return -ENODEV; rgb = devm_kzalloc(dc->dev, sizeof(*rgb), GFP_KERNEL); if (!rgb) return -ENOMEM; rgb->output.dev = dc->dev; rgb->output.of_node = np; rgb->dc = dc; err = tegra_output_probe(&rgb->output); if (err < 0) return err; rgb->clk = devm_clk_get(dc->dev, NULL); if (IS_ERR(rgb->clk)) { dev_err(dc->dev, "failed to get clock\n"); return PTR_ERR(rgb->clk); } rgb->clk_parent = devm_clk_get(dc->dev, "parent"); if (IS_ERR(rgb->clk_parent)) { dev_err(dc->dev, "failed to get parent clock\n"); return PTR_ERR(rgb->clk_parent); } err = clk_set_parent(rgb->clk, rgb->clk_parent); if (err < 0) { dev_err(dc->dev, "failed to set parent clock: %d\n", err); return err; } rgb->pll_d_out0 = clk_get_sys(NULL, "pll_d_out0"); if (IS_ERR(rgb->pll_d_out0)) { err = PTR_ERR(rgb->pll_d_out0); dev_err(dc->dev, "failed to get pll_d_out0: %d\n", err); return err; } if (dc->soc->has_pll_d2_out0) { rgb->pll_d2_out0 = clk_get_sys(NULL, "pll_d2_out0"); if (IS_ERR(rgb->pll_d2_out0)) { err = PTR_ERR(rgb->pll_d2_out0); dev_err(dc->dev, "failed to get pll_d2_out0: %d\n", err); return err; } } dc->rgb = &rgb->output; return 0; } int tegra_dc_rgb_remove(struct tegra_dc *dc) { struct tegra_rgb *rgb; if (!dc->rgb) return 0; rgb = to_rgb(dc->rgb); clk_put(rgb->pll_d2_out0); clk_put(rgb->pll_d_out0); tegra_output_remove(dc->rgb); dc->rgb = NULL; return 0; } int tegra_dc_rgb_init(struct drm_device *drm, struct tegra_dc *dc) { struct tegra_output *output = dc->rgb; struct drm_connector *connector; int err; if (!dc->rgb) return -ENODEV; drm_simple_encoder_init(drm, &output->encoder, DRM_MODE_ENCODER_LVDS); drm_encoder_helper_add(&output->encoder, &tegra_rgb_encoder_helper_funcs); /* * Wrap directly-connected panel into DRM bridge in order to let * DRM core to handle panel for us. */ if (output->panel) { output->bridge = devm_drm_panel_bridge_add(output->dev, output->panel); if (IS_ERR(output->bridge)) { dev_err(output->dev, "failed to wrap panel into bridge: %pe\n", output->bridge); return PTR_ERR(output->bridge); } output->panel = NULL; } /* * Tegra devices that have LVDS panel utilize LVDS encoder bridge * for converting up to 28 LCD LVTTL lanes into 5/4 LVDS lanes that * go to display panel's receiver. * * Encoder usually have a power-down control which needs to be enabled * in order to transmit data to the panel. Historically devices that * use an older device-tree version didn't model the bridge, assuming * that encoder is turned ON by default, while today's DRM allows us * to model LVDS encoder properly. * * Newer device-trees utilize LVDS encoder bridge, which provides * us with a connector and handles the display panel. * * For older device-trees we wrapped panel into the panel-bridge. */ if (output->bridge) { err = drm_bridge_attach(&output->encoder, output->bridge, NULL, DRM_BRIDGE_ATTACH_NO_CONNECTOR); if (err) return err; connector = drm_bridge_connector_init(drm, &output->encoder); if (IS_ERR(connector)) { dev_err(output->dev, "failed to initialize bridge connector: %pe\n", connector); return PTR_ERR(connector); } drm_connector_attach_encoder(connector, &output->encoder); } err = tegra_output_init(drm, output); if (err < 0) { dev_err(output->dev, "failed to initialize output: %d\n", err); return err; } /* * Other outputs can be attached to either display controller. The RGB * outputs are an exception and work only with their parent display * controller. */ output->encoder.possible_crtcs = drm_crtc_mask(&dc->base); return 0; } int tegra_dc_rgb_exit(struct tegra_dc *dc) { if (dc->rgb) tegra_output_exit(dc->rgb); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1