Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Maxime Ripard | 9513 | 60.44% | 123 | 58.29% |
Eric Anholt | 3389 | 21.53% | 12 | 5.69% |
Hans Verkuil | 1086 | 6.90% | 3 | 1.42% |
Dave Stevenson | 722 | 4.59% | 13 | 6.16% |
Dom Cobley | 424 | 2.69% | 14 | 6.64% |
Boris Brezillon | 194 | 1.23% | 3 | 1.42% |
Kuninori Morimoto | 76 | 0.48% | 2 | 0.95% |
José Expósito | 42 | 0.27% | 3 | 1.42% |
Peter Chen | 40 | 0.25% | 1 | 0.47% |
Hoegeun Kwon | 37 | 0.24% | 1 | 0.47% |
Darek Marcinkiewicz | 28 | 0.18% | 1 | 0.47% |
Linus Torvalds | 24 | 0.15% | 3 | 1.42% |
Dan Carpenter | 24 | 0.15% | 1 | 0.47% |
Tim Gover | 22 | 0.14% | 1 | 0.47% |
Ville Syrjälä | 18 | 0.11% | 5 | 2.37% |
Mario Kleiner | 13 | 0.08% | 2 | 0.95% |
Masahiro Yamada | 11 | 0.07% | 1 | 0.47% |
Danilo Krummrich | 10 | 0.06% | 1 | 0.47% |
Nicolas Saenz Julienne | 10 | 0.06% | 3 | 1.42% |
James Hilliard | 10 | 0.06% | 1 | 0.47% |
Phil Elwell | 8 | 0.05% | 1 | 0.47% |
Thomas Zimmermann | 7 | 0.04% | 3 | 1.42% |
Dave Airlie | 6 | 0.04% | 1 | 0.47% |
Charles Keepax | 5 | 0.03% | 1 | 0.47% |
Andrzej Pietrasiewicz | 4 | 0.03% | 1 | 0.47% |
Hui Tang | 3 | 0.02% | 1 | 0.47% |
Stefan Wahren | 3 | 0.02% | 1 | 0.47% |
Thomas Gleixner | 2 | 0.01% | 1 | 0.47% |
Daniel Vetter | 2 | 0.01% | 2 | 0.95% |
Mateusz Kwiatkowski | 2 | 0.01% | 1 | 0.47% |
Marek Szyprowski | 1 | 0.01% | 1 | 0.47% |
Shashank Sharma | 1 | 0.01% | 1 | 0.47% |
Jiapeng Chong | 1 | 0.01% | 1 | 0.47% |
Saud Farooqui | 1 | 0.01% | 1 | 0.47% |
Total | 15739 | 211 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2015 Broadcom * Copyright (c) 2014 The Linux Foundation. All rights reserved. * Copyright (C) 2013 Red Hat * Author: Rob Clark <robdclark@gmail.com> */ /** * DOC: VC4 Falcon HDMI module * * The HDMI core has a state machine and a PHY. On BCM2835, most of * the unit operates off of the HSM clock from CPRMAN. It also * internally uses the PLLH_PIX clock for the PHY. * * HDMI infoframes are kept within a small packet ram, where each * packet can be individually enabled for including in a frame. * * HDMI audio is implemented entirely within the HDMI IP block. A * register in the HDMI encoder takes SPDIF frames from the DMA engine * and transfers them over an internal MAI (multi-channel audio * interconnect) bus to the encoder side for insertion into the video * blank regions. * * The driver's HDMI encoder does not yet support power management. * The HDMI encoder's power domain and the HSM/pixel clocks are kept * continuously running, and only the HDMI logic and packet ram are * powered off/on at disable/enable time. * * The driver does not yet support CEC control, though the HDMI * encoder block has CEC support. */ #include <drm/display/drm_hdmi_helper.h> #include <drm/display/drm_scdc_helper.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_drv.h> #include <drm/drm_probe_helper.h> #include <drm/drm_simple_kms_helper.h> #include <linux/clk.h> #include <linux/component.h> #include <linux/gpio/consumer.h> #include <linux/i2c.h> #include <linux/of_address.h> #include <linux/of_platform.h> #include <linux/pm_runtime.h> #include <linux/rational.h> #include <linux/reset.h> #include <sound/dmaengine_pcm.h> #include <sound/hdmi-codec.h> #include <sound/pcm_drm_eld.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include "media/cec.h" #include "vc4_drv.h" #include "vc4_hdmi.h" #include "vc4_hdmi_regs.h" #include "vc4_regs.h" #define VC5_HDMI_HORZA_HFP_SHIFT 16 #define VC5_HDMI_HORZA_HFP_MASK VC4_MASK(28, 16) #define VC5_HDMI_HORZA_VPOS BIT(15) #define VC5_HDMI_HORZA_HPOS BIT(14) #define VC5_HDMI_HORZA_HAP_SHIFT 0 #define VC5_HDMI_HORZA_HAP_MASK VC4_MASK(13, 0) #define VC5_HDMI_HORZB_HBP_SHIFT 16 #define VC5_HDMI_HORZB_HBP_MASK VC4_MASK(26, 16) #define VC5_HDMI_HORZB_HSP_SHIFT 0 #define VC5_HDMI_HORZB_HSP_MASK VC4_MASK(10, 0) #define VC5_HDMI_VERTA_VSP_SHIFT 24 #define VC5_HDMI_VERTA_VSP_MASK VC4_MASK(28, 24) #define VC5_HDMI_VERTA_VFP_SHIFT 16 #define VC5_HDMI_VERTA_VFP_MASK VC4_MASK(22, 16) #define VC5_HDMI_VERTA_VAL_SHIFT 0 #define VC5_HDMI_VERTA_VAL_MASK VC4_MASK(12, 0) #define VC5_HDMI_VERTB_VSPO_SHIFT 16 #define VC5_HDMI_VERTB_VSPO_MASK VC4_MASK(29, 16) #define VC4_HDMI_MISC_CONTROL_PIXEL_REP_SHIFT 0 #define VC4_HDMI_MISC_CONTROL_PIXEL_REP_MASK VC4_MASK(3, 0) #define VC5_HDMI_MISC_CONTROL_PIXEL_REP_SHIFT 0 #define VC5_HDMI_MISC_CONTROL_PIXEL_REP_MASK VC4_MASK(3, 0) #define VC5_HDMI_SCRAMBLER_CTL_ENABLE BIT(0) #define VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE_SHIFT 8 #define VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE_MASK VC4_MASK(10, 8) #define VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH_SHIFT 0 #define VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH_MASK VC4_MASK(3, 0) #define VC5_HDMI_GCP_CONFIG_GCP_ENABLE BIT(31) #define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1_SHIFT 8 #define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1_MASK VC4_MASK(15, 8) #define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_0_MASK VC4_MASK(7, 0) #define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_0_SET_AVMUTE BIT(0) #define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_0_CLEAR_AVMUTE BIT(4) # define VC4_HD_M_SW_RST BIT(2) # define VC4_HD_M_ENABLE BIT(0) #define HSM_MIN_CLOCK_FREQ 120000000 #define CEC_CLOCK_FREQ 40000 #define HDMI_14_MAX_TMDS_CLK (340 * 1000 * 1000) static const char * const output_format_str[] = { [VC4_HDMI_OUTPUT_RGB] = "RGB", [VC4_HDMI_OUTPUT_YUV420] = "YUV 4:2:0", [VC4_HDMI_OUTPUT_YUV422] = "YUV 4:2:2", [VC4_HDMI_OUTPUT_YUV444] = "YUV 4:4:4", }; static const char *vc4_hdmi_output_fmt_str(enum vc4_hdmi_output_format fmt) { if (fmt >= ARRAY_SIZE(output_format_str)) return "invalid"; return output_format_str[fmt]; } static unsigned long long vc4_hdmi_encoder_compute_mode_clock(const struct drm_display_mode *mode, unsigned int bpc, enum vc4_hdmi_output_format fmt); static bool vc4_hdmi_supports_scrambling(struct vc4_hdmi *vc4_hdmi) { struct drm_display_info *display = &vc4_hdmi->connector.display_info; lockdep_assert_held(&vc4_hdmi->mutex); if (!display->is_hdmi) return false; if (!display->hdmi.scdc.supported || !display->hdmi.scdc.scrambling.supported) return false; return true; } static bool vc4_hdmi_mode_needs_scrambling(const struct drm_display_mode *mode, unsigned int bpc, enum vc4_hdmi_output_format fmt) { unsigned long long clock = vc4_hdmi_encoder_compute_mode_clock(mode, bpc, fmt); return clock > HDMI_14_MAX_TMDS_CLK; } static bool vc4_hdmi_is_full_range_rgb(struct vc4_hdmi *vc4_hdmi, const struct drm_display_mode *mode) { struct drm_display_info *display = &vc4_hdmi->connector.display_info; return !display->is_hdmi || drm_default_rgb_quant_range(mode) == HDMI_QUANTIZATION_RANGE_FULL; } static int vc4_hdmi_debugfs_regs(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *)m->private; struct vc4_hdmi *vc4_hdmi = node->info_ent->data; struct drm_device *drm = vc4_hdmi->connector.dev; struct drm_printer p = drm_seq_file_printer(m); int idx; if (!drm_dev_enter(drm, &idx)) return -ENODEV; drm_print_regset32(&p, &vc4_hdmi->hdmi_regset); drm_print_regset32(&p, &vc4_hdmi->hd_regset); drm_print_regset32(&p, &vc4_hdmi->cec_regset); drm_print_regset32(&p, &vc4_hdmi->csc_regset); drm_print_regset32(&p, &vc4_hdmi->dvp_regset); drm_print_regset32(&p, &vc4_hdmi->phy_regset); drm_print_regset32(&p, &vc4_hdmi->ram_regset); drm_print_regset32(&p, &vc4_hdmi->rm_regset); drm_dev_exit(idx); return 0; } static void vc4_hdmi_reset(struct vc4_hdmi *vc4_hdmi) { struct drm_device *drm = vc4_hdmi->connector.dev; unsigned long flags; int idx; /* * We can be called by our bind callback, when the * connector->dev pointer might not be initialised yet. */ if (drm && !drm_dev_enter(drm, &idx)) return; spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); HDMI_WRITE(HDMI_M_CTL, VC4_HD_M_SW_RST); udelay(1); HDMI_WRITE(HDMI_M_CTL, 0); HDMI_WRITE(HDMI_M_CTL, VC4_HD_M_ENABLE); HDMI_WRITE(HDMI_SW_RESET_CONTROL, VC4_HDMI_SW_RESET_HDMI | VC4_HDMI_SW_RESET_FORMAT_DETECT); HDMI_WRITE(HDMI_SW_RESET_CONTROL, 0); spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); if (drm) drm_dev_exit(idx); } static void vc5_hdmi_reset(struct vc4_hdmi *vc4_hdmi) { struct drm_device *drm = vc4_hdmi->connector.dev; unsigned long flags; int idx; /* * We can be called by our bind callback, when the * connector->dev pointer might not be initialised yet. */ if (drm && !drm_dev_enter(drm, &idx)) return; reset_control_reset(vc4_hdmi->reset); spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); HDMI_WRITE(HDMI_DVP_CTL, 0); HDMI_WRITE(HDMI_CLOCK_STOP, HDMI_READ(HDMI_CLOCK_STOP) | VC4_DVP_HT_CLOCK_STOP_PIXEL); spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); if (drm) drm_dev_exit(idx); } #ifdef CONFIG_DRM_VC4_HDMI_CEC static void vc4_hdmi_cec_update_clk_div(struct vc4_hdmi *vc4_hdmi) { struct drm_device *drm = vc4_hdmi->connector.dev; unsigned long cec_rate; unsigned long flags; u16 clk_cnt; u32 value; int idx; /* * This function is called by our runtime_resume implementation * and thus at bind time, when we haven't registered our * connector yet and thus don't have a pointer to the DRM * device. */ if (drm && !drm_dev_enter(drm, &idx)) return; cec_rate = clk_get_rate(vc4_hdmi->cec_clock); spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); value = HDMI_READ(HDMI_CEC_CNTRL_1); value &= ~VC4_HDMI_CEC_DIV_CLK_CNT_MASK; /* * Set the clock divider: the hsm_clock rate and this divider * setting will give a 40 kHz CEC clock. */ clk_cnt = cec_rate / CEC_CLOCK_FREQ; value |= clk_cnt << VC4_HDMI_CEC_DIV_CLK_CNT_SHIFT; HDMI_WRITE(HDMI_CEC_CNTRL_1, value); spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); if (drm) drm_dev_exit(idx); } #else static void vc4_hdmi_cec_update_clk_div(struct vc4_hdmi *vc4_hdmi) {} #endif static int reset_pipe(struct drm_crtc *crtc, struct drm_modeset_acquire_ctx *ctx) { struct drm_atomic_state *state; struct drm_crtc_state *crtc_state; int ret; state = drm_atomic_state_alloc(crtc->dev); if (!state) return -ENOMEM; state->acquire_ctx = ctx; crtc_state = drm_atomic_get_crtc_state(state, crtc); if (IS_ERR(crtc_state)) { ret = PTR_ERR(crtc_state); goto out; } crtc_state->connectors_changed = true; ret = drm_atomic_commit(state); out: drm_atomic_state_put(state); return ret; } static int vc4_hdmi_reset_link(struct drm_connector *connector, struct drm_modeset_acquire_ctx *ctx) { struct drm_device *drm; struct vc4_hdmi *vc4_hdmi; struct drm_connector_state *conn_state; struct drm_crtc_state *crtc_state; struct drm_crtc *crtc; bool scrambling_needed; u8 config; int ret; if (!connector) return 0; drm = connector->dev; ret = drm_modeset_lock(&drm->mode_config.connection_mutex, ctx); if (ret) return ret; conn_state = connector->state; crtc = conn_state->crtc; if (!crtc) return 0; ret = drm_modeset_lock(&crtc->mutex, ctx); if (ret) return ret; crtc_state = crtc->state; if (!crtc_state->active) return 0; vc4_hdmi = connector_to_vc4_hdmi(connector); mutex_lock(&vc4_hdmi->mutex); if (!vc4_hdmi_supports_scrambling(vc4_hdmi)) { mutex_unlock(&vc4_hdmi->mutex); return 0; } scrambling_needed = vc4_hdmi_mode_needs_scrambling(&vc4_hdmi->saved_adjusted_mode, vc4_hdmi->output_bpc, vc4_hdmi->output_format); if (!scrambling_needed) { mutex_unlock(&vc4_hdmi->mutex); return 0; } if (conn_state->commit && !try_wait_for_completion(&conn_state->commit->hw_done)) { mutex_unlock(&vc4_hdmi->mutex); return 0; } ret = drm_scdc_readb(connector->ddc, SCDC_TMDS_CONFIG, &config); if (ret < 0) { drm_err(drm, "Failed to read TMDS config: %d\n", ret); mutex_unlock(&vc4_hdmi->mutex); return 0; } if (!!(config & SCDC_SCRAMBLING_ENABLE) == scrambling_needed) { mutex_unlock(&vc4_hdmi->mutex); return 0; } mutex_unlock(&vc4_hdmi->mutex); /* * HDMI 2.0 says that one should not send scrambled data * prior to configuring the sink scrambling, and that * TMDS clock/data transmission should be suspended when * changing the TMDS clock rate in the sink. So let's * just do a full modeset here, even though some sinks * would be perfectly happy if were to just reconfigure * the SCDC settings on the fly. */ return reset_pipe(crtc, ctx); } static void vc4_hdmi_handle_hotplug(struct vc4_hdmi *vc4_hdmi, struct drm_modeset_acquire_ctx *ctx, enum drm_connector_status status) { struct drm_connector *connector = &vc4_hdmi->connector; struct edid *edid; /* * NOTE: This function should really be called with * vc4_hdmi->mutex held, but doing so results in reentrancy * issues since cec_s_phys_addr_from_edid might call * .adap_enable, which leads to that funtion being called with * our mutex held. * * A similar situation occurs with vc4_hdmi_reset_link() that * will call into our KMS hooks if the scrambling was enabled. * * Concurrency isn't an issue at the moment since we don't share * any state with any of the other frameworks so we can ignore * the lock for now. */ if (status == connector_status_disconnected) { cec_phys_addr_invalidate(vc4_hdmi->cec_adap); return; } edid = drm_get_edid(connector, vc4_hdmi->ddc); if (!edid) return; cec_s_phys_addr_from_edid(vc4_hdmi->cec_adap, edid); kfree(edid); vc4_hdmi_reset_link(connector, ctx); } static int vc4_hdmi_connector_detect_ctx(struct drm_connector *connector, struct drm_modeset_acquire_ctx *ctx, bool force) { struct vc4_hdmi *vc4_hdmi = connector_to_vc4_hdmi(connector); enum drm_connector_status status = connector_status_disconnected; /* * NOTE: This function should really take vc4_hdmi->mutex, but * doing so results in reentrancy issues since * vc4_hdmi_handle_hotplug() can call into other functions that * would take the mutex while it's held here. * * Concurrency isn't an issue at the moment since we don't share * any state with any of the other frameworks so we can ignore * the lock for now. */ WARN_ON(pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev)); if (vc4_hdmi->hpd_gpio) { if (gpiod_get_value_cansleep(vc4_hdmi->hpd_gpio)) status = connector_status_connected; } else { if (vc4_hdmi->variant->hp_detect && vc4_hdmi->variant->hp_detect(vc4_hdmi)) status = connector_status_connected; } vc4_hdmi_handle_hotplug(vc4_hdmi, ctx, status); pm_runtime_put(&vc4_hdmi->pdev->dev); return status; } static int vc4_hdmi_connector_get_modes(struct drm_connector *connector) { struct vc4_hdmi *vc4_hdmi = connector_to_vc4_hdmi(connector); struct vc4_dev *vc4 = to_vc4_dev(connector->dev); int ret = 0; struct edid *edid; /* * NOTE: This function should really take vc4_hdmi->mutex, but * doing so results in reentrancy issues since * cec_s_phys_addr_from_edid might call .adap_enable, which * leads to that funtion being called with our mutex held. * * Concurrency isn't an issue at the moment since we don't share * any state with any of the other frameworks so we can ignore * the lock for now. */ edid = drm_get_edid(connector, vc4_hdmi->ddc); cec_s_phys_addr_from_edid(vc4_hdmi->cec_adap, edid); if (!edid) return -ENODEV; drm_connector_update_edid_property(connector, edid); ret = drm_add_edid_modes(connector, edid); kfree(edid); if (!vc4->hvs->vc5_hdmi_enable_hdmi_20) { struct drm_device *drm = connector->dev; const struct drm_display_mode *mode; list_for_each_entry(mode, &connector->probed_modes, head) { if (vc4_hdmi_mode_needs_scrambling(mode, 8, VC4_HDMI_OUTPUT_RGB)) { drm_warn_once(drm, "The core clock cannot reach frequencies high enough to support 4k @ 60Hz."); drm_warn_once(drm, "Please change your config.txt file to add hdmi_enable_4kp60."); } } } return ret; } static int vc4_hdmi_connector_atomic_check(struct drm_connector *connector, struct drm_atomic_state *state) { struct drm_connector_state *old_state = drm_atomic_get_old_connector_state(state, connector); struct drm_connector_state *new_state = drm_atomic_get_new_connector_state(state, connector); struct drm_crtc *crtc = new_state->crtc; if (!crtc) return 0; if (old_state->colorspace != new_state->colorspace || !drm_connector_atomic_hdr_metadata_equal(old_state, new_state)) { struct drm_crtc_state *crtc_state; crtc_state = drm_atomic_get_crtc_state(state, crtc); if (IS_ERR(crtc_state)) return PTR_ERR(crtc_state); crtc_state->mode_changed = true; } return 0; } static void vc4_hdmi_connector_reset(struct drm_connector *connector) { struct vc4_hdmi_connector_state *old_state = conn_state_to_vc4_hdmi_conn_state(connector->state); struct vc4_hdmi_connector_state *new_state = kzalloc(sizeof(*new_state), GFP_KERNEL); if (connector->state) __drm_atomic_helper_connector_destroy_state(connector->state); kfree(old_state); __drm_atomic_helper_connector_reset(connector, &new_state->base); if (!new_state) return; new_state->base.max_bpc = 8; new_state->base.max_requested_bpc = 8; new_state->output_format = VC4_HDMI_OUTPUT_RGB; drm_atomic_helper_connector_tv_margins_reset(connector); } static struct drm_connector_state * vc4_hdmi_connector_duplicate_state(struct drm_connector *connector) { struct drm_connector_state *conn_state = connector->state; struct vc4_hdmi_connector_state *vc4_state = conn_state_to_vc4_hdmi_conn_state(conn_state); struct vc4_hdmi_connector_state *new_state; new_state = kzalloc(sizeof(*new_state), GFP_KERNEL); if (!new_state) return NULL; new_state->tmds_char_rate = vc4_state->tmds_char_rate; new_state->output_bpc = vc4_state->output_bpc; new_state->output_format = vc4_state->output_format; __drm_atomic_helper_connector_duplicate_state(connector, &new_state->base); return &new_state->base; } static const struct drm_connector_funcs vc4_hdmi_connector_funcs = { .fill_modes = drm_helper_probe_single_connector_modes, .reset = vc4_hdmi_connector_reset, .atomic_duplicate_state = vc4_hdmi_connector_duplicate_state, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, }; static const struct drm_connector_helper_funcs vc4_hdmi_connector_helper_funcs = { .detect_ctx = vc4_hdmi_connector_detect_ctx, .get_modes = vc4_hdmi_connector_get_modes, .atomic_check = vc4_hdmi_connector_atomic_check, }; static int vc4_hdmi_connector_init(struct drm_device *dev, struct vc4_hdmi *vc4_hdmi) { struct drm_connector *connector = &vc4_hdmi->connector; struct drm_encoder *encoder = &vc4_hdmi->encoder.base; int ret; ret = drmm_connector_init(dev, connector, &vc4_hdmi_connector_funcs, DRM_MODE_CONNECTOR_HDMIA, vc4_hdmi->ddc); if (ret) return ret; drm_connector_helper_add(connector, &vc4_hdmi_connector_helper_funcs); /* * Some of the properties below require access to state, like bpc. * Allocate some default initial connector state with our reset helper. */ if (connector->funcs->reset) connector->funcs->reset(connector); /* Create and attach TV margin props to this connector. */ ret = drm_mode_create_tv_margin_properties(dev); if (ret) return ret; ret = drm_mode_create_hdmi_colorspace_property(connector); if (ret) return ret; drm_connector_attach_colorspace_property(connector); drm_connector_attach_tv_margin_properties(connector); drm_connector_attach_max_bpc_property(connector, 8, 12); connector->polled = (DRM_CONNECTOR_POLL_CONNECT | DRM_CONNECTOR_POLL_DISCONNECT); connector->interlace_allowed = 1; connector->doublescan_allowed = 0; connector->stereo_allowed = 1; if (vc4_hdmi->variant->supports_hdr) drm_connector_attach_hdr_output_metadata_property(connector); drm_connector_attach_encoder(connector, encoder); return 0; } static int vc4_hdmi_stop_packet(struct drm_encoder *encoder, enum hdmi_infoframe_type type, bool poll) { struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); struct drm_device *drm = vc4_hdmi->connector.dev; u32 packet_id = type - 0x80; unsigned long flags; int ret = 0; int idx; if (!drm_dev_enter(drm, &idx)) return -ENODEV; spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); HDMI_WRITE(HDMI_RAM_PACKET_CONFIG, HDMI_READ(HDMI_RAM_PACKET_CONFIG) & ~BIT(packet_id)); spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); if (poll) { ret = wait_for(!(HDMI_READ(HDMI_RAM_PACKET_STATUS) & BIT(packet_id)), 100); } drm_dev_exit(idx); return ret; } static void vc4_hdmi_write_infoframe(struct drm_encoder *encoder, union hdmi_infoframe *frame) { struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); struct drm_device *drm = vc4_hdmi->connector.dev; u32 packet_id = frame->any.type - 0x80; const struct vc4_hdmi_register *ram_packet_start = &vc4_hdmi->variant->registers[HDMI_RAM_PACKET_START]; u32 packet_reg = ram_packet_start->offset + VC4_HDMI_PACKET_STRIDE * packet_id; u32 packet_reg_next = ram_packet_start->offset + VC4_HDMI_PACKET_STRIDE * (packet_id + 1); void __iomem *base = __vc4_hdmi_get_field_base(vc4_hdmi, ram_packet_start->reg); uint8_t buffer[VC4_HDMI_PACKET_STRIDE] = {}; unsigned long flags; ssize_t len, i; int ret; int idx; if (!drm_dev_enter(drm, &idx)) return; WARN_ONCE(!(HDMI_READ(HDMI_RAM_PACKET_CONFIG) & VC4_HDMI_RAM_PACKET_ENABLE), "Packet RAM has to be on to store the packet."); len = hdmi_infoframe_pack(frame, buffer, sizeof(buffer)); if (len < 0) goto out; ret = vc4_hdmi_stop_packet(encoder, frame->any.type, true); if (ret) { DRM_ERROR("Failed to wait for infoframe to go idle: %d\n", ret); goto out; } spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); for (i = 0; i < len; i += 7) { writel(buffer[i + 0] << 0 | buffer[i + 1] << 8 | buffer[i + 2] << 16, base + packet_reg); packet_reg += 4; writel(buffer[i + 3] << 0 | buffer[i + 4] << 8 | buffer[i + 5] << 16 | buffer[i + 6] << 24, base + packet_reg); packet_reg += 4; } /* * clear remainder of packet ram as it's included in the * infoframe and triggers a checksum error on hdmi analyser */ for (; packet_reg < packet_reg_next; packet_reg += 4) writel(0, base + packet_reg); HDMI_WRITE(HDMI_RAM_PACKET_CONFIG, HDMI_READ(HDMI_RAM_PACKET_CONFIG) | BIT(packet_id)); spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); ret = wait_for((HDMI_READ(HDMI_RAM_PACKET_STATUS) & BIT(packet_id)), 100); if (ret) DRM_ERROR("Failed to wait for infoframe to start: %d\n", ret); out: drm_dev_exit(idx); } static void vc4_hdmi_avi_infoframe_colorspace(struct hdmi_avi_infoframe *frame, enum vc4_hdmi_output_format fmt) { switch (fmt) { case VC4_HDMI_OUTPUT_RGB: frame->colorspace = HDMI_COLORSPACE_RGB; break; case VC4_HDMI_OUTPUT_YUV420: frame->colorspace = HDMI_COLORSPACE_YUV420; break; case VC4_HDMI_OUTPUT_YUV422: frame->colorspace = HDMI_COLORSPACE_YUV422; break; case VC4_HDMI_OUTPUT_YUV444: frame->colorspace = HDMI_COLORSPACE_YUV444; break; default: break; } } static void vc4_hdmi_set_avi_infoframe(struct drm_encoder *encoder) { struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); struct drm_connector *connector = &vc4_hdmi->connector; struct drm_connector_state *cstate = connector->state; struct vc4_hdmi_connector_state *vc4_state = conn_state_to_vc4_hdmi_conn_state(cstate); const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode; union hdmi_infoframe frame; int ret; lockdep_assert_held(&vc4_hdmi->mutex); ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi, connector, mode); if (ret < 0) { DRM_ERROR("couldn't fill AVI infoframe\n"); return; } drm_hdmi_avi_infoframe_quant_range(&frame.avi, connector, mode, vc4_hdmi_is_full_range_rgb(vc4_hdmi, mode) ? HDMI_QUANTIZATION_RANGE_FULL : HDMI_QUANTIZATION_RANGE_LIMITED); drm_hdmi_avi_infoframe_colorimetry(&frame.avi, cstate); vc4_hdmi_avi_infoframe_colorspace(&frame.avi, vc4_state->output_format); drm_hdmi_avi_infoframe_bars(&frame.avi, cstate); vc4_hdmi_write_infoframe(encoder, &frame); } static void vc4_hdmi_set_spd_infoframe(struct drm_encoder *encoder) { union hdmi_infoframe frame; int ret; ret = hdmi_spd_infoframe_init(&frame.spd, "Broadcom", "Videocore"); if (ret < 0) { DRM_ERROR("couldn't fill SPD infoframe\n"); return; } frame.spd.sdi = HDMI_SPD_SDI_PC; vc4_hdmi_write_infoframe(encoder, &frame); } static void vc4_hdmi_set_audio_infoframe(struct drm_encoder *encoder) { struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); struct hdmi_audio_infoframe *audio = &vc4_hdmi->audio.infoframe; union hdmi_infoframe frame; memcpy(&frame.audio, audio, sizeof(*audio)); if (vc4_hdmi->packet_ram_enabled) vc4_hdmi_write_infoframe(encoder, &frame); } static void vc4_hdmi_set_hdr_infoframe(struct drm_encoder *encoder) { struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); struct drm_connector *connector = &vc4_hdmi->connector; struct drm_connector_state *conn_state = connector->state; union hdmi_infoframe frame; lockdep_assert_held(&vc4_hdmi->mutex); if (!vc4_hdmi->variant->supports_hdr) return; if (!conn_state->hdr_output_metadata) return; if (drm_hdmi_infoframe_set_hdr_metadata(&frame.drm, conn_state)) return; vc4_hdmi_write_infoframe(encoder, &frame); } static void vc4_hdmi_set_infoframes(struct drm_encoder *encoder) { struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); lockdep_assert_held(&vc4_hdmi->mutex); vc4_hdmi_set_avi_infoframe(encoder); vc4_hdmi_set_spd_infoframe(encoder); /* * If audio was streaming, then we need to reenabled the audio * infoframe here during encoder_enable. */ if (vc4_hdmi->audio.streaming) vc4_hdmi_set_audio_infoframe(encoder); vc4_hdmi_set_hdr_infoframe(encoder); } #define SCRAMBLING_POLLING_DELAY_MS 1000 static void vc4_hdmi_enable_scrambling(struct drm_encoder *encoder) { struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); struct drm_device *drm = vc4_hdmi->connector.dev; const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode; unsigned long flags; int idx; lockdep_assert_held(&vc4_hdmi->mutex); if (!vc4_hdmi_supports_scrambling(vc4_hdmi)) return; if (!vc4_hdmi_mode_needs_scrambling(mode, vc4_hdmi->output_bpc, vc4_hdmi->output_format)) return; if (!drm_dev_enter(drm, &idx)) return; drm_scdc_set_high_tmds_clock_ratio(vc4_hdmi->ddc, true); drm_scdc_set_scrambling(vc4_hdmi->ddc, true); spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); HDMI_WRITE(HDMI_SCRAMBLER_CTL, HDMI_READ(HDMI_SCRAMBLER_CTL) | VC5_HDMI_SCRAMBLER_CTL_ENABLE); spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); drm_dev_exit(idx); vc4_hdmi->scdc_enabled = true; queue_delayed_work(system_wq, &vc4_hdmi->scrambling_work, msecs_to_jiffies(SCRAMBLING_POLLING_DELAY_MS)); } static void vc4_hdmi_disable_scrambling(struct drm_encoder *encoder) { struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); struct drm_device *drm = vc4_hdmi->connector.dev; unsigned long flags; int idx; lockdep_assert_held(&vc4_hdmi->mutex); if (!vc4_hdmi->scdc_enabled) return; vc4_hdmi->scdc_enabled = false; if (delayed_work_pending(&vc4_hdmi->scrambling_work)) cancel_delayed_work_sync(&vc4_hdmi->scrambling_work); if (!drm_dev_enter(drm, &idx)) return; spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); HDMI_WRITE(HDMI_SCRAMBLER_CTL, HDMI_READ(HDMI_SCRAMBLER_CTL) & ~VC5_HDMI_SCRAMBLER_CTL_ENABLE); spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); drm_scdc_set_scrambling(vc4_hdmi->ddc, false); drm_scdc_set_high_tmds_clock_ratio(vc4_hdmi->ddc, false); drm_dev_exit(idx); } static void vc4_hdmi_scrambling_wq(struct work_struct *work) { struct vc4_hdmi *vc4_hdmi = container_of(to_delayed_work(work), struct vc4_hdmi, scrambling_work); if (drm_scdc_get_scrambling_status(vc4_hdmi->ddc)) return; drm_scdc_set_high_tmds_clock_ratio(vc4_hdmi->ddc, true); drm_scdc_set_scrambling(vc4_hdmi->ddc, true); queue_delayed_work(system_wq, &vc4_hdmi->scrambling_work, msecs_to_jiffies(SCRAMBLING_POLLING_DELAY_MS)); } static void vc4_hdmi_encoder_post_crtc_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) { struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); struct drm_device *drm = vc4_hdmi->connector.dev; unsigned long flags; int idx; mutex_lock(&vc4_hdmi->mutex); vc4_hdmi->packet_ram_enabled = false; if (!drm_dev_enter(drm, &idx)) goto out; spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); HDMI_WRITE(HDMI_RAM_PACKET_CONFIG, 0); HDMI_WRITE(HDMI_VID_CTL, HDMI_READ(HDMI_VID_CTL) | VC4_HD_VID_CTL_CLRRGB); spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); mdelay(1); spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); HDMI_WRITE(HDMI_VID_CTL, HDMI_READ(HDMI_VID_CTL) & ~VC4_HD_VID_CTL_ENABLE); spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); vc4_hdmi_disable_scrambling(encoder); drm_dev_exit(idx); out: mutex_unlock(&vc4_hdmi->mutex); } static void vc4_hdmi_encoder_post_crtc_powerdown(struct drm_encoder *encoder, struct drm_atomic_state *state) { struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); struct drm_device *drm = vc4_hdmi->connector.dev; unsigned long flags; int ret; int idx; mutex_lock(&vc4_hdmi->mutex); if (!drm_dev_enter(drm, &idx)) goto out; spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); HDMI_WRITE(HDMI_VID_CTL, HDMI_READ(HDMI_VID_CTL) | VC4_HD_VID_CTL_BLANKPIX); spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); if (vc4_hdmi->variant->phy_disable) vc4_hdmi->variant->phy_disable(vc4_hdmi); clk_disable_unprepare(vc4_hdmi->pixel_bvb_clock); clk_disable_unprepare(vc4_hdmi->pixel_clock); ret = pm_runtime_put(&vc4_hdmi->pdev->dev); if (ret < 0) DRM_ERROR("Failed to release power domain: %d\n", ret); drm_dev_exit(idx); out: mutex_unlock(&vc4_hdmi->mutex); } static void vc4_hdmi_csc_setup(struct vc4_hdmi *vc4_hdmi, struct drm_connector_state *state, const struct drm_display_mode *mode) { struct drm_device *drm = vc4_hdmi->connector.dev; unsigned long flags; u32 csc_ctl; int idx; if (!drm_dev_enter(drm, &idx)) return; spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); csc_ctl = VC4_SET_FIELD(VC4_HD_CSC_CTL_ORDER_BGR, VC4_HD_CSC_CTL_ORDER); if (!vc4_hdmi_is_full_range_rgb(vc4_hdmi, mode)) { /* CEA VICs other than #1 requre limited range RGB * output unless overridden by an AVI infoframe. * Apply a colorspace conversion to squash 0-255 down * to 16-235. The matrix here is: * * [ 0 0 0.8594 16] * [ 0 0.8594 0 16] * [ 0.8594 0 0 16] * [ 0 0 0 1] */ csc_ctl |= VC4_HD_CSC_CTL_ENABLE; csc_ctl |= VC4_HD_CSC_CTL_RGB2YCC; csc_ctl |= VC4_SET_FIELD(VC4_HD_CSC_CTL_MODE_CUSTOM, VC4_HD_CSC_CTL_MODE); HDMI_WRITE(HDMI_CSC_12_11, (0x000 << 16) | 0x000); HDMI_WRITE(HDMI_CSC_14_13, (0x100 << 16) | 0x6e0); HDMI_WRITE(HDMI_CSC_22_21, (0x6e0 << 16) | 0x000); HDMI_WRITE(HDMI_CSC_24_23, (0x100 << 16) | 0x000); HDMI_WRITE(HDMI_CSC_32_31, (0x000 << 16) | 0x6e0); HDMI_WRITE(HDMI_CSC_34_33, (0x100 << 16) | 0x000); } /* The RGB order applies even when CSC is disabled. */ HDMI_WRITE(HDMI_CSC_CTL, csc_ctl); spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); drm_dev_exit(idx); } /* * If we need to output Full Range RGB, then use the unity matrix * * [ 1 0 0 0] * [ 0 1 0 0] * [ 0 0 1 0] * * Matrix is signed 2p13 fixed point, with signed 9p6 offsets */ static const u16 vc5_hdmi_csc_full_rgb_unity[3][4] = { { 0x2000, 0x0000, 0x0000, 0x0000 }, { 0x0000, 0x2000, 0x0000, 0x0000 }, { 0x0000, 0x0000, 0x2000, 0x0000 }, }; /* * CEA VICs other than #1 require limited range RGB output unless * overridden by an AVI infoframe. Apply a colorspace conversion to * squash 0-255 down to 16-235. The matrix here is: * * [ 0.8594 0 0 16] * [ 0 0.8594 0 16] * [ 0 0 0.8594 16] * * Matrix is signed 2p13 fixed point, with signed 9p6 offsets */ static const u16 vc5_hdmi_csc_full_rgb_to_limited_rgb[3][4] = { { 0x1b80, 0x0000, 0x0000, 0x0400 }, { 0x0000, 0x1b80, 0x0000, 0x0400 }, { 0x0000, 0x0000, 0x1b80, 0x0400 }, }; /* * Conversion between Full Range RGB and Full Range YUV422 using the * BT.709 Colorspace * * * [ 0.181906 0.611804 0.061758 16 ] * [ -0.100268 -0.337232 0.437500 128 ] * [ 0.437500 -0.397386 -0.040114 128 ] * * Matrix is signed 2p13 fixed point, with signed 9p6 offsets */ static const u16 vc5_hdmi_csc_full_rgb_to_limited_yuv422_bt709[3][4] = { { 0x05d2, 0x1394, 0x01fa, 0x0400 }, { 0xfccc, 0xf536, 0x0e00, 0x2000 }, { 0x0e00, 0xf34a, 0xfeb8, 0x2000 }, }; /* * Conversion between Full Range RGB and Full Range YUV444 using the * BT.709 Colorspace * * [ -0.100268 -0.337232 0.437500 128 ] * [ 0.437500 -0.397386 -0.040114 128 ] * [ 0.181906 0.611804 0.061758 16 ] * * Matrix is signed 2p13 fixed point, with signed 9p6 offsets */ static const u16 vc5_hdmi_csc_full_rgb_to_limited_yuv444_bt709[3][4] = { { 0xfccc, 0xf536, 0x0e00, 0x2000 }, { 0x0e00, 0xf34a, 0xfeb8, 0x2000 }, { 0x05d2, 0x1394, 0x01fa, 0x0400 }, }; static void vc5_hdmi_set_csc_coeffs(struct vc4_hdmi *vc4_hdmi, const u16 coeffs[3][4]) { lockdep_assert_held(&vc4_hdmi->hw_lock); HDMI_WRITE(HDMI_CSC_12_11, (coeffs[0][1] << 16) | coeffs[0][0]); HDMI_WRITE(HDMI_CSC_14_13, (coeffs[0][3] << 16) | coeffs[0][2]); HDMI_WRITE(HDMI_CSC_22_21, (coeffs[1][1] << 16) | coeffs[1][0]); HDMI_WRITE(HDMI_CSC_24_23, (coeffs[1][3] << 16) | coeffs[1][2]); HDMI_WRITE(HDMI_CSC_32_31, (coeffs[2][1] << 16) | coeffs[2][0]); HDMI_WRITE(HDMI_CSC_34_33, (coeffs[2][3] << 16) | coeffs[2][2]); } static void vc5_hdmi_csc_setup(struct vc4_hdmi *vc4_hdmi, struct drm_connector_state *state, const struct drm_display_mode *mode) { struct drm_device *drm = vc4_hdmi->connector.dev; struct vc4_hdmi_connector_state *vc4_state = conn_state_to_vc4_hdmi_conn_state(state); unsigned long flags; u32 if_cfg = 0; u32 if_xbar = 0x543210; u32 csc_chan_ctl = 0; u32 csc_ctl = VC5_MT_CP_CSC_CTL_ENABLE | VC4_SET_FIELD(VC4_HD_CSC_CTL_MODE_CUSTOM, VC5_MT_CP_CSC_CTL_MODE); int idx; if (!drm_dev_enter(drm, &idx)) return; spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); switch (vc4_state->output_format) { case VC4_HDMI_OUTPUT_YUV444: vc5_hdmi_set_csc_coeffs(vc4_hdmi, vc5_hdmi_csc_full_rgb_to_limited_yuv444_bt709); break; case VC4_HDMI_OUTPUT_YUV422: csc_ctl |= VC4_SET_FIELD(VC5_MT_CP_CSC_CTL_FILTER_MODE_444_TO_422_STANDARD, VC5_MT_CP_CSC_CTL_FILTER_MODE_444_TO_422) | VC5_MT_CP_CSC_CTL_USE_444_TO_422 | VC5_MT_CP_CSC_CTL_USE_RNG_SUPPRESSION; csc_chan_ctl |= VC4_SET_FIELD(VC5_MT_CP_CHANNEL_CTL_OUTPUT_REMAP_LEGACY_STYLE, VC5_MT_CP_CHANNEL_CTL_OUTPUT_REMAP); if_cfg |= VC4_SET_FIELD(VC5_DVP_HT_VEC_INTERFACE_CFG_SEL_422_FORMAT_422_LEGACY, VC5_DVP_HT_VEC_INTERFACE_CFG_SEL_422); vc5_hdmi_set_csc_coeffs(vc4_hdmi, vc5_hdmi_csc_full_rgb_to_limited_yuv422_bt709); break; case VC4_HDMI_OUTPUT_RGB: if_xbar = 0x354021; if (!vc4_hdmi_is_full_range_rgb(vc4_hdmi, mode)) vc5_hdmi_set_csc_coeffs(vc4_hdmi, vc5_hdmi_csc_full_rgb_to_limited_rgb); else vc5_hdmi_set_csc_coeffs(vc4_hdmi, vc5_hdmi_csc_full_rgb_unity); break; default: break; } HDMI_WRITE(HDMI_VEC_INTERFACE_CFG, if_cfg); HDMI_WRITE(HDMI_VEC_INTERFACE_XBAR, if_xbar); HDMI_WRITE(HDMI_CSC_CHANNEL_CTL, csc_chan_ctl); HDMI_WRITE(HDMI_CSC_CTL, csc_ctl); spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); drm_dev_exit(idx); } static void vc4_hdmi_set_timings(struct vc4_hdmi *vc4_hdmi, struct drm_connector_state *state, const struct drm_display_mode *mode) { struct drm_device *drm = vc4_hdmi->connector.dev; bool hsync_pos = mode->flags & DRM_MODE_FLAG_PHSYNC; bool vsync_pos = mode->flags & DRM_MODE_FLAG_PVSYNC; bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE; u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1; u32 verta = (VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start, VC4_HDMI_VERTA_VSP) | VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay, VC4_HDMI_VERTA_VFP) | VC4_SET_FIELD(mode->crtc_vdisplay, VC4_HDMI_VERTA_VAL)); u32 vertb = (VC4_SET_FIELD(0, VC4_HDMI_VERTB_VSPO) | VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end + interlaced, VC4_HDMI_VERTB_VBP)); u32 vertb_even = (VC4_SET_FIELD(0, VC4_HDMI_VERTB_VSPO) | VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end, VC4_HDMI_VERTB_VBP)); unsigned long flags; u32 reg; int idx; if (!drm_dev_enter(drm, &idx)) return; spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); HDMI_WRITE(HDMI_HORZA, (vsync_pos ? VC4_HDMI_HORZA_VPOS : 0) | (hsync_pos ? VC4_HDMI_HORZA_HPOS : 0) | VC4_SET_FIELD(mode->hdisplay * pixel_rep, VC4_HDMI_HORZA_HAP)); HDMI_WRITE(HDMI_HORZB, VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep, VC4_HDMI_HORZB_HBP) | VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep, VC4_HDMI_HORZB_HSP) | VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep, VC4_HDMI_HORZB_HFP)); HDMI_WRITE(HDMI_VERTA0, verta); HDMI_WRITE(HDMI_VERTA1, verta); HDMI_WRITE(HDMI_VERTB0, vertb_even); HDMI_WRITE(HDMI_VERTB1, vertb); reg = HDMI_READ(HDMI_MISC_CONTROL); reg &= ~VC4_HDMI_MISC_CONTROL_PIXEL_REP_MASK; reg |= VC4_SET_FIELD(pixel_rep - 1, VC4_HDMI_MISC_CONTROL_PIXEL_REP); HDMI_WRITE(HDMI_MISC_CONTROL, reg); spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); drm_dev_exit(idx); } static void vc5_hdmi_set_timings(struct vc4_hdmi *vc4_hdmi, struct drm_connector_state *state, const struct drm_display_mode *mode) { struct drm_device *drm = vc4_hdmi->connector.dev; const struct vc4_hdmi_connector_state *vc4_state = conn_state_to_vc4_hdmi_conn_state(state); bool hsync_pos = mode->flags & DRM_MODE_FLAG_PHSYNC; bool vsync_pos = mode->flags & DRM_MODE_FLAG_PVSYNC; bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE; u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1; u32 verta = (VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start, VC5_HDMI_VERTA_VSP) | VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay, VC5_HDMI_VERTA_VFP) | VC4_SET_FIELD(mode->crtc_vdisplay, VC5_HDMI_VERTA_VAL)); u32 vertb = (VC4_SET_FIELD(mode->htotal >> (2 - pixel_rep), VC5_HDMI_VERTB_VSPO) | VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end, VC4_HDMI_VERTB_VBP)); u32 vertb_even = (VC4_SET_FIELD(0, VC5_HDMI_VERTB_VSPO) | VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end - interlaced, VC4_HDMI_VERTB_VBP)); unsigned long flags; unsigned char gcp; u32 reg; int idx; if (!drm_dev_enter(drm, &idx)) return; spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); HDMI_WRITE(HDMI_HORZA, (vsync_pos ? VC5_HDMI_HORZA_VPOS : 0) | (hsync_pos ? VC5_HDMI_HORZA_HPOS : 0) | VC4_SET_FIELD(mode->hdisplay * pixel_rep, VC5_HDMI_HORZA_HAP) | VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep, VC5_HDMI_HORZA_HFP)); HDMI_WRITE(HDMI_HORZB, VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep, VC5_HDMI_HORZB_HBP) | VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep, VC5_HDMI_HORZB_HSP)); HDMI_WRITE(HDMI_VERTA0, verta); HDMI_WRITE(HDMI_VERTA1, verta); HDMI_WRITE(HDMI_VERTB0, vertb_even); HDMI_WRITE(HDMI_VERTB1, vertb); switch (vc4_state->output_bpc) { case 12: gcp = 6; break; case 10: gcp = 5; break; case 8: default: gcp = 0; break; } /* * YCC422 is always 36-bit and not considered deep colour so * doesn't signal in GCP. */ if (vc4_state->output_format == VC4_HDMI_OUTPUT_YUV422) { gcp = 0; } reg = HDMI_READ(HDMI_DEEP_COLOR_CONFIG_1); reg &= ~(VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE_MASK | VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH_MASK); reg |= VC4_SET_FIELD(2, VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE) | VC4_SET_FIELD(gcp, VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH); HDMI_WRITE(HDMI_DEEP_COLOR_CONFIG_1, reg); reg = HDMI_READ(HDMI_GCP_WORD_1); reg &= ~VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1_MASK; reg |= VC4_SET_FIELD(gcp, VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1); reg &= ~VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_0_MASK; reg |= VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_0_CLEAR_AVMUTE; HDMI_WRITE(HDMI_GCP_WORD_1, reg); reg = HDMI_READ(HDMI_GCP_CONFIG); reg |= VC5_HDMI_GCP_CONFIG_GCP_ENABLE; HDMI_WRITE(HDMI_GCP_CONFIG, reg); reg = HDMI_READ(HDMI_MISC_CONTROL); reg &= ~VC5_HDMI_MISC_CONTROL_PIXEL_REP_MASK; reg |= VC4_SET_FIELD(pixel_rep - 1, VC5_HDMI_MISC_CONTROL_PIXEL_REP); HDMI_WRITE(HDMI_MISC_CONTROL, reg); HDMI_WRITE(HDMI_CLOCK_STOP, 0); spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); drm_dev_exit(idx); } static void vc4_hdmi_recenter_fifo(struct vc4_hdmi *vc4_hdmi) { struct drm_device *drm = vc4_hdmi->connector.dev; unsigned long flags; u32 drift; int ret; int idx; if (!drm_dev_enter(drm, &idx)) return; spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); drift = HDMI_READ(HDMI_FIFO_CTL); drift &= VC4_HDMI_FIFO_VALID_WRITE_MASK; HDMI_WRITE(HDMI_FIFO_CTL, drift & ~VC4_HDMI_FIFO_CTL_RECENTER); HDMI_WRITE(HDMI_FIFO_CTL, drift | VC4_HDMI_FIFO_CTL_RECENTER); spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); usleep_range(1000, 1100); spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); HDMI_WRITE(HDMI_FIFO_CTL, drift & ~VC4_HDMI_FIFO_CTL_RECENTER); HDMI_WRITE(HDMI_FIFO_CTL, drift | VC4_HDMI_FIFO_CTL_RECENTER); spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); ret = wait_for(HDMI_READ(HDMI_FIFO_CTL) & VC4_HDMI_FIFO_CTL_RECENTER_DONE, 1); WARN_ONCE(ret, "Timeout waiting for " "VC4_HDMI_FIFO_CTL_RECENTER_DONE"); drm_dev_exit(idx); } static void vc4_hdmi_encoder_pre_crtc_configure(struct drm_encoder *encoder, struct drm_atomic_state *state) { struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); struct drm_device *drm = vc4_hdmi->connector.dev; struct drm_connector *connector = &vc4_hdmi->connector; struct drm_connector_state *conn_state = drm_atomic_get_new_connector_state(state, connector); struct vc4_hdmi_connector_state *vc4_conn_state = conn_state_to_vc4_hdmi_conn_state(conn_state); const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode; unsigned long tmds_char_rate = vc4_conn_state->tmds_char_rate; unsigned long bvb_rate, hsm_rate; unsigned long flags; int ret; int idx; mutex_lock(&vc4_hdmi->mutex); if (!drm_dev_enter(drm, &idx)) goto out; /* * As stated in RPi's vc4 firmware "HDMI state machine (HSM) clock must * be faster than pixel clock, infinitesimally faster, tested in * simulation. Otherwise, exact value is unimportant for HDMI * operation." This conflicts with bcm2835's vc4 documentation, which * states HSM's clock has to be at least 108% of the pixel clock. * * Real life tests reveal that vc4's firmware statement holds up, and * users are able to use pixel clocks closer to HSM's, namely for * 1920x1200@60Hz. So it was decided to have leave a 1% margin between * both clocks. Which, for RPi0-3 implies a maximum pixel clock of * 162MHz. * * Additionally, the AXI clock needs to be at least 25% of * pixel clock, but HSM ends up being the limiting factor. */ hsm_rate = max_t(unsigned long, 120000000, (tmds_char_rate / 100) * 101); ret = clk_set_min_rate(vc4_hdmi->hsm_clock, hsm_rate); if (ret) { DRM_ERROR("Failed to set HSM clock rate: %d\n", ret); goto err_dev_exit; } ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev); if (ret < 0) { DRM_ERROR("Failed to retain power domain: %d\n", ret); goto err_dev_exit; } ret = clk_set_rate(vc4_hdmi->pixel_clock, tmds_char_rate); if (ret) { DRM_ERROR("Failed to set pixel clock rate: %d\n", ret); goto err_put_runtime_pm; } ret = clk_prepare_enable(vc4_hdmi->pixel_clock); if (ret) { DRM_ERROR("Failed to turn on pixel clock: %d\n", ret); goto err_put_runtime_pm; } vc4_hdmi_cec_update_clk_div(vc4_hdmi); if (tmds_char_rate > 297000000) bvb_rate = 300000000; else if (tmds_char_rate > 148500000) bvb_rate = 150000000; else bvb_rate = 75000000; ret = clk_set_min_rate(vc4_hdmi->pixel_bvb_clock, bvb_rate); if (ret) { DRM_ERROR("Failed to set pixel bvb clock rate: %d\n", ret); goto err_disable_pixel_clock; } ret = clk_prepare_enable(vc4_hdmi->pixel_bvb_clock); if (ret) { DRM_ERROR("Failed to turn on pixel bvb clock: %d\n", ret); goto err_disable_pixel_clock; } if (vc4_hdmi->variant->phy_init) vc4_hdmi->variant->phy_init(vc4_hdmi, vc4_conn_state); spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); HDMI_WRITE(HDMI_SCHEDULER_CONTROL, HDMI_READ(HDMI_SCHEDULER_CONTROL) | VC4_HDMI_SCHEDULER_CONTROL_MANUAL_FORMAT | VC4_HDMI_SCHEDULER_CONTROL_IGNORE_VSYNC_PREDICTS); spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); if (vc4_hdmi->variant->set_timings) vc4_hdmi->variant->set_timings(vc4_hdmi, conn_state, mode); drm_dev_exit(idx); mutex_unlock(&vc4_hdmi->mutex); return; err_disable_pixel_clock: clk_disable_unprepare(vc4_hdmi->pixel_clock); err_put_runtime_pm: pm_runtime_put(&vc4_hdmi->pdev->dev); err_dev_exit: drm_dev_exit(idx); out: mutex_unlock(&vc4_hdmi->mutex); return; } static void vc4_hdmi_encoder_pre_crtc_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) { struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); struct drm_device *drm = vc4_hdmi->connector.dev; struct drm_connector *connector = &vc4_hdmi->connector; const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode; struct drm_connector_state *conn_state = drm_atomic_get_new_connector_state(state, connector); unsigned long flags; int idx; mutex_lock(&vc4_hdmi->mutex); if (!drm_dev_enter(drm, &idx)) goto out; if (vc4_hdmi->variant->csc_setup) vc4_hdmi->variant->csc_setup(vc4_hdmi, conn_state, mode); spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); HDMI_WRITE(HDMI_FIFO_CTL, VC4_HDMI_FIFO_CTL_MASTER_SLAVE_N); spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); drm_dev_exit(idx); out: mutex_unlock(&vc4_hdmi->mutex); } static void vc4_hdmi_encoder_post_crtc_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) { struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); struct drm_device *drm = vc4_hdmi->connector.dev; const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode; struct drm_display_info *display = &vc4_hdmi->connector.display_info; bool hsync_pos = mode->flags & DRM_MODE_FLAG_PHSYNC; bool vsync_pos = mode->flags & DRM_MODE_FLAG_PVSYNC; unsigned long flags; int ret; int idx; mutex_lock(&vc4_hdmi->mutex); if (!drm_dev_enter(drm, &idx)) goto out; spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); HDMI_WRITE(HDMI_VID_CTL, VC4_HD_VID_CTL_ENABLE | VC4_HD_VID_CTL_CLRRGB | VC4_HD_VID_CTL_UNDERFLOW_ENABLE | VC4_HD_VID_CTL_FRAME_COUNTER_RESET | (vsync_pos ? 0 : VC4_HD_VID_CTL_VSYNC_LOW) | (hsync_pos ? 0 : VC4_HD_VID_CTL_HSYNC_LOW)); HDMI_WRITE(HDMI_VID_CTL, HDMI_READ(HDMI_VID_CTL) & ~VC4_HD_VID_CTL_BLANKPIX); if (display->is_hdmi) { HDMI_WRITE(HDMI_SCHEDULER_CONTROL, HDMI_READ(HDMI_SCHEDULER_CONTROL) | VC4_HDMI_SCHEDULER_CONTROL_MODE_HDMI); spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); ret = wait_for(HDMI_READ(HDMI_SCHEDULER_CONTROL) & VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE, 1000); WARN_ONCE(ret, "Timeout waiting for " "VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE\n"); } else { HDMI_WRITE(HDMI_RAM_PACKET_CONFIG, HDMI_READ(HDMI_RAM_PACKET_CONFIG) & ~(VC4_HDMI_RAM_PACKET_ENABLE)); HDMI_WRITE(HDMI_SCHEDULER_CONTROL, HDMI_READ(HDMI_SCHEDULER_CONTROL) & ~VC4_HDMI_SCHEDULER_CONTROL_MODE_HDMI); spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); ret = wait_for(!(HDMI_READ(HDMI_SCHEDULER_CONTROL) & VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE), 1000); WARN_ONCE(ret, "Timeout waiting for " "!VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE\n"); } if (display->is_hdmi) { spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); WARN_ON(!(HDMI_READ(HDMI_SCHEDULER_CONTROL) & VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE)); HDMI_WRITE(HDMI_RAM_PACKET_CONFIG, VC4_HDMI_RAM_PACKET_ENABLE); spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); vc4_hdmi->packet_ram_enabled = true; vc4_hdmi_set_infoframes(encoder); } vc4_hdmi_recenter_fifo(vc4_hdmi); vc4_hdmi_enable_scrambling(encoder); drm_dev_exit(idx); out: mutex_unlock(&vc4_hdmi->mutex); } static void vc4_hdmi_encoder_atomic_mode_set(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); struct vc4_hdmi_connector_state *vc4_state = conn_state_to_vc4_hdmi_conn_state(conn_state); mutex_lock(&vc4_hdmi->mutex); drm_mode_copy(&vc4_hdmi->saved_adjusted_mode, &crtc_state->adjusted_mode); vc4_hdmi->output_bpc = vc4_state->output_bpc; vc4_hdmi->output_format = vc4_state->output_format; mutex_unlock(&vc4_hdmi->mutex); } static bool vc4_hdmi_sink_supports_format_bpc(const struct vc4_hdmi *vc4_hdmi, const struct drm_display_info *info, const struct drm_display_mode *mode, unsigned int format, unsigned int bpc) { struct drm_device *dev = vc4_hdmi->connector.dev; u8 vic = drm_match_cea_mode(mode); if (vic == 1 && bpc != 8) { drm_dbg(dev, "VIC1 requires a bpc of 8, got %u\n", bpc); return false; } if (!info->is_hdmi && (format != VC4_HDMI_OUTPUT_RGB || bpc != 8)) { drm_dbg(dev, "DVI Monitors require an RGB output at 8 bpc\n"); return false; } switch (format) { case VC4_HDMI_OUTPUT_RGB: drm_dbg(dev, "RGB Format, checking the constraints.\n"); if (!(info->color_formats & DRM_COLOR_FORMAT_RGB444)) return false; if (bpc == 10 && !(info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_30)) { drm_dbg(dev, "10 BPC but sink doesn't support Deep Color 30.\n"); return false; } if (bpc == 12 && !(info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_36)) { drm_dbg(dev, "12 BPC but sink doesn't support Deep Color 36.\n"); return false; } drm_dbg(dev, "RGB format supported in that configuration.\n"); return true; case VC4_HDMI_OUTPUT_YUV422: drm_dbg(dev, "YUV422 format, checking the constraints.\n"); if (!(info->color_formats & DRM_COLOR_FORMAT_YCBCR422)) { drm_dbg(dev, "Sink doesn't support YUV422.\n"); return false; } if (bpc != 12) { drm_dbg(dev, "YUV422 only supports 12 bpc.\n"); return false; } drm_dbg(dev, "YUV422 format supported in that configuration.\n"); return true; case VC4_HDMI_OUTPUT_YUV444: drm_dbg(dev, "YUV444 format, checking the constraints.\n"); if (!(info->color_formats & DRM_COLOR_FORMAT_YCBCR444)) { drm_dbg(dev, "Sink doesn't support YUV444.\n"); return false; } if (bpc == 10 && !(info->edid_hdmi_ycbcr444_dc_modes & DRM_EDID_HDMI_DC_30)) { drm_dbg(dev, "10 BPC but sink doesn't support Deep Color 30.\n"); return false; } if (bpc == 12 && !(info->edid_hdmi_ycbcr444_dc_modes & DRM_EDID_HDMI_DC_36)) { drm_dbg(dev, "12 BPC but sink doesn't support Deep Color 36.\n"); return false; } drm_dbg(dev, "YUV444 format supported in that configuration.\n"); return true; } return false; } static enum drm_mode_status vc4_hdmi_encoder_clock_valid(const struct vc4_hdmi *vc4_hdmi, const struct drm_display_mode *mode, unsigned long long clock) { const struct drm_connector *connector = &vc4_hdmi->connector; const struct drm_display_info *info = &connector->display_info; struct vc4_dev *vc4 = to_vc4_dev(connector->dev); if (clock > vc4_hdmi->variant->max_pixel_clock) return MODE_CLOCK_HIGH; if (!vc4->hvs->vc5_hdmi_enable_hdmi_20 && clock > HDMI_14_MAX_TMDS_CLK) return MODE_CLOCK_HIGH; /* 4096x2160@60 is not reliable without overclocking core */ if (!vc4->hvs->vc5_hdmi_enable_4096by2160 && mode->hdisplay > 3840 && mode->vdisplay >= 2160 && drm_mode_vrefresh(mode) >= 50) return MODE_CLOCK_HIGH; if (info->max_tmds_clock && clock > (info->max_tmds_clock * 1000)) return MODE_CLOCK_HIGH; return MODE_OK; } static unsigned long long vc4_hdmi_encoder_compute_mode_clock(const struct drm_display_mode *mode, unsigned int bpc, enum vc4_hdmi_output_format fmt) { unsigned long long clock = mode->clock * 1000ULL; if (mode->flags & DRM_MODE_FLAG_DBLCLK) clock = clock * 2; if (fmt == VC4_HDMI_OUTPUT_YUV422) bpc = 8; clock = clock * bpc; do_div(clock, 8); return clock; } static int vc4_hdmi_encoder_compute_clock(const struct vc4_hdmi *vc4_hdmi, struct vc4_hdmi_connector_state *vc4_state, const struct drm_display_mode *mode, unsigned int bpc, unsigned int fmt) { unsigned long long clock; clock = vc4_hdmi_encoder_compute_mode_clock(mode, bpc, fmt); if (vc4_hdmi_encoder_clock_valid(vc4_hdmi, mode, clock) != MODE_OK) return -EINVAL; vc4_state->tmds_char_rate = clock; return 0; } static int vc4_hdmi_encoder_compute_format(const struct vc4_hdmi *vc4_hdmi, struct vc4_hdmi_connector_state *vc4_state, const struct drm_display_mode *mode, unsigned int bpc) { struct drm_device *dev = vc4_hdmi->connector.dev; const struct drm_connector *connector = &vc4_hdmi->connector; const struct drm_display_info *info = &connector->display_info; unsigned int format; drm_dbg(dev, "Trying with an RGB output\n"); format = VC4_HDMI_OUTPUT_RGB; if (vc4_hdmi_sink_supports_format_bpc(vc4_hdmi, info, mode, format, bpc)) { int ret; ret = vc4_hdmi_encoder_compute_clock(vc4_hdmi, vc4_state, mode, bpc, format); if (!ret) { vc4_state->output_format = format; return 0; } } drm_dbg(dev, "Failed, Trying with an YUV422 output\n"); format = VC4_HDMI_OUTPUT_YUV422; if (vc4_hdmi_sink_supports_format_bpc(vc4_hdmi, info, mode, format, bpc)) { int ret; ret = vc4_hdmi_encoder_compute_clock(vc4_hdmi, vc4_state, mode, bpc, format); if (!ret) { vc4_state->output_format = format; return 0; } } drm_dbg(dev, "Failed. No Format Supported for that bpc count.\n"); return -EINVAL; } static int vc4_hdmi_encoder_compute_config(const struct vc4_hdmi *vc4_hdmi, struct vc4_hdmi_connector_state *vc4_state, const struct drm_display_mode *mode) { struct drm_device *dev = vc4_hdmi->connector.dev; struct drm_connector_state *conn_state = &vc4_state->base; unsigned int max_bpc = clamp_t(unsigned int, conn_state->max_bpc, 8, 12); unsigned int bpc; int ret; for (bpc = max_bpc; bpc >= 8; bpc -= 2) { drm_dbg(dev, "Trying with a %d bpc output\n", bpc); ret = vc4_hdmi_encoder_compute_format(vc4_hdmi, vc4_state, mode, bpc); if (ret) continue; vc4_state->output_bpc = bpc; drm_dbg(dev, "Mode %ux%u @ %uHz: Found configuration: bpc: %u, fmt: %s, clock: %llu\n", mode->hdisplay, mode->vdisplay, drm_mode_vrefresh(mode), vc4_state->output_bpc, vc4_hdmi_output_fmt_str(vc4_state->output_format), vc4_state->tmds_char_rate); break; } return ret; } #define WIFI_2_4GHz_CH1_MIN_FREQ 2400000000ULL #define WIFI_2_4GHz_CH1_MAX_FREQ 2422000000ULL static int vc4_hdmi_encoder_atomic_check(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); struct drm_connector *connector = &vc4_hdmi->connector; struct drm_connector_state *old_conn_state = drm_atomic_get_old_connector_state(conn_state->state, connector); struct vc4_hdmi_connector_state *old_vc4_state = conn_state_to_vc4_hdmi_conn_state(old_conn_state); struct vc4_hdmi_connector_state *vc4_state = conn_state_to_vc4_hdmi_conn_state(conn_state); struct drm_display_mode *mode = &crtc_state->adjusted_mode; unsigned long long tmds_char_rate = mode->clock * 1000; unsigned long long tmds_bit_rate; int ret; if (vc4_hdmi->variant->unsupported_odd_h_timings) { if (mode->flags & DRM_MODE_FLAG_DBLCLK) { /* Only try to fixup DBLCLK modes to get 480i and 576i * working. * A generic solution for all modes with odd horizontal * timing values seems impossible based on trying to * solve it for 1366x768 monitors. */ if ((mode->hsync_start - mode->hdisplay) & 1) mode->hsync_start--; if ((mode->hsync_end - mode->hsync_start) & 1) mode->hsync_end--; } /* Now check whether we still have odd values remaining */ if ((mode->hdisplay % 2) || (mode->hsync_start % 2) || (mode->hsync_end % 2) || (mode->htotal % 2)) return -EINVAL; } /* * The 1440p@60 pixel rate is in the same range than the first * WiFi channel (between 2.4GHz and 2.422GHz with 22MHz * bandwidth). Slightly lower the frequency to bring it out of * the WiFi range. */ tmds_bit_rate = tmds_char_rate * 10; if (vc4_hdmi->disable_wifi_frequencies && (tmds_bit_rate >= WIFI_2_4GHz_CH1_MIN_FREQ && tmds_bit_rate <= WIFI_2_4GHz_CH1_MAX_FREQ)) { mode->clock = 238560; tmds_char_rate = mode->clock * 1000; } ret = vc4_hdmi_encoder_compute_config(vc4_hdmi, vc4_state, mode); if (ret) return ret; /* vc4_hdmi_encoder_compute_config may have changed output_bpc and/or output_format */ if (vc4_state->output_bpc != old_vc4_state->output_bpc || vc4_state->output_format != old_vc4_state->output_format) crtc_state->mode_changed = true; return 0; } static enum drm_mode_status vc4_hdmi_encoder_mode_valid(struct drm_encoder *encoder, const struct drm_display_mode *mode) { struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); if (vc4_hdmi->variant->unsupported_odd_h_timings && !(mode->flags & DRM_MODE_FLAG_DBLCLK) && ((mode->hdisplay % 2) || (mode->hsync_start % 2) || (mode->hsync_end % 2) || (mode->htotal % 2))) return MODE_H_ILLEGAL; return vc4_hdmi_encoder_clock_valid(vc4_hdmi, mode, mode->clock * 1000); } static const struct drm_encoder_helper_funcs vc4_hdmi_encoder_helper_funcs = { .atomic_check = vc4_hdmi_encoder_atomic_check, .atomic_mode_set = vc4_hdmi_encoder_atomic_mode_set, .mode_valid = vc4_hdmi_encoder_mode_valid, }; static int vc4_hdmi_late_register(struct drm_encoder *encoder) { struct drm_device *drm = encoder->dev; struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); const struct vc4_hdmi_variant *variant = vc4_hdmi->variant; int ret; ret = vc4_debugfs_add_file(drm->primary, variant->debugfs_name, vc4_hdmi_debugfs_regs, vc4_hdmi); if (ret) return ret; return 0; } static const struct drm_encoder_funcs vc4_hdmi_encoder_funcs = { .late_register = vc4_hdmi_late_register, }; static u32 vc4_hdmi_channel_map(struct vc4_hdmi *vc4_hdmi, u32 channel_mask) { int i; u32 channel_map = 0; for (i = 0; i < 8; i++) { if (channel_mask & BIT(i)) channel_map |= i << (3 * i); } return channel_map; } static u32 vc5_hdmi_channel_map(struct vc4_hdmi *vc4_hdmi, u32 channel_mask) { int i; u32 channel_map = 0; for (i = 0; i < 8; i++) { if (channel_mask & BIT(i)) channel_map |= i << (4 * i); } return channel_map; } static bool vc5_hdmi_hp_detect(struct vc4_hdmi *vc4_hdmi) { struct drm_device *drm = vc4_hdmi->connector.dev; unsigned long flags; u32 hotplug; int idx; if (!drm_dev_enter(drm, &idx)) return false; spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); hotplug = HDMI_READ(HDMI_HOTPLUG); spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); drm_dev_exit(idx); return !!(hotplug & VC4_HDMI_HOTPLUG_CONNECTED); } /* HDMI audio codec callbacks */ static void vc4_hdmi_audio_set_mai_clock(struct vc4_hdmi *vc4_hdmi, unsigned int samplerate) { struct drm_device *drm = vc4_hdmi->connector.dev; u32 hsm_clock; unsigned long flags; unsigned long n, m; int idx; if (!drm_dev_enter(drm, &idx)) return; hsm_clock = clk_get_rate(vc4_hdmi->audio_clock); rational_best_approximation(hsm_clock, samplerate, VC4_HD_MAI_SMP_N_MASK >> VC4_HD_MAI_SMP_N_SHIFT, (VC4_HD_MAI_SMP_M_MASK >> VC4_HD_MAI_SMP_M_SHIFT) + 1, &n, &m); spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); HDMI_WRITE(HDMI_MAI_SMP, VC4_SET_FIELD(n, VC4_HD_MAI_SMP_N) | VC4_SET_FIELD(m - 1, VC4_HD_MAI_SMP_M)); spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); drm_dev_exit(idx); } static void vc4_hdmi_set_n_cts(struct vc4_hdmi *vc4_hdmi, unsigned int samplerate) { const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode; u32 n, cts; u64 tmp; lockdep_assert_held(&vc4_hdmi->mutex); lockdep_assert_held(&vc4_hdmi->hw_lock); n = 128 * samplerate / 1000; tmp = (u64)(mode->clock * 1000) * n; do_div(tmp, 128 * samplerate); cts = tmp; HDMI_WRITE(HDMI_CRP_CFG, VC4_HDMI_CRP_CFG_EXTERNAL_CTS_EN | VC4_SET_FIELD(n, VC4_HDMI_CRP_CFG_N)); /* * We could get slightly more accurate clocks in some cases by * providing a CTS_1 value. The two CTS values are alternated * between based on the period fields */ HDMI_WRITE(HDMI_CTS_0, cts); HDMI_WRITE(HDMI_CTS_1, cts); } static inline struct vc4_hdmi *dai_to_hdmi(struct snd_soc_dai *dai) { struct snd_soc_card *card = snd_soc_dai_get_drvdata(dai); return snd_soc_card_get_drvdata(card); } static bool vc4_hdmi_audio_can_stream(struct vc4_hdmi *vc4_hdmi) { struct drm_display_info *display = &vc4_hdmi->connector.display_info; lockdep_assert_held(&vc4_hdmi->mutex); /* * If the encoder is currently in DVI mode, treat the codec DAI * as missing. */ if (!display->is_hdmi) return false; return true; } static int vc4_hdmi_audio_startup(struct device *dev, void *data) { struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev); struct drm_device *drm = vc4_hdmi->connector.dev; unsigned long flags; int ret = 0; int idx; mutex_lock(&vc4_hdmi->mutex); if (!drm_dev_enter(drm, &idx)) { ret = -ENODEV; goto out; } if (!vc4_hdmi_audio_can_stream(vc4_hdmi)) { ret = -ENODEV; goto out_dev_exit; } vc4_hdmi->audio.streaming = true; spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); HDMI_WRITE(HDMI_MAI_CTL, VC4_HD_MAI_CTL_RESET | VC4_HD_MAI_CTL_FLUSH | VC4_HD_MAI_CTL_DLATE | VC4_HD_MAI_CTL_ERRORE | VC4_HD_MAI_CTL_ERRORF); spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); if (vc4_hdmi->variant->phy_rng_enable) vc4_hdmi->variant->phy_rng_enable(vc4_hdmi); out_dev_exit: drm_dev_exit(idx); out: mutex_unlock(&vc4_hdmi->mutex); return ret; } static void vc4_hdmi_audio_reset(struct vc4_hdmi *vc4_hdmi) { struct drm_encoder *encoder = &vc4_hdmi->encoder.base; struct device *dev = &vc4_hdmi->pdev->dev; unsigned long flags; int ret; lockdep_assert_held(&vc4_hdmi->mutex); vc4_hdmi->audio.streaming = false; ret = vc4_hdmi_stop_packet(encoder, HDMI_INFOFRAME_TYPE_AUDIO, false); if (ret) dev_err(dev, "Failed to stop audio infoframe: %d\n", ret); spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); HDMI_WRITE(HDMI_MAI_CTL, VC4_HD_MAI_CTL_RESET); HDMI_WRITE(HDMI_MAI_CTL, VC4_HD_MAI_CTL_ERRORF); HDMI_WRITE(HDMI_MAI_CTL, VC4_HD_MAI_CTL_FLUSH); spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); } static void vc4_hdmi_audio_shutdown(struct device *dev, void *data) { struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev); struct drm_device *drm = vc4_hdmi->connector.dev; unsigned long flags; int idx; mutex_lock(&vc4_hdmi->mutex); if (!drm_dev_enter(drm, &idx)) goto out; spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); HDMI_WRITE(HDMI_MAI_CTL, VC4_HD_MAI_CTL_DLATE | VC4_HD_MAI_CTL_ERRORE | VC4_HD_MAI_CTL_ERRORF); spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); if (vc4_hdmi->variant->phy_rng_disable) vc4_hdmi->variant->phy_rng_disable(vc4_hdmi); vc4_hdmi->audio.streaming = false; vc4_hdmi_audio_reset(vc4_hdmi); drm_dev_exit(idx); out: mutex_unlock(&vc4_hdmi->mutex); } static int sample_rate_to_mai_fmt(int samplerate) { switch (samplerate) { case 8000: return VC4_HDMI_MAI_SAMPLE_RATE_8000; case 11025: return VC4_HDMI_MAI_SAMPLE_RATE_11025; case 12000: return VC4_HDMI_MAI_SAMPLE_RATE_12000; case 16000: return VC4_HDMI_MAI_SAMPLE_RATE_16000; case 22050: return VC4_HDMI_MAI_SAMPLE_RATE_22050; case 24000: return VC4_HDMI_MAI_SAMPLE_RATE_24000; case 32000: return VC4_HDMI_MAI_SAMPLE_RATE_32000; case 44100: return VC4_HDMI_MAI_SAMPLE_RATE_44100; case 48000: return VC4_HDMI_MAI_SAMPLE_RATE_48000; case 64000: return VC4_HDMI_MAI_SAMPLE_RATE_64000; case 88200: return VC4_HDMI_MAI_SAMPLE_RATE_88200; case 96000: return VC4_HDMI_MAI_SAMPLE_RATE_96000; case 128000: return VC4_HDMI_MAI_SAMPLE_RATE_128000; case 176400: return VC4_HDMI_MAI_SAMPLE_RATE_176400; case 192000: return VC4_HDMI_MAI_SAMPLE_RATE_192000; default: return VC4_HDMI_MAI_SAMPLE_RATE_NOT_INDICATED; } } /* HDMI audio codec callbacks */ static int vc4_hdmi_audio_prepare(struct device *dev, void *data, struct hdmi_codec_daifmt *daifmt, struct hdmi_codec_params *params) { struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev); struct drm_device *drm = vc4_hdmi->connector.dev; struct drm_encoder *encoder = &vc4_hdmi->encoder.base; unsigned int sample_rate = params->sample_rate; unsigned int channels = params->channels; unsigned long flags; u32 audio_packet_config, channel_mask; u32 channel_map; u32 mai_audio_format; u32 mai_sample_rate; int ret = 0; int idx; dev_dbg(dev, "%s: %u Hz, %d bit, %d channels\n", __func__, sample_rate, params->sample_width, channels); mutex_lock(&vc4_hdmi->mutex); if (!drm_dev_enter(drm, &idx)) { ret = -ENODEV; goto out; } if (!vc4_hdmi_audio_can_stream(vc4_hdmi)) { ret = -EINVAL; goto out_dev_exit; } vc4_hdmi_audio_set_mai_clock(vc4_hdmi, sample_rate); spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); HDMI_WRITE(HDMI_MAI_CTL, VC4_SET_FIELD(channels, VC4_HD_MAI_CTL_CHNUM) | VC4_HD_MAI_CTL_WHOLSMP | VC4_HD_MAI_CTL_CHALIGN | VC4_HD_MAI_CTL_ENABLE); mai_sample_rate = sample_rate_to_mai_fmt(sample_rate); if (params->iec.status[0] & IEC958_AES0_NONAUDIO && params->channels == 8) mai_audio_format = VC4_HDMI_MAI_FORMAT_HBR; else mai_audio_format = VC4_HDMI_MAI_FORMAT_PCM; HDMI_WRITE(HDMI_MAI_FMT, VC4_SET_FIELD(mai_sample_rate, VC4_HDMI_MAI_FORMAT_SAMPLE_RATE) | VC4_SET_FIELD(mai_audio_format, VC4_HDMI_MAI_FORMAT_AUDIO_FORMAT)); /* The B frame identifier should match the value used by alsa-lib (8) */ audio_packet_config = VC4_HDMI_AUDIO_PACKET_ZERO_DATA_ON_SAMPLE_FLAT | VC4_HDMI_AUDIO_PACKET_ZERO_DATA_ON_INACTIVE_CHANNELS | VC4_SET_FIELD(0x8, VC4_HDMI_AUDIO_PACKET_B_FRAME_IDENTIFIER); channel_mask = GENMASK(channels - 1, 0); audio_packet_config |= VC4_SET_FIELD(channel_mask, VC4_HDMI_AUDIO_PACKET_CEA_MASK); /* Set the MAI threshold */ HDMI_WRITE(HDMI_MAI_THR, VC4_SET_FIELD(0x08, VC4_HD_MAI_THR_PANICHIGH) | VC4_SET_FIELD(0x08, VC4_HD_MAI_THR_PANICLOW) | VC4_SET_FIELD(0x06, VC4_HD_MAI_THR_DREQHIGH) | VC4_SET_FIELD(0x08, VC4_HD_MAI_THR_DREQLOW)); HDMI_WRITE(HDMI_MAI_CONFIG, VC4_HDMI_MAI_CONFIG_BIT_REVERSE | VC4_HDMI_MAI_CONFIG_FORMAT_REVERSE | VC4_SET_FIELD(channel_mask, VC4_HDMI_MAI_CHANNEL_MASK)); channel_map = vc4_hdmi->variant->channel_map(vc4_hdmi, channel_mask); HDMI_WRITE(HDMI_MAI_CHANNEL_MAP, channel_map); HDMI_WRITE(HDMI_AUDIO_PACKET_CONFIG, audio_packet_config); vc4_hdmi_set_n_cts(vc4_hdmi, sample_rate); spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); memcpy(&vc4_hdmi->audio.infoframe, ¶ms->cea, sizeof(params->cea)); vc4_hdmi_set_audio_infoframe(encoder); out_dev_exit: drm_dev_exit(idx); out: mutex_unlock(&vc4_hdmi->mutex); return ret; } static const struct snd_soc_component_driver vc4_hdmi_audio_cpu_dai_comp = { .name = "vc4-hdmi-cpu-dai-component", .legacy_dai_naming = 1, }; static int vc4_hdmi_audio_cpu_dai_probe(struct snd_soc_dai *dai) { struct vc4_hdmi *vc4_hdmi = dai_to_hdmi(dai); snd_soc_dai_init_dma_data(dai, &vc4_hdmi->audio.dma_data, NULL); return 0; } static struct snd_soc_dai_driver vc4_hdmi_audio_cpu_dai_drv = { .name = "vc4-hdmi-cpu-dai", .probe = vc4_hdmi_audio_cpu_dai_probe, .playback = { .stream_name = "Playback", .channels_min = 1, .channels_max = 8, .rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000, .formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE, }, }; static const struct snd_dmaengine_pcm_config pcm_conf = { .chan_names[SNDRV_PCM_STREAM_PLAYBACK] = "audio-rx", .prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config, }; static int vc4_hdmi_audio_get_eld(struct device *dev, void *data, uint8_t *buf, size_t len) { struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev); struct drm_connector *connector = &vc4_hdmi->connector; mutex_lock(&vc4_hdmi->mutex); memcpy(buf, connector->eld, min(sizeof(connector->eld), len)); mutex_unlock(&vc4_hdmi->mutex); return 0; } static const struct hdmi_codec_ops vc4_hdmi_codec_ops = { .get_eld = vc4_hdmi_audio_get_eld, .prepare = vc4_hdmi_audio_prepare, .audio_shutdown = vc4_hdmi_audio_shutdown, .audio_startup = vc4_hdmi_audio_startup, }; static struct hdmi_codec_pdata vc4_hdmi_codec_pdata = { .ops = &vc4_hdmi_codec_ops, .max_i2s_channels = 8, .i2s = 1, }; static void vc4_hdmi_audio_codec_release(void *ptr) { struct vc4_hdmi *vc4_hdmi = ptr; platform_device_unregister(vc4_hdmi->audio.codec_pdev); vc4_hdmi->audio.codec_pdev = NULL; } static int vc4_hdmi_audio_init(struct vc4_hdmi *vc4_hdmi) { const struct vc4_hdmi_register *mai_data = &vc4_hdmi->variant->registers[HDMI_MAI_DATA]; struct snd_soc_dai_link *dai_link = &vc4_hdmi->audio.link; struct snd_soc_card *card = &vc4_hdmi->audio.card; struct device *dev = &vc4_hdmi->pdev->dev; struct platform_device *codec_pdev; const __be32 *addr; int index, len; int ret; /* * ASoC makes it a bit hard to retrieve a pointer to the * vc4_hdmi structure. Registering the card will overwrite our * device drvdata with a pointer to the snd_soc_card structure, * which can then be used to retrieve whatever drvdata we want * to associate. * * However, that doesn't fly in the case where we wouldn't * register an ASoC card (because of an old DT that is missing * the dmas properties for example), then the card isn't * registered and the device drvdata wouldn't be set. * * We can deal with both cases by making sure a snd_soc_card * pointer and a vc4_hdmi structure are pointing to the same * memory address, so we can treat them indistinctly without any * issue. */ BUILD_BUG_ON(offsetof(struct vc4_hdmi_audio, card) != 0); BUILD_BUG_ON(offsetof(struct vc4_hdmi, audio) != 0); if (!of_find_property(dev->of_node, "dmas", &len) || !len) { dev_warn(dev, "'dmas' DT property is missing or empty, no HDMI audio\n"); return 0; } if (mai_data->reg != VC4_HD) { WARN_ONCE(true, "MAI isn't in the HD block\n"); return -EINVAL; } /* * Get the physical address of VC4_HD_MAI_DATA. We need to retrieve * the bus address specified in the DT, because the physical address * (the one returned by platform_get_resource()) is not appropriate * for DMA transfers. * This VC/MMU should probably be exposed to avoid this kind of hacks. */ index = of_property_match_string(dev->of_node, "reg-names", "hd"); /* Before BCM2711, we don't have a named register range */ if (index < 0) index = 1; addr = of_get_address(dev->of_node, index, NULL, NULL); vc4_hdmi->audio.dma_data.addr = be32_to_cpup(addr) + mai_data->offset; vc4_hdmi->audio.dma_data.addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; vc4_hdmi->audio.dma_data.maxburst = 2; /* * NOTE: Strictly speaking, we should probably use a DRM-managed * registration there to avoid removing all the audio components * by the time the driver doesn't have any user anymore. * * However, the ASoC core uses a number of devm_kzalloc calls * when registering, even when using non-device-managed * functions (such as in snd_soc_register_component()). * * If we call snd_soc_unregister_component() in a DRM-managed * action, the device-managed actions have already been executed * and thus we would access memory that has been freed. * * Using device-managed hooks here probably leaves us open to a * bunch of issues if userspace still has a handle on the ALSA * device when the device is removed. However, this is mitigated * by the use of drm_dev_enter()/drm_dev_exit() in the audio * path to prevent the access to the device resources if it * isn't there anymore. * * Then, the vc4_hdmi structure is DRM-managed and thus only * freed whenever the last user has closed the DRM device file. * It should thus outlive ALSA in most situations. */ ret = devm_snd_dmaengine_pcm_register(dev, &pcm_conf, 0); if (ret) { dev_err(dev, "Could not register PCM component: %d\n", ret); return ret; } ret = devm_snd_soc_register_component(dev, &vc4_hdmi_audio_cpu_dai_comp, &vc4_hdmi_audio_cpu_dai_drv, 1); if (ret) { dev_err(dev, "Could not register CPU DAI: %d\n", ret); return ret; } codec_pdev = platform_device_register_data(dev, HDMI_CODEC_DRV_NAME, PLATFORM_DEVID_AUTO, &vc4_hdmi_codec_pdata, sizeof(vc4_hdmi_codec_pdata)); if (IS_ERR(codec_pdev)) { dev_err(dev, "Couldn't register the HDMI codec: %ld\n", PTR_ERR(codec_pdev)); return PTR_ERR(codec_pdev); } vc4_hdmi->audio.codec_pdev = codec_pdev; ret = devm_add_action_or_reset(dev, vc4_hdmi_audio_codec_release, vc4_hdmi); if (ret) return ret; dai_link->cpus = &vc4_hdmi->audio.cpu; dai_link->codecs = &vc4_hdmi->audio.codec; dai_link->platforms = &vc4_hdmi->audio.platform; dai_link->num_cpus = 1; dai_link->num_codecs = 1; dai_link->num_platforms = 1; dai_link->name = "MAI"; dai_link->stream_name = "MAI PCM"; dai_link->codecs->dai_name = "i2s-hifi"; dai_link->cpus->dai_name = dev_name(dev); dai_link->codecs->name = dev_name(&codec_pdev->dev); dai_link->platforms->name = dev_name(dev); card->dai_link = dai_link; card->num_links = 1; card->name = vc4_hdmi->variant->card_name; card->driver_name = "vc4-hdmi"; card->dev = dev; card->owner = THIS_MODULE; /* * Be careful, snd_soc_register_card() calls dev_set_drvdata() and * stores a pointer to the snd card object in dev->driver_data. This * means we cannot use it for something else. The hdmi back-pointer is * now stored in card->drvdata and should be retrieved with * snd_soc_card_get_drvdata() if needed. */ snd_soc_card_set_drvdata(card, vc4_hdmi); ret = devm_snd_soc_register_card(dev, card); if (ret) dev_err_probe(dev, ret, "Could not register sound card\n"); return ret; } static irqreturn_t vc4_hdmi_hpd_irq_thread(int irq, void *priv) { struct vc4_hdmi *vc4_hdmi = priv; struct drm_connector *connector = &vc4_hdmi->connector; struct drm_device *dev = connector->dev; if (dev && dev->registered) drm_connector_helper_hpd_irq_event(connector); return IRQ_HANDLED; } static int vc4_hdmi_hotplug_init(struct vc4_hdmi *vc4_hdmi) { struct drm_connector *connector = &vc4_hdmi->connector; struct platform_device *pdev = vc4_hdmi->pdev; int ret; if (vc4_hdmi->variant->external_irq_controller) { unsigned int hpd_con = platform_get_irq_byname(pdev, "hpd-connected"); unsigned int hpd_rm = platform_get_irq_byname(pdev, "hpd-removed"); ret = devm_request_threaded_irq(&pdev->dev, hpd_con, NULL, vc4_hdmi_hpd_irq_thread, IRQF_ONESHOT, "vc4 hdmi hpd connected", vc4_hdmi); if (ret) return ret; ret = devm_request_threaded_irq(&pdev->dev, hpd_rm, NULL, vc4_hdmi_hpd_irq_thread, IRQF_ONESHOT, "vc4 hdmi hpd disconnected", vc4_hdmi); if (ret) return ret; connector->polled = DRM_CONNECTOR_POLL_HPD; } return 0; } #ifdef CONFIG_DRM_VC4_HDMI_CEC static irqreturn_t vc4_cec_irq_handler_rx_thread(int irq, void *priv) { struct vc4_hdmi *vc4_hdmi = priv; if (vc4_hdmi->cec_rx_msg.len) cec_received_msg(vc4_hdmi->cec_adap, &vc4_hdmi->cec_rx_msg); return IRQ_HANDLED; } static irqreturn_t vc4_cec_irq_handler_tx_thread(int irq, void *priv) { struct vc4_hdmi *vc4_hdmi = priv; if (vc4_hdmi->cec_tx_ok) { cec_transmit_done(vc4_hdmi->cec_adap, CEC_TX_STATUS_OK, 0, 0, 0, 0); } else { /* * This CEC implementation makes 1 retry, so if we * get a NACK, then that means it made 2 attempts. */ cec_transmit_done(vc4_hdmi->cec_adap, CEC_TX_STATUS_NACK, 0, 2, 0, 0); } return IRQ_HANDLED; } static irqreturn_t vc4_cec_irq_handler_thread(int irq, void *priv) { struct vc4_hdmi *vc4_hdmi = priv; irqreturn_t ret; if (vc4_hdmi->cec_irq_was_rx) ret = vc4_cec_irq_handler_rx_thread(irq, priv); else ret = vc4_cec_irq_handler_tx_thread(irq, priv); return ret; } static void vc4_cec_read_msg(struct vc4_hdmi *vc4_hdmi, u32 cntrl1) { struct drm_device *dev = vc4_hdmi->connector.dev; struct cec_msg *msg = &vc4_hdmi->cec_rx_msg; unsigned int i; lockdep_assert_held(&vc4_hdmi->hw_lock); msg->len = 1 + ((cntrl1 & VC4_HDMI_CEC_REC_WRD_CNT_MASK) >> VC4_HDMI_CEC_REC_WRD_CNT_SHIFT); if (msg->len > 16) { drm_err(dev, "Attempting to read too much data (%d)\n", msg->len); return; } for (i = 0; i < msg->len; i += 4) { u32 val = HDMI_READ(HDMI_CEC_RX_DATA_1 + (i >> 2)); msg->msg[i] = val & 0xff; msg->msg[i + 1] = (val >> 8) & 0xff; msg->msg[i + 2] = (val >> 16) & 0xff; msg->msg[i + 3] = (val >> 24) & 0xff; } } static irqreturn_t vc4_cec_irq_handler_tx_bare_locked(struct vc4_hdmi *vc4_hdmi) { u32 cntrl1; /* * We don't need to protect the register access using * drm_dev_enter() there because the interrupt handler lifetime * is tied to the device itself, and not to the DRM device. * * So when the device will be gone, one of the first thing we * will be doing will be to unregister the interrupt handler, * and then unregister the DRM device. drm_dev_enter() would * thus always succeed if we are here. */ lockdep_assert_held(&vc4_hdmi->hw_lock); cntrl1 = HDMI_READ(HDMI_CEC_CNTRL_1); vc4_hdmi->cec_tx_ok = cntrl1 & VC4_HDMI_CEC_TX_STATUS_GOOD; cntrl1 &= ~VC4_HDMI_CEC_START_XMIT_BEGIN; HDMI_WRITE(HDMI_CEC_CNTRL_1, cntrl1); return IRQ_WAKE_THREAD; } static irqreturn_t vc4_cec_irq_handler_tx_bare(int irq, void *priv) { struct vc4_hdmi *vc4_hdmi = priv; irqreturn_t ret; spin_lock(&vc4_hdmi->hw_lock); ret = vc4_cec_irq_handler_tx_bare_locked(vc4_hdmi); spin_unlock(&vc4_hdmi->hw_lock); return ret; } static irqreturn_t vc4_cec_irq_handler_rx_bare_locked(struct vc4_hdmi *vc4_hdmi) { u32 cntrl1; lockdep_assert_held(&vc4_hdmi->hw_lock); /* * We don't need to protect the register access using * drm_dev_enter() there because the interrupt handler lifetime * is tied to the device itself, and not to the DRM device. * * So when the device will be gone, one of the first thing we * will be doing will be to unregister the interrupt handler, * and then unregister the DRM device. drm_dev_enter() would * thus always succeed if we are here. */ vc4_hdmi->cec_rx_msg.len = 0; cntrl1 = HDMI_READ(HDMI_CEC_CNTRL_1); vc4_cec_read_msg(vc4_hdmi, cntrl1); cntrl1 |= VC4_HDMI_CEC_CLEAR_RECEIVE_OFF; HDMI_WRITE(HDMI_CEC_CNTRL_1, cntrl1); cntrl1 &= ~VC4_HDMI_CEC_CLEAR_RECEIVE_OFF; HDMI_WRITE(HDMI_CEC_CNTRL_1, cntrl1); return IRQ_WAKE_THREAD; } static irqreturn_t vc4_cec_irq_handler_rx_bare(int irq, void *priv) { struct vc4_hdmi *vc4_hdmi = priv; irqreturn_t ret; spin_lock(&vc4_hdmi->hw_lock); ret = vc4_cec_irq_handler_rx_bare_locked(vc4_hdmi); spin_unlock(&vc4_hdmi->hw_lock); return ret; } static irqreturn_t vc4_cec_irq_handler(int irq, void *priv) { struct vc4_hdmi *vc4_hdmi = priv; u32 stat = HDMI_READ(HDMI_CEC_CPU_STATUS); irqreturn_t ret; u32 cntrl5; /* * We don't need to protect the register access using * drm_dev_enter() there because the interrupt handler lifetime * is tied to the device itself, and not to the DRM device. * * So when the device will be gone, one of the first thing we * will be doing will be to unregister the interrupt handler, * and then unregister the DRM device. drm_dev_enter() would * thus always succeed if we are here. */ if (!(stat & VC4_HDMI_CPU_CEC)) return IRQ_NONE; spin_lock(&vc4_hdmi->hw_lock); cntrl5 = HDMI_READ(HDMI_CEC_CNTRL_5); vc4_hdmi->cec_irq_was_rx = cntrl5 & VC4_HDMI_CEC_RX_CEC_INT; if (vc4_hdmi->cec_irq_was_rx) ret = vc4_cec_irq_handler_rx_bare_locked(vc4_hdmi); else ret = vc4_cec_irq_handler_tx_bare_locked(vc4_hdmi); HDMI_WRITE(HDMI_CEC_CPU_CLEAR, VC4_HDMI_CPU_CEC); spin_unlock(&vc4_hdmi->hw_lock); return ret; } static int vc4_hdmi_cec_enable(struct cec_adapter *adap) { struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap); struct drm_device *drm = vc4_hdmi->connector.dev; /* clock period in microseconds */ const u32 usecs = 1000000 / CEC_CLOCK_FREQ; unsigned long flags; u32 val; int ret; int idx; if (!drm_dev_enter(drm, &idx)) /* * We can't return an error code, because the CEC * framework will emit WARN_ON messages at unbind * otherwise. */ return 0; ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev); if (ret) { drm_dev_exit(idx); return ret; } mutex_lock(&vc4_hdmi->mutex); spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); val = HDMI_READ(HDMI_CEC_CNTRL_5); val &= ~(VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET | VC4_HDMI_CEC_CNT_TO_4700_US_MASK | VC4_HDMI_CEC_CNT_TO_4500_US_MASK); val |= ((4700 / usecs) << VC4_HDMI_CEC_CNT_TO_4700_US_SHIFT) | ((4500 / usecs) << VC4_HDMI_CEC_CNT_TO_4500_US_SHIFT); HDMI_WRITE(HDMI_CEC_CNTRL_5, val | VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET); HDMI_WRITE(HDMI_CEC_CNTRL_5, val); HDMI_WRITE(HDMI_CEC_CNTRL_2, ((1500 / usecs) << VC4_HDMI_CEC_CNT_TO_1500_US_SHIFT) | ((1300 / usecs) << VC4_HDMI_CEC_CNT_TO_1300_US_SHIFT) | ((800 / usecs) << VC4_HDMI_CEC_CNT_TO_800_US_SHIFT) | ((600 / usecs) << VC4_HDMI_CEC_CNT_TO_600_US_SHIFT) | ((400 / usecs) << VC4_HDMI_CEC_CNT_TO_400_US_SHIFT)); HDMI_WRITE(HDMI_CEC_CNTRL_3, ((2750 / usecs) << VC4_HDMI_CEC_CNT_TO_2750_US_SHIFT) | ((2400 / usecs) << VC4_HDMI_CEC_CNT_TO_2400_US_SHIFT) | ((2050 / usecs) << VC4_HDMI_CEC_CNT_TO_2050_US_SHIFT) | ((1700 / usecs) << VC4_HDMI_CEC_CNT_TO_1700_US_SHIFT)); HDMI_WRITE(HDMI_CEC_CNTRL_4, ((4300 / usecs) << VC4_HDMI_CEC_CNT_TO_4300_US_SHIFT) | ((3900 / usecs) << VC4_HDMI_CEC_CNT_TO_3900_US_SHIFT) | ((3600 / usecs) << VC4_HDMI_CEC_CNT_TO_3600_US_SHIFT) | ((3500 / usecs) << VC4_HDMI_CEC_CNT_TO_3500_US_SHIFT)); if (!vc4_hdmi->variant->external_irq_controller) HDMI_WRITE(HDMI_CEC_CPU_MASK_CLEAR, VC4_HDMI_CPU_CEC); spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); mutex_unlock(&vc4_hdmi->mutex); drm_dev_exit(idx); return 0; } static int vc4_hdmi_cec_disable(struct cec_adapter *adap) { struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap); struct drm_device *drm = vc4_hdmi->connector.dev; unsigned long flags; int idx; if (!drm_dev_enter(drm, &idx)) /* * We can't return an error code, because the CEC * framework will emit WARN_ON messages at unbind * otherwise. */ return 0; mutex_lock(&vc4_hdmi->mutex); spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); if (!vc4_hdmi->variant->external_irq_controller) HDMI_WRITE(HDMI_CEC_CPU_MASK_SET, VC4_HDMI_CPU_CEC); HDMI_WRITE(HDMI_CEC_CNTRL_5, HDMI_READ(HDMI_CEC_CNTRL_5) | VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET); spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); mutex_unlock(&vc4_hdmi->mutex); pm_runtime_put(&vc4_hdmi->pdev->dev); drm_dev_exit(idx); return 0; } static int vc4_hdmi_cec_adap_enable(struct cec_adapter *adap, bool enable) { if (enable) return vc4_hdmi_cec_enable(adap); else return vc4_hdmi_cec_disable(adap); } static int vc4_hdmi_cec_adap_log_addr(struct cec_adapter *adap, u8 log_addr) { struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap); struct drm_device *drm = vc4_hdmi->connector.dev; unsigned long flags; int idx; if (!drm_dev_enter(drm, &idx)) /* * We can't return an error code, because the CEC * framework will emit WARN_ON messages at unbind * otherwise. */ return 0; mutex_lock(&vc4_hdmi->mutex); spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); HDMI_WRITE(HDMI_CEC_CNTRL_1, (HDMI_READ(HDMI_CEC_CNTRL_1) & ~VC4_HDMI_CEC_ADDR_MASK) | (log_addr & 0xf) << VC4_HDMI_CEC_ADDR_SHIFT); spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); mutex_unlock(&vc4_hdmi->mutex); drm_dev_exit(idx); return 0; } static int vc4_hdmi_cec_adap_transmit(struct cec_adapter *adap, u8 attempts, u32 signal_free_time, struct cec_msg *msg) { struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap); struct drm_device *dev = vc4_hdmi->connector.dev; unsigned long flags; u32 val; unsigned int i; int idx; if (!drm_dev_enter(dev, &idx)) return -ENODEV; if (msg->len > 16) { drm_err(dev, "Attempting to transmit too much data (%d)\n", msg->len); drm_dev_exit(idx); return -ENOMEM; } mutex_lock(&vc4_hdmi->mutex); spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); for (i = 0; i < msg->len; i += 4) HDMI_WRITE(HDMI_CEC_TX_DATA_1 + (i >> 2), (msg->msg[i]) | (msg->msg[i + 1] << 8) | (msg->msg[i + 2] << 16) | (msg->msg[i + 3] << 24)); val = HDMI_READ(HDMI_CEC_CNTRL_1); val &= ~VC4_HDMI_CEC_START_XMIT_BEGIN; HDMI_WRITE(HDMI_CEC_CNTRL_1, val); val &= ~VC4_HDMI_CEC_MESSAGE_LENGTH_MASK; val |= (msg->len - 1) << VC4_HDMI_CEC_MESSAGE_LENGTH_SHIFT; val |= VC4_HDMI_CEC_START_XMIT_BEGIN; HDMI_WRITE(HDMI_CEC_CNTRL_1, val); spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); mutex_unlock(&vc4_hdmi->mutex); drm_dev_exit(idx); return 0; } static const struct cec_adap_ops vc4_hdmi_cec_adap_ops = { .adap_enable = vc4_hdmi_cec_adap_enable, .adap_log_addr = vc4_hdmi_cec_adap_log_addr, .adap_transmit = vc4_hdmi_cec_adap_transmit, }; static void vc4_hdmi_cec_release(void *ptr) { struct vc4_hdmi *vc4_hdmi = ptr; cec_unregister_adapter(vc4_hdmi->cec_adap); vc4_hdmi->cec_adap = NULL; } static int vc4_hdmi_cec_init(struct vc4_hdmi *vc4_hdmi) { struct cec_connector_info conn_info; struct platform_device *pdev = vc4_hdmi->pdev; struct device *dev = &pdev->dev; int ret; if (!of_find_property(dev->of_node, "interrupts", NULL)) { dev_warn(dev, "'interrupts' DT property is missing, no CEC\n"); return 0; } vc4_hdmi->cec_adap = cec_allocate_adapter(&vc4_hdmi_cec_adap_ops, vc4_hdmi, vc4_hdmi->variant->card_name, CEC_CAP_DEFAULTS | CEC_CAP_CONNECTOR_INFO, 1); ret = PTR_ERR_OR_ZERO(vc4_hdmi->cec_adap); if (ret < 0) return ret; cec_fill_conn_info_from_drm(&conn_info, &vc4_hdmi->connector); cec_s_conn_info(vc4_hdmi->cec_adap, &conn_info); if (vc4_hdmi->variant->external_irq_controller) { ret = devm_request_threaded_irq(dev, platform_get_irq_byname(pdev, "cec-rx"), vc4_cec_irq_handler_rx_bare, vc4_cec_irq_handler_rx_thread, 0, "vc4 hdmi cec rx", vc4_hdmi); if (ret) goto err_delete_cec_adap; ret = devm_request_threaded_irq(dev, platform_get_irq_byname(pdev, "cec-tx"), vc4_cec_irq_handler_tx_bare, vc4_cec_irq_handler_tx_thread, 0, "vc4 hdmi cec tx", vc4_hdmi); if (ret) goto err_delete_cec_adap; } else { ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0), vc4_cec_irq_handler, vc4_cec_irq_handler_thread, 0, "vc4 hdmi cec", vc4_hdmi); if (ret) goto err_delete_cec_adap; } ret = cec_register_adapter(vc4_hdmi->cec_adap, &pdev->dev); if (ret < 0) goto err_delete_cec_adap; /* * NOTE: Strictly speaking, we should probably use a DRM-managed * registration there to avoid removing the CEC adapter by the * time the DRM driver doesn't have any user anymore. * * However, the CEC framework already cleans up the CEC adapter * only when the last user has closed its file descriptor, so we * don't need to handle it in DRM. * * By the time the device-managed hook is executed, we will give * up our reference to the CEC adapter and therefore don't * really care when it's actually freed. * * There's still a problematic sequence: if we unregister our * CEC adapter, but the userspace keeps a handle on the CEC * adapter but not the DRM device for some reason. In such a * case, our vc4_hdmi structure will be freed, but the * cec_adapter structure will have a dangling pointer to what * used to be our HDMI controller. If we get a CEC call at that * moment, we could end up with a use-after-free. Fortunately, * the CEC framework already handles this too, by calling * cec_is_registered() in cec_ioctl() and cec_poll(). */ ret = devm_add_action_or_reset(dev, vc4_hdmi_cec_release, vc4_hdmi); if (ret) return ret; return 0; err_delete_cec_adap: cec_delete_adapter(vc4_hdmi->cec_adap); return ret; } #else static int vc4_hdmi_cec_init(struct vc4_hdmi *vc4_hdmi) { return 0; } #endif static void vc4_hdmi_free_regset(struct drm_device *drm, void *ptr) { struct debugfs_reg32 *regs = ptr; kfree(regs); } static int vc4_hdmi_build_regset(struct drm_device *drm, struct vc4_hdmi *vc4_hdmi, struct debugfs_regset32 *regset, enum vc4_hdmi_regs reg) { const struct vc4_hdmi_variant *variant = vc4_hdmi->variant; struct debugfs_reg32 *regs, *new_regs; unsigned int count = 0; unsigned int i; int ret; regs = kcalloc(variant->num_registers, sizeof(*regs), GFP_KERNEL); if (!regs) return -ENOMEM; for (i = 0; i < variant->num_registers; i++) { const struct vc4_hdmi_register *field = &variant->registers[i]; if (field->reg != reg) continue; regs[count].name = field->name; regs[count].offset = field->offset; count++; } new_regs = krealloc(regs, count * sizeof(*regs), GFP_KERNEL); if (!new_regs) return -ENOMEM; regset->base = __vc4_hdmi_get_field_base(vc4_hdmi, reg); regset->regs = new_regs; regset->nregs = count; ret = drmm_add_action_or_reset(drm, vc4_hdmi_free_regset, new_regs); if (ret) return ret; return 0; } static int vc4_hdmi_init_resources(struct drm_device *drm, struct vc4_hdmi *vc4_hdmi) { struct platform_device *pdev = vc4_hdmi->pdev; struct device *dev = &pdev->dev; int ret; vc4_hdmi->hdmicore_regs = vc4_ioremap_regs(pdev, 0); if (IS_ERR(vc4_hdmi->hdmicore_regs)) return PTR_ERR(vc4_hdmi->hdmicore_regs); vc4_hdmi->hd_regs = vc4_ioremap_regs(pdev, 1); if (IS_ERR(vc4_hdmi->hd_regs)) return PTR_ERR(vc4_hdmi->hd_regs); ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->hd_regset, VC4_HD); if (ret) return ret; ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->hdmi_regset, VC4_HDMI); if (ret) return ret; vc4_hdmi->pixel_clock = devm_clk_get(dev, "pixel"); if (IS_ERR(vc4_hdmi->pixel_clock)) { ret = PTR_ERR(vc4_hdmi->pixel_clock); if (ret != -EPROBE_DEFER) DRM_ERROR("Failed to get pixel clock\n"); return ret; } vc4_hdmi->hsm_clock = devm_clk_get(dev, "hdmi"); if (IS_ERR(vc4_hdmi->hsm_clock)) { DRM_ERROR("Failed to get HDMI state machine clock\n"); return PTR_ERR(vc4_hdmi->hsm_clock); } vc4_hdmi->audio_clock = vc4_hdmi->hsm_clock; vc4_hdmi->cec_clock = vc4_hdmi->hsm_clock; vc4_hdmi->hsm_rpm_clock = devm_clk_get(dev, "hdmi"); if (IS_ERR(vc4_hdmi->hsm_rpm_clock)) { DRM_ERROR("Failed to get HDMI state machine clock\n"); return PTR_ERR(vc4_hdmi->hsm_rpm_clock); } return 0; } static int vc5_hdmi_init_resources(struct drm_device *drm, struct vc4_hdmi *vc4_hdmi) { struct platform_device *pdev = vc4_hdmi->pdev; struct device *dev = &pdev->dev; struct resource *res; int ret; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hdmi"); if (!res) return -ENODEV; vc4_hdmi->hdmicore_regs = devm_ioremap(dev, res->start, resource_size(res)); if (!vc4_hdmi->hdmicore_regs) return -ENOMEM; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hd"); if (!res) return -ENODEV; vc4_hdmi->hd_regs = devm_ioremap(dev, res->start, resource_size(res)); if (!vc4_hdmi->hd_regs) return -ENOMEM; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cec"); if (!res) return -ENODEV; vc4_hdmi->cec_regs = devm_ioremap(dev, res->start, resource_size(res)); if (!vc4_hdmi->cec_regs) return -ENOMEM; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "csc"); if (!res) return -ENODEV; vc4_hdmi->csc_regs = devm_ioremap(dev, res->start, resource_size(res)); if (!vc4_hdmi->csc_regs) return -ENOMEM; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dvp"); if (!res) return -ENODEV; vc4_hdmi->dvp_regs = devm_ioremap(dev, res->start, resource_size(res)); if (!vc4_hdmi->dvp_regs) return -ENOMEM; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "phy"); if (!res) return -ENODEV; vc4_hdmi->phy_regs = devm_ioremap(dev, res->start, resource_size(res)); if (!vc4_hdmi->phy_regs) return -ENOMEM; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "packet"); if (!res) return -ENODEV; vc4_hdmi->ram_regs = devm_ioremap(dev, res->start, resource_size(res)); if (!vc4_hdmi->ram_regs) return -ENOMEM; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rm"); if (!res) return -ENODEV; vc4_hdmi->rm_regs = devm_ioremap(dev, res->start, resource_size(res)); if (!vc4_hdmi->rm_regs) return -ENOMEM; vc4_hdmi->hsm_clock = devm_clk_get(dev, "hdmi"); if (IS_ERR(vc4_hdmi->hsm_clock)) { DRM_ERROR("Failed to get HDMI state machine clock\n"); return PTR_ERR(vc4_hdmi->hsm_clock); } vc4_hdmi->hsm_rpm_clock = devm_clk_get(dev, "hdmi"); if (IS_ERR(vc4_hdmi->hsm_rpm_clock)) { DRM_ERROR("Failed to get HDMI state machine clock\n"); return PTR_ERR(vc4_hdmi->hsm_rpm_clock); } vc4_hdmi->pixel_bvb_clock = devm_clk_get(dev, "bvb"); if (IS_ERR(vc4_hdmi->pixel_bvb_clock)) { DRM_ERROR("Failed to get pixel bvb clock\n"); return PTR_ERR(vc4_hdmi->pixel_bvb_clock); } vc4_hdmi->audio_clock = devm_clk_get(dev, "audio"); if (IS_ERR(vc4_hdmi->audio_clock)) { DRM_ERROR("Failed to get audio clock\n"); return PTR_ERR(vc4_hdmi->audio_clock); } vc4_hdmi->cec_clock = devm_clk_get(dev, "cec"); if (IS_ERR(vc4_hdmi->cec_clock)) { DRM_ERROR("Failed to get CEC clock\n"); return PTR_ERR(vc4_hdmi->cec_clock); } vc4_hdmi->reset = devm_reset_control_get(dev, NULL); if (IS_ERR(vc4_hdmi->reset)) { DRM_ERROR("Failed to get HDMI reset line\n"); return PTR_ERR(vc4_hdmi->reset); } ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->hdmi_regset, VC4_HDMI); if (ret) return ret; ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->hd_regset, VC4_HD); if (ret) return ret; ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->cec_regset, VC5_CEC); if (ret) return ret; ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->csc_regset, VC5_CSC); if (ret) return ret; ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->dvp_regset, VC5_DVP); if (ret) return ret; ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->phy_regset, VC5_PHY); if (ret) return ret; ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->ram_regset, VC5_RAM); if (ret) return ret; ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->rm_regset, VC5_RM); if (ret) return ret; return 0; } static int vc4_hdmi_runtime_suspend(struct device *dev) { struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev); clk_disable_unprepare(vc4_hdmi->hsm_rpm_clock); return 0; } static int vc4_hdmi_runtime_resume(struct device *dev) { struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev); unsigned long __maybe_unused flags; u32 __maybe_unused value; unsigned long rate; int ret; /* * The HSM clock is in the HDMI power domain, so we need to set * its frequency while the power domain is active so that it * keeps its rate. */ ret = clk_set_min_rate(vc4_hdmi->hsm_rpm_clock, HSM_MIN_CLOCK_FREQ); if (ret) return ret; ret = clk_prepare_enable(vc4_hdmi->hsm_rpm_clock); if (ret) return ret; /* * Whenever the RaspberryPi boots without an HDMI monitor * plugged in, the firmware won't have initialized the HSM clock * rate and it will be reported as 0. * * If we try to access a register of the controller in such a * case, it will lead to a silent CPU stall. Let's make sure we * prevent such a case. */ rate = clk_get_rate(vc4_hdmi->hsm_rpm_clock); if (!rate) { ret = -EINVAL; goto err_disable_clk; } if (vc4_hdmi->variant->reset) vc4_hdmi->variant->reset(vc4_hdmi); #ifdef CONFIG_DRM_VC4_HDMI_CEC spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); value = HDMI_READ(HDMI_CEC_CNTRL_1); /* Set the logical address to Unregistered */ value |= VC4_HDMI_CEC_ADDR_MASK; HDMI_WRITE(HDMI_CEC_CNTRL_1, value); spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); vc4_hdmi_cec_update_clk_div(vc4_hdmi); if (!vc4_hdmi->variant->external_irq_controller) { spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); HDMI_WRITE(HDMI_CEC_CPU_MASK_SET, 0xffffffff); spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); } #endif return 0; err_disable_clk: clk_disable_unprepare(vc4_hdmi->hsm_clock); return ret; } static void vc4_hdmi_put_ddc_device(void *ptr) { struct vc4_hdmi *vc4_hdmi = ptr; put_device(&vc4_hdmi->ddc->dev); } static int vc4_hdmi_bind(struct device *dev, struct device *master, void *data) { const struct vc4_hdmi_variant *variant = of_device_get_match_data(dev); struct platform_device *pdev = to_platform_device(dev); struct drm_device *drm = dev_get_drvdata(master); struct vc4_hdmi *vc4_hdmi; struct drm_encoder *encoder; struct device_node *ddc_node; int ret; vc4_hdmi = drmm_kzalloc(drm, sizeof(*vc4_hdmi), GFP_KERNEL); if (!vc4_hdmi) return -ENOMEM; ret = drmm_mutex_init(drm, &vc4_hdmi->mutex); if (ret) return ret; spin_lock_init(&vc4_hdmi->hw_lock); INIT_DELAYED_WORK(&vc4_hdmi->scrambling_work, vc4_hdmi_scrambling_wq); dev_set_drvdata(dev, vc4_hdmi); encoder = &vc4_hdmi->encoder.base; vc4_hdmi->encoder.type = variant->encoder_type; vc4_hdmi->encoder.pre_crtc_configure = vc4_hdmi_encoder_pre_crtc_configure; vc4_hdmi->encoder.pre_crtc_enable = vc4_hdmi_encoder_pre_crtc_enable; vc4_hdmi->encoder.post_crtc_enable = vc4_hdmi_encoder_post_crtc_enable; vc4_hdmi->encoder.post_crtc_disable = vc4_hdmi_encoder_post_crtc_disable; vc4_hdmi->encoder.post_crtc_powerdown = vc4_hdmi_encoder_post_crtc_powerdown; vc4_hdmi->pdev = pdev; vc4_hdmi->variant = variant; /* * Since we don't know the state of the controller and its * display (if any), let's assume it's always enabled. * vc4_hdmi_disable_scrambling() will thus run at boot, make * sure it's disabled, and avoid any inconsistency. */ if (variant->max_pixel_clock > HDMI_14_MAX_TMDS_CLK) vc4_hdmi->scdc_enabled = true; ret = variant->init_resources(drm, vc4_hdmi); if (ret) return ret; ddc_node = of_parse_phandle(dev->of_node, "ddc", 0); if (!ddc_node) { DRM_ERROR("Failed to find ddc node in device tree\n"); return -ENODEV; } vc4_hdmi->ddc = of_find_i2c_adapter_by_node(ddc_node); of_node_put(ddc_node); if (!vc4_hdmi->ddc) { DRM_DEBUG("Failed to get ddc i2c adapter by node\n"); return -EPROBE_DEFER; } ret = devm_add_action_or_reset(dev, vc4_hdmi_put_ddc_device, vc4_hdmi); if (ret) return ret; /* Only use the GPIO HPD pin if present in the DT, otherwise * we'll use the HDMI core's register. */ vc4_hdmi->hpd_gpio = devm_gpiod_get_optional(dev, "hpd", GPIOD_IN); if (IS_ERR(vc4_hdmi->hpd_gpio)) { return PTR_ERR(vc4_hdmi->hpd_gpio); } vc4_hdmi->disable_wifi_frequencies = of_property_read_bool(dev->of_node, "wifi-2.4ghz-coexistence"); ret = devm_pm_runtime_enable(dev); if (ret) return ret; /* * We need to have the device powered up at this point to call * our reset hook and for the CEC init. */ ret = pm_runtime_resume_and_get(dev); if (ret) return ret; if ((of_device_is_compatible(dev->of_node, "brcm,bcm2711-hdmi0") || of_device_is_compatible(dev->of_node, "brcm,bcm2711-hdmi1")) && HDMI_READ(HDMI_VID_CTL) & VC4_HD_VID_CTL_ENABLE) { clk_prepare_enable(vc4_hdmi->pixel_clock); clk_prepare_enable(vc4_hdmi->hsm_clock); clk_prepare_enable(vc4_hdmi->pixel_bvb_clock); } ret = drmm_encoder_init(drm, encoder, &vc4_hdmi_encoder_funcs, DRM_MODE_ENCODER_TMDS, NULL); if (ret) goto err_put_runtime_pm; drm_encoder_helper_add(encoder, &vc4_hdmi_encoder_helper_funcs); ret = vc4_hdmi_connector_init(drm, vc4_hdmi); if (ret) goto err_put_runtime_pm; ret = vc4_hdmi_hotplug_init(vc4_hdmi); if (ret) goto err_put_runtime_pm; ret = vc4_hdmi_cec_init(vc4_hdmi); if (ret) goto err_put_runtime_pm; ret = vc4_hdmi_audio_init(vc4_hdmi); if (ret) goto err_put_runtime_pm; pm_runtime_put_sync(dev); return 0; err_put_runtime_pm: pm_runtime_put_sync(dev); return ret; } static const struct component_ops vc4_hdmi_ops = { .bind = vc4_hdmi_bind, }; static int vc4_hdmi_dev_probe(struct platform_device *pdev) { return component_add(&pdev->dev, &vc4_hdmi_ops); } static int vc4_hdmi_dev_remove(struct platform_device *pdev) { component_del(&pdev->dev, &vc4_hdmi_ops); return 0; } static const struct vc4_hdmi_variant bcm2835_variant = { .encoder_type = VC4_ENCODER_TYPE_HDMI0, .debugfs_name = "hdmi_regs", .card_name = "vc4-hdmi", .max_pixel_clock = 162000000, .registers = vc4_hdmi_fields, .num_registers = ARRAY_SIZE(vc4_hdmi_fields), .init_resources = vc4_hdmi_init_resources, .csc_setup = vc4_hdmi_csc_setup, .reset = vc4_hdmi_reset, .set_timings = vc4_hdmi_set_timings, .phy_init = vc4_hdmi_phy_init, .phy_disable = vc4_hdmi_phy_disable, .phy_rng_enable = vc4_hdmi_phy_rng_enable, .phy_rng_disable = vc4_hdmi_phy_rng_disable, .channel_map = vc4_hdmi_channel_map, .supports_hdr = false, }; static const struct vc4_hdmi_variant bcm2711_hdmi0_variant = { .encoder_type = VC4_ENCODER_TYPE_HDMI0, .debugfs_name = "hdmi0_regs", .card_name = "vc4-hdmi-0", .max_pixel_clock = 600000000, .registers = vc5_hdmi_hdmi0_fields, .num_registers = ARRAY_SIZE(vc5_hdmi_hdmi0_fields), .phy_lane_mapping = { PHY_LANE_0, PHY_LANE_1, PHY_LANE_2, PHY_LANE_CK, }, .unsupported_odd_h_timings = true, .external_irq_controller = true, .init_resources = vc5_hdmi_init_resources, .csc_setup = vc5_hdmi_csc_setup, .reset = vc5_hdmi_reset, .set_timings = vc5_hdmi_set_timings, .phy_init = vc5_hdmi_phy_init, .phy_disable = vc5_hdmi_phy_disable, .phy_rng_enable = vc5_hdmi_phy_rng_enable, .phy_rng_disable = vc5_hdmi_phy_rng_disable, .channel_map = vc5_hdmi_channel_map, .supports_hdr = true, .hp_detect = vc5_hdmi_hp_detect, }; static const struct vc4_hdmi_variant bcm2711_hdmi1_variant = { .encoder_type = VC4_ENCODER_TYPE_HDMI1, .debugfs_name = "hdmi1_regs", .card_name = "vc4-hdmi-1", .max_pixel_clock = HDMI_14_MAX_TMDS_CLK, .registers = vc5_hdmi_hdmi1_fields, .num_registers = ARRAY_SIZE(vc5_hdmi_hdmi1_fields), .phy_lane_mapping = { PHY_LANE_1, PHY_LANE_0, PHY_LANE_CK, PHY_LANE_2, }, .unsupported_odd_h_timings = true, .external_irq_controller = true, .init_resources = vc5_hdmi_init_resources, .csc_setup = vc5_hdmi_csc_setup, .reset = vc5_hdmi_reset, .set_timings = vc5_hdmi_set_timings, .phy_init = vc5_hdmi_phy_init, .phy_disable = vc5_hdmi_phy_disable, .phy_rng_enable = vc5_hdmi_phy_rng_enable, .phy_rng_disable = vc5_hdmi_phy_rng_disable, .channel_map = vc5_hdmi_channel_map, .supports_hdr = true, .hp_detect = vc5_hdmi_hp_detect, }; static const struct of_device_id vc4_hdmi_dt_match[] = { { .compatible = "brcm,bcm2835-hdmi", .data = &bcm2835_variant }, { .compatible = "brcm,bcm2711-hdmi0", .data = &bcm2711_hdmi0_variant }, { .compatible = "brcm,bcm2711-hdmi1", .data = &bcm2711_hdmi1_variant }, {} }; static const struct dev_pm_ops vc4_hdmi_pm_ops = { SET_RUNTIME_PM_OPS(vc4_hdmi_runtime_suspend, vc4_hdmi_runtime_resume, NULL) }; struct platform_driver vc4_hdmi_driver = { .probe = vc4_hdmi_dev_probe, .remove = vc4_hdmi_dev_remove, .driver = { .name = "vc4_hdmi", .of_match_table = vc4_hdmi_dt_match, .pm = &vc4_hdmi_pm_ops, }, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1