Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Charles-Antoine Couret | 1051 | 61.18% | 1 | 10.00% |
Liam Beguin | 631 | 36.73% | 4 | 40.00% |
Andrea Merello | 29 | 1.69% | 2 | 20.00% |
Jonathan Cameron | 5 | 0.29% | 1 | 10.00% |
Thorsten Scherer | 1 | 0.06% | 1 | 10.00% |
Alexander A. Klimov | 1 | 0.06% | 1 | 10.00% |
Total | 1718 | 10 |
// SPDX-License-Identifier: GPL-2.0 /* ad7949.c - Analog Devices ADC driver 14/16 bits 4/8 channels * * Copyright (C) 2018 CMC NV * * https://www.analog.com/media/en/technical-documentation/data-sheets/AD7949.pdf */ #include <linux/delay.h> #include <linux/iio/iio.h> #include <linux/module.h> #include <linux/regulator/consumer.h> #include <linux/spi/spi.h> #include <linux/bitfield.h> #define AD7949_CFG_MASK_TOTAL GENMASK(13, 0) /* CFG: Configuration Update */ #define AD7949_CFG_MASK_OVERWRITE BIT(13) /* INCC: Input Channel Configuration */ #define AD7949_CFG_MASK_INCC GENMASK(12, 10) #define AD7949_CFG_VAL_INCC_UNIPOLAR_GND 7 #define AD7949_CFG_VAL_INCC_UNIPOLAR_COMM 6 #define AD7949_CFG_VAL_INCC_UNIPOLAR_DIFF 4 #define AD7949_CFG_VAL_INCC_TEMP 3 #define AD7949_CFG_VAL_INCC_BIPOLAR 2 #define AD7949_CFG_VAL_INCC_BIPOLAR_DIFF 0 /* INX: Input channel Selection in a binary fashion */ #define AD7949_CFG_MASK_INX GENMASK(9, 7) /* BW: select bandwidth for low-pass filter. Full or Quarter */ #define AD7949_CFG_MASK_BW_FULL BIT(6) /* REF: reference/buffer selection */ #define AD7949_CFG_MASK_REF GENMASK(5, 3) #define AD7949_CFG_VAL_REF_EXT_TEMP_BUF 3 #define AD7949_CFG_VAL_REF_EXT_TEMP 2 #define AD7949_CFG_VAL_REF_INT_4096 1 #define AD7949_CFG_VAL_REF_INT_2500 0 #define AD7949_CFG_VAL_REF_EXTERNAL BIT(1) /* SEQ: channel sequencer. Allows for scanning channels */ #define AD7949_CFG_MASK_SEQ GENMASK(2, 1) /* RB: Read back the CFG register */ #define AD7949_CFG_MASK_RBN BIT(0) enum { ID_AD7949 = 0, ID_AD7682, ID_AD7689, }; struct ad7949_adc_spec { u8 num_channels; u8 resolution; }; static const struct ad7949_adc_spec ad7949_adc_spec[] = { [ID_AD7949] = { .num_channels = 8, .resolution = 14 }, [ID_AD7682] = { .num_channels = 4, .resolution = 16 }, [ID_AD7689] = { .num_channels = 8, .resolution = 16 }, }; /** * struct ad7949_adc_chip - AD ADC chip * @lock: protects write sequences * @vref: regulator generating Vref * @indio_dev: reference to iio structure * @spi: reference to spi structure * @refsel: reference selection * @resolution: resolution of the chip * @cfg: copy of the configuration register * @current_channel: current channel in use * @buffer: buffer to send / receive data to / from device * @buf8b: be16 buffer to exchange data with the device in 8-bit transfers */ struct ad7949_adc_chip { struct mutex lock; struct regulator *vref; struct iio_dev *indio_dev; struct spi_device *spi; u32 refsel; u8 resolution; u16 cfg; unsigned int current_channel; u16 buffer __aligned(IIO_DMA_MINALIGN); __be16 buf8b; }; static int ad7949_spi_write_cfg(struct ad7949_adc_chip *ad7949_adc, u16 val, u16 mask) { int ret; ad7949_adc->cfg = (val & mask) | (ad7949_adc->cfg & ~mask); switch (ad7949_adc->spi->bits_per_word) { case 16: ad7949_adc->buffer = ad7949_adc->cfg << 2; ret = spi_write(ad7949_adc->spi, &ad7949_adc->buffer, 2); break; case 14: ad7949_adc->buffer = ad7949_adc->cfg; ret = spi_write(ad7949_adc->spi, &ad7949_adc->buffer, 2); break; case 8: /* Here, type is big endian as it must be sent in two transfers */ ad7949_adc->buf8b = cpu_to_be16(ad7949_adc->cfg << 2); ret = spi_write(ad7949_adc->spi, &ad7949_adc->buf8b, 2); break; default: dev_err(&ad7949_adc->indio_dev->dev, "unsupported BPW\n"); return -EINVAL; } /* * This delay is to avoid a new request before the required time to * send a new command to the device */ udelay(2); return ret; } static int ad7949_spi_read_channel(struct ad7949_adc_chip *ad7949_adc, int *val, unsigned int channel) { int ret; int i; /* * 1: write CFG for sample N and read old data (sample N-2) * 2: if CFG was not changed since sample N-1 then we'll get good data * at the next xfer, so we bail out now, otherwise we write something * and we read garbage (sample N-1 configuration). */ for (i = 0; i < 2; i++) { ret = ad7949_spi_write_cfg(ad7949_adc, FIELD_PREP(AD7949_CFG_MASK_INX, channel), AD7949_CFG_MASK_INX); if (ret) return ret; if (channel == ad7949_adc->current_channel) break; } /* 3: write something and read actual data */ if (ad7949_adc->spi->bits_per_word == 8) ret = spi_read(ad7949_adc->spi, &ad7949_adc->buf8b, 2); else ret = spi_read(ad7949_adc->spi, &ad7949_adc->buffer, 2); if (ret) return ret; /* * This delay is to avoid a new request before the required time to * send a new command to the device */ udelay(2); ad7949_adc->current_channel = channel; switch (ad7949_adc->spi->bits_per_word) { case 16: *val = ad7949_adc->buffer; /* Shift-out padding bits */ *val >>= 16 - ad7949_adc->resolution; break; case 14: *val = ad7949_adc->buffer & GENMASK(13, 0); break; case 8: /* Here, type is big endian as data was sent in two transfers */ *val = be16_to_cpu(ad7949_adc->buf8b); /* Shift-out padding bits */ *val >>= 16 - ad7949_adc->resolution; break; default: dev_err(&ad7949_adc->indio_dev->dev, "unsupported BPW\n"); return -EINVAL; } return 0; } #define AD7949_ADC_CHANNEL(chan) { \ .type = IIO_VOLTAGE, \ .indexed = 1, \ .channel = (chan), \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ } static const struct iio_chan_spec ad7949_adc_channels[] = { AD7949_ADC_CHANNEL(0), AD7949_ADC_CHANNEL(1), AD7949_ADC_CHANNEL(2), AD7949_ADC_CHANNEL(3), AD7949_ADC_CHANNEL(4), AD7949_ADC_CHANNEL(5), AD7949_ADC_CHANNEL(6), AD7949_ADC_CHANNEL(7), }; static int ad7949_spi_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct ad7949_adc_chip *ad7949_adc = iio_priv(indio_dev); int ret; if (!val) return -EINVAL; switch (mask) { case IIO_CHAN_INFO_RAW: mutex_lock(&ad7949_adc->lock); ret = ad7949_spi_read_channel(ad7949_adc, val, chan->channel); mutex_unlock(&ad7949_adc->lock); if (ret < 0) return ret; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: switch (ad7949_adc->refsel) { case AD7949_CFG_VAL_REF_INT_2500: *val = 2500; break; case AD7949_CFG_VAL_REF_INT_4096: *val = 4096; break; case AD7949_CFG_VAL_REF_EXT_TEMP: case AD7949_CFG_VAL_REF_EXT_TEMP_BUF: ret = regulator_get_voltage(ad7949_adc->vref); if (ret < 0) return ret; /* convert value back to mV */ *val = ret / 1000; break; } *val2 = (1 << ad7949_adc->resolution) - 1; return IIO_VAL_FRACTIONAL; } return -EINVAL; } static int ad7949_spi_reg_access(struct iio_dev *indio_dev, unsigned int reg, unsigned int writeval, unsigned int *readval) { struct ad7949_adc_chip *ad7949_adc = iio_priv(indio_dev); int ret = 0; if (readval) *readval = ad7949_adc->cfg; else ret = ad7949_spi_write_cfg(ad7949_adc, writeval, AD7949_CFG_MASK_TOTAL); return ret; } static const struct iio_info ad7949_spi_info = { .read_raw = ad7949_spi_read_raw, .debugfs_reg_access = ad7949_spi_reg_access, }; static int ad7949_spi_init(struct ad7949_adc_chip *ad7949_adc) { int ret; int val; u16 cfg; ad7949_adc->current_channel = 0; cfg = FIELD_PREP(AD7949_CFG_MASK_OVERWRITE, 1) | FIELD_PREP(AD7949_CFG_MASK_INCC, AD7949_CFG_VAL_INCC_UNIPOLAR_GND) | FIELD_PREP(AD7949_CFG_MASK_INX, ad7949_adc->current_channel) | FIELD_PREP(AD7949_CFG_MASK_BW_FULL, 1) | FIELD_PREP(AD7949_CFG_MASK_REF, ad7949_adc->refsel) | FIELD_PREP(AD7949_CFG_MASK_SEQ, 0x0) | FIELD_PREP(AD7949_CFG_MASK_RBN, 1); ret = ad7949_spi_write_cfg(ad7949_adc, cfg, AD7949_CFG_MASK_TOTAL); /* * Do two dummy conversions to apply the first configuration setting. * Required only after the start up of the device. */ ad7949_spi_read_channel(ad7949_adc, &val, ad7949_adc->current_channel); ad7949_spi_read_channel(ad7949_adc, &val, ad7949_adc->current_channel); return ret; } static void ad7949_disable_reg(void *reg) { regulator_disable(reg); } static int ad7949_spi_probe(struct spi_device *spi) { u32 spi_ctrl_mask = spi->controller->bits_per_word_mask; struct device *dev = &spi->dev; const struct ad7949_adc_spec *spec; struct ad7949_adc_chip *ad7949_adc; struct iio_dev *indio_dev; u32 tmp; int ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*ad7949_adc)); if (!indio_dev) { dev_err(dev, "can not allocate iio device\n"); return -ENOMEM; } indio_dev->info = &ad7949_spi_info; indio_dev->name = spi_get_device_id(spi)->name; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = ad7949_adc_channels; spi_set_drvdata(spi, indio_dev); ad7949_adc = iio_priv(indio_dev); ad7949_adc->indio_dev = indio_dev; ad7949_adc->spi = spi; spec = &ad7949_adc_spec[spi_get_device_id(spi)->driver_data]; indio_dev->num_channels = spec->num_channels; ad7949_adc->resolution = spec->resolution; /* Set SPI bits per word */ if (spi_ctrl_mask & SPI_BPW_MASK(ad7949_adc->resolution)) { spi->bits_per_word = ad7949_adc->resolution; } else if (spi_ctrl_mask == SPI_BPW_MASK(16)) { spi->bits_per_word = 16; } else if (spi_ctrl_mask == SPI_BPW_MASK(8)) { spi->bits_per_word = 8; } else { dev_err(dev, "unable to find common BPW with spi controller\n"); return -EINVAL; } /* Setup internal voltage reference */ tmp = 4096000; device_property_read_u32(dev, "adi,internal-ref-microvolt", &tmp); switch (tmp) { case 2500000: ad7949_adc->refsel = AD7949_CFG_VAL_REF_INT_2500; break; case 4096000: ad7949_adc->refsel = AD7949_CFG_VAL_REF_INT_4096; break; default: dev_err(dev, "unsupported internal voltage reference\n"); return -EINVAL; } /* Setup external voltage reference, buffered? */ ad7949_adc->vref = devm_regulator_get_optional(dev, "vrefin"); if (IS_ERR(ad7949_adc->vref)) { ret = PTR_ERR(ad7949_adc->vref); if (ret != -ENODEV) return ret; /* unbuffered? */ ad7949_adc->vref = devm_regulator_get_optional(dev, "vref"); if (IS_ERR(ad7949_adc->vref)) { ret = PTR_ERR(ad7949_adc->vref); if (ret != -ENODEV) return ret; } else { ad7949_adc->refsel = AD7949_CFG_VAL_REF_EXT_TEMP; } } else { ad7949_adc->refsel = AD7949_CFG_VAL_REF_EXT_TEMP_BUF; } if (ad7949_adc->refsel & AD7949_CFG_VAL_REF_EXTERNAL) { ret = regulator_enable(ad7949_adc->vref); if (ret < 0) { dev_err(dev, "fail to enable regulator\n"); return ret; } ret = devm_add_action_or_reset(dev, ad7949_disable_reg, ad7949_adc->vref); if (ret) return ret; } mutex_init(&ad7949_adc->lock); ret = ad7949_spi_init(ad7949_adc); if (ret) { dev_err(dev, "fail to init this device: %d\n", ret); return ret; } ret = devm_iio_device_register(dev, indio_dev); if (ret) dev_err(dev, "fail to register iio device: %d\n", ret); return ret; } static const struct of_device_id ad7949_spi_of_id[] = { { .compatible = "adi,ad7949" }, { .compatible = "adi,ad7682" }, { .compatible = "adi,ad7689" }, { } }; MODULE_DEVICE_TABLE(of, ad7949_spi_of_id); static const struct spi_device_id ad7949_spi_id[] = { { "ad7949", ID_AD7949 }, { "ad7682", ID_AD7682 }, { "ad7689", ID_AD7689 }, { } }; MODULE_DEVICE_TABLE(spi, ad7949_spi_id); static struct spi_driver ad7949_spi_driver = { .driver = { .name = "ad7949", .of_match_table = ad7949_spi_of_id, }, .probe = ad7949_spi_probe, .id_table = ad7949_spi_id, }; module_spi_driver(ad7949_spi_driver); MODULE_AUTHOR("Charles-Antoine Couret <charles-antoine.couret@essensium.com>"); MODULE_DESCRIPTION("Analog Devices 14/16-bit 8-channel ADC driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1