Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
ChiYuan Huang | 2824 | 100.00% | 1 | 100.00% |
Total | 2824 | 1 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2022 Richtek Technology Corp. * * ChiYuan Huang <cy_huang@richtek.com> */ #include <linux/bitops.h> #include <linux/delay.h> #include <linux/i2c.h> #include <linux/kernel.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/pm_runtime.h> #include <linux/property.h> #include <linux/regmap.h> #include <linux/sysfs.h> #include <linux/types.h> #include <linux/util_macros.h> #include <linux/iio/buffer.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/triggered_buffer.h> #define RTQ6056_REG_CONFIG 0x00 #define RTQ6056_REG_SHUNTVOLT 0x01 #define RTQ6056_REG_BUSVOLT 0x02 #define RTQ6056_REG_POWER 0x03 #define RTQ6056_REG_CURRENT 0x04 #define RTQ6056_REG_CALIBRATION 0x05 #define RTQ6056_REG_MASKENABLE 0x06 #define RTQ6056_REG_ALERTLIMIT 0x07 #define RTQ6056_REG_MANUFACTID 0xFE #define RTQ6056_REG_DIEID 0xFF #define RTQ6056_VENDOR_ID 0x1214 #define RTQ6056_DEFAULT_CONFIG 0x4127 #define RTQ6056_CONT_ALLON 7 enum { RTQ6056_CH_VSHUNT = 0, RTQ6056_CH_VBUS, RTQ6056_CH_POWER, RTQ6056_CH_CURRENT, RTQ6056_MAX_CHANNEL }; enum { F_OPMODE = 0, F_VSHUNTCT, F_VBUSCT, F_AVG, F_RESET, F_MAX_FIELDS }; struct rtq6056_priv { struct device *dev; struct regmap *regmap; struct regmap_field *rm_fields[F_MAX_FIELDS]; u32 shunt_resistor_uohm; int vshuntct_us; int vbusct_us; int avg_sample; }; static const struct reg_field rtq6056_reg_fields[F_MAX_FIELDS] = { [F_OPMODE] = REG_FIELD(RTQ6056_REG_CONFIG, 0, 2), [F_VSHUNTCT] = REG_FIELD(RTQ6056_REG_CONFIG, 3, 5), [F_VBUSCT] = REG_FIELD(RTQ6056_REG_CONFIG, 6, 8), [F_AVG] = REG_FIELD(RTQ6056_REG_CONFIG, 9, 11), [F_RESET] = REG_FIELD(RTQ6056_REG_CONFIG, 15, 15), }; static const struct iio_chan_spec rtq6056_channels[RTQ6056_MAX_CHANNEL + 1] = { { .type = IIO_VOLTAGE, .indexed = 1, .channel = 0, .address = RTQ6056_REG_SHUNTVOLT, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_SAMP_FREQ), .info_mask_separate_available = BIT(IIO_CHAN_INFO_SAMP_FREQ), .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), .info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), .scan_index = 0, .scan_type = { .sign = 's', .realbits = 16, .storagebits = 16, .endianness = IIO_CPU, }, }, { .type = IIO_VOLTAGE, .indexed = 1, .channel = 1, .address = RTQ6056_REG_BUSVOLT, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_SAMP_FREQ), .info_mask_separate_available = BIT(IIO_CHAN_INFO_SAMP_FREQ), .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), .info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), .scan_index = 1, .scan_type = { .sign = 'u', .realbits = 16, .storagebits = 16, .endianness = IIO_CPU, }, }, { .type = IIO_POWER, .indexed = 1, .channel = 2, .address = RTQ6056_REG_POWER, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_SAMP_FREQ), .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), .info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), .scan_index = 2, .scan_type = { .sign = 'u', .realbits = 16, .storagebits = 16, .endianness = IIO_CPU, }, }, { .type = IIO_CURRENT, .indexed = 1, .channel = 3, .address = RTQ6056_REG_CURRENT, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SAMP_FREQ), .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), .info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), .scan_index = 3, .scan_type = { .sign = 's', .realbits = 16, .storagebits = 16, .endianness = IIO_CPU, }, }, IIO_CHAN_SOFT_TIMESTAMP(RTQ6056_MAX_CHANNEL), }; static int rtq6056_adc_read_channel(struct rtq6056_priv *priv, struct iio_chan_spec const *ch, int *val) { struct device *dev = priv->dev; unsigned int addr = ch->address; unsigned int regval; int ret; pm_runtime_get_sync(dev); ret = regmap_read(priv->regmap, addr, ®val); pm_runtime_mark_last_busy(dev); pm_runtime_put(dev); if (ret) return ret; /* Power and VBUS is unsigned 16-bit, others are signed 16-bit */ if (addr == RTQ6056_REG_BUSVOLT || addr == RTQ6056_REG_POWER) *val = regval; else *val = sign_extend32(regval, 16); return IIO_VAL_INT; } static int rtq6056_adc_read_scale(struct iio_chan_spec const *ch, int *val, int *val2) { switch (ch->address) { case RTQ6056_REG_SHUNTVOLT: /* VSHUNT lsb 2.5uV */ *val = 2500; *val2 = 1000000; return IIO_VAL_FRACTIONAL; case RTQ6056_REG_BUSVOLT: /* VBUS lsb 1.25mV */ *val = 1250; *val2 = 1000; return IIO_VAL_FRACTIONAL; case RTQ6056_REG_POWER: /* Power lsb 25mW */ *val = 25; return IIO_VAL_INT; default: return -EINVAL; } } /* * Sample frequency for channel VSHUNT and VBUS. The indices correspond * with the bit value expected by the chip. And it can be found at * https://www.richtek.com/assets/product_file/RTQ6056/DSQ6056-00.pdf */ static const int rtq6056_samp_freq_list[] = { 7194, 4926, 3717, 1904, 964, 485, 243, 122, }; static int rtq6056_adc_set_samp_freq(struct rtq6056_priv *priv, struct iio_chan_spec const *ch, int val) { struct regmap_field *rm_field; unsigned int selector; int *ct, ret; if (val > 7194 || val < 122) return -EINVAL; if (ch->address == RTQ6056_REG_SHUNTVOLT) { rm_field = priv->rm_fields[F_VSHUNTCT]; ct = &priv->vshuntct_us; } else if (ch->address == RTQ6056_REG_BUSVOLT) { rm_field = priv->rm_fields[F_VBUSCT]; ct = &priv->vbusct_us; } else return -EINVAL; selector = find_closest_descending(val, rtq6056_samp_freq_list, ARRAY_SIZE(rtq6056_samp_freq_list)); ret = regmap_field_write(rm_field, selector); if (ret) return ret; *ct = 1000000 / rtq6056_samp_freq_list[selector]; return 0; } /* * Available averaging rate for rtq6056. The indices correspond with the bit * value expected by the chip. And it can be found at * https://www.richtek.com/assets/product_file/RTQ6056/DSQ6056-00.pdf */ static const int rtq6056_avg_sample_list[] = { 1, 4, 16, 64, 128, 256, 512, 1024, }; static int rtq6056_adc_set_average(struct rtq6056_priv *priv, int val) { unsigned int selector; int ret; if (val > 1024 || val < 1) return -EINVAL; selector = find_closest(val, rtq6056_avg_sample_list, ARRAY_SIZE(rtq6056_avg_sample_list)); ret = regmap_field_write(priv->rm_fields[F_AVG], selector); if (ret) return ret; priv->avg_sample = rtq6056_avg_sample_list[selector]; return 0; } static int rtq6056_adc_get_sample_freq(struct rtq6056_priv *priv, struct iio_chan_spec const *ch, int *val) { int sample_time; if (ch->address == RTQ6056_REG_SHUNTVOLT) sample_time = priv->vshuntct_us; else if (ch->address == RTQ6056_REG_BUSVOLT) sample_time = priv->vbusct_us; else { sample_time = priv->vshuntct_us + priv->vbusct_us; sample_time *= priv->avg_sample; } *val = 1000000 / sample_time; return IIO_VAL_INT; } static int rtq6056_adc_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct rtq6056_priv *priv = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_RAW: return rtq6056_adc_read_channel(priv, chan, val); case IIO_CHAN_INFO_SCALE: return rtq6056_adc_read_scale(chan, val, val2); case IIO_CHAN_INFO_OVERSAMPLING_RATIO: *val = priv->avg_sample; return IIO_VAL_INT; case IIO_CHAN_INFO_SAMP_FREQ: return rtq6056_adc_get_sample_freq(priv, chan, val); default: return -EINVAL; } } static int rtq6056_adc_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: *vals = rtq6056_samp_freq_list; *type = IIO_VAL_INT; *length = ARRAY_SIZE(rtq6056_samp_freq_list); return IIO_AVAIL_LIST; case IIO_CHAN_INFO_OVERSAMPLING_RATIO: *vals = rtq6056_avg_sample_list; *type = IIO_VAL_INT; *length = ARRAY_SIZE(rtq6056_avg_sample_list); return IIO_AVAIL_LIST; default: return -EINVAL; } } static int rtq6056_adc_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct rtq6056_priv *priv = iio_priv(indio_dev); int ret; ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: ret = rtq6056_adc_set_samp_freq(priv, chan, val); break; case IIO_CHAN_INFO_OVERSAMPLING_RATIO: ret = rtq6056_adc_set_average(priv, val); break; default: ret = -EINVAL; break; } iio_device_release_direct_mode(indio_dev); return ret; } static const char *rtq6056_channel_labels[RTQ6056_MAX_CHANNEL] = { [RTQ6056_CH_VSHUNT] = "Vshunt", [RTQ6056_CH_VBUS] = "Vbus", [RTQ6056_CH_POWER] = "Power", [RTQ6056_CH_CURRENT] = "Current", }; static int rtq6056_adc_read_label(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, char *label) { return sysfs_emit(label, "%s\n", rtq6056_channel_labels[chan->channel]); } static int rtq6056_set_shunt_resistor(struct rtq6056_priv *priv, int resistor_uohm) { unsigned int calib_val; int ret; if (resistor_uohm <= 0) { dev_err(priv->dev, "Invalid resistor [%d]\n", resistor_uohm); return -EINVAL; } /* calibration = 5120000 / (Rshunt (uOhm) * current lsb (1mA)) */ calib_val = 5120000 / resistor_uohm; ret = regmap_write(priv->regmap, RTQ6056_REG_CALIBRATION, calib_val); if (ret) return ret; priv->shunt_resistor_uohm = resistor_uohm; return 0; } static ssize_t shunt_resistor_show(struct device *dev, struct device_attribute *attr, char *buf) { struct rtq6056_priv *priv = iio_priv(dev_to_iio_dev(dev)); int vals[2] = { priv->shunt_resistor_uohm, 1000000 }; return iio_format_value(buf, IIO_VAL_FRACTIONAL, 1, vals); } static ssize_t shunt_resistor_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct rtq6056_priv *priv = iio_priv(indio_dev); int val, val_fract, ret; ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; ret = iio_str_to_fixpoint(buf, 100000, &val, &val_fract); if (ret) goto out_store; ret = rtq6056_set_shunt_resistor(priv, val * 1000000 + val_fract); out_store: iio_device_release_direct_mode(indio_dev); return ret ?: len; } static IIO_DEVICE_ATTR_RW(shunt_resistor, 0); static struct attribute *rtq6056_attributes[] = { &iio_dev_attr_shunt_resistor.dev_attr.attr, NULL }; static const struct attribute_group rtq6056_attribute_group = { .attrs = rtq6056_attributes, }; static const struct iio_info rtq6056_info = { .attrs = &rtq6056_attribute_group, .read_raw = rtq6056_adc_read_raw, .read_avail = rtq6056_adc_read_avail, .write_raw = rtq6056_adc_write_raw, .read_label = rtq6056_adc_read_label, }; static irqreturn_t rtq6056_buffer_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct rtq6056_priv *priv = iio_priv(indio_dev); struct device *dev = priv->dev; struct { u16 vals[RTQ6056_MAX_CHANNEL]; s64 timestamp __aligned(8); } data; unsigned int raw; int i = 0, bit, ret; memset(&data, 0, sizeof(data)); pm_runtime_get_sync(dev); for_each_set_bit(bit, indio_dev->active_scan_mask, indio_dev->masklength) { unsigned int addr = rtq6056_channels[bit].address; ret = regmap_read(priv->regmap, addr, &raw); if (ret) goto out; data.vals[i++] = raw; } iio_push_to_buffers_with_timestamp(indio_dev, &data, iio_get_time_ns(indio_dev)); out: pm_runtime_mark_last_busy(dev); pm_runtime_put(dev); iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static void rtq6056_enter_shutdown_state(void *dev) { struct rtq6056_priv *priv = dev_get_drvdata(dev); /* Enter shutdown state */ regmap_field_write(priv->rm_fields[F_OPMODE], 0); } static bool rtq6056_is_readable_reg(struct device *dev, unsigned int reg) { switch (reg) { case RTQ6056_REG_CONFIG ... RTQ6056_REG_ALERTLIMIT: case RTQ6056_REG_MANUFACTID ... RTQ6056_REG_DIEID: return true; default: return false; } } static bool rtq6056_is_writeable_reg(struct device *dev, unsigned int reg) { switch (reg) { case RTQ6056_REG_CONFIG: case RTQ6056_REG_CALIBRATION ... RTQ6056_REG_ALERTLIMIT: return true; default: return false; } } static const struct regmap_config rtq6056_regmap_config = { .reg_bits = 8, .val_bits = 16, .val_format_endian = REGMAP_ENDIAN_BIG, .max_register = RTQ6056_REG_DIEID, .readable_reg = rtq6056_is_readable_reg, .writeable_reg = rtq6056_is_writeable_reg, }; static int rtq6056_probe(struct i2c_client *i2c) { struct iio_dev *indio_dev; struct rtq6056_priv *priv; struct device *dev = &i2c->dev; struct regmap *regmap; unsigned int vendor_id, shunt_resistor_uohm; int ret; if (!i2c_check_functionality(i2c->adapter, I2C_FUNC_SMBUS_WORD_DATA)) return -EOPNOTSUPP; indio_dev = devm_iio_device_alloc(dev, sizeof(*priv)); if (!indio_dev) return -ENOMEM; priv = iio_priv(indio_dev); priv->dev = dev; priv->vshuntct_us = priv->vbusct_us = 1037; priv->avg_sample = 1; i2c_set_clientdata(i2c, priv); regmap = devm_regmap_init_i2c(i2c, &rtq6056_regmap_config); if (IS_ERR(regmap)) return dev_err_probe(dev, PTR_ERR(regmap), "Failed to init regmap\n"); priv->regmap = regmap; ret = regmap_read(regmap, RTQ6056_REG_MANUFACTID, &vendor_id); if (ret) return dev_err_probe(dev, ret, "Failed to get manufacturer info\n"); if (vendor_id != RTQ6056_VENDOR_ID) return dev_err_probe(dev, -ENODEV, "Invalid vendor id 0x%04x\n", vendor_id); ret = devm_regmap_field_bulk_alloc(dev, regmap, priv->rm_fields, rtq6056_reg_fields, F_MAX_FIELDS); if (ret) return dev_err_probe(dev, ret, "Failed to init regmap field\n"); /* * By default, configure average sample as 1, bus and shunt conversion * time as 1037 microsecond, and operating mode to all on. */ ret = regmap_write(regmap, RTQ6056_REG_CONFIG, RTQ6056_DEFAULT_CONFIG); if (ret) return dev_err_probe(dev, ret, "Failed to enable continuous sensing\n"); ret = devm_add_action_or_reset(dev, rtq6056_enter_shutdown_state, dev); if (ret) return ret; pm_runtime_set_autosuspend_delay(dev, MSEC_PER_SEC); pm_runtime_use_autosuspend(dev); pm_runtime_set_active(dev); pm_runtime_mark_last_busy(dev); ret = devm_pm_runtime_enable(dev); if (ret) return dev_err_probe(dev, ret, "Failed to enable pm_runtime\n"); /* By default, use 2000 micro-Ohm resistor */ shunt_resistor_uohm = 2000; device_property_read_u32(dev, "shunt-resistor-micro-ohms", &shunt_resistor_uohm); ret = rtq6056_set_shunt_resistor(priv, shunt_resistor_uohm); if (ret) return dev_err_probe(dev, ret, "Failed to init shunt resistor\n"); indio_dev->name = "rtq6056"; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = rtq6056_channels; indio_dev->num_channels = ARRAY_SIZE(rtq6056_channels); indio_dev->info = &rtq6056_info; ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL, rtq6056_buffer_trigger_handler, NULL); if (ret) return dev_err_probe(dev, ret, "Failed to allocate iio trigger buffer\n"); return devm_iio_device_register(dev, indio_dev); } static int rtq6056_runtime_suspend(struct device *dev) { struct rtq6056_priv *priv = dev_get_drvdata(dev); /* Configure to shutdown mode */ return regmap_field_write(priv->rm_fields[F_OPMODE], 0); } static int rtq6056_runtime_resume(struct device *dev) { struct rtq6056_priv *priv = dev_get_drvdata(dev); int sample_rdy_time_us, ret; ret = regmap_field_write(priv->rm_fields[F_OPMODE], RTQ6056_CONT_ALLON); if (ret) return ret; sample_rdy_time_us = priv->vbusct_us + priv->vshuntct_us; sample_rdy_time_us *= priv->avg_sample; usleep_range(sample_rdy_time_us, sample_rdy_time_us + 100); return 0; } static DEFINE_RUNTIME_DEV_PM_OPS(rtq6056_pm_ops, rtq6056_runtime_suspend, rtq6056_runtime_resume, NULL); static const struct of_device_id rtq6056_device_match[] = { { .compatible = "richtek,rtq6056" }, {} }; MODULE_DEVICE_TABLE(of, rtq6056_device_match); static struct i2c_driver rtq6056_driver = { .driver = { .name = "rtq6056", .of_match_table = rtq6056_device_match, .pm = pm_ptr(&rtq6056_pm_ops), }, .probe_new = rtq6056_probe, }; module_i2c_driver(rtq6056_driver); MODULE_AUTHOR("ChiYuan Huang <cy_huang@richtek.com>"); MODULE_DESCRIPTION("Richtek RTQ6056 Driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1