Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Stefan Roese | 1250 | 81.49% | 1 | 4.55% |
Jonathan Cameron | 208 | 13.56% | 8 | 36.36% |
Sergiu Cuciurean | 21 | 1.37% | 1 | 4.55% |
Amitoj Kaur Chawla | 20 | 1.30% | 1 | 4.55% |
Sachin Kamat | 12 | 0.78% | 2 | 9.09% |
Lars-Peter Clausen | 6 | 0.39% | 4 | 18.18% |
Hari Prasath Gujulan Elango | 6 | 0.39% | 1 | 4.55% |
Tapasweni Pathak | 4 | 0.26% | 1 | 4.55% |
Haneen Mohammed | 3 | 0.20% | 1 | 4.55% |
Thomas Gleixner | 2 | 0.13% | 1 | 4.55% |
Julia Lawall | 2 | 0.13% | 1 | 4.55% |
Total | 1534 | 22 |
// SPDX-License-Identifier: GPL-2.0-only /* * ST SPEAr ADC driver * * Copyright 2012 Stefan Roese <sr@denx.de> */ #include <linux/module.h> #include <linux/platform_device.h> #include <linux/interrupt.h> #include <linux/device.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/io.h> #include <linux/clk.h> #include <linux/err.h> #include <linux/completion.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> /* SPEAR registers definitions */ #define SPEAR600_ADC_SCAN_RATE_LO(x) ((x) & 0xFFFF) #define SPEAR600_ADC_SCAN_RATE_HI(x) (((x) >> 0x10) & 0xFFFF) #define SPEAR_ADC_CLK_LOW(x) (((x) & 0xf) << 0) #define SPEAR_ADC_CLK_HIGH(x) (((x) & 0xf) << 4) /* Bit definitions for SPEAR_ADC_STATUS */ #define SPEAR_ADC_STATUS_START_CONVERSION BIT(0) #define SPEAR_ADC_STATUS_CHANNEL_NUM(x) ((x) << 1) #define SPEAR_ADC_STATUS_ADC_ENABLE BIT(4) #define SPEAR_ADC_STATUS_AVG_SAMPLE(x) ((x) << 5) #define SPEAR_ADC_STATUS_VREF_INTERNAL BIT(9) #define SPEAR_ADC_DATA_MASK 0x03ff #define SPEAR_ADC_DATA_BITS 10 #define SPEAR_ADC_MOD_NAME "spear-adc" #define SPEAR_ADC_CHANNEL_NUM 8 #define SPEAR_ADC_CLK_MIN 2500000 #define SPEAR_ADC_CLK_MAX 20000000 struct adc_regs_spear3xx { u32 status; u32 average; u32 scan_rate; u32 clk; /* Not avail for 1340 & 1310 */ u32 ch_ctrl[SPEAR_ADC_CHANNEL_NUM]; u32 ch_data[SPEAR_ADC_CHANNEL_NUM]; }; struct chan_data { u32 lsb; u32 msb; }; struct adc_regs_spear6xx { u32 status; u32 pad[2]; u32 clk; u32 ch_ctrl[SPEAR_ADC_CHANNEL_NUM]; struct chan_data ch_data[SPEAR_ADC_CHANNEL_NUM]; u32 scan_rate_lo; u32 scan_rate_hi; struct chan_data average; }; struct spear_adc_state { struct device_node *np; struct adc_regs_spear3xx __iomem *adc_base_spear3xx; struct adc_regs_spear6xx __iomem *adc_base_spear6xx; struct clk *clk; struct completion completion; /* * Lock to protect the device state during a potential concurrent * read access from userspace. Reading a raw value requires a sequence * of register writes, then a wait for a completion callback, * and finally a register read, during which userspace could issue * another read request. This lock protects a read access from * ocurring before another one has finished. */ struct mutex lock; u32 current_clk; u32 sampling_freq; u32 avg_samples; u32 vref_external; u32 value; }; /* * Functions to access some SPEAr ADC register. Abstracted into * static inline functions, because of different register offsets * on different SoC variants (SPEAr300 vs SPEAr600 etc). */ static void spear_adc_set_status(struct spear_adc_state *st, u32 val) { __raw_writel(val, &st->adc_base_spear6xx->status); } static void spear_adc_set_clk(struct spear_adc_state *st, u32 val) { u32 clk_high, clk_low, count; u32 apb_clk = clk_get_rate(st->clk); count = DIV_ROUND_UP(apb_clk, val); clk_low = count / 2; clk_high = count - clk_low; st->current_clk = apb_clk / count; __raw_writel(SPEAR_ADC_CLK_LOW(clk_low) | SPEAR_ADC_CLK_HIGH(clk_high), &st->adc_base_spear6xx->clk); } static void spear_adc_set_ctrl(struct spear_adc_state *st, int n, u32 val) { __raw_writel(val, &st->adc_base_spear6xx->ch_ctrl[n]); } static u32 spear_adc_get_average(struct spear_adc_state *st) { if (of_device_is_compatible(st->np, "st,spear600-adc")) { return __raw_readl(&st->adc_base_spear6xx->average.msb) & SPEAR_ADC_DATA_MASK; } else { return __raw_readl(&st->adc_base_spear3xx->average) & SPEAR_ADC_DATA_MASK; } } static void spear_adc_set_scanrate(struct spear_adc_state *st, u32 rate) { if (of_device_is_compatible(st->np, "st,spear600-adc")) { __raw_writel(SPEAR600_ADC_SCAN_RATE_LO(rate), &st->adc_base_spear6xx->scan_rate_lo); __raw_writel(SPEAR600_ADC_SCAN_RATE_HI(rate), &st->adc_base_spear6xx->scan_rate_hi); } else { __raw_writel(rate, &st->adc_base_spear3xx->scan_rate); } } static int spear_adc_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct spear_adc_state *st = iio_priv(indio_dev); u32 status; switch (mask) { case IIO_CHAN_INFO_RAW: mutex_lock(&st->lock); status = SPEAR_ADC_STATUS_CHANNEL_NUM(chan->channel) | SPEAR_ADC_STATUS_AVG_SAMPLE(st->avg_samples) | SPEAR_ADC_STATUS_START_CONVERSION | SPEAR_ADC_STATUS_ADC_ENABLE; if (st->vref_external == 0) status |= SPEAR_ADC_STATUS_VREF_INTERNAL; spear_adc_set_status(st, status); wait_for_completion(&st->completion); /* set by ISR */ *val = st->value; mutex_unlock(&st->lock); return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: *val = st->vref_external; *val2 = SPEAR_ADC_DATA_BITS; return IIO_VAL_FRACTIONAL_LOG2; case IIO_CHAN_INFO_SAMP_FREQ: *val = st->current_clk; return IIO_VAL_INT; } return -EINVAL; } static int spear_adc_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct spear_adc_state *st = iio_priv(indio_dev); int ret = 0; if (mask != IIO_CHAN_INFO_SAMP_FREQ) return -EINVAL; mutex_lock(&st->lock); if ((val < SPEAR_ADC_CLK_MIN) || (val > SPEAR_ADC_CLK_MAX) || (val2 != 0)) { ret = -EINVAL; goto out; } spear_adc_set_clk(st, val); out: mutex_unlock(&st->lock); return ret; } #define SPEAR_ADC_CHAN(idx) { \ .type = IIO_VOLTAGE, \ .indexed = 1, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\ .channel = idx, \ } static const struct iio_chan_spec spear_adc_iio_channels[] = { SPEAR_ADC_CHAN(0), SPEAR_ADC_CHAN(1), SPEAR_ADC_CHAN(2), SPEAR_ADC_CHAN(3), SPEAR_ADC_CHAN(4), SPEAR_ADC_CHAN(5), SPEAR_ADC_CHAN(6), SPEAR_ADC_CHAN(7), }; static irqreturn_t spear_adc_isr(int irq, void *dev_id) { struct spear_adc_state *st = dev_id; /* Read value to clear IRQ */ st->value = spear_adc_get_average(st); complete(&st->completion); return IRQ_HANDLED; } static int spear_adc_configure(struct spear_adc_state *st) { int i; /* Reset ADC core */ spear_adc_set_status(st, 0); __raw_writel(0, &st->adc_base_spear6xx->clk); for (i = 0; i < 8; i++) spear_adc_set_ctrl(st, i, 0); spear_adc_set_scanrate(st, 0); spear_adc_set_clk(st, st->sampling_freq); return 0; } static const struct iio_info spear_adc_info = { .read_raw = &spear_adc_read_raw, .write_raw = &spear_adc_write_raw, }; static int spear_adc_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct device *dev = &pdev->dev; struct spear_adc_state *st; struct iio_dev *indio_dev = NULL; int ret = -ENODEV; int irq; indio_dev = devm_iio_device_alloc(dev, sizeof(struct spear_adc_state)); if (!indio_dev) { dev_err(dev, "failed allocating iio device\n"); return -ENOMEM; } st = iio_priv(indio_dev); mutex_init(&st->lock); st->np = np; /* * SPEAr600 has a different register layout than other SPEAr SoC's * (e.g. SPEAr3xx). Let's provide two register base addresses * to support multi-arch kernels. */ st->adc_base_spear6xx = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(st->adc_base_spear6xx)) return PTR_ERR(st->adc_base_spear6xx); st->adc_base_spear3xx = (struct adc_regs_spear3xx __iomem *)st->adc_base_spear6xx; st->clk = devm_clk_get(dev, NULL); if (IS_ERR(st->clk)) { dev_err(dev, "failed getting clock\n"); return PTR_ERR(st->clk); } ret = clk_prepare_enable(st->clk); if (ret) { dev_err(dev, "failed enabling clock\n"); return ret; } irq = platform_get_irq(pdev, 0); if (irq <= 0) { ret = -EINVAL; goto errout2; } ret = devm_request_irq(dev, irq, spear_adc_isr, 0, SPEAR_ADC_MOD_NAME, st); if (ret < 0) { dev_err(dev, "failed requesting interrupt\n"); goto errout2; } if (of_property_read_u32(np, "sampling-frequency", &st->sampling_freq)) { dev_err(dev, "sampling-frequency missing in DT\n"); ret = -EINVAL; goto errout2; } /* * Optional avg_samples defaults to 0, resulting in single data * conversion */ of_property_read_u32(np, "average-samples", &st->avg_samples); /* * Optional vref_external defaults to 0, resulting in internal vref * selection */ of_property_read_u32(np, "vref-external", &st->vref_external); spear_adc_configure(st); platform_set_drvdata(pdev, indio_dev); init_completion(&st->completion); indio_dev->name = SPEAR_ADC_MOD_NAME; indio_dev->info = &spear_adc_info; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = spear_adc_iio_channels; indio_dev->num_channels = ARRAY_SIZE(spear_adc_iio_channels); ret = iio_device_register(indio_dev); if (ret) goto errout2; dev_info(dev, "SPEAR ADC driver loaded, IRQ %d\n", irq); return 0; errout2: clk_disable_unprepare(st->clk); return ret; } static int spear_adc_remove(struct platform_device *pdev) { struct iio_dev *indio_dev = platform_get_drvdata(pdev); struct spear_adc_state *st = iio_priv(indio_dev); iio_device_unregister(indio_dev); clk_disable_unprepare(st->clk); return 0; } #ifdef CONFIG_OF static const struct of_device_id spear_adc_dt_ids[] = { { .compatible = "st,spear600-adc", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, spear_adc_dt_ids); #endif static struct platform_driver spear_adc_driver = { .probe = spear_adc_probe, .remove = spear_adc_remove, .driver = { .name = SPEAR_ADC_MOD_NAME, .of_match_table = of_match_ptr(spear_adc_dt_ids), }, }; module_platform_driver(spear_adc_driver); MODULE_AUTHOR("Stefan Roese <sr@denx.de>"); MODULE_DESCRIPTION("SPEAr ADC driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1