Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Daniel Baluta | 2233 | 41.90% | 1 | 2.50% |
Akinobu Mita | 1787 | 33.53% | 12 | 30.00% |
Marek Vašut | 990 | 18.58% | 8 | 20.00% |
Matt Ranostay | 94 | 1.76% | 1 | 2.50% |
Javier Martinez Canillas | 45 | 0.84% | 1 | 2.50% |
Andy Shevchenko | 43 | 0.81% | 1 | 2.50% |
Uwe Kleine-König | 35 | 0.66% | 3 | 7.50% |
Jonathan Cameron | 22 | 0.41% | 2 | 5.00% |
Dirk Eibach | 20 | 0.38% | 2 | 5.00% |
Ladislav Michl | 19 | 0.36% | 2 | 5.00% |
Maxim Kochetkov | 10 | 0.19% | 1 | 2.50% |
Gwendal Grignou | 10 | 0.19% | 1 | 2.50% |
Wei Yongjun | 8 | 0.15% | 1 | 2.50% |
Grégor Boirie | 6 | 0.11% | 1 | 2.50% |
Giorgio Dal Molin | 3 | 0.06% | 1 | 2.50% |
Thomas Gleixner | 2 | 0.04% | 1 | 2.50% |
Bhumika Goyal | 2 | 0.04% | 1 | 2.50% |
Total | 5329 | 40 |
// SPDX-License-Identifier: GPL-2.0-only /* * ADS1015 - Texas Instruments Analog-to-Digital Converter * * Copyright (c) 2016, Intel Corporation. * * IIO driver for ADS1015 ADC 7-bit I2C slave address: * * 0x48 - ADDR connected to Ground * * 0x49 - ADDR connected to Vdd * * 0x4A - ADDR connected to SDA * * 0x4B - ADDR connected to SCL */ #include <linux/module.h> #include <linux/init.h> #include <linux/irq.h> #include <linux/i2c.h> #include <linux/property.h> #include <linux/regmap.h> #include <linux/pm_runtime.h> #include <linux/mutex.h> #include <linux/delay.h> #include <linux/iio/iio.h> #include <linux/iio/types.h> #include <linux/iio/sysfs.h> #include <linux/iio/events.h> #include <linux/iio/buffer.h> #include <linux/iio/triggered_buffer.h> #include <linux/iio/trigger_consumer.h> #define ADS1015_DRV_NAME "ads1015" #define ADS1015_CHANNELS 8 #define ADS1015_CONV_REG 0x00 #define ADS1015_CFG_REG 0x01 #define ADS1015_LO_THRESH_REG 0x02 #define ADS1015_HI_THRESH_REG 0x03 #define ADS1015_CFG_COMP_QUE_SHIFT 0 #define ADS1015_CFG_COMP_LAT_SHIFT 2 #define ADS1015_CFG_COMP_POL_SHIFT 3 #define ADS1015_CFG_COMP_MODE_SHIFT 4 #define ADS1015_CFG_DR_SHIFT 5 #define ADS1015_CFG_MOD_SHIFT 8 #define ADS1015_CFG_PGA_SHIFT 9 #define ADS1015_CFG_MUX_SHIFT 12 #define ADS1015_CFG_COMP_QUE_MASK GENMASK(1, 0) #define ADS1015_CFG_COMP_LAT_MASK BIT(2) #define ADS1015_CFG_COMP_POL_MASK BIT(3) #define ADS1015_CFG_COMP_MODE_MASK BIT(4) #define ADS1015_CFG_DR_MASK GENMASK(7, 5) #define ADS1015_CFG_MOD_MASK BIT(8) #define ADS1015_CFG_PGA_MASK GENMASK(11, 9) #define ADS1015_CFG_MUX_MASK GENMASK(14, 12) /* Comparator queue and disable field */ #define ADS1015_CFG_COMP_DISABLE 3 /* Comparator polarity field */ #define ADS1015_CFG_COMP_POL_LOW 0 #define ADS1015_CFG_COMP_POL_HIGH 1 /* Comparator mode field */ #define ADS1015_CFG_COMP_MODE_TRAD 0 #define ADS1015_CFG_COMP_MODE_WINDOW 1 /* device operating modes */ #define ADS1015_CONTINUOUS 0 #define ADS1015_SINGLESHOT 1 #define ADS1015_SLEEP_DELAY_MS 2000 #define ADS1015_DEFAULT_PGA 2 #define ADS1015_DEFAULT_DATA_RATE 4 #define ADS1015_DEFAULT_CHAN 0 struct ads1015_chip_data { struct iio_chan_spec const *channels; int num_channels; const struct iio_info *info; const int *data_rate; const int data_rate_len; const int *scale; const int scale_len; bool has_comparator; }; enum ads1015_channels { ADS1015_AIN0_AIN1 = 0, ADS1015_AIN0_AIN3, ADS1015_AIN1_AIN3, ADS1015_AIN2_AIN3, ADS1015_AIN0, ADS1015_AIN1, ADS1015_AIN2, ADS1015_AIN3, ADS1015_TIMESTAMP, }; static const int ads1015_data_rate[] = { 128, 250, 490, 920, 1600, 2400, 3300, 3300 }; static const int ads1115_data_rate[] = { 8, 16, 32, 64, 128, 250, 475, 860 }; /* * Translation from PGA bits to full-scale positive and negative input voltage * range in mV */ static const int ads1015_fullscale_range[] = { 6144, 4096, 2048, 1024, 512, 256, 256, 256 }; static const int ads1015_scale[] = { /* 12bit ADC */ 256, 11, 512, 11, 1024, 11, 2048, 11, 4096, 11, 6144, 11 }; static const int ads1115_scale[] = { /* 16bit ADC */ 256, 15, 512, 15, 1024, 15, 2048, 15, 4096, 15, 6144, 15 }; /* * Translation from COMP_QUE field value to the number of successive readings * exceed the threshold values before an interrupt is generated */ static const int ads1015_comp_queue[] = { 1, 2, 4 }; static const struct iio_event_spec ads1015_events[] = { { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_RISING, .mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE), }, { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_FALLING, .mask_separate = BIT(IIO_EV_INFO_VALUE), }, { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_EITHER, .mask_separate = BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_PERIOD), }, }; /* * Compile-time check whether _fitbits can accommodate up to _testbits * bits. Returns _fitbits on success, fails to compile otherwise. * * The test works such that it multiplies constant _fitbits by constant * double-negation of size of a non-empty structure, i.e. it multiplies * constant _fitbits by constant 1 in each successful compilation case. * The non-empty structure may contain C11 _Static_assert(), make use of * this and place the kernel variant of static assert in there, so that * it performs the compile-time check for _testbits <= _fitbits. Note * that it is not possible to directly use static_assert in compound * statements, hence this convoluted construct. */ #define FIT_CHECK(_testbits, _fitbits) \ ( \ (_fitbits) * \ !!sizeof(struct { \ static_assert((_testbits) <= (_fitbits)); \ int pad; \ }) \ ) #define ADS1015_V_CHAN(_chan, _addr, _realbits, _shift, _event_spec, _num_event_specs) { \ .type = IIO_VOLTAGE, \ .indexed = 1, \ .address = _addr, \ .channel = _chan, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .info_mask_shared_by_all_available = \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .scan_index = _addr, \ .scan_type = { \ .sign = 's', \ .realbits = (_realbits), \ .storagebits = FIT_CHECK((_realbits) + (_shift), 16), \ .shift = (_shift), \ .endianness = IIO_CPU, \ }, \ .event_spec = (_event_spec), \ .num_event_specs = (_num_event_specs), \ .datasheet_name = "AIN"#_chan, \ } #define ADS1015_V_DIFF_CHAN(_chan, _chan2, _addr, _realbits, _shift, _event_spec, _num_event_specs) { \ .type = IIO_VOLTAGE, \ .differential = 1, \ .indexed = 1, \ .address = _addr, \ .channel = _chan, \ .channel2 = _chan2, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .info_mask_shared_by_all_available = \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .scan_index = _addr, \ .scan_type = { \ .sign = 's', \ .realbits = (_realbits), \ .storagebits = FIT_CHECK((_realbits) + (_shift), 16), \ .shift = (_shift), \ .endianness = IIO_CPU, \ }, \ .event_spec = (_event_spec), \ .num_event_specs = (_num_event_specs), \ .datasheet_name = "AIN"#_chan"-AIN"#_chan2, \ } struct ads1015_channel_data { bool enabled; unsigned int pga; unsigned int data_rate; }; struct ads1015_thresh_data { unsigned int comp_queue; int high_thresh; int low_thresh; }; struct ads1015_data { struct regmap *regmap; /* * Protects ADC ops, e.g: concurrent sysfs/buffered * data reads, configuration updates */ struct mutex lock; struct ads1015_channel_data channel_data[ADS1015_CHANNELS]; unsigned int event_channel; unsigned int comp_mode; struct ads1015_thresh_data thresh_data[ADS1015_CHANNELS]; const struct ads1015_chip_data *chip; /* * Set to true when the ADC is switched to the continuous-conversion * mode and exits from a power-down state. This flag is used to avoid * getting the stale result from the conversion register. */ bool conv_invalid; }; static bool ads1015_event_channel_enabled(struct ads1015_data *data) { return (data->event_channel != ADS1015_CHANNELS); } static void ads1015_event_channel_enable(struct ads1015_data *data, int chan, int comp_mode) { WARN_ON(ads1015_event_channel_enabled(data)); data->event_channel = chan; data->comp_mode = comp_mode; } static void ads1015_event_channel_disable(struct ads1015_data *data, int chan) { data->event_channel = ADS1015_CHANNELS; } static const struct regmap_range ads1015_writeable_ranges[] = { regmap_reg_range(ADS1015_CFG_REG, ADS1015_HI_THRESH_REG), }; static const struct regmap_access_table ads1015_writeable_table = { .yes_ranges = ads1015_writeable_ranges, .n_yes_ranges = ARRAY_SIZE(ads1015_writeable_ranges), }; static const struct regmap_config ads1015_regmap_config = { .reg_bits = 8, .val_bits = 16, .max_register = ADS1015_HI_THRESH_REG, .wr_table = &ads1015_writeable_table, }; static const struct regmap_range tla2024_writeable_ranges[] = { regmap_reg_range(ADS1015_CFG_REG, ADS1015_CFG_REG), }; static const struct regmap_access_table tla2024_writeable_table = { .yes_ranges = tla2024_writeable_ranges, .n_yes_ranges = ARRAY_SIZE(tla2024_writeable_ranges), }; static const struct regmap_config tla2024_regmap_config = { .reg_bits = 8, .val_bits = 16, .max_register = ADS1015_CFG_REG, .wr_table = &tla2024_writeable_table, }; static const struct iio_chan_spec ads1015_channels[] = { ADS1015_V_DIFF_CHAN(0, 1, ADS1015_AIN0_AIN1, 12, 4, ads1015_events, ARRAY_SIZE(ads1015_events)), ADS1015_V_DIFF_CHAN(0, 3, ADS1015_AIN0_AIN3, 12, 4, ads1015_events, ARRAY_SIZE(ads1015_events)), ADS1015_V_DIFF_CHAN(1, 3, ADS1015_AIN1_AIN3, 12, 4, ads1015_events, ARRAY_SIZE(ads1015_events)), ADS1015_V_DIFF_CHAN(2, 3, ADS1015_AIN2_AIN3, 12, 4, ads1015_events, ARRAY_SIZE(ads1015_events)), ADS1015_V_CHAN(0, ADS1015_AIN0, 12, 4, ads1015_events, ARRAY_SIZE(ads1015_events)), ADS1015_V_CHAN(1, ADS1015_AIN1, 12, 4, ads1015_events, ARRAY_SIZE(ads1015_events)), ADS1015_V_CHAN(2, ADS1015_AIN2, 12, 4, ads1015_events, ARRAY_SIZE(ads1015_events)), ADS1015_V_CHAN(3, ADS1015_AIN3, 12, 4, ads1015_events, ARRAY_SIZE(ads1015_events)), IIO_CHAN_SOFT_TIMESTAMP(ADS1015_TIMESTAMP), }; static const struct iio_chan_spec ads1115_channels[] = { ADS1015_V_DIFF_CHAN(0, 1, ADS1015_AIN0_AIN1, 16, 0, ads1015_events, ARRAY_SIZE(ads1015_events)), ADS1015_V_DIFF_CHAN(0, 3, ADS1015_AIN0_AIN3, 16, 0, ads1015_events, ARRAY_SIZE(ads1015_events)), ADS1015_V_DIFF_CHAN(1, 3, ADS1015_AIN1_AIN3, 16, 0, ads1015_events, ARRAY_SIZE(ads1015_events)), ADS1015_V_DIFF_CHAN(2, 3, ADS1015_AIN2_AIN3, 16, 0, ads1015_events, ARRAY_SIZE(ads1015_events)), ADS1015_V_CHAN(0, ADS1015_AIN0, 16, 0, ads1015_events, ARRAY_SIZE(ads1015_events)), ADS1015_V_CHAN(1, ADS1015_AIN1, 16, 0, ads1015_events, ARRAY_SIZE(ads1015_events)), ADS1015_V_CHAN(2, ADS1015_AIN2, 16, 0, ads1015_events, ARRAY_SIZE(ads1015_events)), ADS1015_V_CHAN(3, ADS1015_AIN3, 16, 0, ads1015_events, ARRAY_SIZE(ads1015_events)), IIO_CHAN_SOFT_TIMESTAMP(ADS1015_TIMESTAMP), }; static const struct iio_chan_spec tla2024_channels[] = { ADS1015_V_DIFF_CHAN(0, 1, ADS1015_AIN0_AIN1, 12, 4, NULL, 0), ADS1015_V_DIFF_CHAN(0, 3, ADS1015_AIN0_AIN3, 12, 4, NULL, 0), ADS1015_V_DIFF_CHAN(1, 3, ADS1015_AIN1_AIN3, 12, 4, NULL, 0), ADS1015_V_DIFF_CHAN(2, 3, ADS1015_AIN2_AIN3, 12, 4, NULL, 0), ADS1015_V_CHAN(0, ADS1015_AIN0, 12, 4, NULL, 0), ADS1015_V_CHAN(1, ADS1015_AIN1, 12, 4, NULL, 0), ADS1015_V_CHAN(2, ADS1015_AIN2, 12, 4, NULL, 0), ADS1015_V_CHAN(3, ADS1015_AIN3, 12, 4, NULL, 0), IIO_CHAN_SOFT_TIMESTAMP(ADS1015_TIMESTAMP), }; #ifdef CONFIG_PM static int ads1015_set_power_state(struct ads1015_data *data, bool on) { int ret; struct device *dev = regmap_get_device(data->regmap); if (on) { ret = pm_runtime_resume_and_get(dev); } else { pm_runtime_mark_last_busy(dev); ret = pm_runtime_put_autosuspend(dev); } return ret < 0 ? ret : 0; } #else /* !CONFIG_PM */ static int ads1015_set_power_state(struct ads1015_data *data, bool on) { return 0; } #endif /* !CONFIG_PM */ static int ads1015_get_adc_result(struct ads1015_data *data, int chan, int *val) { const int *data_rate = data->chip->data_rate; int ret, pga, dr, dr_old, conv_time; unsigned int old, mask, cfg; if (chan < 0 || chan >= ADS1015_CHANNELS) return -EINVAL; ret = regmap_read(data->regmap, ADS1015_CFG_REG, &old); if (ret) return ret; pga = data->channel_data[chan].pga; dr = data->channel_data[chan].data_rate; mask = ADS1015_CFG_MUX_MASK | ADS1015_CFG_PGA_MASK | ADS1015_CFG_DR_MASK; cfg = chan << ADS1015_CFG_MUX_SHIFT | pga << ADS1015_CFG_PGA_SHIFT | dr << ADS1015_CFG_DR_SHIFT; if (ads1015_event_channel_enabled(data)) { mask |= ADS1015_CFG_COMP_QUE_MASK | ADS1015_CFG_COMP_MODE_MASK; cfg |= data->thresh_data[chan].comp_queue << ADS1015_CFG_COMP_QUE_SHIFT | data->comp_mode << ADS1015_CFG_COMP_MODE_SHIFT; } cfg = (old & ~mask) | (cfg & mask); if (old != cfg) { ret = regmap_write(data->regmap, ADS1015_CFG_REG, cfg); if (ret) return ret; data->conv_invalid = true; } if (data->conv_invalid) { dr_old = (old & ADS1015_CFG_DR_MASK) >> ADS1015_CFG_DR_SHIFT; conv_time = DIV_ROUND_UP(USEC_PER_SEC, data_rate[dr_old]); conv_time += DIV_ROUND_UP(USEC_PER_SEC, data_rate[dr]); conv_time += conv_time / 10; /* 10% internal clock inaccuracy */ usleep_range(conv_time, conv_time + 1); data->conv_invalid = false; } return regmap_read(data->regmap, ADS1015_CONV_REG, val); } static irqreturn_t ads1015_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct ads1015_data *data = iio_priv(indio_dev); /* Ensure natural alignment of timestamp */ struct { s16 chan; s64 timestamp __aligned(8); } scan; int chan, ret, res; memset(&scan, 0, sizeof(scan)); mutex_lock(&data->lock); chan = find_first_bit(indio_dev->active_scan_mask, indio_dev->masklength); ret = ads1015_get_adc_result(data, chan, &res); if (ret < 0) { mutex_unlock(&data->lock); goto err; } scan.chan = res; mutex_unlock(&data->lock); iio_push_to_buffers_with_timestamp(indio_dev, &scan, iio_get_time_ns(indio_dev)); err: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static int ads1015_set_scale(struct ads1015_data *data, struct iio_chan_spec const *chan, int scale, int uscale) { int i; int fullscale = div_s64((scale * 1000000LL + uscale) << (chan->scan_type.realbits - 1), 1000000); for (i = 0; i < ARRAY_SIZE(ads1015_fullscale_range); i++) { if (ads1015_fullscale_range[i] == fullscale) { data->channel_data[chan->address].pga = i; return 0; } } return -EINVAL; } static int ads1015_set_data_rate(struct ads1015_data *data, int chan, int rate) { int i; for (i = 0; i < data->chip->data_rate_len; i++) { if (data->chip->data_rate[i] == rate) { data->channel_data[chan].data_rate = i; return 0; } } return -EINVAL; } static int ads1015_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { struct ads1015_data *data = iio_priv(indio_dev); if (chan->type != IIO_VOLTAGE) return -EINVAL; switch (mask) { case IIO_CHAN_INFO_SCALE: *type = IIO_VAL_FRACTIONAL_LOG2; *vals = data->chip->scale; *length = data->chip->scale_len; return IIO_AVAIL_LIST; case IIO_CHAN_INFO_SAMP_FREQ: *type = IIO_VAL_INT; *vals = data->chip->data_rate; *length = data->chip->data_rate_len; return IIO_AVAIL_LIST; default: return -EINVAL; } } static int ads1015_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { int ret, idx; struct ads1015_data *data = iio_priv(indio_dev); mutex_lock(&data->lock); switch (mask) { case IIO_CHAN_INFO_RAW: ret = iio_device_claim_direct_mode(indio_dev); if (ret) break; if (ads1015_event_channel_enabled(data) && data->event_channel != chan->address) { ret = -EBUSY; goto release_direct; } ret = ads1015_set_power_state(data, true); if (ret < 0) goto release_direct; ret = ads1015_get_adc_result(data, chan->address, val); if (ret < 0) { ads1015_set_power_state(data, false); goto release_direct; } *val = sign_extend32(*val >> chan->scan_type.shift, chan->scan_type.realbits - 1); ret = ads1015_set_power_state(data, false); if (ret < 0) goto release_direct; ret = IIO_VAL_INT; release_direct: iio_device_release_direct_mode(indio_dev); break; case IIO_CHAN_INFO_SCALE: idx = data->channel_data[chan->address].pga; *val = ads1015_fullscale_range[idx]; *val2 = chan->scan_type.realbits - 1; ret = IIO_VAL_FRACTIONAL_LOG2; break; case IIO_CHAN_INFO_SAMP_FREQ: idx = data->channel_data[chan->address].data_rate; *val = data->chip->data_rate[idx]; ret = IIO_VAL_INT; break; default: ret = -EINVAL; break; } mutex_unlock(&data->lock); return ret; } static int ads1015_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct ads1015_data *data = iio_priv(indio_dev); int ret; mutex_lock(&data->lock); switch (mask) { case IIO_CHAN_INFO_SCALE: ret = ads1015_set_scale(data, chan, val, val2); break; case IIO_CHAN_INFO_SAMP_FREQ: ret = ads1015_set_data_rate(data, chan->address, val); break; default: ret = -EINVAL; break; } mutex_unlock(&data->lock); return ret; } static int ads1015_read_event(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2) { struct ads1015_data *data = iio_priv(indio_dev); int ret; unsigned int comp_queue; int period; int dr; mutex_lock(&data->lock); switch (info) { case IIO_EV_INFO_VALUE: *val = (dir == IIO_EV_DIR_RISING) ? data->thresh_data[chan->address].high_thresh : data->thresh_data[chan->address].low_thresh; ret = IIO_VAL_INT; break; case IIO_EV_INFO_PERIOD: dr = data->channel_data[chan->address].data_rate; comp_queue = data->thresh_data[chan->address].comp_queue; period = ads1015_comp_queue[comp_queue] * USEC_PER_SEC / data->chip->data_rate[dr]; *val = period / USEC_PER_SEC; *val2 = period % USEC_PER_SEC; ret = IIO_VAL_INT_PLUS_MICRO; break; default: ret = -EINVAL; break; } mutex_unlock(&data->lock); return ret; } static int ads1015_write_event(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int val, int val2) { struct ads1015_data *data = iio_priv(indio_dev); const int *data_rate = data->chip->data_rate; int realbits = chan->scan_type.realbits; int ret = 0; long long period; int i; int dr; mutex_lock(&data->lock); switch (info) { case IIO_EV_INFO_VALUE: if (val >= 1 << (realbits - 1) || val < -1 << (realbits - 1)) { ret = -EINVAL; break; } if (dir == IIO_EV_DIR_RISING) data->thresh_data[chan->address].high_thresh = val; else data->thresh_data[chan->address].low_thresh = val; break; case IIO_EV_INFO_PERIOD: dr = data->channel_data[chan->address].data_rate; period = val * USEC_PER_SEC + val2; for (i = 0; i < ARRAY_SIZE(ads1015_comp_queue) - 1; i++) { if (period <= ads1015_comp_queue[i] * USEC_PER_SEC / data_rate[dr]) break; } data->thresh_data[chan->address].comp_queue = i; break; default: ret = -EINVAL; break; } mutex_unlock(&data->lock); return ret; } static int ads1015_read_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir) { struct ads1015_data *data = iio_priv(indio_dev); int ret = 0; mutex_lock(&data->lock); if (data->event_channel == chan->address) { switch (dir) { case IIO_EV_DIR_RISING: ret = 1; break; case IIO_EV_DIR_EITHER: ret = (data->comp_mode == ADS1015_CFG_COMP_MODE_WINDOW); break; default: ret = -EINVAL; break; } } mutex_unlock(&data->lock); return ret; } static int ads1015_enable_event_config(struct ads1015_data *data, const struct iio_chan_spec *chan, int comp_mode) { int low_thresh = data->thresh_data[chan->address].low_thresh; int high_thresh = data->thresh_data[chan->address].high_thresh; int ret; unsigned int val; if (ads1015_event_channel_enabled(data)) { if (data->event_channel != chan->address || (data->comp_mode == ADS1015_CFG_COMP_MODE_TRAD && comp_mode == ADS1015_CFG_COMP_MODE_WINDOW)) return -EBUSY; return 0; } if (comp_mode == ADS1015_CFG_COMP_MODE_TRAD) { low_thresh = max(-1 << (chan->scan_type.realbits - 1), high_thresh - 1); } ret = regmap_write(data->regmap, ADS1015_LO_THRESH_REG, low_thresh << chan->scan_type.shift); if (ret) return ret; ret = regmap_write(data->regmap, ADS1015_HI_THRESH_REG, high_thresh << chan->scan_type.shift); if (ret) return ret; ret = ads1015_set_power_state(data, true); if (ret < 0) return ret; ads1015_event_channel_enable(data, chan->address, comp_mode); ret = ads1015_get_adc_result(data, chan->address, &val); if (ret) { ads1015_event_channel_disable(data, chan->address); ads1015_set_power_state(data, false); } return ret; } static int ads1015_disable_event_config(struct ads1015_data *data, const struct iio_chan_spec *chan, int comp_mode) { int ret; if (!ads1015_event_channel_enabled(data)) return 0; if (data->event_channel != chan->address) return 0; if (data->comp_mode == ADS1015_CFG_COMP_MODE_TRAD && comp_mode == ADS1015_CFG_COMP_MODE_WINDOW) return 0; ret = regmap_update_bits(data->regmap, ADS1015_CFG_REG, ADS1015_CFG_COMP_QUE_MASK, ADS1015_CFG_COMP_DISABLE << ADS1015_CFG_COMP_QUE_SHIFT); if (ret) return ret; ads1015_event_channel_disable(data, chan->address); return ads1015_set_power_state(data, false); } static int ads1015_write_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, int state) { struct ads1015_data *data = iio_priv(indio_dev); int ret; int comp_mode = (dir == IIO_EV_DIR_EITHER) ? ADS1015_CFG_COMP_MODE_WINDOW : ADS1015_CFG_COMP_MODE_TRAD; mutex_lock(&data->lock); /* Prevent from enabling both buffer and event at a time */ ret = iio_device_claim_direct_mode(indio_dev); if (ret) { mutex_unlock(&data->lock); return ret; } if (state) ret = ads1015_enable_event_config(data, chan, comp_mode); else ret = ads1015_disable_event_config(data, chan, comp_mode); iio_device_release_direct_mode(indio_dev); mutex_unlock(&data->lock); return ret; } static irqreturn_t ads1015_event_handler(int irq, void *priv) { struct iio_dev *indio_dev = priv; struct ads1015_data *data = iio_priv(indio_dev); int val; int ret; /* Clear the latched ALERT/RDY pin */ ret = regmap_read(data->regmap, ADS1015_CONV_REG, &val); if (ret) return IRQ_HANDLED; if (ads1015_event_channel_enabled(data)) { enum iio_event_direction dir; u64 code; dir = data->comp_mode == ADS1015_CFG_COMP_MODE_TRAD ? IIO_EV_DIR_RISING : IIO_EV_DIR_EITHER; code = IIO_UNMOD_EVENT_CODE(IIO_VOLTAGE, data->event_channel, IIO_EV_TYPE_THRESH, dir); iio_push_event(indio_dev, code, iio_get_time_ns(indio_dev)); } return IRQ_HANDLED; } static int ads1015_buffer_preenable(struct iio_dev *indio_dev) { struct ads1015_data *data = iio_priv(indio_dev); /* Prevent from enabling both buffer and event at a time */ if (ads1015_event_channel_enabled(data)) return -EBUSY; return ads1015_set_power_state(iio_priv(indio_dev), true); } static int ads1015_buffer_postdisable(struct iio_dev *indio_dev) { return ads1015_set_power_state(iio_priv(indio_dev), false); } static const struct iio_buffer_setup_ops ads1015_buffer_setup_ops = { .preenable = ads1015_buffer_preenable, .postdisable = ads1015_buffer_postdisable, .validate_scan_mask = &iio_validate_scan_mask_onehot, }; static const struct iio_info ads1015_info = { .read_avail = ads1015_read_avail, .read_raw = ads1015_read_raw, .write_raw = ads1015_write_raw, .read_event_value = ads1015_read_event, .write_event_value = ads1015_write_event, .read_event_config = ads1015_read_event_config, .write_event_config = ads1015_write_event_config, }; static const struct iio_info tla2024_info = { .read_avail = ads1015_read_avail, .read_raw = ads1015_read_raw, .write_raw = ads1015_write_raw, }; static int ads1015_client_get_channels_config(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); struct ads1015_data *data = iio_priv(indio_dev); struct device *dev = &client->dev; struct fwnode_handle *node; int i = -1; device_for_each_child_node(dev, node) { u32 pval; unsigned int channel; unsigned int pga = ADS1015_DEFAULT_PGA; unsigned int data_rate = ADS1015_DEFAULT_DATA_RATE; if (fwnode_property_read_u32(node, "reg", &pval)) { dev_err(dev, "invalid reg on %pfw\n", node); continue; } channel = pval; if (channel >= ADS1015_CHANNELS) { dev_err(dev, "invalid channel index %d on %pfw\n", channel, node); continue; } if (!fwnode_property_read_u32(node, "ti,gain", &pval)) { pga = pval; if (pga > 6) { dev_err(dev, "invalid gain on %pfw\n", node); fwnode_handle_put(node); return -EINVAL; } } if (!fwnode_property_read_u32(node, "ti,datarate", &pval)) { data_rate = pval; if (data_rate > 7) { dev_err(dev, "invalid data_rate on %pfw\n", node); fwnode_handle_put(node); return -EINVAL; } } data->channel_data[channel].pga = pga; data->channel_data[channel].data_rate = data_rate; i++; } return i < 0 ? -EINVAL : 0; } static void ads1015_get_channels_config(struct i2c_client *client) { unsigned int k; struct iio_dev *indio_dev = i2c_get_clientdata(client); struct ads1015_data *data = iio_priv(indio_dev); if (!ads1015_client_get_channels_config(client)) return; /* fallback on default configuration */ for (k = 0; k < ADS1015_CHANNELS; ++k) { data->channel_data[k].pga = ADS1015_DEFAULT_PGA; data->channel_data[k].data_rate = ADS1015_DEFAULT_DATA_RATE; } } static int ads1015_set_conv_mode(struct ads1015_data *data, int mode) { return regmap_update_bits(data->regmap, ADS1015_CFG_REG, ADS1015_CFG_MOD_MASK, mode << ADS1015_CFG_MOD_SHIFT); } static int ads1015_probe(struct i2c_client *client) { const struct i2c_device_id *id = i2c_client_get_device_id(client); const struct ads1015_chip_data *chip; struct iio_dev *indio_dev; struct ads1015_data *data; int ret; int i; chip = device_get_match_data(&client->dev); if (!chip) chip = (const struct ads1015_chip_data *)id->driver_data; if (!chip) return dev_err_probe(&client->dev, -EINVAL, "Unknown chip\n"); indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); i2c_set_clientdata(client, indio_dev); mutex_init(&data->lock); indio_dev->name = ADS1015_DRV_NAME; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = chip->channels; indio_dev->num_channels = chip->num_channels; indio_dev->info = chip->info; data->chip = chip; data->event_channel = ADS1015_CHANNELS; /* * Set default lower and upper threshold to min and max value * respectively. */ for (i = 0; i < ADS1015_CHANNELS; i++) { int realbits = indio_dev->channels[i].scan_type.realbits; data->thresh_data[i].low_thresh = -1 << (realbits - 1); data->thresh_data[i].high_thresh = (1 << (realbits - 1)) - 1; } /* we need to keep this ABI the same as used by hwmon ADS1015 driver */ ads1015_get_channels_config(client); data->regmap = devm_regmap_init_i2c(client, chip->has_comparator ? &ads1015_regmap_config : &tla2024_regmap_config); if (IS_ERR(data->regmap)) { dev_err(&client->dev, "Failed to allocate register map\n"); return PTR_ERR(data->regmap); } ret = devm_iio_triggered_buffer_setup(&client->dev, indio_dev, NULL, ads1015_trigger_handler, &ads1015_buffer_setup_ops); if (ret < 0) { dev_err(&client->dev, "iio triggered buffer setup failed\n"); return ret; } if (client->irq && chip->has_comparator) { unsigned long irq_trig = irqd_get_trigger_type(irq_get_irq_data(client->irq)); unsigned int cfg_comp_mask = ADS1015_CFG_COMP_QUE_MASK | ADS1015_CFG_COMP_LAT_MASK | ADS1015_CFG_COMP_POL_MASK; unsigned int cfg_comp = ADS1015_CFG_COMP_DISABLE << ADS1015_CFG_COMP_QUE_SHIFT | 1 << ADS1015_CFG_COMP_LAT_SHIFT; switch (irq_trig) { case IRQF_TRIGGER_LOW: cfg_comp |= ADS1015_CFG_COMP_POL_LOW << ADS1015_CFG_COMP_POL_SHIFT; break; case IRQF_TRIGGER_HIGH: cfg_comp |= ADS1015_CFG_COMP_POL_HIGH << ADS1015_CFG_COMP_POL_SHIFT; break; default: return -EINVAL; } ret = regmap_update_bits(data->regmap, ADS1015_CFG_REG, cfg_comp_mask, cfg_comp); if (ret) return ret; ret = devm_request_threaded_irq(&client->dev, client->irq, NULL, ads1015_event_handler, irq_trig | IRQF_ONESHOT, client->name, indio_dev); if (ret) return ret; } ret = ads1015_set_conv_mode(data, ADS1015_CONTINUOUS); if (ret) return ret; data->conv_invalid = true; ret = pm_runtime_set_active(&client->dev); if (ret) return ret; pm_runtime_set_autosuspend_delay(&client->dev, ADS1015_SLEEP_DELAY_MS); pm_runtime_use_autosuspend(&client->dev); pm_runtime_enable(&client->dev); ret = iio_device_register(indio_dev); if (ret < 0) { dev_err(&client->dev, "Failed to register IIO device\n"); return ret; } return 0; } static void ads1015_remove(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); struct ads1015_data *data = iio_priv(indio_dev); int ret; iio_device_unregister(indio_dev); pm_runtime_disable(&client->dev); pm_runtime_set_suspended(&client->dev); /* power down single shot mode */ ret = ads1015_set_conv_mode(data, ADS1015_SINGLESHOT); if (ret) dev_warn(&client->dev, "Failed to power down (%pe)\n", ERR_PTR(ret)); } #ifdef CONFIG_PM static int ads1015_runtime_suspend(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct ads1015_data *data = iio_priv(indio_dev); return ads1015_set_conv_mode(data, ADS1015_SINGLESHOT); } static int ads1015_runtime_resume(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct ads1015_data *data = iio_priv(indio_dev); int ret; ret = ads1015_set_conv_mode(data, ADS1015_CONTINUOUS); if (!ret) data->conv_invalid = true; return ret; } #endif static const struct dev_pm_ops ads1015_pm_ops = { SET_RUNTIME_PM_OPS(ads1015_runtime_suspend, ads1015_runtime_resume, NULL) }; static const struct ads1015_chip_data ads1015_data = { .channels = ads1015_channels, .num_channels = ARRAY_SIZE(ads1015_channels), .info = &ads1015_info, .data_rate = ads1015_data_rate, .data_rate_len = ARRAY_SIZE(ads1015_data_rate), .scale = ads1015_scale, .scale_len = ARRAY_SIZE(ads1015_scale), .has_comparator = true, }; static const struct ads1015_chip_data ads1115_data = { .channels = ads1115_channels, .num_channels = ARRAY_SIZE(ads1115_channels), .info = &ads1015_info, .data_rate = ads1115_data_rate, .data_rate_len = ARRAY_SIZE(ads1115_data_rate), .scale = ads1115_scale, .scale_len = ARRAY_SIZE(ads1115_scale), .has_comparator = true, }; static const struct ads1015_chip_data tla2024_data = { .channels = tla2024_channels, .num_channels = ARRAY_SIZE(tla2024_channels), .info = &tla2024_info, .data_rate = ads1015_data_rate, .data_rate_len = ARRAY_SIZE(ads1015_data_rate), .scale = ads1015_scale, .scale_len = ARRAY_SIZE(ads1015_scale), .has_comparator = false, }; static const struct i2c_device_id ads1015_id[] = { { "ads1015", (kernel_ulong_t)&ads1015_data }, { "ads1115", (kernel_ulong_t)&ads1115_data }, { "tla2024", (kernel_ulong_t)&tla2024_data }, {} }; MODULE_DEVICE_TABLE(i2c, ads1015_id); static const struct of_device_id ads1015_of_match[] = { { .compatible = "ti,ads1015", .data = &ads1015_data }, { .compatible = "ti,ads1115", .data = &ads1115_data }, { .compatible = "ti,tla2024", .data = &tla2024_data }, {} }; MODULE_DEVICE_TABLE(of, ads1015_of_match); static struct i2c_driver ads1015_driver = { .driver = { .name = ADS1015_DRV_NAME, .of_match_table = ads1015_of_match, .pm = &ads1015_pm_ops, }, .probe_new = ads1015_probe, .remove = ads1015_remove, .id_table = ads1015_id, }; module_i2c_driver(ads1015_driver); MODULE_AUTHOR("Daniel Baluta <daniel.baluta@intel.com>"); MODULE_DESCRIPTION("Texas Instruments ADS1015 ADC driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1