Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Fugang Duan | 2455 | 65.62% | 1 | 4.35% |
Stefan Agner | 631 | 16.87% | 2 | 8.70% |
Sanchayan Maity | 473 | 12.64% | 4 | 17.39% |
Nuno Sá | 98 | 2.62% | 2 | 8.70% |
Andy Shevchenko | 25 | 0.67% | 1 | 4.35% |
Jonathan Cameron | 24 | 0.64% | 3 | 13.04% |
Bhuvanchandra DV | 17 | 0.45% | 1 | 4.35% |
Fabio Estevam | 7 | 0.19% | 3 | 13.04% |
Nicholas Mc Guire | 3 | 0.08% | 1 | 4.35% |
Grégor Boirie | 3 | 0.08% | 1 | 4.35% |
Thomas Gleixner | 2 | 0.05% | 1 | 4.35% |
Fengguang Wu | 1 | 0.03% | 1 | 4.35% |
Lars-Peter Clausen | 1 | 0.03% | 1 | 4.35% |
Stefan-Gabriel Mirea | 1 | 0.03% | 1 | 4.35% |
Total | 3741 | 23 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Freescale Vybrid vf610 ADC driver * * Copyright 2013 Freescale Semiconductor, Inc. */ #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/property.h> #include <linux/platform_device.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/io.h> #include <linux/clk.h> #include <linux/completion.h> #include <linux/regulator/consumer.h> #include <linux/err.h> #include <linux/iio/iio.h> #include <linux/iio/buffer.h> #include <linux/iio/sysfs.h> #include <linux/iio/trigger.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/triggered_buffer.h> /* This will be the driver name the kernel reports */ #define DRIVER_NAME "vf610-adc" /* Vybrid/IMX ADC registers */ #define VF610_REG_ADC_HC0 0x00 #define VF610_REG_ADC_HC1 0x04 #define VF610_REG_ADC_HS 0x08 #define VF610_REG_ADC_R0 0x0c #define VF610_REG_ADC_R1 0x10 #define VF610_REG_ADC_CFG 0x14 #define VF610_REG_ADC_GC 0x18 #define VF610_REG_ADC_GS 0x1c #define VF610_REG_ADC_CV 0x20 #define VF610_REG_ADC_OFS 0x24 #define VF610_REG_ADC_CAL 0x28 #define VF610_REG_ADC_PCTL 0x30 /* Configuration register field define */ #define VF610_ADC_MODE_BIT8 0x00 #define VF610_ADC_MODE_BIT10 0x04 #define VF610_ADC_MODE_BIT12 0x08 #define VF610_ADC_MODE_MASK 0x0c #define VF610_ADC_BUSCLK2_SEL 0x01 #define VF610_ADC_ALTCLK_SEL 0x02 #define VF610_ADC_ADACK_SEL 0x03 #define VF610_ADC_ADCCLK_MASK 0x03 #define VF610_ADC_CLK_DIV2 0x20 #define VF610_ADC_CLK_DIV4 0x40 #define VF610_ADC_CLK_DIV8 0x60 #define VF610_ADC_CLK_MASK 0x60 #define VF610_ADC_ADLSMP_LONG 0x10 #define VF610_ADC_ADSTS_SHORT 0x100 #define VF610_ADC_ADSTS_NORMAL 0x200 #define VF610_ADC_ADSTS_LONG 0x300 #define VF610_ADC_ADSTS_MASK 0x300 #define VF610_ADC_ADLPC_EN 0x80 #define VF610_ADC_ADHSC_EN 0x400 #define VF610_ADC_REFSEL_VALT 0x800 #define VF610_ADC_REFSEL_VBG 0x1000 #define VF610_ADC_ADTRG_HARD 0x2000 #define VF610_ADC_AVGS_8 0x4000 #define VF610_ADC_AVGS_16 0x8000 #define VF610_ADC_AVGS_32 0xC000 #define VF610_ADC_AVGS_MASK 0xC000 #define VF610_ADC_OVWREN 0x10000 /* General control register field define */ #define VF610_ADC_ADACKEN 0x1 #define VF610_ADC_DMAEN 0x2 #define VF610_ADC_ACREN 0x4 #define VF610_ADC_ACFGT 0x8 #define VF610_ADC_ACFE 0x10 #define VF610_ADC_AVGEN 0x20 #define VF610_ADC_ADCON 0x40 #define VF610_ADC_CAL 0x80 /* Other field define */ #define VF610_ADC_ADCHC(x) ((x) & 0x1F) #define VF610_ADC_AIEN (0x1 << 7) #define VF610_ADC_CONV_DISABLE 0x1F #define VF610_ADC_HS_COCO0 0x1 #define VF610_ADC_CALF 0x2 #define VF610_ADC_TIMEOUT msecs_to_jiffies(100) #define DEFAULT_SAMPLE_TIME 1000 /* V at 25°C of 696 mV */ #define VF610_VTEMP25_3V0 950 /* V at 25°C of 699 mV */ #define VF610_VTEMP25_3V3 867 /* Typical sensor slope coefficient at all temperatures */ #define VF610_TEMP_SLOPE_COEFF 1840 enum clk_sel { VF610_ADCIOC_BUSCLK_SET, VF610_ADCIOC_ALTCLK_SET, VF610_ADCIOC_ADACK_SET, }; enum vol_ref { VF610_ADCIOC_VR_VREF_SET, VF610_ADCIOC_VR_VALT_SET, VF610_ADCIOC_VR_VBG_SET, }; enum average_sel { VF610_ADC_SAMPLE_1, VF610_ADC_SAMPLE_4, VF610_ADC_SAMPLE_8, VF610_ADC_SAMPLE_16, VF610_ADC_SAMPLE_32, }; enum conversion_mode_sel { VF610_ADC_CONV_NORMAL, VF610_ADC_CONV_HIGH_SPEED, VF610_ADC_CONV_LOW_POWER, }; enum lst_adder_sel { VF610_ADCK_CYCLES_3, VF610_ADCK_CYCLES_5, VF610_ADCK_CYCLES_7, VF610_ADCK_CYCLES_9, VF610_ADCK_CYCLES_13, VF610_ADCK_CYCLES_17, VF610_ADCK_CYCLES_21, VF610_ADCK_CYCLES_25, }; struct vf610_adc_feature { enum clk_sel clk_sel; enum vol_ref vol_ref; enum conversion_mode_sel conv_mode; int clk_div; int sample_rate; int res_mode; u32 lst_adder_index; u32 default_sample_time; bool calibration; bool ovwren; }; struct vf610_adc { struct device *dev; void __iomem *regs; struct clk *clk; /* lock to protect against multiple access to the device */ struct mutex lock; u32 vref_uv; u32 value; struct regulator *vref; u32 max_adck_rate[3]; struct vf610_adc_feature adc_feature; u32 sample_freq_avail[5]; struct completion completion; /* Ensure the timestamp is naturally aligned */ struct { u16 chan; s64 timestamp __aligned(8); } scan; }; static const u32 vf610_hw_avgs[] = { 1, 4, 8, 16, 32 }; static const u32 vf610_lst_adder[] = { 3, 5, 7, 9, 13, 17, 21, 25 }; static inline void vf610_adc_calculate_rates(struct vf610_adc *info) { struct vf610_adc_feature *adc_feature = &info->adc_feature; unsigned long adck_rate, ipg_rate = clk_get_rate(info->clk); u32 adck_period, lst_addr_min; int divisor, i; adck_rate = info->max_adck_rate[adc_feature->conv_mode]; if (adck_rate) { /* calculate clk divider which is within specification */ divisor = ipg_rate / adck_rate; adc_feature->clk_div = 1 << fls(divisor + 1); } else { /* fall-back value using a safe divisor */ adc_feature->clk_div = 8; } adck_rate = ipg_rate / adc_feature->clk_div; /* * Determine the long sample time adder value to be used based * on the default minimum sample time provided. */ adck_period = NSEC_PER_SEC / adck_rate; lst_addr_min = adc_feature->default_sample_time / adck_period; for (i = 0; i < ARRAY_SIZE(vf610_lst_adder); i++) { if (vf610_lst_adder[i] > lst_addr_min) { adc_feature->lst_adder_index = i; break; } } /* * Calculate ADC sample frequencies * Sample time unit is ADCK cycles. ADCK clk source is ipg clock, * which is the same as bus clock. * * ADC conversion time = SFCAdder + AverageNum x (BCT + LSTAdder) * SFCAdder: fixed to 6 ADCK cycles * AverageNum: 1, 4, 8, 16, 32 samples for hardware average. * BCT (Base Conversion Time): fixed to 25 ADCK cycles for 12 bit mode * LSTAdder(Long Sample Time): 3, 5, 7, 9, 13, 17, 21, 25 ADCK cycles */ for (i = 0; i < ARRAY_SIZE(vf610_hw_avgs); i++) info->sample_freq_avail[i] = adck_rate / (6 + vf610_hw_avgs[i] * (25 + vf610_lst_adder[adc_feature->lst_adder_index])); } static inline void vf610_adc_cfg_init(struct vf610_adc *info) { struct vf610_adc_feature *adc_feature = &info->adc_feature; /* set default Configuration for ADC controller */ adc_feature->clk_sel = VF610_ADCIOC_BUSCLK_SET; adc_feature->vol_ref = VF610_ADCIOC_VR_VREF_SET; adc_feature->calibration = true; adc_feature->ovwren = true; adc_feature->res_mode = 12; adc_feature->sample_rate = 1; adc_feature->conv_mode = VF610_ADC_CONV_LOW_POWER; vf610_adc_calculate_rates(info); } static void vf610_adc_cfg_post_set(struct vf610_adc *info) { struct vf610_adc_feature *adc_feature = &info->adc_feature; int cfg_data = 0; int gc_data = 0; switch (adc_feature->clk_sel) { case VF610_ADCIOC_ALTCLK_SET: cfg_data |= VF610_ADC_ALTCLK_SEL; break; case VF610_ADCIOC_ADACK_SET: cfg_data |= VF610_ADC_ADACK_SEL; break; default: break; } /* low power set for calibration */ cfg_data |= VF610_ADC_ADLPC_EN; /* enable high speed for calibration */ cfg_data |= VF610_ADC_ADHSC_EN; /* voltage reference */ switch (adc_feature->vol_ref) { case VF610_ADCIOC_VR_VREF_SET: break; case VF610_ADCIOC_VR_VALT_SET: cfg_data |= VF610_ADC_REFSEL_VALT; break; case VF610_ADCIOC_VR_VBG_SET: cfg_data |= VF610_ADC_REFSEL_VBG; break; default: dev_err(info->dev, "error voltage reference\n"); } /* data overwrite enable */ if (adc_feature->ovwren) cfg_data |= VF610_ADC_OVWREN; writel(cfg_data, info->regs + VF610_REG_ADC_CFG); writel(gc_data, info->regs + VF610_REG_ADC_GC); } static void vf610_adc_calibration(struct vf610_adc *info) { int adc_gc, hc_cfg; if (!info->adc_feature.calibration) return; /* enable calibration interrupt */ hc_cfg = VF610_ADC_AIEN | VF610_ADC_CONV_DISABLE; writel(hc_cfg, info->regs + VF610_REG_ADC_HC0); adc_gc = readl(info->regs + VF610_REG_ADC_GC); writel(adc_gc | VF610_ADC_CAL, info->regs + VF610_REG_ADC_GC); if (!wait_for_completion_timeout(&info->completion, VF610_ADC_TIMEOUT)) dev_err(info->dev, "Timeout for adc calibration\n"); adc_gc = readl(info->regs + VF610_REG_ADC_GS); if (adc_gc & VF610_ADC_CALF) dev_err(info->dev, "ADC calibration failed\n"); info->adc_feature.calibration = false; } static void vf610_adc_cfg_set(struct vf610_adc *info) { struct vf610_adc_feature *adc_feature = &(info->adc_feature); int cfg_data; cfg_data = readl(info->regs + VF610_REG_ADC_CFG); cfg_data &= ~VF610_ADC_ADLPC_EN; if (adc_feature->conv_mode == VF610_ADC_CONV_LOW_POWER) cfg_data |= VF610_ADC_ADLPC_EN; cfg_data &= ~VF610_ADC_ADHSC_EN; if (adc_feature->conv_mode == VF610_ADC_CONV_HIGH_SPEED) cfg_data |= VF610_ADC_ADHSC_EN; writel(cfg_data, info->regs + VF610_REG_ADC_CFG); } static void vf610_adc_sample_set(struct vf610_adc *info) { struct vf610_adc_feature *adc_feature = &(info->adc_feature); int cfg_data, gc_data; cfg_data = readl(info->regs + VF610_REG_ADC_CFG); gc_data = readl(info->regs + VF610_REG_ADC_GC); /* resolution mode */ cfg_data &= ~VF610_ADC_MODE_MASK; switch (adc_feature->res_mode) { case 8: cfg_data |= VF610_ADC_MODE_BIT8; break; case 10: cfg_data |= VF610_ADC_MODE_BIT10; break; case 12: cfg_data |= VF610_ADC_MODE_BIT12; break; default: dev_err(info->dev, "error resolution mode\n"); break; } /* clock select and clock divider */ cfg_data &= ~(VF610_ADC_CLK_MASK | VF610_ADC_ADCCLK_MASK); switch (adc_feature->clk_div) { case 1: break; case 2: cfg_data |= VF610_ADC_CLK_DIV2; break; case 4: cfg_data |= VF610_ADC_CLK_DIV4; break; case 8: cfg_data |= VF610_ADC_CLK_DIV8; break; case 16: switch (adc_feature->clk_sel) { case VF610_ADCIOC_BUSCLK_SET: cfg_data |= VF610_ADC_BUSCLK2_SEL | VF610_ADC_CLK_DIV8; break; default: dev_err(info->dev, "error clk divider\n"); break; } break; } /* * Set ADLSMP and ADSTS based on the Long Sample Time Adder value * determined. */ switch (adc_feature->lst_adder_index) { case VF610_ADCK_CYCLES_3: break; case VF610_ADCK_CYCLES_5: cfg_data |= VF610_ADC_ADSTS_SHORT; break; case VF610_ADCK_CYCLES_7: cfg_data |= VF610_ADC_ADSTS_NORMAL; break; case VF610_ADCK_CYCLES_9: cfg_data |= VF610_ADC_ADSTS_LONG; break; case VF610_ADCK_CYCLES_13: cfg_data |= VF610_ADC_ADLSMP_LONG; break; case VF610_ADCK_CYCLES_17: cfg_data |= VF610_ADC_ADLSMP_LONG; cfg_data |= VF610_ADC_ADSTS_SHORT; break; case VF610_ADCK_CYCLES_21: cfg_data |= VF610_ADC_ADLSMP_LONG; cfg_data |= VF610_ADC_ADSTS_NORMAL; break; case VF610_ADCK_CYCLES_25: cfg_data |= VF610_ADC_ADLSMP_LONG; cfg_data |= VF610_ADC_ADSTS_NORMAL; break; default: dev_err(info->dev, "error in sample time select\n"); } /* update hardware average selection */ cfg_data &= ~VF610_ADC_AVGS_MASK; gc_data &= ~VF610_ADC_AVGEN; switch (adc_feature->sample_rate) { case VF610_ADC_SAMPLE_1: break; case VF610_ADC_SAMPLE_4: gc_data |= VF610_ADC_AVGEN; break; case VF610_ADC_SAMPLE_8: gc_data |= VF610_ADC_AVGEN; cfg_data |= VF610_ADC_AVGS_8; break; case VF610_ADC_SAMPLE_16: gc_data |= VF610_ADC_AVGEN; cfg_data |= VF610_ADC_AVGS_16; break; case VF610_ADC_SAMPLE_32: gc_data |= VF610_ADC_AVGEN; cfg_data |= VF610_ADC_AVGS_32; break; default: dev_err(info->dev, "error hardware sample average select\n"); } writel(cfg_data, info->regs + VF610_REG_ADC_CFG); writel(gc_data, info->regs + VF610_REG_ADC_GC); } static void vf610_adc_hw_init(struct vf610_adc *info) { /* CFG: Feature set */ vf610_adc_cfg_post_set(info); vf610_adc_sample_set(info); /* adc calibration */ vf610_adc_calibration(info); /* CFG: power and speed set */ vf610_adc_cfg_set(info); } static int vf610_set_conversion_mode(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, unsigned int mode) { struct vf610_adc *info = iio_priv(indio_dev); mutex_lock(&info->lock); info->adc_feature.conv_mode = mode; vf610_adc_calculate_rates(info); vf610_adc_hw_init(info); mutex_unlock(&info->lock); return 0; } static int vf610_get_conversion_mode(struct iio_dev *indio_dev, const struct iio_chan_spec *chan) { struct vf610_adc *info = iio_priv(indio_dev); return info->adc_feature.conv_mode; } static const char * const vf610_conv_modes[] = { "normal", "high-speed", "low-power" }; static const struct iio_enum vf610_conversion_mode = { .items = vf610_conv_modes, .num_items = ARRAY_SIZE(vf610_conv_modes), .get = vf610_get_conversion_mode, .set = vf610_set_conversion_mode, }; static const struct iio_chan_spec_ext_info vf610_ext_info[] = { IIO_ENUM("conversion_mode", IIO_SHARED_BY_DIR, &vf610_conversion_mode), {}, }; #define VF610_ADC_CHAN(_idx, _chan_type) { \ .type = (_chan_type), \ .indexed = 1, \ .channel = (_idx), \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .ext_info = vf610_ext_info, \ .scan_index = (_idx), \ .scan_type = { \ .sign = 'u', \ .realbits = 12, \ .storagebits = 16, \ }, \ } #define VF610_ADC_TEMPERATURE_CHAN(_idx, _chan_type) { \ .type = (_chan_type), \ .channel = (_idx), \ .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \ .scan_index = (_idx), \ .scan_type = { \ .sign = 'u', \ .realbits = 12, \ .storagebits = 16, \ }, \ } static const struct iio_chan_spec vf610_adc_iio_channels[] = { VF610_ADC_CHAN(0, IIO_VOLTAGE), VF610_ADC_CHAN(1, IIO_VOLTAGE), VF610_ADC_CHAN(2, IIO_VOLTAGE), VF610_ADC_CHAN(3, IIO_VOLTAGE), VF610_ADC_CHAN(4, IIO_VOLTAGE), VF610_ADC_CHAN(5, IIO_VOLTAGE), VF610_ADC_CHAN(6, IIO_VOLTAGE), VF610_ADC_CHAN(7, IIO_VOLTAGE), VF610_ADC_CHAN(8, IIO_VOLTAGE), VF610_ADC_CHAN(9, IIO_VOLTAGE), VF610_ADC_CHAN(10, IIO_VOLTAGE), VF610_ADC_CHAN(11, IIO_VOLTAGE), VF610_ADC_CHAN(12, IIO_VOLTAGE), VF610_ADC_CHAN(13, IIO_VOLTAGE), VF610_ADC_CHAN(14, IIO_VOLTAGE), VF610_ADC_CHAN(15, IIO_VOLTAGE), VF610_ADC_TEMPERATURE_CHAN(26, IIO_TEMP), IIO_CHAN_SOFT_TIMESTAMP(32), /* sentinel */ }; static int vf610_adc_read_data(struct vf610_adc *info) { int result; result = readl(info->regs + VF610_REG_ADC_R0); switch (info->adc_feature.res_mode) { case 8: result &= 0xFF; break; case 10: result &= 0x3FF; break; case 12: result &= 0xFFF; break; default: break; } return result; } static irqreturn_t vf610_adc_isr(int irq, void *dev_id) { struct iio_dev *indio_dev = dev_id; struct vf610_adc *info = iio_priv(indio_dev); int coco; coco = readl(info->regs + VF610_REG_ADC_HS); if (coco & VF610_ADC_HS_COCO0) { info->value = vf610_adc_read_data(info); if (iio_buffer_enabled(indio_dev)) { info->scan.chan = info->value; iio_push_to_buffers_with_timestamp(indio_dev, &info->scan, iio_get_time_ns(indio_dev)); iio_trigger_notify_done(indio_dev->trig); } else complete(&info->completion); } return IRQ_HANDLED; } static ssize_t vf610_show_samp_freq_avail(struct device *dev, struct device_attribute *attr, char *buf) { struct vf610_adc *info = iio_priv(dev_to_iio_dev(dev)); size_t len = 0; int i; for (i = 0; i < ARRAY_SIZE(info->sample_freq_avail); i++) len += scnprintf(buf + len, PAGE_SIZE - len, "%u ", info->sample_freq_avail[i]); /* replace trailing space by newline */ buf[len - 1] = '\n'; return len; } static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(vf610_show_samp_freq_avail); static struct attribute *vf610_attributes[] = { &iio_dev_attr_sampling_frequency_available.dev_attr.attr, NULL }; static const struct attribute_group vf610_attribute_group = { .attrs = vf610_attributes, }; static int vf610_read_sample(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val) { struct vf610_adc *info = iio_priv(indio_dev); unsigned int hc_cfg; int ret; ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; mutex_lock(&info->lock); reinit_completion(&info->completion); hc_cfg = VF610_ADC_ADCHC(chan->channel); hc_cfg |= VF610_ADC_AIEN; writel(hc_cfg, info->regs + VF610_REG_ADC_HC0); ret = wait_for_completion_interruptible_timeout(&info->completion, VF610_ADC_TIMEOUT); if (ret == 0) { ret = -ETIMEDOUT; goto out_unlock; } if (ret < 0) goto out_unlock; switch (chan->type) { case IIO_VOLTAGE: *val = info->value; break; case IIO_TEMP: /* * Calculate in degree Celsius times 1000 * Using the typical sensor slope of 1.84 mV/°C * and VREFH_ADC at 3.3V, V at 25°C of 699 mV */ *val = 25000 - ((int)info->value - VF610_VTEMP25_3V3) * 1000000 / VF610_TEMP_SLOPE_COEFF; break; default: ret = -EINVAL; break; } out_unlock: mutex_unlock(&info->lock); iio_device_release_direct_mode(indio_dev); return ret; } static int vf610_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct vf610_adc *info = iio_priv(indio_dev); long ret; switch (mask) { case IIO_CHAN_INFO_RAW: case IIO_CHAN_INFO_PROCESSED: ret = vf610_read_sample(indio_dev, chan, val); if (ret < 0) return ret; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: *val = info->vref_uv / 1000; *val2 = info->adc_feature.res_mode; return IIO_VAL_FRACTIONAL_LOG2; case IIO_CHAN_INFO_SAMP_FREQ: *val = info->sample_freq_avail[info->adc_feature.sample_rate]; *val2 = 0; return IIO_VAL_INT; default: break; } return -EINVAL; } static int vf610_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct vf610_adc *info = iio_priv(indio_dev); int i; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: for (i = 0; i < ARRAY_SIZE(info->sample_freq_avail); i++) if (val == info->sample_freq_avail[i]) { info->adc_feature.sample_rate = i; vf610_adc_sample_set(info); return 0; } break; default: break; } return -EINVAL; } static int vf610_adc_buffer_postenable(struct iio_dev *indio_dev) { struct vf610_adc *info = iio_priv(indio_dev); unsigned int channel; int val; val = readl(info->regs + VF610_REG_ADC_GC); val |= VF610_ADC_ADCON; writel(val, info->regs + VF610_REG_ADC_GC); channel = find_first_bit(indio_dev->active_scan_mask, indio_dev->masklength); val = VF610_ADC_ADCHC(channel); val |= VF610_ADC_AIEN; writel(val, info->regs + VF610_REG_ADC_HC0); return 0; } static int vf610_adc_buffer_predisable(struct iio_dev *indio_dev) { struct vf610_adc *info = iio_priv(indio_dev); unsigned int hc_cfg = 0; int val; val = readl(info->regs + VF610_REG_ADC_GC); val &= ~VF610_ADC_ADCON; writel(val, info->regs + VF610_REG_ADC_GC); hc_cfg |= VF610_ADC_CONV_DISABLE; hc_cfg &= ~VF610_ADC_AIEN; writel(hc_cfg, info->regs + VF610_REG_ADC_HC0); return 0; } static const struct iio_buffer_setup_ops iio_triggered_buffer_setup_ops = { .postenable = &vf610_adc_buffer_postenable, .predisable = &vf610_adc_buffer_predisable, .validate_scan_mask = &iio_validate_scan_mask_onehot, }; static int vf610_adc_reg_access(struct iio_dev *indio_dev, unsigned reg, unsigned writeval, unsigned *readval) { struct vf610_adc *info = iio_priv(indio_dev); if ((readval == NULL) || ((reg % 4) || (reg > VF610_REG_ADC_PCTL))) return -EINVAL; *readval = readl(info->regs + reg); return 0; } static const struct iio_info vf610_adc_iio_info = { .read_raw = &vf610_read_raw, .write_raw = &vf610_write_raw, .debugfs_reg_access = &vf610_adc_reg_access, .attrs = &vf610_attribute_group, }; static const struct of_device_id vf610_adc_match[] = { { .compatible = "fsl,vf610-adc", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, vf610_adc_match); static int vf610_adc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct vf610_adc *info; struct iio_dev *indio_dev; int irq; int ret; indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(struct vf610_adc)); if (!indio_dev) { dev_err(&pdev->dev, "Failed allocating iio device\n"); return -ENOMEM; } info = iio_priv(indio_dev); info->dev = &pdev->dev; info->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(info->regs)) return PTR_ERR(info->regs); irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; ret = devm_request_irq(info->dev, irq, vf610_adc_isr, 0, dev_name(&pdev->dev), indio_dev); if (ret < 0) { dev_err(&pdev->dev, "failed requesting irq, irq = %d\n", irq); return ret; } info->clk = devm_clk_get(&pdev->dev, "adc"); if (IS_ERR(info->clk)) { dev_err(&pdev->dev, "failed getting clock, err = %ld\n", PTR_ERR(info->clk)); return PTR_ERR(info->clk); } info->vref = devm_regulator_get(&pdev->dev, "vref"); if (IS_ERR(info->vref)) return PTR_ERR(info->vref); ret = regulator_enable(info->vref); if (ret) return ret; info->vref_uv = regulator_get_voltage(info->vref); device_property_read_u32_array(dev, "fsl,adck-max-frequency", info->max_adck_rate, 3); info->adc_feature.default_sample_time = DEFAULT_SAMPLE_TIME; device_property_read_u32(dev, "min-sample-time", &info->adc_feature.default_sample_time); platform_set_drvdata(pdev, indio_dev); init_completion(&info->completion); indio_dev->name = dev_name(&pdev->dev); indio_dev->info = &vf610_adc_iio_info; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = vf610_adc_iio_channels; indio_dev->num_channels = ARRAY_SIZE(vf610_adc_iio_channels); ret = clk_prepare_enable(info->clk); if (ret) { dev_err(&pdev->dev, "Could not prepare or enable the clock.\n"); goto error_adc_clk_enable; } vf610_adc_cfg_init(info); vf610_adc_hw_init(info); ret = iio_triggered_buffer_setup(indio_dev, &iio_pollfunc_store_time, NULL, &iio_triggered_buffer_setup_ops); if (ret < 0) { dev_err(&pdev->dev, "Couldn't initialise the buffer\n"); goto error_iio_device_register; } mutex_init(&info->lock); ret = iio_device_register(indio_dev); if (ret) { dev_err(&pdev->dev, "Couldn't register the device.\n"); goto error_adc_buffer_init; } return 0; error_adc_buffer_init: iio_triggered_buffer_cleanup(indio_dev); error_iio_device_register: clk_disable_unprepare(info->clk); error_adc_clk_enable: regulator_disable(info->vref); return ret; } static int vf610_adc_remove(struct platform_device *pdev) { struct iio_dev *indio_dev = platform_get_drvdata(pdev); struct vf610_adc *info = iio_priv(indio_dev); iio_device_unregister(indio_dev); iio_triggered_buffer_cleanup(indio_dev); regulator_disable(info->vref); clk_disable_unprepare(info->clk); return 0; } static int vf610_adc_suspend(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct vf610_adc *info = iio_priv(indio_dev); int hc_cfg; /* ADC controller enters to stop mode */ hc_cfg = readl(info->regs + VF610_REG_ADC_HC0); hc_cfg |= VF610_ADC_CONV_DISABLE; writel(hc_cfg, info->regs + VF610_REG_ADC_HC0); clk_disable_unprepare(info->clk); regulator_disable(info->vref); return 0; } static int vf610_adc_resume(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct vf610_adc *info = iio_priv(indio_dev); int ret; ret = regulator_enable(info->vref); if (ret) return ret; ret = clk_prepare_enable(info->clk); if (ret) goto disable_reg; vf610_adc_hw_init(info); return 0; disable_reg: regulator_disable(info->vref); return ret; } static DEFINE_SIMPLE_DEV_PM_OPS(vf610_adc_pm_ops, vf610_adc_suspend, vf610_adc_resume); static struct platform_driver vf610_adc_driver = { .probe = vf610_adc_probe, .remove = vf610_adc_remove, .driver = { .name = DRIVER_NAME, .of_match_table = vf610_adc_match, .pm = pm_sleep_ptr(&vf610_adc_pm_ops), }, }; module_platform_driver(vf610_adc_driver); MODULE_AUTHOR("Fugang Duan <B38611@freescale.com>"); MODULE_DESCRIPTION("Freescale VF610 ADC driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1