Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Fabrice Gasnier | 1641 | 97.10% | 3 | 25.00% |
Sergiu Cuciurean | 21 | 1.24% | 1 | 8.33% |
Jonathan Cameron | 10 | 0.59% | 2 | 16.67% |
Nuno Sá | 6 | 0.36% | 1 | 8.33% |
Andy Shevchenko | 6 | 0.36% | 1 | 8.33% |
Lars-Peter Clausen | 2 | 0.12% | 2 | 16.67% |
Antoniu Miclaus | 2 | 0.12% | 1 | 8.33% |
Benjamin Gaignard | 2 | 0.12% | 1 | 8.33% |
Total | 1690 | 12 |
// SPDX-License-Identifier: GPL-2.0 /* * This file is part of STM32 DAC driver * * Copyright (C) 2017, STMicroelectronics - All Rights Reserved * Authors: Amelie Delaunay <amelie.delaunay@st.com> * Fabrice Gasnier <fabrice.gasnier@st.com> */ #include <linux/bitfield.h> #include <linux/delay.h> #include <linux/iio/iio.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/string_helpers.h> #include "stm32-dac-core.h" #define STM32_DAC_CHANNEL_1 1 #define STM32_DAC_CHANNEL_2 2 #define STM32_DAC_IS_CHAN_1(ch) ((ch) & STM32_DAC_CHANNEL_1) #define STM32_DAC_AUTO_SUSPEND_DELAY_MS 2000 /** * struct stm32_dac - private data of DAC driver * @common: reference to DAC common data * @lock: lock to protect against potential races when reading * and update CR, to keep it in sync with pm_runtime */ struct stm32_dac { struct stm32_dac_common *common; struct mutex lock; }; static int stm32_dac_is_enabled(struct iio_dev *indio_dev, int channel) { struct stm32_dac *dac = iio_priv(indio_dev); u32 en, val; int ret; ret = regmap_read(dac->common->regmap, STM32_DAC_CR, &val); if (ret < 0) return ret; if (STM32_DAC_IS_CHAN_1(channel)) en = FIELD_GET(STM32_DAC_CR_EN1, val); else en = FIELD_GET(STM32_DAC_CR_EN2, val); return !!en; } static int stm32_dac_set_enable_state(struct iio_dev *indio_dev, int ch, bool enable) { struct stm32_dac *dac = iio_priv(indio_dev); struct device *dev = indio_dev->dev.parent; u32 msk = STM32_DAC_IS_CHAN_1(ch) ? STM32_DAC_CR_EN1 : STM32_DAC_CR_EN2; u32 en = enable ? msk : 0; int ret; /* already enabled / disabled ? */ mutex_lock(&dac->lock); ret = stm32_dac_is_enabled(indio_dev, ch); if (ret < 0 || enable == !!ret) { mutex_unlock(&dac->lock); return ret < 0 ? ret : 0; } if (enable) { ret = pm_runtime_resume_and_get(dev); if (ret < 0) { mutex_unlock(&dac->lock); return ret; } } ret = regmap_update_bits(dac->common->regmap, STM32_DAC_CR, msk, en); mutex_unlock(&dac->lock); if (ret < 0) { dev_err(&indio_dev->dev, "%s failed\n", str_enable_disable(en)); goto err_put_pm; } /* * When HFSEL is set, it is not allowed to write the DHRx register * during 8 clock cycles after the ENx bit is set. It is not allowed * to make software/hardware trigger during this period either. */ if (en && dac->common->hfsel) udelay(1); if (!enable) { pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); } return 0; err_put_pm: if (enable) { pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); } return ret; } static int stm32_dac_get_value(struct stm32_dac *dac, int channel, int *val) { int ret; if (STM32_DAC_IS_CHAN_1(channel)) ret = regmap_read(dac->common->regmap, STM32_DAC_DOR1, val); else ret = regmap_read(dac->common->regmap, STM32_DAC_DOR2, val); return ret ? ret : IIO_VAL_INT; } static int stm32_dac_set_value(struct stm32_dac *dac, int channel, int val) { int ret; if (STM32_DAC_IS_CHAN_1(channel)) ret = regmap_write(dac->common->regmap, STM32_DAC_DHR12R1, val); else ret = regmap_write(dac->common->regmap, STM32_DAC_DHR12R2, val); return ret; } static int stm32_dac_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct stm32_dac *dac = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_RAW: return stm32_dac_get_value(dac, chan->channel, val); case IIO_CHAN_INFO_SCALE: *val = dac->common->vref_mv; *val2 = chan->scan_type.realbits; return IIO_VAL_FRACTIONAL_LOG2; default: return -EINVAL; } } static int stm32_dac_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct stm32_dac *dac = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_RAW: return stm32_dac_set_value(dac, chan->channel, val); default: return -EINVAL; } } static int stm32_dac_debugfs_reg_access(struct iio_dev *indio_dev, unsigned reg, unsigned writeval, unsigned *readval) { struct stm32_dac *dac = iio_priv(indio_dev); if (!readval) return regmap_write(dac->common->regmap, reg, writeval); else return regmap_read(dac->common->regmap, reg, readval); } static const struct iio_info stm32_dac_iio_info = { .read_raw = stm32_dac_read_raw, .write_raw = stm32_dac_write_raw, .debugfs_reg_access = stm32_dac_debugfs_reg_access, }; static const char * const stm32_dac_powerdown_modes[] = { "three_state", }; static int stm32_dac_get_powerdown_mode(struct iio_dev *indio_dev, const struct iio_chan_spec *chan) { return 0; } static int stm32_dac_set_powerdown_mode(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, unsigned int type) { return 0; } static ssize_t stm32_dac_read_powerdown(struct iio_dev *indio_dev, uintptr_t private, const struct iio_chan_spec *chan, char *buf) { int ret = stm32_dac_is_enabled(indio_dev, chan->channel); if (ret < 0) return ret; return sysfs_emit(buf, "%d\n", ret ? 0 : 1); } static ssize_t stm32_dac_write_powerdown(struct iio_dev *indio_dev, uintptr_t private, const struct iio_chan_spec *chan, const char *buf, size_t len) { bool powerdown; int ret; ret = kstrtobool(buf, &powerdown); if (ret) return ret; ret = stm32_dac_set_enable_state(indio_dev, chan->channel, !powerdown); if (ret) return ret; return len; } static const struct iio_enum stm32_dac_powerdown_mode_en = { .items = stm32_dac_powerdown_modes, .num_items = ARRAY_SIZE(stm32_dac_powerdown_modes), .get = stm32_dac_get_powerdown_mode, .set = stm32_dac_set_powerdown_mode, }; static const struct iio_chan_spec_ext_info stm32_dac_ext_info[] = { { .name = "powerdown", .read = stm32_dac_read_powerdown, .write = stm32_dac_write_powerdown, .shared = IIO_SEPARATE, }, IIO_ENUM("powerdown_mode", IIO_SEPARATE, &stm32_dac_powerdown_mode_en), IIO_ENUM_AVAILABLE("powerdown_mode", IIO_SHARED_BY_TYPE, &stm32_dac_powerdown_mode_en), {}, }; #define STM32_DAC_CHANNEL(chan, name) { \ .type = IIO_VOLTAGE, \ .indexed = 1, \ .output = 1, \ .channel = chan, \ .info_mask_separate = \ BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_SCALE), \ /* scan_index is always 0 as num_channels is 1 */ \ .scan_type = { \ .sign = 'u', \ .realbits = 12, \ .storagebits = 16, \ }, \ .datasheet_name = name, \ .ext_info = stm32_dac_ext_info \ } static const struct iio_chan_spec stm32_dac_channels[] = { STM32_DAC_CHANNEL(STM32_DAC_CHANNEL_1, "out1"), STM32_DAC_CHANNEL(STM32_DAC_CHANNEL_2, "out2"), }; static int stm32_dac_chan_of_init(struct iio_dev *indio_dev) { struct device_node *np = indio_dev->dev.of_node; unsigned int i; u32 channel; int ret; ret = of_property_read_u32(np, "reg", &channel); if (ret) { dev_err(&indio_dev->dev, "Failed to read reg property\n"); return ret; } for (i = 0; i < ARRAY_SIZE(stm32_dac_channels); i++) { if (stm32_dac_channels[i].channel == channel) break; } if (i >= ARRAY_SIZE(stm32_dac_channels)) { dev_err(&indio_dev->dev, "Invalid reg property\n"); return -EINVAL; } indio_dev->channels = &stm32_dac_channels[i]; /* * Expose only one channel here, as they can be used independently, * with separate trigger. Then separate IIO devices are instantiated * to manage this. */ indio_dev->num_channels = 1; return 0; }; static int stm32_dac_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct device *dev = &pdev->dev; struct iio_dev *indio_dev; struct stm32_dac *dac; int ret; if (!np) return -ENODEV; indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*dac)); if (!indio_dev) return -ENOMEM; platform_set_drvdata(pdev, indio_dev); dac = iio_priv(indio_dev); dac->common = dev_get_drvdata(pdev->dev.parent); indio_dev->name = dev_name(&pdev->dev); indio_dev->dev.of_node = pdev->dev.of_node; indio_dev->info = &stm32_dac_iio_info; indio_dev->modes = INDIO_DIRECT_MODE; mutex_init(&dac->lock); ret = stm32_dac_chan_of_init(indio_dev); if (ret < 0) return ret; /* Get stm32-dac-core PM online */ pm_runtime_get_noresume(dev); pm_runtime_set_active(dev); pm_runtime_set_autosuspend_delay(dev, STM32_DAC_AUTO_SUSPEND_DELAY_MS); pm_runtime_use_autosuspend(dev); pm_runtime_enable(dev); ret = iio_device_register(indio_dev); if (ret) goto err_pm_put; pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); return 0; err_pm_put: pm_runtime_disable(dev); pm_runtime_set_suspended(dev); pm_runtime_put_noidle(dev); return ret; } static int stm32_dac_remove(struct platform_device *pdev) { struct iio_dev *indio_dev = platform_get_drvdata(pdev); pm_runtime_get_sync(&pdev->dev); iio_device_unregister(indio_dev); pm_runtime_disable(&pdev->dev); pm_runtime_set_suspended(&pdev->dev); pm_runtime_put_noidle(&pdev->dev); return 0; } static int stm32_dac_suspend(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); int channel = indio_dev->channels[0].channel; int ret; /* Ensure DAC is disabled before suspend */ ret = stm32_dac_is_enabled(indio_dev, channel); if (ret) return ret < 0 ? ret : -EBUSY; return pm_runtime_force_suspend(dev); } static DEFINE_SIMPLE_DEV_PM_OPS(stm32_dac_pm_ops, stm32_dac_suspend, pm_runtime_force_resume); static const struct of_device_id stm32_dac_of_match[] = { { .compatible = "st,stm32-dac", }, {}, }; MODULE_DEVICE_TABLE(of, stm32_dac_of_match); static struct platform_driver stm32_dac_driver = { .probe = stm32_dac_probe, .remove = stm32_dac_remove, .driver = { .name = "stm32-dac", .of_match_table = stm32_dac_of_match, .pm = pm_sleep_ptr(&stm32_dac_pm_ops), }, }; module_platform_driver(stm32_dac_driver); MODULE_ALIAS("platform:stm32-dac"); MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>"); MODULE_DESCRIPTION("STMicroelectronics STM32 DAC driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1