Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Lorenzo Bianconi | 4208 | 95.68% | 34 | 91.89% |
Jimmy Assarsson | 176 | 4.00% | 1 | 2.70% |
Dan Carpenter | 10 | 0.23% | 1 | 2.70% |
Lee Jones | 4 | 0.09% | 1 | 2.70% |
Total | 4398 | 37 |
/* * STMicroelectronics st_lsm6dsx i2c controller driver * * i2c controller embedded in lsm6dx series can connect up to four * slave devices using accelerometer sensor as trigger for i2c * read/write operations. Current implementation relies on SLV0 channel * for slave configuration and SLV{1,2,3} to read data and push them into * the hw FIFO * * Copyright (C) 2018 Lorenzo Bianconi <lorenzo.bianconi83@gmail.com> * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include <linux/module.h> #include <linux/regmap.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/bitfield.h> #include "st_lsm6dsx.h" #define ST_LSM6DSX_SLV_ADDR(n, base) ((base) + (n) * 3) #define ST_LSM6DSX_SLV_SUB_ADDR(n, base) ((base) + 1 + (n) * 3) #define ST_LSM6DSX_SLV_CONFIG(n, base) ((base) + 2 + (n) * 3) #define ST_LS6DSX_READ_OP_MASK GENMASK(2, 0) static const struct st_lsm6dsx_ext_dev_settings st_lsm6dsx_ext_dev_table[] = { /* LIS2MDL */ { .i2c_addr = { 0x1e }, .wai = { .addr = 0x4f, .val = 0x40, }, .id = ST_LSM6DSX_ID_MAGN, .odr_table = { .reg = { .addr = 0x60, .mask = GENMASK(3, 2), }, .odr_avl[0] = { 10000, 0x0 }, .odr_avl[1] = { 20000, 0x1 }, .odr_avl[2] = { 50000, 0x2 }, .odr_avl[3] = { 100000, 0x3 }, .odr_len = 4, }, .fs_table = { .fs_avl[0] = { .gain = 1500, .val = 0x0, }, /* 1500 uG/LSB */ .fs_len = 1, }, .temp_comp = { .addr = 0x60, .mask = BIT(7), }, .pwr_table = { .reg = { .addr = 0x60, .mask = GENMASK(1, 0), }, .off_val = 0x2, .on_val = 0x0, }, .off_canc = { .addr = 0x61, .mask = BIT(1), }, .bdu = { .addr = 0x62, .mask = BIT(4), }, .out = { .addr = 0x68, .len = 6, }, }, /* LIS3MDL */ { .i2c_addr = { 0x1e }, .wai = { .addr = 0x0f, .val = 0x3d, }, .id = ST_LSM6DSX_ID_MAGN, .odr_table = { .reg = { .addr = 0x20, .mask = GENMASK(4, 2), }, .odr_avl[0] = { 1000, 0x0 }, .odr_avl[1] = { 2000, 0x1 }, .odr_avl[2] = { 3000, 0x2 }, .odr_avl[3] = { 5000, 0x3 }, .odr_avl[4] = { 10000, 0x4 }, .odr_avl[5] = { 20000, 0x5 }, .odr_avl[6] = { 40000, 0x6 }, .odr_avl[7] = { 80000, 0x7 }, .odr_len = 8, }, .fs_table = { .reg = { .addr = 0x21, .mask = GENMASK(6, 5), }, .fs_avl[0] = { .gain = 146, .val = 0x00, }, /* 4000 uG/LSB */ .fs_avl[1] = { .gain = 292, .val = 0x01, }, /* 8000 uG/LSB */ .fs_avl[2] = { .gain = 438, .val = 0x02, }, /* 12000 uG/LSB */ .fs_avl[3] = { .gain = 584, .val = 0x03, }, /* 16000 uG/LSB */ .fs_len = 4, }, .pwr_table = { .reg = { .addr = 0x22, .mask = GENMASK(1, 0), }, .off_val = 0x2, .on_val = 0x0, }, .bdu = { .addr = 0x24, .mask = BIT(6), }, .out = { .addr = 0x28, .len = 6, }, }, }; static void st_lsm6dsx_shub_wait_complete(struct st_lsm6dsx_hw *hw) { struct st_lsm6dsx_sensor *sensor; u32 odr, timeout; sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_ACC]); odr = (hw->enable_mask & BIT(ST_LSM6DSX_ID_ACC)) ? sensor->odr : 12500; /* set 10ms as minimum timeout for i2c slave configuration */ timeout = max_t(u32, 2000000U / odr + 1, 10); msleep(timeout); } /* * st_lsm6dsx_shub_read_output - read i2c controller register * * Read st_lsm6dsx i2c controller register */ int st_lsm6dsx_shub_read_output(struct st_lsm6dsx_hw *hw, u8 *data, int len) { const struct st_lsm6dsx_shub_settings *hub_settings; int err; mutex_lock(&hw->page_lock); hub_settings = &hw->settings->shub_settings; if (hub_settings->shub_out.sec_page) { err = st_lsm6dsx_set_page(hw, true); if (err < 0) goto out; } err = regmap_bulk_read(hw->regmap, hub_settings->shub_out.addr, data, len); if (hub_settings->shub_out.sec_page) st_lsm6dsx_set_page(hw, false); out: mutex_unlock(&hw->page_lock); return err; } /* * st_lsm6dsx_shub_write_reg - write i2c controller register * * Write st_lsm6dsx i2c controller register */ static int st_lsm6dsx_shub_write_reg(struct st_lsm6dsx_hw *hw, u8 addr, u8 *data, int len) { int err; mutex_lock(&hw->page_lock); err = st_lsm6dsx_set_page(hw, true); if (err < 0) goto out; err = regmap_bulk_write(hw->regmap, addr, data, len); st_lsm6dsx_set_page(hw, false); out: mutex_unlock(&hw->page_lock); return err; } static int st_lsm6dsx_shub_write_reg_with_mask(struct st_lsm6dsx_hw *hw, u8 addr, u8 mask, u8 val) { int err; mutex_lock(&hw->page_lock); err = st_lsm6dsx_set_page(hw, true); if (err < 0) goto out; err = regmap_update_bits(hw->regmap, addr, mask, val); st_lsm6dsx_set_page(hw, false); out: mutex_unlock(&hw->page_lock); return err; } static int st_lsm6dsx_shub_master_enable(struct st_lsm6dsx_sensor *sensor, bool enable) { const struct st_lsm6dsx_shub_settings *hub_settings; struct st_lsm6dsx_hw *hw = sensor->hw; unsigned int data; int err; /* enable acc sensor as trigger */ err = st_lsm6dsx_sensor_set_enable(sensor, enable); if (err < 0) return err; mutex_lock(&hw->page_lock); hub_settings = &hw->settings->shub_settings; if (hub_settings->master_en.sec_page) { err = st_lsm6dsx_set_page(hw, true); if (err < 0) goto out; } data = ST_LSM6DSX_SHIFT_VAL(enable, hub_settings->master_en.mask); err = regmap_update_bits(hw->regmap, hub_settings->master_en.addr, hub_settings->master_en.mask, data); if (hub_settings->master_en.sec_page) st_lsm6dsx_set_page(hw, false); out: mutex_unlock(&hw->page_lock); return err; } /* * st_lsm6dsx_shub_read - read data from slave device register * * Read data from slave device register. SLV0 is used for * one-shot read operation */ static int st_lsm6dsx_shub_read(struct st_lsm6dsx_sensor *sensor, u8 addr, u8 *data, int len) { const struct st_lsm6dsx_shub_settings *hub_settings; u8 config[3], slv_addr, slv_config = 0; struct st_lsm6dsx_hw *hw = sensor->hw; const struct st_lsm6dsx_reg *aux_sens; int err; hub_settings = &hw->settings->shub_settings; slv_addr = ST_LSM6DSX_SLV_ADDR(0, hub_settings->slv0_addr); aux_sens = &hw->settings->shub_settings.aux_sens; /* do not overwrite aux_sens */ if (slv_addr + 2 == aux_sens->addr) slv_config = ST_LSM6DSX_SHIFT_VAL(3, aux_sens->mask); config[0] = (sensor->ext_info.addr << 1) | 1; config[1] = addr; config[2] = (len & ST_LS6DSX_READ_OP_MASK) | slv_config; err = st_lsm6dsx_shub_write_reg(hw, slv_addr, config, sizeof(config)); if (err < 0) return err; err = st_lsm6dsx_shub_master_enable(sensor, true); if (err < 0) return err; st_lsm6dsx_shub_wait_complete(hw); err = st_lsm6dsx_shub_read_output(hw, data, len & ST_LS6DSX_READ_OP_MASK); if (err < 0) return err; st_lsm6dsx_shub_master_enable(sensor, false); config[0] = hub_settings->pause; config[1] = 0; config[2] = slv_config; return st_lsm6dsx_shub_write_reg(hw, slv_addr, config, sizeof(config)); } /* * st_lsm6dsx_shub_write - write data to slave device register * * Write data from slave device register. SLV0 is used for * one-shot write operation */ static int st_lsm6dsx_shub_write(struct st_lsm6dsx_sensor *sensor, u8 addr, u8 *data, int len) { const struct st_lsm6dsx_shub_settings *hub_settings; struct st_lsm6dsx_hw *hw = sensor->hw; u8 config[2], slv_addr; int err, i; hub_settings = &hw->settings->shub_settings; if (hub_settings->wr_once.addr) { unsigned int data; data = ST_LSM6DSX_SHIFT_VAL(1, hub_settings->wr_once.mask); err = st_lsm6dsx_shub_write_reg_with_mask(hw, hub_settings->wr_once.addr, hub_settings->wr_once.mask, data); if (err < 0) return err; } slv_addr = ST_LSM6DSX_SLV_ADDR(0, hub_settings->slv0_addr); config[0] = sensor->ext_info.addr << 1; for (i = 0 ; i < len; i++) { config[1] = addr + i; err = st_lsm6dsx_shub_write_reg(hw, slv_addr, config, sizeof(config)); if (err < 0) return err; err = st_lsm6dsx_shub_write_reg(hw, hub_settings->dw_slv0_addr, &data[i], 1); if (err < 0) return err; err = st_lsm6dsx_shub_master_enable(sensor, true); if (err < 0) return err; st_lsm6dsx_shub_wait_complete(hw); st_lsm6dsx_shub_master_enable(sensor, false); } config[0] = hub_settings->pause; config[1] = 0; return st_lsm6dsx_shub_write_reg(hw, slv_addr, config, sizeof(config)); } static int st_lsm6dsx_shub_write_with_mask(struct st_lsm6dsx_sensor *sensor, u8 addr, u8 mask, u8 val) { int err; u8 data; err = st_lsm6dsx_shub_read(sensor, addr, &data, sizeof(data)); if (err < 0) return err; data = ((data & ~mask) | (val << __ffs(mask) & mask)); return st_lsm6dsx_shub_write(sensor, addr, &data, sizeof(data)); } static int st_lsm6dsx_shub_get_odr_val(struct st_lsm6dsx_sensor *sensor, u32 odr, u16 *val) { const struct st_lsm6dsx_ext_dev_settings *settings; int i; settings = sensor->ext_info.settings; for (i = 0; i < settings->odr_table.odr_len; i++) { if (settings->odr_table.odr_avl[i].milli_hz == odr) break; } if (i == settings->odr_table.odr_len) return -EINVAL; *val = settings->odr_table.odr_avl[i].val; return 0; } static int st_lsm6dsx_shub_set_odr(struct st_lsm6dsx_sensor *sensor, u32 odr) { const struct st_lsm6dsx_ext_dev_settings *settings; u16 val; int err; err = st_lsm6dsx_shub_get_odr_val(sensor, odr, &val); if (err < 0) return err; settings = sensor->ext_info.settings; return st_lsm6dsx_shub_write_with_mask(sensor, settings->odr_table.reg.addr, settings->odr_table.reg.mask, val); } /* use SLV{1,2,3} for FIFO read operations */ static int st_lsm6dsx_shub_config_channels(struct st_lsm6dsx_sensor *sensor, bool enable) { const struct st_lsm6dsx_shub_settings *hub_settings; const struct st_lsm6dsx_ext_dev_settings *settings; u8 config[9] = {}, enable_mask, slv_addr; struct st_lsm6dsx_hw *hw = sensor->hw; struct st_lsm6dsx_sensor *cur_sensor; int i, j = 0; hub_settings = &hw->settings->shub_settings; if (enable) enable_mask = hw->enable_mask | BIT(sensor->id); else enable_mask = hw->enable_mask & ~BIT(sensor->id); for (i = ST_LSM6DSX_ID_EXT0; i <= ST_LSM6DSX_ID_EXT2; i++) { if (!hw->iio_devs[i]) continue; cur_sensor = iio_priv(hw->iio_devs[i]); if (!(enable_mask & BIT(cur_sensor->id))) continue; settings = cur_sensor->ext_info.settings; config[j] = (sensor->ext_info.addr << 1) | 1; config[j + 1] = settings->out.addr; config[j + 2] = (settings->out.len & ST_LS6DSX_READ_OP_MASK) | hub_settings->batch_en; j += 3; } slv_addr = ST_LSM6DSX_SLV_ADDR(1, hub_settings->slv0_addr); return st_lsm6dsx_shub_write_reg(hw, slv_addr, config, sizeof(config)); } int st_lsm6dsx_shub_set_enable(struct st_lsm6dsx_sensor *sensor, bool enable) { const struct st_lsm6dsx_ext_dev_settings *settings; int err; err = st_lsm6dsx_shub_config_channels(sensor, enable); if (err < 0) return err; settings = sensor->ext_info.settings; if (enable) { err = st_lsm6dsx_shub_set_odr(sensor, sensor->ext_info.slv_odr); if (err < 0) return err; } else { err = st_lsm6dsx_shub_write_with_mask(sensor, settings->odr_table.reg.addr, settings->odr_table.reg.mask, 0); if (err < 0) return err; } if (settings->pwr_table.reg.addr) { u8 val; val = enable ? settings->pwr_table.on_val : settings->pwr_table.off_val; err = st_lsm6dsx_shub_write_with_mask(sensor, settings->pwr_table.reg.addr, settings->pwr_table.reg.mask, val); if (err < 0) return err; } return st_lsm6dsx_shub_master_enable(sensor, enable); } static int st_lsm6dsx_shub_read_oneshot(struct st_lsm6dsx_sensor *sensor, struct iio_chan_spec const *ch, int *val) { int err, delay, len; u8 data[4]; err = st_lsm6dsx_shub_set_enable(sensor, true); if (err < 0) return err; delay = 1000000000 / sensor->ext_info.slv_odr; usleep_range(delay, 2 * delay); len = min_t(int, sizeof(data), ch->scan_type.realbits >> 3); err = st_lsm6dsx_shub_read(sensor, ch->address, data, len); if (err < 0) return err; err = st_lsm6dsx_shub_set_enable(sensor, false); if (err < 0) return err; switch (len) { case 2: *val = (s16)le16_to_cpu(*((__le16 *)data)); break; default: return -EINVAL; } return IIO_VAL_INT; } static int st_lsm6dsx_shub_read_raw(struct iio_dev *iio_dev, struct iio_chan_spec const *ch, int *val, int *val2, long mask) { struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_RAW: ret = iio_device_claim_direct_mode(iio_dev); if (ret) break; ret = st_lsm6dsx_shub_read_oneshot(sensor, ch, val); iio_device_release_direct_mode(iio_dev); break; case IIO_CHAN_INFO_SAMP_FREQ: *val = sensor->ext_info.slv_odr / 1000; *val2 = (sensor->ext_info.slv_odr % 1000) * 1000; ret = IIO_VAL_INT_PLUS_MICRO; break; case IIO_CHAN_INFO_SCALE: *val = 0; *val2 = sensor->gain; ret = IIO_VAL_INT_PLUS_MICRO; break; default: ret = -EINVAL; break; } return ret; } static int st_lsm6dsx_shub_set_full_scale(struct st_lsm6dsx_sensor *sensor, u32 gain) { const struct st_lsm6dsx_fs_table_entry *fs_table; int i, err; fs_table = &sensor->ext_info.settings->fs_table; if (!fs_table->reg.addr) return -ENOTSUPP; for (i = 0; i < fs_table->fs_len; i++) { if (fs_table->fs_avl[i].gain == gain) break; } if (i == fs_table->fs_len) return -EINVAL; err = st_lsm6dsx_shub_write_with_mask(sensor, fs_table->reg.addr, fs_table->reg.mask, fs_table->fs_avl[i].val); if (err < 0) return err; sensor->gain = gain; return 0; } static int st_lsm6dsx_shub_write_raw(struct iio_dev *iio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev); int err; err = iio_device_claim_direct_mode(iio_dev); if (err) return err; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: { u16 data; val = val * 1000 + val2 / 1000; err = st_lsm6dsx_shub_get_odr_val(sensor, val, &data); if (!err) { struct st_lsm6dsx_hw *hw = sensor->hw; struct st_lsm6dsx_sensor *ref_sensor; u8 odr_val; int odr; ref_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_ACC]); odr = st_lsm6dsx_check_odr(ref_sensor, val, &odr_val); if (odr < 0) { err = odr; goto release; } sensor->ext_info.slv_odr = val; sensor->odr = odr; } break; } case IIO_CHAN_INFO_SCALE: err = st_lsm6dsx_shub_set_full_scale(sensor, val2); break; default: err = -EINVAL; break; } release: iio_device_release_direct_mode(iio_dev); return err; } static ssize_t st_lsm6dsx_shub_sampling_freq_avail(struct device *dev, struct device_attribute *attr, char *buf) { struct st_lsm6dsx_sensor *sensor = iio_priv(dev_get_drvdata(dev)); const struct st_lsm6dsx_ext_dev_settings *settings; int i, len = 0; settings = sensor->ext_info.settings; for (i = 0; i < settings->odr_table.odr_len; i++) { u32 val = settings->odr_table.odr_avl[i].milli_hz; len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%03d ", val / 1000, val % 1000); } buf[len - 1] = '\n'; return len; } static ssize_t st_lsm6dsx_shub_scale_avail(struct device *dev, struct device_attribute *attr, char *buf) { struct st_lsm6dsx_sensor *sensor = iio_priv(dev_get_drvdata(dev)); const struct st_lsm6dsx_ext_dev_settings *settings; int i, len = 0; settings = sensor->ext_info.settings; for (i = 0; i < settings->fs_table.fs_len; i++) len += scnprintf(buf + len, PAGE_SIZE - len, "0.%06u ", settings->fs_table.fs_avl[i].gain); buf[len - 1] = '\n'; return len; } static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(st_lsm6dsx_shub_sampling_freq_avail); static IIO_DEVICE_ATTR(in_scale_available, 0444, st_lsm6dsx_shub_scale_avail, NULL, 0); static struct attribute *st_lsm6dsx_ext_attributes[] = { &iio_dev_attr_sampling_frequency_available.dev_attr.attr, &iio_dev_attr_in_scale_available.dev_attr.attr, NULL, }; static const struct attribute_group st_lsm6dsx_ext_attribute_group = { .attrs = st_lsm6dsx_ext_attributes, }; static const struct iio_info st_lsm6dsx_ext_info = { .attrs = &st_lsm6dsx_ext_attribute_group, .read_raw = st_lsm6dsx_shub_read_raw, .write_raw = st_lsm6dsx_shub_write_raw, .hwfifo_set_watermark = st_lsm6dsx_set_watermark, }; static struct iio_dev * st_lsm6dsx_shub_alloc_iiodev(struct st_lsm6dsx_hw *hw, enum st_lsm6dsx_sensor_id id, const struct st_lsm6dsx_ext_dev_settings *info, u8 i2c_addr, const char *name) { enum st_lsm6dsx_sensor_id ref_id = ST_LSM6DSX_ID_ACC; struct iio_chan_spec *ext_channels; struct st_lsm6dsx_sensor *sensor; struct iio_dev *iio_dev; iio_dev = devm_iio_device_alloc(hw->dev, sizeof(*sensor)); if (!iio_dev) return NULL; iio_dev->modes = INDIO_DIRECT_MODE; iio_dev->info = &st_lsm6dsx_ext_info; sensor = iio_priv(iio_dev); sensor->id = id; sensor->hw = hw; sensor->odr = hw->settings->odr_table[ref_id].odr_avl[0].milli_hz; sensor->ext_info.slv_odr = info->odr_table.odr_avl[0].milli_hz; sensor->gain = info->fs_table.fs_avl[0].gain; sensor->ext_info.settings = info; sensor->ext_info.addr = i2c_addr; sensor->watermark = 1; switch (info->id) { case ST_LSM6DSX_ID_MAGN: { const struct iio_chan_spec magn_channels[] = { ST_LSM6DSX_CHANNEL(IIO_MAGN, info->out.addr, IIO_MOD_X, 0), ST_LSM6DSX_CHANNEL(IIO_MAGN, info->out.addr + 2, IIO_MOD_Y, 1), ST_LSM6DSX_CHANNEL(IIO_MAGN, info->out.addr + 4, IIO_MOD_Z, 2), IIO_CHAN_SOFT_TIMESTAMP(3), }; ext_channels = devm_kzalloc(hw->dev, sizeof(magn_channels), GFP_KERNEL); if (!ext_channels) return NULL; memcpy(ext_channels, magn_channels, sizeof(magn_channels)); iio_dev->available_scan_masks = st_lsm6dsx_available_scan_masks; iio_dev->channels = ext_channels; iio_dev->num_channels = ARRAY_SIZE(magn_channels); scnprintf(sensor->name, sizeof(sensor->name), "%s_magn", name); break; } default: return NULL; } iio_dev->name = sensor->name; return iio_dev; } static int st_lsm6dsx_shub_init_device(struct st_lsm6dsx_sensor *sensor) { const struct st_lsm6dsx_ext_dev_settings *settings; int err; settings = sensor->ext_info.settings; if (settings->bdu.addr) { err = st_lsm6dsx_shub_write_with_mask(sensor, settings->bdu.addr, settings->bdu.mask, 1); if (err < 0) return err; } if (settings->temp_comp.addr) { err = st_lsm6dsx_shub_write_with_mask(sensor, settings->temp_comp.addr, settings->temp_comp.mask, 1); if (err < 0) return err; } if (settings->off_canc.addr) { err = st_lsm6dsx_shub_write_with_mask(sensor, settings->off_canc.addr, settings->off_canc.mask, 1); if (err < 0) return err; } return 0; } static int st_lsm6dsx_shub_check_wai(struct st_lsm6dsx_hw *hw, u8 *i2c_addr, const struct st_lsm6dsx_ext_dev_settings *settings) { const struct st_lsm6dsx_shub_settings *hub_settings; u8 config[3], data, slv_addr, slv_config = 0; const struct st_lsm6dsx_reg *aux_sens; struct st_lsm6dsx_sensor *sensor; bool found = false; int i, err; sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_ACC]); hub_settings = &hw->settings->shub_settings; aux_sens = &hw->settings->shub_settings.aux_sens; slv_addr = ST_LSM6DSX_SLV_ADDR(0, hub_settings->slv0_addr); /* do not overwrite aux_sens */ if (slv_addr + 2 == aux_sens->addr) slv_config = ST_LSM6DSX_SHIFT_VAL(3, aux_sens->mask); for (i = 0; i < ARRAY_SIZE(settings->i2c_addr); i++) { if (!settings->i2c_addr[i]) continue; /* read wai slave register */ config[0] = (settings->i2c_addr[i] << 1) | 0x1; config[1] = settings->wai.addr; config[2] = 0x1 | slv_config; err = st_lsm6dsx_shub_write_reg(hw, slv_addr, config, sizeof(config)); if (err < 0) return err; err = st_lsm6dsx_shub_master_enable(sensor, true); if (err < 0) return err; st_lsm6dsx_shub_wait_complete(hw); err = st_lsm6dsx_shub_read_output(hw, &data, sizeof(data)); st_lsm6dsx_shub_master_enable(sensor, false); if (err < 0) return err; if (data != settings->wai.val) continue; *i2c_addr = settings->i2c_addr[i]; found = true; break; } /* reset SLV0 channel */ config[0] = hub_settings->pause; config[1] = 0; config[2] = slv_config; err = st_lsm6dsx_shub_write_reg(hw, slv_addr, config, sizeof(config)); if (err < 0) return err; return found ? 0 : -ENODEV; } int st_lsm6dsx_shub_probe(struct st_lsm6dsx_hw *hw, const char *name) { enum st_lsm6dsx_sensor_id id = ST_LSM6DSX_ID_EXT0; struct st_lsm6dsx_sensor *sensor; int err, i, num_ext_dev = 0; u8 i2c_addr = 0; for (i = 0; i < ARRAY_SIZE(st_lsm6dsx_ext_dev_table); i++) { err = st_lsm6dsx_shub_check_wai(hw, &i2c_addr, &st_lsm6dsx_ext_dev_table[i]); if (err == -ENODEV) continue; else if (err < 0) return err; hw->iio_devs[id] = st_lsm6dsx_shub_alloc_iiodev(hw, id, &st_lsm6dsx_ext_dev_table[i], i2c_addr, name); if (!hw->iio_devs[id]) return -ENOMEM; sensor = iio_priv(hw->iio_devs[id]); err = st_lsm6dsx_shub_init_device(sensor); if (err < 0) return err; if (++num_ext_dev >= hw->settings->shub_settings.num_ext_dev) break; id++; } return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1