Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Walleij | 3541 | 83.89% | 4 | 17.39% |
Michał Mirosław | 498 | 11.80% | 4 | 17.39% |
Nick Reitemeyer | 110 | 2.61% | 1 | 4.35% |
Jonathan Cameron | 40 | 0.95% | 3 | 13.04% |
Dinghao Liu | 15 | 0.36% | 1 | 4.35% |
Krzysztof Kozlowski | 3 | 0.07% | 1 | 4.35% |
Stephan Gerhold | 3 | 0.07% | 1 | 4.35% |
Gustavo A. R. Silva | 2 | 0.05% | 1 | 4.35% |
Dmitry Osipenko | 2 | 0.05% | 1 | 4.35% |
Ico Doornekamp | 2 | 0.05% | 1 | 4.35% |
Uwe Kleine-König | 2 | 0.05% | 2 | 8.70% |
Lee Jones | 1 | 0.02% | 1 | 4.35% |
Andy Shevchenko | 1 | 0.02% | 1 | 4.35% |
Thomas Gleixner | 1 | 0.02% | 1 | 4.35% |
Total | 4221 | 23 |
// SPDX-License-Identifier: GPL-2.0-only /* * Driver for the Asahi Kasei EMD Corporation AK8974 * and Aichi Steel AMI305 magnetometer chips. * Based on a patch from Samu Onkalo and the AK8975 IIO driver. * * Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies). * Copyright (c) 2010 NVIDIA Corporation. * Copyright (C) 2016 Linaro Ltd. * * Author: Samu Onkalo <samu.p.onkalo@nokia.com> * Author: Linus Walleij <linus.walleij@linaro.org> */ #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/kernel.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/irq.h> /* For irq_get_irq_data() */ #include <linux/completion.h> #include <linux/err.h> #include <linux/mutex.h> #include <linux/delay.h> #include <linux/bitops.h> #include <linux/random.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <linux/pm_runtime.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/buffer.h> #include <linux/iio/trigger.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/triggered_buffer.h> /* * 16-bit registers are little-endian. LSB is at the address defined below * and MSB is at the next higher address. */ /* These registers are common for AK8974 and AMI30x */ #define AK8974_SELFTEST 0x0C #define AK8974_SELFTEST_IDLE 0x55 #define AK8974_SELFTEST_OK 0xAA #define AK8974_INFO 0x0D #define AK8974_WHOAMI 0x0F #define AK8974_WHOAMI_VALUE_AMI306 0x46 #define AK8974_WHOAMI_VALUE_AMI305 0x47 #define AK8974_WHOAMI_VALUE_AK8974 0x48 #define AK8974_WHOAMI_VALUE_HSCDTD008A 0x49 #define AK8974_DATA_X 0x10 #define AK8974_DATA_Y 0x12 #define AK8974_DATA_Z 0x14 #define AK8974_INT_SRC 0x16 #define AK8974_STATUS 0x18 #define AK8974_INT_CLEAR 0x1A #define AK8974_CTRL1 0x1B #define AK8974_CTRL2 0x1C #define AK8974_CTRL3 0x1D #define AK8974_INT_CTRL 0x1E #define AK8974_INT_THRES 0x26 /* Absolute any axis value threshold */ #define AK8974_PRESET 0x30 /* AK8974-specific offsets */ #define AK8974_OFFSET_X 0x20 #define AK8974_OFFSET_Y 0x22 #define AK8974_OFFSET_Z 0x24 /* AMI305-specific offsets */ #define AMI305_OFFSET_X 0x6C #define AMI305_OFFSET_Y 0x72 #define AMI305_OFFSET_Z 0x78 /* Different temperature registers */ #define AK8974_TEMP 0x31 #define AMI305_TEMP 0x60 /* AMI306-specific control register */ #define AMI306_CTRL4 0x5C /* AMI306 factory calibration data */ /* fine axis sensitivity */ #define AMI306_FINEOUTPUT_X 0x90 #define AMI306_FINEOUTPUT_Y 0x92 #define AMI306_FINEOUTPUT_Z 0x94 /* axis sensitivity */ #define AMI306_SENS_X 0x96 #define AMI306_SENS_Y 0x98 #define AMI306_SENS_Z 0x9A /* axis cross-interference */ #define AMI306_GAIN_PARA_XZ 0x9C #define AMI306_GAIN_PARA_XY 0x9D #define AMI306_GAIN_PARA_YZ 0x9E #define AMI306_GAIN_PARA_YX 0x9F #define AMI306_GAIN_PARA_ZY 0xA0 #define AMI306_GAIN_PARA_ZX 0xA1 /* offset at ZERO magnetic field */ #define AMI306_OFFZERO_X 0xF8 #define AMI306_OFFZERO_Y 0xFA #define AMI306_OFFZERO_Z 0xFC #define AK8974_INT_X_HIGH BIT(7) /* Axis over +threshold */ #define AK8974_INT_Y_HIGH BIT(6) #define AK8974_INT_Z_HIGH BIT(5) #define AK8974_INT_X_LOW BIT(4) /* Axis below -threshold */ #define AK8974_INT_Y_LOW BIT(3) #define AK8974_INT_Z_LOW BIT(2) #define AK8974_INT_RANGE BIT(1) /* Range overflow (any axis) */ #define AK8974_STATUS_DRDY BIT(6) /* Data ready */ #define AK8974_STATUS_OVERRUN BIT(5) /* Data overrun */ #define AK8974_STATUS_INT BIT(4) /* Interrupt occurred */ #define AK8974_CTRL1_POWER BIT(7) /* 0 = standby; 1 = active */ #define AK8974_CTRL1_RATE BIT(4) /* 0 = 10 Hz; 1 = 20 Hz */ #define AK8974_CTRL1_FORCE_EN BIT(1) /* 0 = normal; 1 = force */ #define AK8974_CTRL1_MODE2 BIT(0) /* 0 */ #define AK8974_CTRL2_INT_EN BIT(4) /* 1 = enable interrupts */ #define AK8974_CTRL2_DRDY_EN BIT(3) /* 1 = enable data ready signal */ #define AK8974_CTRL2_DRDY_POL BIT(2) /* 1 = data ready active high */ #define AK8974_CTRL2_RESDEF (AK8974_CTRL2_DRDY_POL) #define AK8974_CTRL3_RESET BIT(7) /* Software reset */ #define AK8974_CTRL3_FORCE BIT(6) /* Start forced measurement */ #define AK8974_CTRL3_SELFTEST BIT(4) /* Set selftest register */ #define AK8974_CTRL3_RESDEF 0x00 #define AK8974_INT_CTRL_XEN BIT(7) /* Enable interrupt for this axis */ #define AK8974_INT_CTRL_YEN BIT(6) #define AK8974_INT_CTRL_ZEN BIT(5) #define AK8974_INT_CTRL_XYZEN (BIT(7)|BIT(6)|BIT(5)) #define AK8974_INT_CTRL_POL BIT(3) /* 0 = active low; 1 = active high */ #define AK8974_INT_CTRL_PULSE BIT(1) /* 0 = latched; 1 = pulse (50 usec) */ #define AK8974_INT_CTRL_RESDEF (AK8974_INT_CTRL_XYZEN | AK8974_INT_CTRL_POL) /* HSCDTD008A-specific control register */ #define HSCDTD008A_CTRL4 0x1E #define HSCDTD008A_CTRL4_MMD BIT(7) /* must be set to 1 */ #define HSCDTD008A_CTRL4_RANGE BIT(4) /* 0 = 14-bit output; 1 = 15-bit output */ #define HSCDTD008A_CTRL4_RESDEF (HSCDTD008A_CTRL4_MMD | HSCDTD008A_CTRL4_RANGE) /* The AMI305 has elaborate FW version and serial number registers */ #define AMI305_VER 0xE8 #define AMI305_SN 0xEA #define AK8974_MAX_RANGE 2048 #define AK8974_POWERON_DELAY 50 #define AK8974_ACTIVATE_DELAY 1 #define AK8974_SELFTEST_DELAY 1 /* * Set the autosuspend to two orders of magnitude larger than the poweron * delay to make sane reasonable power tradeoff savings (5 seconds in * this case). */ #define AK8974_AUTOSUSPEND_DELAY 5000 #define AK8974_MEASTIME 3 #define AK8974_PWR_ON 1 #define AK8974_PWR_OFF 0 /** * struct ak8974 - state container for the AK8974 driver * @i2c: parent I2C client * @orientation: mounting matrix, flipped axis etc * @map: regmap to access the AK8974 registers over I2C * @regs: the avdd and dvdd power regulators * @name: the name of the part * @variant: the whoami ID value (for selecting code paths) * @lock: locks the magnetometer for exclusive use during a measurement * @drdy_irq: uses the DRDY IRQ line * @drdy_complete: completion for DRDY * @drdy_active_low: the DRDY IRQ is active low * @scan: timestamps */ struct ak8974 { struct i2c_client *i2c; struct iio_mount_matrix orientation; struct regmap *map; struct regulator_bulk_data regs[2]; const char *name; u8 variant; struct mutex lock; bool drdy_irq; struct completion drdy_complete; bool drdy_active_low; /* Ensure timestamp is naturally aligned */ struct { __le16 channels[3]; s64 ts __aligned(8); } scan; }; static const char ak8974_reg_avdd[] = "avdd"; static const char ak8974_reg_dvdd[] = "dvdd"; static int ak8974_get_u16_val(struct ak8974 *ak8974, u8 reg, u16 *val) { int ret; __le16 bulk; ret = regmap_bulk_read(ak8974->map, reg, &bulk, 2); if (ret) return ret; *val = le16_to_cpu(bulk); return 0; } static int ak8974_set_u16_val(struct ak8974 *ak8974, u8 reg, u16 val) { __le16 bulk = cpu_to_le16(val); return regmap_bulk_write(ak8974->map, reg, &bulk, 2); } static int ak8974_set_power(struct ak8974 *ak8974, bool mode) { int ret; u8 val; val = mode ? AK8974_CTRL1_POWER : 0; val |= AK8974_CTRL1_FORCE_EN; ret = regmap_write(ak8974->map, AK8974_CTRL1, val); if (ret < 0) return ret; if (mode) msleep(AK8974_ACTIVATE_DELAY); return 0; } static int ak8974_reset(struct ak8974 *ak8974) { int ret; /* Power on to get register access. Sets CTRL1 reg to reset state */ ret = ak8974_set_power(ak8974, AK8974_PWR_ON); if (ret) return ret; ret = regmap_write(ak8974->map, AK8974_CTRL2, AK8974_CTRL2_RESDEF); if (ret) return ret; ret = regmap_write(ak8974->map, AK8974_CTRL3, AK8974_CTRL3_RESDEF); if (ret) return ret; if (ak8974->variant != AK8974_WHOAMI_VALUE_HSCDTD008A) { ret = regmap_write(ak8974->map, AK8974_INT_CTRL, AK8974_INT_CTRL_RESDEF); if (ret) return ret; } else { ret = regmap_write(ak8974->map, HSCDTD008A_CTRL4, HSCDTD008A_CTRL4_RESDEF); if (ret) return ret; } /* After reset, power off is default state */ return ak8974_set_power(ak8974, AK8974_PWR_OFF); } static int ak8974_configure(struct ak8974 *ak8974) { int ret; ret = regmap_write(ak8974->map, AK8974_CTRL2, AK8974_CTRL2_DRDY_EN | AK8974_CTRL2_INT_EN); if (ret) return ret; ret = regmap_write(ak8974->map, AK8974_CTRL3, 0); if (ret) return ret; if (ak8974->variant == AK8974_WHOAMI_VALUE_AMI306) { /* magic from datasheet: set high-speed measurement mode */ ret = ak8974_set_u16_val(ak8974, AMI306_CTRL4, 0xA07E); if (ret) return ret; } if (ak8974->variant == AK8974_WHOAMI_VALUE_HSCDTD008A) return 0; ret = regmap_write(ak8974->map, AK8974_INT_CTRL, AK8974_INT_CTRL_POL); if (ret) return ret; return regmap_write(ak8974->map, AK8974_PRESET, 0); } static int ak8974_trigmeas(struct ak8974 *ak8974) { unsigned int clear; u8 mask; u8 val; int ret; /* Clear any previous measurement overflow status */ ret = regmap_read(ak8974->map, AK8974_INT_CLEAR, &clear); if (ret) return ret; /* If we have a DRDY IRQ line, use it */ if (ak8974->drdy_irq) { mask = AK8974_CTRL2_INT_EN | AK8974_CTRL2_DRDY_EN | AK8974_CTRL2_DRDY_POL; val = AK8974_CTRL2_DRDY_EN; if (!ak8974->drdy_active_low) val |= AK8974_CTRL2_DRDY_POL; init_completion(&ak8974->drdy_complete); ret = regmap_update_bits(ak8974->map, AK8974_CTRL2, mask, val); if (ret) return ret; } /* Force a measurement */ return regmap_update_bits(ak8974->map, AK8974_CTRL3, AK8974_CTRL3_FORCE, AK8974_CTRL3_FORCE); } static int ak8974_await_drdy(struct ak8974 *ak8974) { int timeout = 2; unsigned int val; int ret; if (ak8974->drdy_irq) { ret = wait_for_completion_timeout(&ak8974->drdy_complete, 1 + msecs_to_jiffies(1000)); if (!ret) { dev_err(&ak8974->i2c->dev, "timeout waiting for DRDY IRQ\n"); return -ETIMEDOUT; } return 0; } /* Default delay-based poll loop */ do { msleep(AK8974_MEASTIME); ret = regmap_read(ak8974->map, AK8974_STATUS, &val); if (ret < 0) return ret; if (val & AK8974_STATUS_DRDY) return 0; } while (--timeout); dev_err(&ak8974->i2c->dev, "timeout waiting for DRDY\n"); return -ETIMEDOUT; } static int ak8974_getresult(struct ak8974 *ak8974, __le16 *result) { unsigned int src; int ret; ret = ak8974_await_drdy(ak8974); if (ret) return ret; ret = regmap_read(ak8974->map, AK8974_INT_SRC, &src); if (ret < 0) return ret; /* Out of range overflow! Strong magnet close? */ if (src & AK8974_INT_RANGE) { dev_err(&ak8974->i2c->dev, "range overflow in sensor\n"); return -ERANGE; } ret = regmap_bulk_read(ak8974->map, AK8974_DATA_X, result, 6); if (ret) return ret; return ret; } static irqreturn_t ak8974_drdy_irq(int irq, void *d) { struct ak8974 *ak8974 = d; if (!ak8974->drdy_irq) return IRQ_NONE; /* TODO: timestamp here to get good measurement stamps */ return IRQ_WAKE_THREAD; } static irqreturn_t ak8974_drdy_irq_thread(int irq, void *d) { struct ak8974 *ak8974 = d; unsigned int val; int ret; /* Check if this was a DRDY from us */ ret = regmap_read(ak8974->map, AK8974_STATUS, &val); if (ret < 0) { dev_err(&ak8974->i2c->dev, "error reading DRDY status\n"); return IRQ_HANDLED; } if (val & AK8974_STATUS_DRDY) { /* Yes this was our IRQ */ complete(&ak8974->drdy_complete); return IRQ_HANDLED; } /* We may be on a shared IRQ, let the next client check */ return IRQ_NONE; } static int ak8974_selftest(struct ak8974 *ak8974) { struct device *dev = &ak8974->i2c->dev; unsigned int val; int ret; ret = regmap_read(ak8974->map, AK8974_SELFTEST, &val); if (ret) return ret; if (val != AK8974_SELFTEST_IDLE) { dev_err(dev, "selftest not idle before test\n"); return -EIO; } /* Trigger self-test */ ret = regmap_update_bits(ak8974->map, AK8974_CTRL3, AK8974_CTRL3_SELFTEST, AK8974_CTRL3_SELFTEST); if (ret) { dev_err(dev, "could not write CTRL3\n"); return ret; } msleep(AK8974_SELFTEST_DELAY); ret = regmap_read(ak8974->map, AK8974_SELFTEST, &val); if (ret) return ret; if (val != AK8974_SELFTEST_OK) { dev_err(dev, "selftest result NOT OK (%02x)\n", val); return -EIO; } ret = regmap_read(ak8974->map, AK8974_SELFTEST, &val); if (ret) return ret; if (val != AK8974_SELFTEST_IDLE) { dev_err(dev, "selftest not idle after test (%02x)\n", val); return -EIO; } dev_dbg(dev, "passed self-test\n"); return 0; } static void ak8974_read_calib_data(struct ak8974 *ak8974, unsigned int reg, __le16 *tab, size_t tab_size) { int ret = regmap_bulk_read(ak8974->map, reg, tab, tab_size); if (ret) { memset(tab, 0xFF, tab_size); dev_warn(&ak8974->i2c->dev, "can't read calibration data (regs %u..%zu): %d\n", reg, reg + tab_size - 1, ret); } else { add_device_randomness(tab, tab_size); } } static int ak8974_detect(struct ak8974 *ak8974) { unsigned int whoami; const char *name; int ret; unsigned int fw; u16 sn; ret = regmap_read(ak8974->map, AK8974_WHOAMI, &whoami); if (ret) return ret; name = "ami305"; switch (whoami) { case AK8974_WHOAMI_VALUE_AMI306: name = "ami306"; fallthrough; case AK8974_WHOAMI_VALUE_AMI305: ret = regmap_read(ak8974->map, AMI305_VER, &fw); if (ret) return ret; fw &= 0x7f; /* only bits 0 thru 6 valid */ ret = ak8974_get_u16_val(ak8974, AMI305_SN, &sn); if (ret) return ret; add_device_randomness(&sn, sizeof(sn)); dev_info(&ak8974->i2c->dev, "detected %s, FW ver %02x, S/N: %04x\n", name, fw, sn); break; case AK8974_WHOAMI_VALUE_AK8974: name = "ak8974"; dev_info(&ak8974->i2c->dev, "detected AK8974\n"); break; case AK8974_WHOAMI_VALUE_HSCDTD008A: name = "hscdtd008a"; dev_info(&ak8974->i2c->dev, "detected hscdtd008a\n"); break; default: dev_err(&ak8974->i2c->dev, "unsupported device (%02x) ", whoami); return -ENODEV; } ak8974->name = name; ak8974->variant = whoami; if (whoami == AK8974_WHOAMI_VALUE_AMI306) { __le16 fab_data1[9], fab_data2[3]; int i; ak8974_read_calib_data(ak8974, AMI306_FINEOUTPUT_X, fab_data1, sizeof(fab_data1)); ak8974_read_calib_data(ak8974, AMI306_OFFZERO_X, fab_data2, sizeof(fab_data2)); for (i = 0; i < 3; ++i) { static const char axis[3] = "XYZ"; static const char pgaxis[6] = "ZYZXYX"; unsigned offz = le16_to_cpu(fab_data2[i]) & 0x7F; unsigned fine = le16_to_cpu(fab_data1[i]); unsigned sens = le16_to_cpu(fab_data1[i + 3]); unsigned pgain1 = le16_to_cpu(fab_data1[i + 6]); unsigned pgain2 = pgain1 >> 8; pgain1 &= 0xFF; dev_info(&ak8974->i2c->dev, "factory calibration for axis %c: offz=%u sens=%u fine=%u pga%c=%u pga%c=%u\n", axis[i], offz, sens, fine, pgaxis[i * 2], pgain1, pgaxis[i * 2 + 1], pgain2); } } return 0; } static int ak8974_measure_channel(struct ak8974 *ak8974, unsigned long address, int *val) { __le16 hw_values[3]; int ret; pm_runtime_get_sync(&ak8974->i2c->dev); mutex_lock(&ak8974->lock); /* * We read all axes and discard all but one, for optimized * reading, use the triggered buffer. */ ret = ak8974_trigmeas(ak8974); if (ret) goto out_unlock; ret = ak8974_getresult(ak8974, hw_values); if (ret) goto out_unlock; /* * This explicit cast to (s16) is necessary as the measurement * is done in 2's complement with positive and negative values. * The follwing assignment to *val will then convert the signed * s16 value to a signed int value. */ *val = (s16)le16_to_cpu(hw_values[address]); out_unlock: mutex_unlock(&ak8974->lock); pm_runtime_mark_last_busy(&ak8974->i2c->dev); pm_runtime_put_autosuspend(&ak8974->i2c->dev); return ret; } static int ak8974_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct ak8974 *ak8974 = iio_priv(indio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_RAW: if (chan->address > 2) { dev_err(&ak8974->i2c->dev, "faulty channel address\n"); return -EIO; } ret = ak8974_measure_channel(ak8974, chan->address, val); if (ret) return ret; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: switch (ak8974->variant) { case AK8974_WHOAMI_VALUE_AMI306: case AK8974_WHOAMI_VALUE_AMI305: /* * The datasheet for AMI305 and AMI306, page 6 * specifies the range of the sensor to be * +/- 12 Gauss. */ *val = 12; /* * 12 bits are used, +/- 2^11 * [ -2048 .. 2047 ] (manual page 20) * [ 0xf800 .. 0x07ff ] */ *val2 = 11; return IIO_VAL_FRACTIONAL_LOG2; case AK8974_WHOAMI_VALUE_HSCDTD008A: /* * The datasheet for HSCDTF008A, page 3 specifies the * range of the sensor as +/- 2.4 mT per axis, which * corresponds to +/- 2400 uT = +/- 24 Gauss. */ *val = 24; /* * 15 bits are used (set up in CTRL4), +/- 2^14 * [ -16384 .. 16383 ] (manual page 24) * [ 0xc000 .. 0x3fff ] */ *val2 = 14; return IIO_VAL_FRACTIONAL_LOG2; default: /* GUESSING +/- 12 Gauss */ *val = 12; /* GUESSING 12 bits ADC +/- 2^11 */ *val2 = 11; return IIO_VAL_FRACTIONAL_LOG2; } break; default: /* Unknown request */ break; } return -EINVAL; } static void ak8974_fill_buffer(struct iio_dev *indio_dev) { struct ak8974 *ak8974 = iio_priv(indio_dev); int ret; pm_runtime_get_sync(&ak8974->i2c->dev); mutex_lock(&ak8974->lock); ret = ak8974_trigmeas(ak8974); if (ret) { dev_err(&ak8974->i2c->dev, "error triggering measure\n"); goto out_unlock; } ret = ak8974_getresult(ak8974, ak8974->scan.channels); if (ret) { dev_err(&ak8974->i2c->dev, "error getting measures\n"); goto out_unlock; } iio_push_to_buffers_with_timestamp(indio_dev, &ak8974->scan, iio_get_time_ns(indio_dev)); out_unlock: mutex_unlock(&ak8974->lock); pm_runtime_mark_last_busy(&ak8974->i2c->dev); pm_runtime_put_autosuspend(&ak8974->i2c->dev); } static irqreturn_t ak8974_handle_trigger(int irq, void *p) { const struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; ak8974_fill_buffer(indio_dev); iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static const struct iio_mount_matrix * ak8974_get_mount_matrix(const struct iio_dev *indio_dev, const struct iio_chan_spec *chan) { struct ak8974 *ak8974 = iio_priv(indio_dev); return &ak8974->orientation; } static const struct iio_chan_spec_ext_info ak8974_ext_info[] = { IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, ak8974_get_mount_matrix), { }, }; #define AK8974_AXIS_CHANNEL(axis, index, bits) \ { \ .type = IIO_MAGN, \ .modified = 1, \ .channel2 = IIO_MOD_##axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_SCALE), \ .ext_info = ak8974_ext_info, \ .address = index, \ .scan_index = index, \ .scan_type = { \ .sign = 's', \ .realbits = bits, \ .storagebits = 16, \ .endianness = IIO_LE \ }, \ } /* * We have no datasheet for the AK8974 but we guess that its * ADC is 12 bits. The AMI305 and AMI306 certainly has 12bit * ADC. */ static const struct iio_chan_spec ak8974_12_bits_channels[] = { AK8974_AXIS_CHANNEL(X, 0, 12), AK8974_AXIS_CHANNEL(Y, 1, 12), AK8974_AXIS_CHANNEL(Z, 2, 12), IIO_CHAN_SOFT_TIMESTAMP(3), }; /* * The HSCDTD008A has 15 bits resolution the way we set it up * in CTRL4. */ static const struct iio_chan_spec ak8974_15_bits_channels[] = { AK8974_AXIS_CHANNEL(X, 0, 15), AK8974_AXIS_CHANNEL(Y, 1, 15), AK8974_AXIS_CHANNEL(Z, 2, 15), IIO_CHAN_SOFT_TIMESTAMP(3), }; static const unsigned long ak8974_scan_masks[] = { 0x7, 0 }; static const struct iio_info ak8974_info = { .read_raw = &ak8974_read_raw, }; static bool ak8974_writeable_reg(struct device *dev, unsigned int reg) { struct i2c_client *i2c = to_i2c_client(dev); struct iio_dev *indio_dev = i2c_get_clientdata(i2c); struct ak8974 *ak8974 = iio_priv(indio_dev); switch (reg) { case AK8974_CTRL1: case AK8974_CTRL2: case AK8974_CTRL3: case AK8974_INT_CTRL: case AK8974_INT_THRES: case AK8974_INT_THRES + 1: return true; case AK8974_PRESET: case AK8974_PRESET + 1: return ak8974->variant != AK8974_WHOAMI_VALUE_HSCDTD008A; case AK8974_OFFSET_X: case AK8974_OFFSET_X + 1: case AK8974_OFFSET_Y: case AK8974_OFFSET_Y + 1: case AK8974_OFFSET_Z: case AK8974_OFFSET_Z + 1: return ak8974->variant == AK8974_WHOAMI_VALUE_AK8974 || ak8974->variant == AK8974_WHOAMI_VALUE_HSCDTD008A; case AMI305_OFFSET_X: case AMI305_OFFSET_X + 1: case AMI305_OFFSET_Y: case AMI305_OFFSET_Y + 1: case AMI305_OFFSET_Z: case AMI305_OFFSET_Z + 1: return ak8974->variant == AK8974_WHOAMI_VALUE_AMI305 || ak8974->variant == AK8974_WHOAMI_VALUE_AMI306; case AMI306_CTRL4: case AMI306_CTRL4 + 1: return ak8974->variant == AK8974_WHOAMI_VALUE_AMI306; default: return false; } } static bool ak8974_precious_reg(struct device *dev, unsigned int reg) { return reg == AK8974_INT_CLEAR; } static const struct regmap_config ak8974_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = 0xff, .writeable_reg = ak8974_writeable_reg, .precious_reg = ak8974_precious_reg, }; static int ak8974_probe(struct i2c_client *i2c) { struct iio_dev *indio_dev; struct ak8974 *ak8974; unsigned long irq_trig; int irq = i2c->irq; int ret; /* Register with IIO */ indio_dev = devm_iio_device_alloc(&i2c->dev, sizeof(*ak8974)); if (indio_dev == NULL) return -ENOMEM; ak8974 = iio_priv(indio_dev); i2c_set_clientdata(i2c, indio_dev); ak8974->i2c = i2c; mutex_init(&ak8974->lock); ret = iio_read_mount_matrix(&i2c->dev, &ak8974->orientation); if (ret) return ret; ak8974->regs[0].supply = ak8974_reg_avdd; ak8974->regs[1].supply = ak8974_reg_dvdd; ret = devm_regulator_bulk_get(&i2c->dev, ARRAY_SIZE(ak8974->regs), ak8974->regs); if (ret < 0) return dev_err_probe(&i2c->dev, ret, "cannot get regulators\n"); ret = regulator_bulk_enable(ARRAY_SIZE(ak8974->regs), ak8974->regs); if (ret < 0) { dev_err(&i2c->dev, "cannot enable regulators\n"); return ret; } /* Take runtime PM online */ pm_runtime_get_noresume(&i2c->dev); pm_runtime_set_active(&i2c->dev); pm_runtime_enable(&i2c->dev); ak8974->map = devm_regmap_init_i2c(i2c, &ak8974_regmap_config); if (IS_ERR(ak8974->map)) { dev_err(&i2c->dev, "failed to allocate register map\n"); pm_runtime_put_noidle(&i2c->dev); pm_runtime_disable(&i2c->dev); return PTR_ERR(ak8974->map); } ret = ak8974_set_power(ak8974, AK8974_PWR_ON); if (ret) { dev_err(&i2c->dev, "could not power on\n"); goto disable_pm; } ret = ak8974_detect(ak8974); if (ret) { dev_err(&i2c->dev, "neither AK8974 nor AMI30x found\n"); goto disable_pm; } ret = ak8974_selftest(ak8974); if (ret) dev_err(&i2c->dev, "selftest failed (continuing anyway)\n"); ret = ak8974_reset(ak8974); if (ret) { dev_err(&i2c->dev, "AK8974 reset failed\n"); goto disable_pm; } switch (ak8974->variant) { case AK8974_WHOAMI_VALUE_AMI306: case AK8974_WHOAMI_VALUE_AMI305: indio_dev->channels = ak8974_12_bits_channels; indio_dev->num_channels = ARRAY_SIZE(ak8974_12_bits_channels); break; case AK8974_WHOAMI_VALUE_HSCDTD008A: indio_dev->channels = ak8974_15_bits_channels; indio_dev->num_channels = ARRAY_SIZE(ak8974_15_bits_channels); break; default: indio_dev->channels = ak8974_12_bits_channels; indio_dev->num_channels = ARRAY_SIZE(ak8974_12_bits_channels); break; } indio_dev->info = &ak8974_info; indio_dev->available_scan_masks = ak8974_scan_masks; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->name = ak8974->name; ret = iio_triggered_buffer_setup(indio_dev, NULL, ak8974_handle_trigger, NULL); if (ret) { dev_err(&i2c->dev, "triggered buffer setup failed\n"); goto disable_pm; } /* If we have a valid DRDY IRQ, make use of it */ if (irq > 0) { irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq)); if (irq_trig == IRQF_TRIGGER_RISING) { dev_info(&i2c->dev, "enable rising edge DRDY IRQ\n"); } else if (irq_trig == IRQF_TRIGGER_FALLING) { ak8974->drdy_active_low = true; dev_info(&i2c->dev, "enable falling edge DRDY IRQ\n"); } else { irq_trig = IRQF_TRIGGER_RISING; } irq_trig |= IRQF_ONESHOT; irq_trig |= IRQF_SHARED; ret = devm_request_threaded_irq(&i2c->dev, irq, ak8974_drdy_irq, ak8974_drdy_irq_thread, irq_trig, ak8974->name, ak8974); if (ret) { dev_err(&i2c->dev, "unable to request DRDY IRQ " "- proceeding without IRQ\n"); goto no_irq; } ak8974->drdy_irq = true; } no_irq: ret = iio_device_register(indio_dev); if (ret) { dev_err(&i2c->dev, "device register failed\n"); goto cleanup_buffer; } pm_runtime_set_autosuspend_delay(&i2c->dev, AK8974_AUTOSUSPEND_DELAY); pm_runtime_use_autosuspend(&i2c->dev); pm_runtime_put(&i2c->dev); return 0; cleanup_buffer: iio_triggered_buffer_cleanup(indio_dev); disable_pm: pm_runtime_put_noidle(&i2c->dev); pm_runtime_disable(&i2c->dev); ak8974_set_power(ak8974, AK8974_PWR_OFF); regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs); return ret; } static void ak8974_remove(struct i2c_client *i2c) { struct iio_dev *indio_dev = i2c_get_clientdata(i2c); struct ak8974 *ak8974 = iio_priv(indio_dev); iio_device_unregister(indio_dev); iio_triggered_buffer_cleanup(indio_dev); pm_runtime_get_sync(&i2c->dev); pm_runtime_put_noidle(&i2c->dev); pm_runtime_disable(&i2c->dev); ak8974_set_power(ak8974, AK8974_PWR_OFF); regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs); } static int ak8974_runtime_suspend(struct device *dev) { struct ak8974 *ak8974 = iio_priv(i2c_get_clientdata(to_i2c_client(dev))); ak8974_set_power(ak8974, AK8974_PWR_OFF); regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs); return 0; } static int ak8974_runtime_resume(struct device *dev) { struct ak8974 *ak8974 = iio_priv(i2c_get_clientdata(to_i2c_client(dev))); int ret; ret = regulator_bulk_enable(ARRAY_SIZE(ak8974->regs), ak8974->regs); if (ret) return ret; msleep(AK8974_POWERON_DELAY); ret = ak8974_set_power(ak8974, AK8974_PWR_ON); if (ret) goto out_regulator_disable; ret = ak8974_configure(ak8974); if (ret) goto out_disable_power; return 0; out_disable_power: ak8974_set_power(ak8974, AK8974_PWR_OFF); out_regulator_disable: regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs); return ret; } static DEFINE_RUNTIME_DEV_PM_OPS(ak8974_dev_pm_ops, ak8974_runtime_suspend, ak8974_runtime_resume, NULL); static const struct i2c_device_id ak8974_id[] = { {"ami305", 0 }, {"ami306", 0 }, {"ak8974", 0 }, {"hscdtd008a", 0 }, {} }; MODULE_DEVICE_TABLE(i2c, ak8974_id); static const struct of_device_id ak8974_of_match[] = { { .compatible = "asahi-kasei,ak8974", }, { .compatible = "alps,hscdtd008a", }, {} }; MODULE_DEVICE_TABLE(of, ak8974_of_match); static struct i2c_driver ak8974_driver = { .driver = { .name = "ak8974", .pm = pm_ptr(&ak8974_dev_pm_ops), .of_match_table = ak8974_of_match, }, .probe_new = ak8974_probe, .remove = ak8974_remove, .id_table = ak8974_id, }; module_i2c_driver(ak8974_driver); MODULE_DESCRIPTION("AK8974 and AMI30x 3-axis magnetometer driver"); MODULE_AUTHOR("Samu Onkalo"); MODULE_AUTHOR("Linus Walleij"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1