Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Marek Vašut | 1273 | 96.08% | 1 | 16.67% |
Javier Martinez Canillas | 23 | 1.74% | 1 | 16.67% |
Théo Borém Fabris | 9 | 0.68% | 1 | 16.67% |
Wolfram Sang | 9 | 0.68% | 1 | 16.67% |
Uwe Kleine-König | 9 | 0.68% | 1 | 16.67% |
Thomas Gleixner | 2 | 0.15% | 1 | 16.67% |
Total | 1325 | 6 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2016 Marek Vasut <marex@denx.de> * * Driver for Hope RF HP03 digital temperature and pressure sensor. */ #define pr_fmt(fmt) "hp03: " fmt #include <linux/module.h> #include <linux/delay.h> #include <linux/gpio/consumer.h> #include <linux/i2c.h> #include <linux/regmap.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> /* * The HP03 sensor occupies two fixed I2C addresses: * 0x50 ... read-only EEPROM with calibration data * 0x77 ... read-write ADC for pressure and temperature */ #define HP03_EEPROM_ADDR 0x50 #define HP03_ADC_ADDR 0x77 #define HP03_EEPROM_CX_OFFSET 0x10 #define HP03_EEPROM_AB_OFFSET 0x1e #define HP03_EEPROM_CD_OFFSET 0x20 #define HP03_ADC_WRITE_REG 0xff #define HP03_ADC_READ_REG 0xfd #define HP03_ADC_READ_PRESSURE 0xf0 /* D1 in datasheet */ #define HP03_ADC_READ_TEMP 0xe8 /* D2 in datasheet */ struct hp03_priv { struct i2c_client *client; struct mutex lock; struct gpio_desc *xclr_gpio; struct i2c_client *eeprom_client; struct regmap *eeprom_regmap; s32 pressure; /* kPa */ s32 temp; /* Deg. C */ }; static const struct iio_chan_spec hp03_channels[] = { { .type = IIO_PRESSURE, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), }, { .type = IIO_TEMP, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), }, }; static bool hp03_is_writeable_reg(struct device *dev, unsigned int reg) { return false; } static bool hp03_is_volatile_reg(struct device *dev, unsigned int reg) { return false; } static const struct regmap_config hp03_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = HP03_EEPROM_CD_OFFSET + 1, .cache_type = REGCACHE_RBTREE, .writeable_reg = hp03_is_writeable_reg, .volatile_reg = hp03_is_volatile_reg, }; static int hp03_get_temp_pressure(struct hp03_priv *priv, const u8 reg) { int ret; ret = i2c_smbus_write_byte_data(priv->client, HP03_ADC_WRITE_REG, reg); if (ret < 0) return ret; msleep(50); /* Wait for conversion to finish */ return i2c_smbus_read_word_data(priv->client, HP03_ADC_READ_REG); } static int hp03_update_temp_pressure(struct hp03_priv *priv) { struct device *dev = &priv->client->dev; u8 coefs[18]; u16 cx_val[7]; int ab_val, d1_val, d2_val, diff_val, dut, off, sens, x; int i, ret; /* Sample coefficients from EEPROM */ ret = regmap_bulk_read(priv->eeprom_regmap, HP03_EEPROM_CX_OFFSET, coefs, sizeof(coefs)); if (ret < 0) { dev_err(dev, "Failed to read EEPROM (reg=%02x)\n", HP03_EEPROM_CX_OFFSET); return ret; } /* Sample Temperature and Pressure */ gpiod_set_value_cansleep(priv->xclr_gpio, 1); ret = hp03_get_temp_pressure(priv, HP03_ADC_READ_PRESSURE); if (ret < 0) { dev_err(dev, "Failed to read pressure\n"); goto err_adc; } d1_val = ret; ret = hp03_get_temp_pressure(priv, HP03_ADC_READ_TEMP); if (ret < 0) { dev_err(dev, "Failed to read temperature\n"); goto err_adc; } d2_val = ret; gpiod_set_value_cansleep(priv->xclr_gpio, 0); /* The Cx coefficients and Temp/Pressure values are MSB first. */ for (i = 0; i < 7; i++) cx_val[i] = (coefs[2 * i] << 8) | (coefs[(2 * i) + 1] << 0); d1_val = ((d1_val >> 8) & 0xff) | ((d1_val & 0xff) << 8); d2_val = ((d2_val >> 8) & 0xff) | ((d2_val & 0xff) << 8); /* Coefficient voodoo from the HP03 datasheet. */ if (d2_val >= cx_val[4]) ab_val = coefs[14]; /* A-value */ else ab_val = coefs[15]; /* B-value */ diff_val = d2_val - cx_val[4]; dut = (ab_val * (diff_val >> 7) * (diff_val >> 7)) >> coefs[16]; dut = diff_val - dut; off = (cx_val[1] + (((cx_val[3] - 1024) * dut) >> 14)) * 4; sens = cx_val[0] + ((cx_val[2] * dut) >> 10); x = ((sens * (d1_val - 7168)) >> 14) - off; priv->pressure = ((x * 100) >> 5) + (cx_val[6] * 10); priv->temp = 250 + ((dut * cx_val[5]) >> 16) - (dut >> coefs[17]); return 0; err_adc: gpiod_set_value_cansleep(priv->xclr_gpio, 0); return ret; } static int hp03_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct hp03_priv *priv = iio_priv(indio_dev); int ret; mutex_lock(&priv->lock); ret = hp03_update_temp_pressure(priv); mutex_unlock(&priv->lock); if (ret) return ret; switch (mask) { case IIO_CHAN_INFO_RAW: switch (chan->type) { case IIO_PRESSURE: *val = priv->pressure; return IIO_VAL_INT; case IIO_TEMP: *val = priv->temp; return IIO_VAL_INT; default: return -EINVAL; } break; case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_PRESSURE: *val = 0; *val2 = 1000; return IIO_VAL_INT_PLUS_MICRO; case IIO_TEMP: *val = 10; return IIO_VAL_INT; default: return -EINVAL; } break; default: return -EINVAL; } return -EINVAL; } static const struct iio_info hp03_info = { .read_raw = &hp03_read_raw, }; static int hp03_probe(struct i2c_client *client) { const struct i2c_device_id *id = i2c_client_get_device_id(client); struct device *dev = &client->dev; struct iio_dev *indio_dev; struct hp03_priv *priv; int ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*priv)); if (!indio_dev) return -ENOMEM; priv = iio_priv(indio_dev); priv->client = client; mutex_init(&priv->lock); indio_dev->name = id->name; indio_dev->channels = hp03_channels; indio_dev->num_channels = ARRAY_SIZE(hp03_channels); indio_dev->info = &hp03_info; indio_dev->modes = INDIO_DIRECT_MODE; priv->xclr_gpio = devm_gpiod_get_index(dev, "xclr", 0, GPIOD_OUT_HIGH); if (IS_ERR(priv->xclr_gpio)) { dev_err(dev, "Failed to claim XCLR GPIO\n"); ret = PTR_ERR(priv->xclr_gpio); return ret; } /* * Allocate another device for the on-sensor EEPROM, * which has it's dedicated I2C address and contains * the calibration constants for the sensor. */ priv->eeprom_client = devm_i2c_new_dummy_device(dev, client->adapter, HP03_EEPROM_ADDR); if (IS_ERR(priv->eeprom_client)) { dev_err(dev, "New EEPROM I2C device failed\n"); return PTR_ERR(priv->eeprom_client); } priv->eeprom_regmap = devm_regmap_init_i2c(priv->eeprom_client, &hp03_regmap_config); if (IS_ERR(priv->eeprom_regmap)) { dev_err(dev, "Failed to allocate EEPROM regmap\n"); return PTR_ERR(priv->eeprom_regmap); } ret = devm_iio_device_register(dev, indio_dev); if (ret) { dev_err(dev, "Failed to register IIO device\n"); return ret; } return 0; } static const struct i2c_device_id hp03_id[] = { { "hp03", 0 }, { }, }; MODULE_DEVICE_TABLE(i2c, hp03_id); static const struct of_device_id hp03_of_match[] = { { .compatible = "hoperf,hp03" }, { }, }; MODULE_DEVICE_TABLE(of, hp03_of_match); static struct i2c_driver hp03_driver = { .driver = { .name = "hp03", .of_match_table = hp03_of_match, }, .probe_new = hp03_probe, .id_table = hp03_id, }; module_i2c_driver(hp03_driver); MODULE_AUTHOR("Marek Vasut <marex@denx.de>"); MODULE_DESCRIPTION("Driver for Hope RF HP03 pressure and temperature sensor"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1