Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Christoph Hellwig | 2873 | 81.09% | 3 | 8.57% |
Israel Rukshin | 255 | 7.20% | 6 | 17.14% |
Logan Gunthorpe | 106 | 2.99% | 3 | 8.57% |
Ralph Campbell | 66 | 1.86% | 1 | 2.86% |
Chuck Lever | 60 | 1.69% | 1 | 2.86% |
Bart Van Assche | 53 | 1.50% | 6 | 17.14% |
Yamin Friedman | 39 | 1.10% | 1 | 2.86% |
Roland Dreier | 20 | 0.56% | 2 | 5.71% |
Max Gurtovoy | 18 | 0.51% | 3 | 8.57% |
Steve Wise | 14 | 0.40% | 1 | 2.86% |
Mark Bloch | 11 | 0.31% | 1 | 2.86% |
Matan Barak | 10 | 0.28% | 1 | 2.86% |
Dan Carpenter | 4 | 0.11% | 1 | 2.86% |
Sagi Grimberg | 4 | 0.11% | 1 | 2.86% |
Wenpeng Liang | 4 | 0.11% | 1 | 2.86% |
Dan J Williams | 3 | 0.08% | 1 | 2.86% |
Thomas Gleixner | 2 | 0.06% | 1 | 2.86% |
Zheng Yongjun | 1 | 0.03% | 1 | 2.86% |
Total | 3543 | 35 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2016 HGST, a Western Digital Company. */ #include <linux/memremap.h> #include <linux/moduleparam.h> #include <linux/slab.h> #include <linux/pci-p2pdma.h> #include <rdma/mr_pool.h> #include <rdma/rw.h> enum { RDMA_RW_SINGLE_WR, RDMA_RW_MULTI_WR, RDMA_RW_MR, RDMA_RW_SIG_MR, }; static bool rdma_rw_force_mr; module_param_named(force_mr, rdma_rw_force_mr, bool, 0); MODULE_PARM_DESC(force_mr, "Force usage of MRs for RDMA READ/WRITE operations"); /* * Report whether memory registration should be used. Memory registration must * be used for iWarp devices because of iWARP-specific limitations. Memory * registration is also enabled if registering memory might yield better * performance than using multiple SGE entries, see rdma_rw_io_needs_mr() */ static inline bool rdma_rw_can_use_mr(struct ib_device *dev, u32 port_num) { if (rdma_protocol_iwarp(dev, port_num)) return true; if (dev->attrs.max_sgl_rd) return true; if (unlikely(rdma_rw_force_mr)) return true; return false; } /* * Check if the device will use memory registration for this RW operation. * For RDMA READs we must use MRs on iWarp and can optionally use them as an * optimization otherwise. Additionally we have a debug option to force usage * of MRs to help testing this code path. */ static inline bool rdma_rw_io_needs_mr(struct ib_device *dev, u32 port_num, enum dma_data_direction dir, int dma_nents) { if (dir == DMA_FROM_DEVICE) { if (rdma_protocol_iwarp(dev, port_num)) return true; if (dev->attrs.max_sgl_rd && dma_nents > dev->attrs.max_sgl_rd) return true; } if (unlikely(rdma_rw_force_mr)) return true; return false; } static inline u32 rdma_rw_fr_page_list_len(struct ib_device *dev, bool pi_support) { u32 max_pages; if (pi_support) max_pages = dev->attrs.max_pi_fast_reg_page_list_len; else max_pages = dev->attrs.max_fast_reg_page_list_len; /* arbitrary limit to avoid allocating gigantic resources */ return min_t(u32, max_pages, 256); } static inline int rdma_rw_inv_key(struct rdma_rw_reg_ctx *reg) { int count = 0; if (reg->mr->need_inval) { reg->inv_wr.opcode = IB_WR_LOCAL_INV; reg->inv_wr.ex.invalidate_rkey = reg->mr->lkey; reg->inv_wr.next = ®->reg_wr.wr; count++; } else { reg->inv_wr.next = NULL; } return count; } /* Caller must have zero-initialized *reg. */ static int rdma_rw_init_one_mr(struct ib_qp *qp, u32 port_num, struct rdma_rw_reg_ctx *reg, struct scatterlist *sg, u32 sg_cnt, u32 offset) { u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device, qp->integrity_en); u32 nents = min(sg_cnt, pages_per_mr); int count = 0, ret; reg->mr = ib_mr_pool_get(qp, &qp->rdma_mrs); if (!reg->mr) return -EAGAIN; count += rdma_rw_inv_key(reg); ret = ib_map_mr_sg(reg->mr, sg, nents, &offset, PAGE_SIZE); if (ret < 0 || ret < nents) { ib_mr_pool_put(qp, &qp->rdma_mrs, reg->mr); return -EINVAL; } reg->reg_wr.wr.opcode = IB_WR_REG_MR; reg->reg_wr.mr = reg->mr; reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE; if (rdma_protocol_iwarp(qp->device, port_num)) reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE; count++; reg->sge.addr = reg->mr->iova; reg->sge.length = reg->mr->length; return count; } static int rdma_rw_init_mr_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u32 port_num, struct scatterlist *sg, u32 sg_cnt, u32 offset, u64 remote_addr, u32 rkey, enum dma_data_direction dir) { struct rdma_rw_reg_ctx *prev = NULL; u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device, qp->integrity_en); int i, j, ret = 0, count = 0; ctx->nr_ops = DIV_ROUND_UP(sg_cnt, pages_per_mr); ctx->reg = kcalloc(ctx->nr_ops, sizeof(*ctx->reg), GFP_KERNEL); if (!ctx->reg) { ret = -ENOMEM; goto out; } for (i = 0; i < ctx->nr_ops; i++) { struct rdma_rw_reg_ctx *reg = &ctx->reg[i]; u32 nents = min(sg_cnt, pages_per_mr); ret = rdma_rw_init_one_mr(qp, port_num, reg, sg, sg_cnt, offset); if (ret < 0) goto out_free; count += ret; if (prev) { if (reg->mr->need_inval) prev->wr.wr.next = ®->inv_wr; else prev->wr.wr.next = ®->reg_wr.wr; } reg->reg_wr.wr.next = ®->wr.wr; reg->wr.wr.sg_list = ®->sge; reg->wr.wr.num_sge = 1; reg->wr.remote_addr = remote_addr; reg->wr.rkey = rkey; if (dir == DMA_TO_DEVICE) { reg->wr.wr.opcode = IB_WR_RDMA_WRITE; } else if (!rdma_cap_read_inv(qp->device, port_num)) { reg->wr.wr.opcode = IB_WR_RDMA_READ; } else { reg->wr.wr.opcode = IB_WR_RDMA_READ_WITH_INV; reg->wr.wr.ex.invalidate_rkey = reg->mr->lkey; } count++; remote_addr += reg->sge.length; sg_cnt -= nents; for (j = 0; j < nents; j++) sg = sg_next(sg); prev = reg; offset = 0; } if (prev) prev->wr.wr.next = NULL; ctx->type = RDMA_RW_MR; return count; out_free: while (--i >= 0) ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr); kfree(ctx->reg); out: return ret; } static int rdma_rw_init_map_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp, struct scatterlist *sg, u32 sg_cnt, u32 offset, u64 remote_addr, u32 rkey, enum dma_data_direction dir) { u32 max_sge = dir == DMA_TO_DEVICE ? qp->max_write_sge : qp->max_read_sge; struct ib_sge *sge; u32 total_len = 0, i, j; ctx->nr_ops = DIV_ROUND_UP(sg_cnt, max_sge); ctx->map.sges = sge = kcalloc(sg_cnt, sizeof(*sge), GFP_KERNEL); if (!ctx->map.sges) goto out; ctx->map.wrs = kcalloc(ctx->nr_ops, sizeof(*ctx->map.wrs), GFP_KERNEL); if (!ctx->map.wrs) goto out_free_sges; for (i = 0; i < ctx->nr_ops; i++) { struct ib_rdma_wr *rdma_wr = &ctx->map.wrs[i]; u32 nr_sge = min(sg_cnt, max_sge); if (dir == DMA_TO_DEVICE) rdma_wr->wr.opcode = IB_WR_RDMA_WRITE; else rdma_wr->wr.opcode = IB_WR_RDMA_READ; rdma_wr->remote_addr = remote_addr + total_len; rdma_wr->rkey = rkey; rdma_wr->wr.num_sge = nr_sge; rdma_wr->wr.sg_list = sge; for (j = 0; j < nr_sge; j++, sg = sg_next(sg)) { sge->addr = sg_dma_address(sg) + offset; sge->length = sg_dma_len(sg) - offset; sge->lkey = qp->pd->local_dma_lkey; total_len += sge->length; sge++; sg_cnt--; offset = 0; } rdma_wr->wr.next = i + 1 < ctx->nr_ops ? &ctx->map.wrs[i + 1].wr : NULL; } ctx->type = RDMA_RW_MULTI_WR; return ctx->nr_ops; out_free_sges: kfree(ctx->map.sges); out: return -ENOMEM; } static int rdma_rw_init_single_wr(struct rdma_rw_ctx *ctx, struct ib_qp *qp, struct scatterlist *sg, u32 offset, u64 remote_addr, u32 rkey, enum dma_data_direction dir) { struct ib_rdma_wr *rdma_wr = &ctx->single.wr; ctx->nr_ops = 1; ctx->single.sge.lkey = qp->pd->local_dma_lkey; ctx->single.sge.addr = sg_dma_address(sg) + offset; ctx->single.sge.length = sg_dma_len(sg) - offset; memset(rdma_wr, 0, sizeof(*rdma_wr)); if (dir == DMA_TO_DEVICE) rdma_wr->wr.opcode = IB_WR_RDMA_WRITE; else rdma_wr->wr.opcode = IB_WR_RDMA_READ; rdma_wr->wr.sg_list = &ctx->single.sge; rdma_wr->wr.num_sge = 1; rdma_wr->remote_addr = remote_addr; rdma_wr->rkey = rkey; ctx->type = RDMA_RW_SINGLE_WR; return 1; } /** * rdma_rw_ctx_init - initialize a RDMA READ/WRITE context * @ctx: context to initialize * @qp: queue pair to operate on * @port_num: port num to which the connection is bound * @sg: scatterlist to READ/WRITE from/to * @sg_cnt: number of entries in @sg * @sg_offset: current byte offset into @sg * @remote_addr:remote address to read/write (relative to @rkey) * @rkey: remote key to operate on * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ * * Returns the number of WQEs that will be needed on the workqueue if * successful, or a negative error code. */ int rdma_rw_ctx_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u32 port_num, struct scatterlist *sg, u32 sg_cnt, u32 sg_offset, u64 remote_addr, u32 rkey, enum dma_data_direction dir) { struct ib_device *dev = qp->pd->device; struct sg_table sgt = { .sgl = sg, .orig_nents = sg_cnt, }; int ret; ret = ib_dma_map_sgtable_attrs(dev, &sgt, dir, 0); if (ret) return ret; sg_cnt = sgt.nents; /* * Skip to the S/G entry that sg_offset falls into: */ for (;;) { u32 len = sg_dma_len(sg); if (sg_offset < len) break; sg = sg_next(sg); sg_offset -= len; sg_cnt--; } ret = -EIO; if (WARN_ON_ONCE(sg_cnt == 0)) goto out_unmap_sg; if (rdma_rw_io_needs_mr(qp->device, port_num, dir, sg_cnt)) { ret = rdma_rw_init_mr_wrs(ctx, qp, port_num, sg, sg_cnt, sg_offset, remote_addr, rkey, dir); } else if (sg_cnt > 1) { ret = rdma_rw_init_map_wrs(ctx, qp, sg, sg_cnt, sg_offset, remote_addr, rkey, dir); } else { ret = rdma_rw_init_single_wr(ctx, qp, sg, sg_offset, remote_addr, rkey, dir); } if (ret < 0) goto out_unmap_sg; return ret; out_unmap_sg: ib_dma_unmap_sgtable_attrs(dev, &sgt, dir, 0); return ret; } EXPORT_SYMBOL(rdma_rw_ctx_init); /** * rdma_rw_ctx_signature_init - initialize a RW context with signature offload * @ctx: context to initialize * @qp: queue pair to operate on * @port_num: port num to which the connection is bound * @sg: scatterlist to READ/WRITE from/to * @sg_cnt: number of entries in @sg * @prot_sg: scatterlist to READ/WRITE protection information from/to * @prot_sg_cnt: number of entries in @prot_sg * @sig_attrs: signature offloading algorithms * @remote_addr:remote address to read/write (relative to @rkey) * @rkey: remote key to operate on * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ * * Returns the number of WQEs that will be needed on the workqueue if * successful, or a negative error code. */ int rdma_rw_ctx_signature_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u32 port_num, struct scatterlist *sg, u32 sg_cnt, struct scatterlist *prot_sg, u32 prot_sg_cnt, struct ib_sig_attrs *sig_attrs, u64 remote_addr, u32 rkey, enum dma_data_direction dir) { struct ib_device *dev = qp->pd->device; u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device, qp->integrity_en); struct sg_table sgt = { .sgl = sg, .orig_nents = sg_cnt, }; struct sg_table prot_sgt = { .sgl = prot_sg, .orig_nents = prot_sg_cnt, }; struct ib_rdma_wr *rdma_wr; int count = 0, ret; if (sg_cnt > pages_per_mr || prot_sg_cnt > pages_per_mr) { pr_err("SG count too large: sg_cnt=%u, prot_sg_cnt=%u, pages_per_mr=%u\n", sg_cnt, prot_sg_cnt, pages_per_mr); return -EINVAL; } ret = ib_dma_map_sgtable_attrs(dev, &sgt, dir, 0); if (ret) return ret; if (prot_sg_cnt) { ret = ib_dma_map_sgtable_attrs(dev, &prot_sgt, dir, 0); if (ret) goto out_unmap_sg; } ctx->type = RDMA_RW_SIG_MR; ctx->nr_ops = 1; ctx->reg = kzalloc(sizeof(*ctx->reg), GFP_KERNEL); if (!ctx->reg) { ret = -ENOMEM; goto out_unmap_prot_sg; } ctx->reg->mr = ib_mr_pool_get(qp, &qp->sig_mrs); if (!ctx->reg->mr) { ret = -EAGAIN; goto out_free_ctx; } count += rdma_rw_inv_key(ctx->reg); memcpy(ctx->reg->mr->sig_attrs, sig_attrs, sizeof(struct ib_sig_attrs)); ret = ib_map_mr_sg_pi(ctx->reg->mr, sg, sgt.nents, NULL, prot_sg, prot_sgt.nents, NULL, SZ_4K); if (unlikely(ret)) { pr_err("failed to map PI sg (%u)\n", sgt.nents + prot_sgt.nents); goto out_destroy_sig_mr; } ctx->reg->reg_wr.wr.opcode = IB_WR_REG_MR_INTEGRITY; ctx->reg->reg_wr.wr.wr_cqe = NULL; ctx->reg->reg_wr.wr.num_sge = 0; ctx->reg->reg_wr.wr.send_flags = 0; ctx->reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE; if (rdma_protocol_iwarp(qp->device, port_num)) ctx->reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE; ctx->reg->reg_wr.mr = ctx->reg->mr; ctx->reg->reg_wr.key = ctx->reg->mr->lkey; count++; ctx->reg->sge.addr = ctx->reg->mr->iova; ctx->reg->sge.length = ctx->reg->mr->length; if (sig_attrs->wire.sig_type == IB_SIG_TYPE_NONE) ctx->reg->sge.length -= ctx->reg->mr->sig_attrs->meta_length; rdma_wr = &ctx->reg->wr; rdma_wr->wr.sg_list = &ctx->reg->sge; rdma_wr->wr.num_sge = 1; rdma_wr->remote_addr = remote_addr; rdma_wr->rkey = rkey; if (dir == DMA_TO_DEVICE) rdma_wr->wr.opcode = IB_WR_RDMA_WRITE; else rdma_wr->wr.opcode = IB_WR_RDMA_READ; ctx->reg->reg_wr.wr.next = &rdma_wr->wr; count++; return count; out_destroy_sig_mr: ib_mr_pool_put(qp, &qp->sig_mrs, ctx->reg->mr); out_free_ctx: kfree(ctx->reg); out_unmap_prot_sg: if (prot_sgt.nents) ib_dma_unmap_sgtable_attrs(dev, &prot_sgt, dir, 0); out_unmap_sg: ib_dma_unmap_sgtable_attrs(dev, &sgt, dir, 0); return ret; } EXPORT_SYMBOL(rdma_rw_ctx_signature_init); /* * Now that we are going to post the WRs we can update the lkey and need_inval * state on the MRs. If we were doing this at init time, we would get double * or missing invalidations if a context was initialized but not actually * posted. */ static void rdma_rw_update_lkey(struct rdma_rw_reg_ctx *reg, bool need_inval) { reg->mr->need_inval = need_inval; ib_update_fast_reg_key(reg->mr, ib_inc_rkey(reg->mr->lkey)); reg->reg_wr.key = reg->mr->lkey; reg->sge.lkey = reg->mr->lkey; } /** * rdma_rw_ctx_wrs - return chain of WRs for a RDMA READ or WRITE operation * @ctx: context to operate on * @qp: queue pair to operate on * @port_num: port num to which the connection is bound * @cqe: completion queue entry for the last WR * @chain_wr: WR to append to the posted chain * * Return the WR chain for the set of RDMA READ/WRITE operations described by * @ctx, as well as any memory registration operations needed. If @chain_wr * is non-NULL the WR it points to will be appended to the chain of WRs posted. * If @chain_wr is not set @cqe must be set so that the caller gets a * completion notification. */ struct ib_send_wr *rdma_rw_ctx_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u32 port_num, struct ib_cqe *cqe, struct ib_send_wr *chain_wr) { struct ib_send_wr *first_wr, *last_wr; int i; switch (ctx->type) { case RDMA_RW_SIG_MR: case RDMA_RW_MR: for (i = 0; i < ctx->nr_ops; i++) { rdma_rw_update_lkey(&ctx->reg[i], ctx->reg[i].wr.wr.opcode != IB_WR_RDMA_READ_WITH_INV); } if (ctx->reg[0].inv_wr.next) first_wr = &ctx->reg[0].inv_wr; else first_wr = &ctx->reg[0].reg_wr.wr; last_wr = &ctx->reg[ctx->nr_ops - 1].wr.wr; break; case RDMA_RW_MULTI_WR: first_wr = &ctx->map.wrs[0].wr; last_wr = &ctx->map.wrs[ctx->nr_ops - 1].wr; break; case RDMA_RW_SINGLE_WR: first_wr = &ctx->single.wr.wr; last_wr = &ctx->single.wr.wr; break; default: BUG(); } if (chain_wr) { last_wr->next = chain_wr; } else { last_wr->wr_cqe = cqe; last_wr->send_flags |= IB_SEND_SIGNALED; } return first_wr; } EXPORT_SYMBOL(rdma_rw_ctx_wrs); /** * rdma_rw_ctx_post - post a RDMA READ or RDMA WRITE operation * @ctx: context to operate on * @qp: queue pair to operate on * @port_num: port num to which the connection is bound * @cqe: completion queue entry for the last WR * @chain_wr: WR to append to the posted chain * * Post the set of RDMA READ/WRITE operations described by @ctx, as well as * any memory registration operations needed. If @chain_wr is non-NULL the * WR it points to will be appended to the chain of WRs posted. If @chain_wr * is not set @cqe must be set so that the caller gets a completion * notification. */ int rdma_rw_ctx_post(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u32 port_num, struct ib_cqe *cqe, struct ib_send_wr *chain_wr) { struct ib_send_wr *first_wr; first_wr = rdma_rw_ctx_wrs(ctx, qp, port_num, cqe, chain_wr); return ib_post_send(qp, first_wr, NULL); } EXPORT_SYMBOL(rdma_rw_ctx_post); /** * rdma_rw_ctx_destroy - release all resources allocated by rdma_rw_ctx_init * @ctx: context to release * @qp: queue pair to operate on * @port_num: port num to which the connection is bound * @sg: scatterlist that was used for the READ/WRITE * @sg_cnt: number of entries in @sg * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ */ void rdma_rw_ctx_destroy(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u32 port_num, struct scatterlist *sg, u32 sg_cnt, enum dma_data_direction dir) { int i; switch (ctx->type) { case RDMA_RW_MR: for (i = 0; i < ctx->nr_ops; i++) ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr); kfree(ctx->reg); break; case RDMA_RW_MULTI_WR: kfree(ctx->map.wrs); kfree(ctx->map.sges); break; case RDMA_RW_SINGLE_WR: break; default: BUG(); break; } ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir); } EXPORT_SYMBOL(rdma_rw_ctx_destroy); /** * rdma_rw_ctx_destroy_signature - release all resources allocated by * rdma_rw_ctx_signature_init * @ctx: context to release * @qp: queue pair to operate on * @port_num: port num to which the connection is bound * @sg: scatterlist that was used for the READ/WRITE * @sg_cnt: number of entries in @sg * @prot_sg: scatterlist that was used for the READ/WRITE of the PI * @prot_sg_cnt: number of entries in @prot_sg * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ */ void rdma_rw_ctx_destroy_signature(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u32 port_num, struct scatterlist *sg, u32 sg_cnt, struct scatterlist *prot_sg, u32 prot_sg_cnt, enum dma_data_direction dir) { if (WARN_ON_ONCE(ctx->type != RDMA_RW_SIG_MR)) return; ib_mr_pool_put(qp, &qp->sig_mrs, ctx->reg->mr); kfree(ctx->reg); if (prot_sg_cnt) ib_dma_unmap_sg(qp->pd->device, prot_sg, prot_sg_cnt, dir); ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir); } EXPORT_SYMBOL(rdma_rw_ctx_destroy_signature); /** * rdma_rw_mr_factor - return number of MRs required for a payload * @device: device handling the connection * @port_num: port num to which the connection is bound * @maxpages: maximum payload pages per rdma_rw_ctx * * Returns the number of MRs the device requires to move @maxpayload * bytes. The returned value is used during transport creation to * compute max_rdma_ctxts and the size of the transport's Send and * Send Completion Queues. */ unsigned int rdma_rw_mr_factor(struct ib_device *device, u32 port_num, unsigned int maxpages) { unsigned int mr_pages; if (rdma_rw_can_use_mr(device, port_num)) mr_pages = rdma_rw_fr_page_list_len(device, false); else mr_pages = device->attrs.max_sge_rd; return DIV_ROUND_UP(maxpages, mr_pages); } EXPORT_SYMBOL(rdma_rw_mr_factor); void rdma_rw_init_qp(struct ib_device *dev, struct ib_qp_init_attr *attr) { u32 factor; WARN_ON_ONCE(attr->port_num == 0); /* * Each context needs at least one RDMA READ or WRITE WR. * * For some hardware we might need more, eventually we should ask the * HCA driver for a multiplier here. */ factor = 1; /* * If the devices needs MRs to perform RDMA READ or WRITE operations, * we'll need two additional MRs for the registrations and the * invalidation. */ if (attr->create_flags & IB_QP_CREATE_INTEGRITY_EN || rdma_rw_can_use_mr(dev, attr->port_num)) factor += 2; /* inv + reg */ attr->cap.max_send_wr += factor * attr->cap.max_rdma_ctxs; /* * But maybe we were just too high in the sky and the device doesn't * even support all we need, and we'll have to live with what we get.. */ attr->cap.max_send_wr = min_t(u32, attr->cap.max_send_wr, dev->attrs.max_qp_wr); } int rdma_rw_init_mrs(struct ib_qp *qp, struct ib_qp_init_attr *attr) { struct ib_device *dev = qp->pd->device; u32 nr_mrs = 0, nr_sig_mrs = 0, max_num_sg = 0; int ret = 0; if (attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) { nr_sig_mrs = attr->cap.max_rdma_ctxs; nr_mrs = attr->cap.max_rdma_ctxs; max_num_sg = rdma_rw_fr_page_list_len(dev, true); } else if (rdma_rw_can_use_mr(dev, attr->port_num)) { nr_mrs = attr->cap.max_rdma_ctxs; max_num_sg = rdma_rw_fr_page_list_len(dev, false); } if (nr_mrs) { ret = ib_mr_pool_init(qp, &qp->rdma_mrs, nr_mrs, IB_MR_TYPE_MEM_REG, max_num_sg, 0); if (ret) { pr_err("%s: failed to allocated %u MRs\n", __func__, nr_mrs); return ret; } } if (nr_sig_mrs) { ret = ib_mr_pool_init(qp, &qp->sig_mrs, nr_sig_mrs, IB_MR_TYPE_INTEGRITY, max_num_sg, max_num_sg); if (ret) { pr_err("%s: failed to allocated %u SIG MRs\n", __func__, nr_sig_mrs); goto out_free_rdma_mrs; } } return 0; out_free_rdma_mrs: ib_mr_pool_destroy(qp, &qp->rdma_mrs); return ret; } void rdma_rw_cleanup_mrs(struct ib_qp *qp) { ib_mr_pool_destroy(qp, &qp->sig_mrs); ib_mr_pool_destroy(qp, &qp->rdma_mrs); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1