Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Andrew-CT Chen | 4113 | 89.51% | 2 | 9.52% |
Irui Wang | 306 | 6.66% | 2 | 9.52% |
Hsin-Yi, Wang | 58 | 1.26% | 1 | 4.76% |
Rui Y Wang | 53 | 1.15% | 1 | 4.76% |
Colin Ian King | 15 | 0.33% | 2 | 9.52% |
Mauro Carvalho Chehab | 10 | 0.22% | 2 | 9.52% |
Christophe Jaillet | 10 | 0.22% | 2 | 9.52% |
Wei Yongjun | 9 | 0.20% | 1 | 4.76% |
dingsenjie | 6 | 0.13% | 1 | 4.76% |
Lad Prabhakar | 6 | 0.13% | 1 | 4.76% |
Joerg Roedel | 3 | 0.07% | 1 | 4.76% |
Thomas Gleixner | 2 | 0.04% | 1 | 4.76% |
Arun K S | 1 | 0.02% | 1 | 4.76% |
Masanari Iida | 1 | 0.02% | 1 | 4.76% |
Hans Verkuil | 1 | 0.02% | 1 | 4.76% |
Dan Carpenter | 1 | 0.02% | 1 | 4.76% |
Total | 4595 | 21 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2016 MediaTek Inc. * Author: Andrew-CT Chen <andrew-ct.chen@mediatek.com> */ #include <linux/clk.h> #include <linux/debugfs.h> #include <linux/firmware.h> #include <linux/interrupt.h> #include <linux/iommu.h> #include <linux/module.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/of_platform.h> #include <linux/of_reserved_mem.h> #include <linux/sched.h> #include <linux/sizes.h> #include <linux/dma-mapping.h> #include "mtk_vpu.h" /* * VPU (video processor unit) is a tiny processor controlling video hardware * related to video codec, scaling and color format converting. * VPU interfaces with other blocks by share memory and interrupt. */ #define INIT_TIMEOUT_MS 2000U #define IPI_TIMEOUT_MS 2000U #define VPU_IDLE_TIMEOUT_MS 1000U #define VPU_FW_VER_LEN 16 /* maximum program/data TCM (Tightly-Coupled Memory) size */ #define VPU_PTCM_SIZE (96 * SZ_1K) #define VPU_DTCM_SIZE (32 * SZ_1K) /* the offset to get data tcm address */ #define VPU_DTCM_OFFSET 0x18000UL /* daynamic allocated maximum extended memory size */ #define VPU_EXT_P_SIZE SZ_1M #define VPU_EXT_D_SIZE SZ_4M /* maximum binary firmware size */ #define VPU_P_FW_SIZE (VPU_PTCM_SIZE + VPU_EXT_P_SIZE) #define VPU_D_FW_SIZE (VPU_DTCM_SIZE + VPU_EXT_D_SIZE) /* the size of share buffer between Host and VPU */ #define SHARE_BUF_SIZE 48 /* binary firmware name */ #define VPU_P_FW "vpu_p.bin" #define VPU_D_FW "vpu_d.bin" #define VPU_P_FW_NEW "mediatek/mt8173/vpu_p.bin" #define VPU_D_FW_NEW "mediatek/mt8173/vpu_d.bin" #define VPU_RESET 0x0 #define VPU_TCM_CFG 0x0008 #define VPU_PMEM_EXT0_ADDR 0x000C #define VPU_PMEM_EXT1_ADDR 0x0010 #define VPU_TO_HOST 0x001C #define VPU_DMEM_EXT0_ADDR 0x0014 #define VPU_DMEM_EXT1_ADDR 0x0018 #define HOST_TO_VPU 0x0024 #define VPU_IDLE_REG 0x002C #define VPU_INT_STATUS 0x0034 #define VPU_PC_REG 0x0060 #define VPU_SP_REG 0x0064 #define VPU_RA_REG 0x0068 #define VPU_WDT_REG 0x0084 /* vpu inter-processor communication interrupt */ #define VPU_IPC_INT BIT(8) /* vpu idle state */ #define VPU_IDLE_STATE BIT(23) /** * enum vpu_fw_type - VPU firmware type * * @P_FW: program firmware * @D_FW: data firmware * */ enum vpu_fw_type { P_FW, D_FW, }; /** * struct vpu_mem - VPU extended program/data memory information * * @va: the kernel virtual memory address of VPU extended memory * @pa: the physical memory address of VPU extended memory * */ struct vpu_mem { void *va; dma_addr_t pa; }; /** * struct vpu_regs - VPU TCM and configuration registers * * @tcm: the register for VPU Tightly-Coupled Memory * @cfg: the register for VPU configuration * @irq: the irq number for VPU interrupt */ struct vpu_regs { void __iomem *tcm; void __iomem *cfg; int irq; }; /** * struct vpu_wdt_handler - VPU watchdog reset handler * * @reset_func: reset handler * @priv: private data */ struct vpu_wdt_handler { void (*reset_func)(void *); void *priv; }; /** * struct vpu_wdt - VPU watchdog workqueue * * @handler: VPU watchdog reset handler * @ws: workstruct for VPU watchdog * @wq: workqueue for VPU watchdog */ struct vpu_wdt { struct vpu_wdt_handler handler[VPU_RST_MAX]; struct work_struct ws; struct workqueue_struct *wq; }; /** * struct vpu_run - VPU initialization status * * @signaled: the signal of vpu initialization completed * @fw_ver: VPU firmware version * @dec_capability: decoder capability which is not used for now and * the value is reserved for future use * @enc_capability: encoder capability which is not used for now and * the value is reserved for future use * @wq: wait queue for VPU initialization status */ struct vpu_run { u32 signaled; char fw_ver[VPU_FW_VER_LEN]; unsigned int dec_capability; unsigned int enc_capability; wait_queue_head_t wq; }; /** * struct vpu_ipi_desc - VPU IPI descriptor * * @handler: IPI handler * @name: the name of IPI handler * @priv: the private data of IPI handler */ struct vpu_ipi_desc { ipi_handler_t handler; const char *name; void *priv; }; /** * struct share_obj - DTCM (Data Tightly-Coupled Memory) buffer shared with * AP and VPU * * @id: IPI id * @len: share buffer length * @share_buf: share buffer data */ struct share_obj { s32 id; u32 len; unsigned char share_buf[SHARE_BUF_SIZE]; }; /** * struct mtk_vpu - vpu driver data * @extmem: VPU extended memory information * @reg: VPU TCM and configuration registers * @run: VPU initialization status * @wdt: VPU watchdog workqueue * @ipi_desc: VPU IPI descriptor * @recv_buf: VPU DTCM share buffer for receiving. The * receive buffer is only accessed in interrupt context. * @send_buf: VPU DTCM share buffer for sending * @dev: VPU struct device * @clk: VPU clock on/off * @fw_loaded: indicate VPU firmware loaded * @enable_4GB: VPU 4GB mode on/off * @vpu_mutex: protect mtk_vpu (except recv_buf) and ensure only * one client to use VPU service at a time. For example, * suppose a client is using VPU to decode VP8. * If the other client wants to encode VP8, * it has to wait until VP8 decode completes. * @wdt_refcnt: WDT reference count to make sure the watchdog can be * disabled if no other client is using VPU service * @ack_wq: The wait queue for each codec and mdp. When sleeping * processes wake up, they will check the condition * "ipi_id_ack" to run the corresponding action or * go back to sleep. * @ipi_id_ack: The ACKs for registered IPI function sending * interrupt to VPU * */ struct mtk_vpu { struct vpu_mem extmem[2]; struct vpu_regs reg; struct vpu_run run; struct vpu_wdt wdt; struct vpu_ipi_desc ipi_desc[IPI_MAX]; struct share_obj __iomem *recv_buf; struct share_obj __iomem *send_buf; struct device *dev; struct clk *clk; bool fw_loaded; bool enable_4GB; struct mutex vpu_mutex; /* for protecting vpu data data structure */ u32 wdt_refcnt; wait_queue_head_t ack_wq; bool ipi_id_ack[IPI_MAX]; }; static inline void vpu_cfg_writel(struct mtk_vpu *vpu, u32 val, u32 offset) { writel(val, vpu->reg.cfg + offset); } static inline u32 vpu_cfg_readl(struct mtk_vpu *vpu, u32 offset) { return readl(vpu->reg.cfg + offset); } static inline bool vpu_running(struct mtk_vpu *vpu) { return vpu_cfg_readl(vpu, VPU_RESET) & BIT(0); } static void vpu_clock_disable(struct mtk_vpu *vpu) { /* Disable VPU watchdog */ mutex_lock(&vpu->vpu_mutex); if (!--vpu->wdt_refcnt) vpu_cfg_writel(vpu, vpu_cfg_readl(vpu, VPU_WDT_REG) & ~(1L << 31), VPU_WDT_REG); mutex_unlock(&vpu->vpu_mutex); clk_disable(vpu->clk); } static int vpu_clock_enable(struct mtk_vpu *vpu) { int ret; ret = clk_enable(vpu->clk); if (ret) return ret; /* Enable VPU watchdog */ mutex_lock(&vpu->vpu_mutex); if (!vpu->wdt_refcnt++) vpu_cfg_writel(vpu, vpu_cfg_readl(vpu, VPU_WDT_REG) | (1L << 31), VPU_WDT_REG); mutex_unlock(&vpu->vpu_mutex); return ret; } static void vpu_dump_status(struct mtk_vpu *vpu) { dev_info(vpu->dev, "vpu: run %x, pc = 0x%x, ra = 0x%x, sp = 0x%x, idle = 0x%x\n" "vpu: int %x, hv = 0x%x, vh = 0x%x, wdt = 0x%x\n", vpu_running(vpu), vpu_cfg_readl(vpu, VPU_PC_REG), vpu_cfg_readl(vpu, VPU_RA_REG), vpu_cfg_readl(vpu, VPU_SP_REG), vpu_cfg_readl(vpu, VPU_IDLE_REG), vpu_cfg_readl(vpu, VPU_INT_STATUS), vpu_cfg_readl(vpu, HOST_TO_VPU), vpu_cfg_readl(vpu, VPU_TO_HOST), vpu_cfg_readl(vpu, VPU_WDT_REG)); } int vpu_ipi_register(struct platform_device *pdev, enum ipi_id id, ipi_handler_t handler, const char *name, void *priv) { struct mtk_vpu *vpu = platform_get_drvdata(pdev); struct vpu_ipi_desc *ipi_desc; if (!vpu) { dev_err(&pdev->dev, "vpu device in not ready\n"); return -EPROBE_DEFER; } if (id < IPI_MAX && handler) { ipi_desc = vpu->ipi_desc; ipi_desc[id].name = name; ipi_desc[id].handler = handler; ipi_desc[id].priv = priv; return 0; } dev_err(&pdev->dev, "register vpu ipi id %d with invalid arguments\n", id); return -EINVAL; } EXPORT_SYMBOL_GPL(vpu_ipi_register); int vpu_ipi_send(struct platform_device *pdev, enum ipi_id id, void *buf, unsigned int len) { struct mtk_vpu *vpu = platform_get_drvdata(pdev); struct share_obj __iomem *send_obj = vpu->send_buf; unsigned long timeout; int ret = 0; if (id <= IPI_VPU_INIT || id >= IPI_MAX || len > sizeof(send_obj->share_buf) || !buf) { dev_err(vpu->dev, "failed to send ipi message\n"); return -EINVAL; } ret = vpu_clock_enable(vpu); if (ret) { dev_err(vpu->dev, "failed to enable vpu clock\n"); return ret; } if (!vpu_running(vpu)) { dev_err(vpu->dev, "vpu_ipi_send: VPU is not running\n"); ret = -EINVAL; goto clock_disable; } mutex_lock(&vpu->vpu_mutex); /* Wait until VPU receives the last command */ timeout = jiffies + msecs_to_jiffies(IPI_TIMEOUT_MS); do { if (time_after(jiffies, timeout)) { dev_err(vpu->dev, "vpu_ipi_send: IPI timeout!\n"); ret = -EIO; vpu_dump_status(vpu); goto mut_unlock; } } while (vpu_cfg_readl(vpu, HOST_TO_VPU)); memcpy_toio(send_obj->share_buf, buf, len); writel(len, &send_obj->len); writel(id, &send_obj->id); vpu->ipi_id_ack[id] = false; /* send the command to VPU */ vpu_cfg_writel(vpu, 0x1, HOST_TO_VPU); mutex_unlock(&vpu->vpu_mutex); /* wait for VPU's ACK */ timeout = msecs_to_jiffies(IPI_TIMEOUT_MS); ret = wait_event_timeout(vpu->ack_wq, vpu->ipi_id_ack[id], timeout); vpu->ipi_id_ack[id] = false; if (ret == 0) { dev_err(vpu->dev, "vpu ipi %d ack time out !\n", id); ret = -EIO; vpu_dump_status(vpu); goto clock_disable; } vpu_clock_disable(vpu); return 0; mut_unlock: mutex_unlock(&vpu->vpu_mutex); clock_disable: vpu_clock_disable(vpu); return ret; } EXPORT_SYMBOL_GPL(vpu_ipi_send); static void vpu_wdt_reset_func(struct work_struct *ws) { struct vpu_wdt *wdt = container_of(ws, struct vpu_wdt, ws); struct mtk_vpu *vpu = container_of(wdt, struct mtk_vpu, wdt); struct vpu_wdt_handler *handler = wdt->handler; int index, ret; dev_info(vpu->dev, "vpu reset\n"); ret = vpu_clock_enable(vpu); if (ret) { dev_err(vpu->dev, "[VPU] wdt enables clock failed %d\n", ret); return; } mutex_lock(&vpu->vpu_mutex); vpu_cfg_writel(vpu, 0x0, VPU_RESET); vpu->fw_loaded = false; mutex_unlock(&vpu->vpu_mutex); vpu_clock_disable(vpu); for (index = 0; index < VPU_RST_MAX; index++) { if (handler[index].reset_func) { handler[index].reset_func(handler[index].priv); dev_dbg(vpu->dev, "wdt handler func %d\n", index); } } } int vpu_wdt_reg_handler(struct platform_device *pdev, void wdt_reset(void *), void *priv, enum rst_id id) { struct mtk_vpu *vpu = platform_get_drvdata(pdev); struct vpu_wdt_handler *handler; if (!vpu) { dev_err(&pdev->dev, "vpu device in not ready\n"); return -EPROBE_DEFER; } handler = vpu->wdt.handler; if (id < VPU_RST_MAX && wdt_reset) { dev_dbg(vpu->dev, "wdt register id %d\n", id); mutex_lock(&vpu->vpu_mutex); handler[id].reset_func = wdt_reset; handler[id].priv = priv; mutex_unlock(&vpu->vpu_mutex); return 0; } dev_err(vpu->dev, "register vpu wdt handler failed\n"); return -EINVAL; } EXPORT_SYMBOL_GPL(vpu_wdt_reg_handler); unsigned int vpu_get_vdec_hw_capa(struct platform_device *pdev) { struct mtk_vpu *vpu = platform_get_drvdata(pdev); return vpu->run.dec_capability; } EXPORT_SYMBOL_GPL(vpu_get_vdec_hw_capa); unsigned int vpu_get_venc_hw_capa(struct platform_device *pdev) { struct mtk_vpu *vpu = platform_get_drvdata(pdev); return vpu->run.enc_capability; } EXPORT_SYMBOL_GPL(vpu_get_venc_hw_capa); void *vpu_mapping_dm_addr(struct platform_device *pdev, u32 dtcm_dmem_addr) { struct mtk_vpu *vpu = platform_get_drvdata(pdev); if (!dtcm_dmem_addr || (dtcm_dmem_addr > (VPU_DTCM_SIZE + VPU_EXT_D_SIZE))) { dev_err(vpu->dev, "invalid virtual data memory address\n"); return ERR_PTR(-EINVAL); } if (dtcm_dmem_addr < VPU_DTCM_SIZE) return (__force void *)(dtcm_dmem_addr + vpu->reg.tcm + VPU_DTCM_OFFSET); return vpu->extmem[D_FW].va + (dtcm_dmem_addr - VPU_DTCM_SIZE); } EXPORT_SYMBOL_GPL(vpu_mapping_dm_addr); struct platform_device *vpu_get_plat_device(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *vpu_node; struct platform_device *vpu_pdev; vpu_node = of_parse_phandle(dev->of_node, "mediatek,vpu", 0); if (!vpu_node) { dev_err(dev, "can't get vpu node\n"); return NULL; } vpu_pdev = of_find_device_by_node(vpu_node); of_node_put(vpu_node); if (WARN_ON(!vpu_pdev)) { dev_err(dev, "vpu pdev failed\n"); return NULL; } return vpu_pdev; } EXPORT_SYMBOL_GPL(vpu_get_plat_device); /* load vpu program/data memory */ static int load_requested_vpu(struct mtk_vpu *vpu, u8 fw_type) { size_t tcm_size = fw_type ? VPU_DTCM_SIZE : VPU_PTCM_SIZE; size_t fw_size = fw_type ? VPU_D_FW_SIZE : VPU_P_FW_SIZE; char *fw_name = fw_type ? VPU_D_FW : VPU_P_FW; char *fw_new_name = fw_type ? VPU_D_FW_NEW : VPU_P_FW_NEW; const struct firmware *vpu_fw; size_t dl_size = 0; size_t extra_fw_size = 0; void *dest; int ret; ret = request_firmware(&vpu_fw, fw_new_name, vpu->dev); if (ret < 0) { dev_info(vpu->dev, "Failed to load %s, %d, retry\n", fw_new_name, ret); ret = request_firmware(&vpu_fw, fw_name, vpu->dev); if (ret < 0) { dev_err(vpu->dev, "Failed to load %s, %d\n", fw_name, ret); return ret; } } dl_size = vpu_fw->size; if (dl_size > fw_size) { dev_err(vpu->dev, "fw %s size %zu is abnormal\n", fw_name, dl_size); release_firmware(vpu_fw); return -EFBIG; } dev_dbg(vpu->dev, "Downloaded fw %s size: %zu.\n", fw_name, dl_size); /* reset VPU */ vpu_cfg_writel(vpu, 0x0, VPU_RESET); /* handle extended firmware size */ if (dl_size > tcm_size) { dev_dbg(vpu->dev, "fw size %zu > limited fw size %zu\n", dl_size, tcm_size); extra_fw_size = dl_size - tcm_size; dev_dbg(vpu->dev, "extra_fw_size %zu\n", extra_fw_size); dl_size = tcm_size; } dest = (__force void *)vpu->reg.tcm; if (fw_type == D_FW) dest += VPU_DTCM_OFFSET; memcpy(dest, vpu_fw->data, dl_size); /* download to extended memory if need */ if (extra_fw_size > 0) { dest = vpu->extmem[fw_type].va; dev_dbg(vpu->dev, "download extended memory type %x\n", fw_type); memcpy(dest, vpu_fw->data + tcm_size, extra_fw_size); } release_firmware(vpu_fw); return 0; } int vpu_load_firmware(struct platform_device *pdev) { struct mtk_vpu *vpu; struct device *dev = &pdev->dev; struct vpu_run *run; int ret; if (!pdev) { dev_err(dev, "VPU platform device is invalid\n"); return -EINVAL; } vpu = platform_get_drvdata(pdev); run = &vpu->run; mutex_lock(&vpu->vpu_mutex); if (vpu->fw_loaded) { mutex_unlock(&vpu->vpu_mutex); return 0; } mutex_unlock(&vpu->vpu_mutex); ret = vpu_clock_enable(vpu); if (ret) { dev_err(dev, "enable clock failed %d\n", ret); return ret; } mutex_lock(&vpu->vpu_mutex); run->signaled = false; dev_dbg(vpu->dev, "firmware request\n"); /* Downloading program firmware to device*/ ret = load_requested_vpu(vpu, P_FW); if (ret < 0) { dev_err(dev, "Failed to request %s, %d\n", VPU_P_FW, ret); goto OUT_LOAD_FW; } /* Downloading data firmware to device */ ret = load_requested_vpu(vpu, D_FW); if (ret < 0) { dev_err(dev, "Failed to request %s, %d\n", VPU_D_FW, ret); goto OUT_LOAD_FW; } vpu->fw_loaded = true; /* boot up vpu */ vpu_cfg_writel(vpu, 0x1, VPU_RESET); ret = wait_event_interruptible_timeout(run->wq, run->signaled, msecs_to_jiffies(INIT_TIMEOUT_MS) ); if (ret == 0) { ret = -ETIME; dev_err(dev, "wait vpu initialization timeout!\n"); goto OUT_LOAD_FW; } else if (-ERESTARTSYS == ret) { dev_err(dev, "wait vpu interrupted by a signal!\n"); goto OUT_LOAD_FW; } ret = 0; dev_info(dev, "vpu is ready. Fw version %s\n", run->fw_ver); OUT_LOAD_FW: mutex_unlock(&vpu->vpu_mutex); vpu_clock_disable(vpu); return ret; } EXPORT_SYMBOL_GPL(vpu_load_firmware); static void vpu_init_ipi_handler(const void *data, unsigned int len, void *priv) { struct mtk_vpu *vpu = priv; const struct vpu_run *run = data; vpu->run.signaled = run->signaled; strscpy(vpu->run.fw_ver, run->fw_ver, sizeof(vpu->run.fw_ver)); vpu->run.dec_capability = run->dec_capability; vpu->run.enc_capability = run->enc_capability; wake_up_interruptible(&vpu->run.wq); } #ifdef CONFIG_DEBUG_FS static ssize_t vpu_debug_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { char buf[256]; unsigned int len; unsigned int running, pc, vpu_to_host, host_to_vpu, wdt, idle, ra, sp; int ret; struct device *dev = file->private_data; struct mtk_vpu *vpu = dev_get_drvdata(dev); ret = vpu_clock_enable(vpu); if (ret) { dev_err(vpu->dev, "[VPU] enable clock failed %d\n", ret); return 0; } /* vpu register status */ running = vpu_running(vpu); pc = vpu_cfg_readl(vpu, VPU_PC_REG); wdt = vpu_cfg_readl(vpu, VPU_WDT_REG); host_to_vpu = vpu_cfg_readl(vpu, HOST_TO_VPU); vpu_to_host = vpu_cfg_readl(vpu, VPU_TO_HOST); ra = vpu_cfg_readl(vpu, VPU_RA_REG); sp = vpu_cfg_readl(vpu, VPU_SP_REG); idle = vpu_cfg_readl(vpu, VPU_IDLE_REG); vpu_clock_disable(vpu); if (running) { len = snprintf(buf, sizeof(buf), "VPU is running\n\n" "FW Version: %s\n" "PC: 0x%x\n" "WDT: 0x%x\n" "Host to VPU: 0x%x\n" "VPU to Host: 0x%x\n" "SP: 0x%x\n" "RA: 0x%x\n" "idle: 0x%x\n", vpu->run.fw_ver, pc, wdt, host_to_vpu, vpu_to_host, sp, ra, idle); } else { len = snprintf(buf, sizeof(buf), "VPU not running\n"); } return simple_read_from_buffer(user_buf, count, ppos, buf, len); } static const struct file_operations vpu_debug_fops = { .open = simple_open, .read = vpu_debug_read, }; #endif /* CONFIG_DEBUG_FS */ static void vpu_free_ext_mem(struct mtk_vpu *vpu, u8 fw_type) { struct device *dev = vpu->dev; size_t fw_ext_size = fw_type ? VPU_EXT_D_SIZE : VPU_EXT_P_SIZE; dma_free_coherent(dev, fw_ext_size, vpu->extmem[fw_type].va, vpu->extmem[fw_type].pa); } static int vpu_alloc_ext_mem(struct mtk_vpu *vpu, u32 fw_type) { struct device *dev = vpu->dev; size_t fw_ext_size = fw_type ? VPU_EXT_D_SIZE : VPU_EXT_P_SIZE; u32 vpu_ext_mem0 = fw_type ? VPU_DMEM_EXT0_ADDR : VPU_PMEM_EXT0_ADDR; u32 vpu_ext_mem1 = fw_type ? VPU_DMEM_EXT1_ADDR : VPU_PMEM_EXT1_ADDR; u32 offset_4gb = vpu->enable_4GB ? 0x40000000 : 0; vpu->extmem[fw_type].va = dma_alloc_coherent(dev, fw_ext_size, &vpu->extmem[fw_type].pa, GFP_KERNEL); if (!vpu->extmem[fw_type].va) { dev_err(dev, "Failed to allocate the extended program memory\n"); return -ENOMEM; } /* Disable extend0. Enable extend1 */ vpu_cfg_writel(vpu, 0x1, vpu_ext_mem0); vpu_cfg_writel(vpu, (vpu->extmem[fw_type].pa & 0xFFFFF000) + offset_4gb, vpu_ext_mem1); dev_info(dev, "%s extend memory phy=0x%llx virt=0x%p\n", fw_type ? "Data" : "Program", (unsigned long long)vpu->extmem[fw_type].pa, vpu->extmem[fw_type].va); return 0; } static void vpu_ipi_handler(struct mtk_vpu *vpu) { struct share_obj __iomem *rcv_obj = vpu->recv_buf; struct vpu_ipi_desc *ipi_desc = vpu->ipi_desc; unsigned char data[SHARE_BUF_SIZE]; s32 id = readl(&rcv_obj->id); memcpy_fromio(data, rcv_obj->share_buf, sizeof(data)); if (id < IPI_MAX && ipi_desc[id].handler) { ipi_desc[id].handler(data, readl(&rcv_obj->len), ipi_desc[id].priv); if (id > IPI_VPU_INIT) { vpu->ipi_id_ack[id] = true; wake_up(&vpu->ack_wq); } } else { dev_err(vpu->dev, "No such ipi id = %d\n", id); } } static int vpu_ipi_init(struct mtk_vpu *vpu) { /* Disable VPU to host interrupt */ vpu_cfg_writel(vpu, 0x0, VPU_TO_HOST); /* shared buffer initialization */ vpu->recv_buf = vpu->reg.tcm + VPU_DTCM_OFFSET; vpu->send_buf = vpu->recv_buf + 1; memset_io(vpu->recv_buf, 0, sizeof(struct share_obj)); memset_io(vpu->send_buf, 0, sizeof(struct share_obj)); return 0; } static irqreturn_t vpu_irq_handler(int irq, void *priv) { struct mtk_vpu *vpu = priv; u32 vpu_to_host; int ret; /* * Clock should have been enabled already. * Enable again in case vpu_ipi_send times out * and has disabled the clock. */ ret = clk_enable(vpu->clk); if (ret) { dev_err(vpu->dev, "[VPU] enable clock failed %d\n", ret); return IRQ_NONE; } vpu_to_host = vpu_cfg_readl(vpu, VPU_TO_HOST); if (vpu_to_host & VPU_IPC_INT) { vpu_ipi_handler(vpu); } else { dev_err(vpu->dev, "vpu watchdog timeout! 0x%x", vpu_to_host); queue_work(vpu->wdt.wq, &vpu->wdt.ws); } /* VPU won't send another interrupt until we set VPU_TO_HOST to 0. */ vpu_cfg_writel(vpu, 0x0, VPU_TO_HOST); clk_disable(vpu->clk); return IRQ_HANDLED; } #ifdef CONFIG_DEBUG_FS static struct dentry *vpu_debugfs; #endif static int mtk_vpu_probe(struct platform_device *pdev) { struct mtk_vpu *vpu; struct device *dev; int ret = 0; dev_dbg(&pdev->dev, "initialization\n"); dev = &pdev->dev; vpu = devm_kzalloc(dev, sizeof(*vpu), GFP_KERNEL); if (!vpu) return -ENOMEM; vpu->dev = &pdev->dev; vpu->reg.tcm = devm_platform_ioremap_resource_byname(pdev, "tcm"); if (IS_ERR((__force void *)vpu->reg.tcm)) return PTR_ERR((__force void *)vpu->reg.tcm); vpu->reg.cfg = devm_platform_ioremap_resource_byname(pdev, "cfg_reg"); if (IS_ERR((__force void *)vpu->reg.cfg)) return PTR_ERR((__force void *)vpu->reg.cfg); /* Get VPU clock */ vpu->clk = devm_clk_get(dev, "main"); if (IS_ERR(vpu->clk)) { dev_err(dev, "get vpu clock failed\n"); return PTR_ERR(vpu->clk); } platform_set_drvdata(pdev, vpu); ret = clk_prepare(vpu->clk); if (ret) { dev_err(dev, "prepare vpu clock failed\n"); return ret; } /* VPU watchdog */ vpu->wdt.wq = create_singlethread_workqueue("vpu_wdt"); if (!vpu->wdt.wq) { dev_err(dev, "initialize wdt workqueue failed\n"); ret = -ENOMEM; goto clk_unprepare; } INIT_WORK(&vpu->wdt.ws, vpu_wdt_reset_func); mutex_init(&vpu->vpu_mutex); ret = vpu_clock_enable(vpu); if (ret) { dev_err(dev, "enable vpu clock failed\n"); goto workqueue_destroy; } dev_dbg(dev, "vpu ipi init\n"); ret = vpu_ipi_init(vpu); if (ret) { dev_err(dev, "Failed to init ipi\n"); goto disable_vpu_clk; } /* register vpu initialization IPI */ ret = vpu_ipi_register(pdev, IPI_VPU_INIT, vpu_init_ipi_handler, "vpu_init", vpu); if (ret) { dev_err(dev, "Failed to register IPI_VPU_INIT\n"); goto vpu_mutex_destroy; } #ifdef CONFIG_DEBUG_FS vpu_debugfs = debugfs_create_file("mtk_vpu", S_IRUGO, NULL, (void *)dev, &vpu_debug_fops); #endif /* Set PTCM to 96K and DTCM to 32K */ vpu_cfg_writel(vpu, 0x2, VPU_TCM_CFG); vpu->enable_4GB = !!(totalram_pages() > (SZ_2G >> PAGE_SHIFT)); dev_info(dev, "4GB mode %u\n", vpu->enable_4GB); if (vpu->enable_4GB) { ret = of_reserved_mem_device_init(dev); if (ret) dev_info(dev, "init reserved memory failed\n"); /* continue to use dynamic allocation if failed */ } ret = vpu_alloc_ext_mem(vpu, D_FW); if (ret) { dev_err(dev, "Allocate DM failed\n"); goto remove_debugfs; } ret = vpu_alloc_ext_mem(vpu, P_FW); if (ret) { dev_err(dev, "Allocate PM failed\n"); goto free_d_mem; } init_waitqueue_head(&vpu->run.wq); init_waitqueue_head(&vpu->ack_wq); ret = platform_get_irq(pdev, 0); if (ret < 0) goto free_p_mem; vpu->reg.irq = ret; ret = devm_request_irq(dev, vpu->reg.irq, vpu_irq_handler, 0, pdev->name, vpu); if (ret) { dev_err(dev, "failed to request irq\n"); goto free_p_mem; } vpu_clock_disable(vpu); dev_dbg(dev, "initialization completed\n"); return 0; free_p_mem: vpu_free_ext_mem(vpu, P_FW); free_d_mem: vpu_free_ext_mem(vpu, D_FW); remove_debugfs: of_reserved_mem_device_release(dev); #ifdef CONFIG_DEBUG_FS debugfs_remove(vpu_debugfs); #endif memset(vpu->ipi_desc, 0, sizeof(struct vpu_ipi_desc) * IPI_MAX); vpu_mutex_destroy: mutex_destroy(&vpu->vpu_mutex); disable_vpu_clk: vpu_clock_disable(vpu); workqueue_destroy: destroy_workqueue(vpu->wdt.wq); clk_unprepare: clk_unprepare(vpu->clk); return ret; } static const struct of_device_id mtk_vpu_match[] = { { .compatible = "mediatek,mt8173-vpu", }, {}, }; MODULE_DEVICE_TABLE(of, mtk_vpu_match); static int mtk_vpu_remove(struct platform_device *pdev) { struct mtk_vpu *vpu = platform_get_drvdata(pdev); #ifdef CONFIG_DEBUG_FS debugfs_remove(vpu_debugfs); #endif if (vpu->wdt.wq) destroy_workqueue(vpu->wdt.wq); vpu_free_ext_mem(vpu, P_FW); vpu_free_ext_mem(vpu, D_FW); mutex_destroy(&vpu->vpu_mutex); clk_unprepare(vpu->clk); return 0; } static int mtk_vpu_suspend(struct device *dev) { struct mtk_vpu *vpu = dev_get_drvdata(dev); unsigned long timeout; int ret; ret = vpu_clock_enable(vpu); if (ret) { dev_err(dev, "failed to enable vpu clock\n"); return ret; } if (!vpu_running(vpu)) { vpu_clock_disable(vpu); clk_unprepare(vpu->clk); return 0; } mutex_lock(&vpu->vpu_mutex); /* disable vpu timer interrupt */ vpu_cfg_writel(vpu, vpu_cfg_readl(vpu, VPU_INT_STATUS) | VPU_IDLE_STATE, VPU_INT_STATUS); /* check if vpu is idle for system suspend */ timeout = jiffies + msecs_to_jiffies(VPU_IDLE_TIMEOUT_MS); do { if (time_after(jiffies, timeout)) { dev_err(dev, "vpu idle timeout\n"); mutex_unlock(&vpu->vpu_mutex); vpu_clock_disable(vpu); return -EIO; } } while (!vpu_cfg_readl(vpu, VPU_IDLE_REG)); mutex_unlock(&vpu->vpu_mutex); vpu_clock_disable(vpu); clk_unprepare(vpu->clk); return 0; } static int mtk_vpu_resume(struct device *dev) { struct mtk_vpu *vpu = dev_get_drvdata(dev); int ret; clk_prepare(vpu->clk); ret = vpu_clock_enable(vpu); if (ret) { dev_err(dev, "failed to enable vpu clock\n"); return ret; } mutex_lock(&vpu->vpu_mutex); /* enable vpu timer interrupt */ vpu_cfg_writel(vpu, vpu_cfg_readl(vpu, VPU_INT_STATUS) & ~(VPU_IDLE_STATE), VPU_INT_STATUS); mutex_unlock(&vpu->vpu_mutex); vpu_clock_disable(vpu); return 0; } static const struct dev_pm_ops mtk_vpu_pm = { .suspend = mtk_vpu_suspend, .resume = mtk_vpu_resume, }; static struct platform_driver mtk_vpu_driver = { .probe = mtk_vpu_probe, .remove = mtk_vpu_remove, .driver = { .name = "mtk_vpu", .pm = &mtk_vpu_pm, .of_match_table = mtk_vpu_match, }, }; module_platform_driver(mtk_vpu_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Mediatek Video Processor Unit driver");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1