Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Laurent Pinchart | 975 | 62.98% | 33 | 71.74% |
Kieran Bingham | 541 | 34.95% | 8 | 17.39% |
Takanari Hayama | 13 | 0.84% | 1 | 2.17% |
Michael Rodin | 11 | 0.71% | 1 | 2.17% |
Takashi Saito | 3 | 0.19% | 1 | 2.17% |
Javier Martinez Canillas | 3 | 0.19% | 1 | 2.17% |
Hans Verkuil | 2 | 0.13% | 1 | 2.17% |
Total | 1548 | 46 |
// SPDX-License-Identifier: GPL-2.0+ /* * vsp1_rpf.c -- R-Car VSP1 Read Pixel Formatter * * Copyright (C) 2013-2014 Renesas Electronics Corporation * * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com) */ #include <linux/device.h> #include <media/v4l2-subdev.h> #include "vsp1.h" #include "vsp1_dl.h" #include "vsp1_pipe.h" #include "vsp1_rwpf.h" #include "vsp1_video.h" #define RPF_MAX_WIDTH 8190 #define RPF_MAX_HEIGHT 8190 /* Pre extended display list command data structure. */ struct vsp1_extcmd_auto_fld_body { u32 top_y0; u32 bottom_y0; u32 top_c0; u32 bottom_c0; u32 top_c1; u32 bottom_c1; u32 reserved0; u32 reserved1; } __packed; /* ----------------------------------------------------------------------------- * Device Access */ static inline void vsp1_rpf_write(struct vsp1_rwpf *rpf, struct vsp1_dl_body *dlb, u32 reg, u32 data) { vsp1_dl_body_write(dlb, reg + rpf->entity.index * VI6_RPF_OFFSET, data); } /* ----------------------------------------------------------------------------- * V4L2 Subdevice Operations */ static const struct v4l2_subdev_ops rpf_ops = { .pad = &vsp1_rwpf_pad_ops, }; /* ----------------------------------------------------------------------------- * VSP1 Entity Operations */ static void rpf_configure_stream(struct vsp1_entity *entity, struct vsp1_pipeline *pipe, struct vsp1_dl_list *dl, struct vsp1_dl_body *dlb) { struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev); const struct vsp1_format_info *fmtinfo = rpf->fmtinfo; const struct v4l2_pix_format_mplane *format = &rpf->format; const struct v4l2_mbus_framefmt *source_format; const struct v4l2_mbus_framefmt *sink_format; unsigned int left = 0; unsigned int top = 0; u32 pstride; u32 infmt; /* Stride */ pstride = format->plane_fmt[0].bytesperline << VI6_RPF_SRCM_PSTRIDE_Y_SHIFT; if (format->num_planes > 1) pstride |= format->plane_fmt[1].bytesperline << VI6_RPF_SRCM_PSTRIDE_C_SHIFT; /* * pstride has both STRIDE_Y and STRIDE_C, but multiplying the whole * of pstride by 2 is conveniently OK here as we are multiplying both * values. */ if (pipe->interlaced) pstride *= 2; vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_PSTRIDE, pstride); /* Format */ sink_format = vsp1_entity_get_pad_format(&rpf->entity, rpf->entity.config, RWPF_PAD_SINK); source_format = vsp1_entity_get_pad_format(&rpf->entity, rpf->entity.config, RWPF_PAD_SOURCE); infmt = VI6_RPF_INFMT_CIPM | (fmtinfo->hwfmt << VI6_RPF_INFMT_RDFMT_SHIFT); if (fmtinfo->swap_yc) infmt |= VI6_RPF_INFMT_SPYCS; if (fmtinfo->swap_uv) infmt |= VI6_RPF_INFMT_SPUVS; if (sink_format->code != source_format->code) infmt |= VI6_RPF_INFMT_CSC; vsp1_rpf_write(rpf, dlb, VI6_RPF_INFMT, infmt); vsp1_rpf_write(rpf, dlb, VI6_RPF_DSWAP, fmtinfo->swap); /* Output location. */ if (pipe->brx) { const struct v4l2_rect *compose; compose = vsp1_entity_get_pad_selection(pipe->brx, pipe->brx->config, rpf->brx_input, V4L2_SEL_TGT_COMPOSE); left = compose->left; top = compose->top; } if (pipe->interlaced) top /= 2; vsp1_rpf_write(rpf, dlb, VI6_RPF_LOC, (left << VI6_RPF_LOC_HCOORD_SHIFT) | (top << VI6_RPF_LOC_VCOORD_SHIFT)); /* * On Gen2 use the alpha channel (extended to 8 bits) when available or * a fixed alpha value set through the V4L2_CID_ALPHA_COMPONENT control * otherwise. * * The Gen3 RPF has extended alpha capability and can both multiply the * alpha channel by a fixed global alpha value, and multiply the pixel * components to convert the input to premultiplied alpha. * * As alpha premultiplication is available in the BRx for both Gen2 and * Gen3 we handle it there and use the Gen3 alpha multiplier for global * alpha multiplication only. This however prevents conversion to * premultiplied alpha if no BRx is present in the pipeline. If that use * case turns out to be useful we will revisit the implementation (for * Gen3 only). * * We enable alpha multiplication on Gen3 using the fixed alpha value * set through the V4L2_CID_ALPHA_COMPONENT control when the input * contains an alpha channel. On Gen2 the global alpha is ignored in * that case. * * In all cases, disable color keying. */ vsp1_rpf_write(rpf, dlb, VI6_RPF_ALPH_SEL, VI6_RPF_ALPH_SEL_AEXT_EXT | (fmtinfo->alpha ? VI6_RPF_ALPH_SEL_ASEL_PACKED : VI6_RPF_ALPH_SEL_ASEL_FIXED)); if (entity->vsp1->info->gen == 3) { u32 mult; if (fmtinfo->alpha) { /* * When the input contains an alpha channel enable the * alpha multiplier. If the input is premultiplied we * need to multiply both the alpha channel and the pixel * components by the global alpha value to keep them * premultiplied. Otherwise multiply the alpha channel * only. */ bool premultiplied = format->flags & V4L2_PIX_FMT_FLAG_PREMUL_ALPHA; mult = VI6_RPF_MULT_ALPHA_A_MMD_RATIO | (premultiplied ? VI6_RPF_MULT_ALPHA_P_MMD_RATIO : VI6_RPF_MULT_ALPHA_P_MMD_NONE); } else { /* * When the input doesn't contain an alpha channel the * global alpha value is applied in the unpacking unit, * the alpha multiplier isn't needed and must be * disabled. */ mult = VI6_RPF_MULT_ALPHA_A_MMD_NONE | VI6_RPF_MULT_ALPHA_P_MMD_NONE; } rpf->mult_alpha = mult; } vsp1_rpf_write(rpf, dlb, VI6_RPF_MSK_CTRL, 0); vsp1_rpf_write(rpf, dlb, VI6_RPF_CKEY_CTRL, 0); } static void vsp1_rpf_configure_autofld(struct vsp1_rwpf *rpf, struct vsp1_dl_list *dl) { const struct v4l2_pix_format_mplane *format = &rpf->format; struct vsp1_dl_ext_cmd *cmd; struct vsp1_extcmd_auto_fld_body *auto_fld; u32 offset_y, offset_c; cmd = vsp1_dl_get_pre_cmd(dl); if (WARN_ONCE(!cmd, "Failed to obtain an autofld cmd")) return; /* Re-index our auto_fld to match the current RPF. */ auto_fld = cmd->data; auto_fld = &auto_fld[rpf->entity.index]; auto_fld->top_y0 = rpf->mem.addr[0]; auto_fld->top_c0 = rpf->mem.addr[1]; auto_fld->top_c1 = rpf->mem.addr[2]; offset_y = format->plane_fmt[0].bytesperline; offset_c = format->plane_fmt[1].bytesperline; auto_fld->bottom_y0 = rpf->mem.addr[0] + offset_y; auto_fld->bottom_c0 = rpf->mem.addr[1] + offset_c; auto_fld->bottom_c1 = rpf->mem.addr[2] + offset_c; cmd->flags |= VI6_DL_EXT_AUTOFLD_INT | BIT(16 + rpf->entity.index); } static void rpf_configure_frame(struct vsp1_entity *entity, struct vsp1_pipeline *pipe, struct vsp1_dl_list *dl, struct vsp1_dl_body *dlb) { struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev); vsp1_rpf_write(rpf, dlb, VI6_RPF_VRTCOL_SET, rpf->alpha << VI6_RPF_VRTCOL_SET_LAYA_SHIFT); vsp1_rpf_write(rpf, dlb, VI6_RPF_MULT_ALPHA, rpf->mult_alpha | (rpf->alpha << VI6_RPF_MULT_ALPHA_RATIO_SHIFT)); vsp1_pipeline_propagate_alpha(pipe, dlb, rpf->alpha); } static void rpf_configure_partition(struct vsp1_entity *entity, struct vsp1_pipeline *pipe, struct vsp1_dl_list *dl, struct vsp1_dl_body *dlb) { struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev); struct vsp1_rwpf_memory mem = rpf->mem; struct vsp1_device *vsp1 = rpf->entity.vsp1; const struct vsp1_format_info *fmtinfo = rpf->fmtinfo; const struct v4l2_pix_format_mplane *format = &rpf->format; struct v4l2_rect crop; /* * Source size and crop offsets. * * The crop offsets correspond to the location of the crop * rectangle top left corner in the plane buffer. Only two * offsets are needed, as planes 2 and 3 always have identical * strides. */ crop = *vsp1_rwpf_get_crop(rpf, rpf->entity.config); /* * Partition Algorithm Control * * The partition algorithm can split this frame into multiple * slices. We must scale our partition window based on the pipe * configuration to match the destination partition window. * To achieve this, we adjust our crop to provide a 'sub-crop' * matching the expected partition window. Only 'left' and * 'width' need to be adjusted. */ if (pipe->partitions > 1) { crop.width = pipe->partition->rpf.width; crop.left += pipe->partition->rpf.left; } if (pipe->interlaced) { crop.height = round_down(crop.height / 2, fmtinfo->vsub); crop.top = round_down(crop.top / 2, fmtinfo->vsub); } vsp1_rpf_write(rpf, dlb, VI6_RPF_SRC_BSIZE, (crop.width << VI6_RPF_SRC_BSIZE_BHSIZE_SHIFT) | (crop.height << VI6_RPF_SRC_BSIZE_BVSIZE_SHIFT)); vsp1_rpf_write(rpf, dlb, VI6_RPF_SRC_ESIZE, (crop.width << VI6_RPF_SRC_ESIZE_EHSIZE_SHIFT) | (crop.height << VI6_RPF_SRC_ESIZE_EVSIZE_SHIFT)); mem.addr[0] += crop.top * format->plane_fmt[0].bytesperline + crop.left * fmtinfo->bpp[0] / 8; if (format->num_planes > 1) { unsigned int bpl = format->plane_fmt[1].bytesperline; unsigned int offset; offset = crop.top / fmtinfo->vsub * bpl + crop.left / fmtinfo->hsub * fmtinfo->bpp[1] / 8; mem.addr[1] += offset; mem.addr[2] += offset; } /* * On Gen3 hardware the SPUVS bit has no effect on 3-planar * formats. Swap the U and V planes manually in that case. */ if (vsp1->info->gen == 3 && format->num_planes == 3 && fmtinfo->swap_uv) swap(mem.addr[1], mem.addr[2]); /* * Interlaced pipelines will use the extended pre-cmd to process * SRCM_ADDR_{Y,C0,C1}. */ if (pipe->interlaced) { vsp1_rpf_configure_autofld(rpf, dl); } else { vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_Y, mem.addr[0]); vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_C0, mem.addr[1]); vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_C1, mem.addr[2]); } } static void rpf_partition(struct vsp1_entity *entity, struct vsp1_pipeline *pipe, struct vsp1_partition *partition, unsigned int partition_idx, struct vsp1_partition_window *window) { partition->rpf = *window; } static const struct vsp1_entity_operations rpf_entity_ops = { .configure_stream = rpf_configure_stream, .configure_frame = rpf_configure_frame, .configure_partition = rpf_configure_partition, .partition = rpf_partition, }; /* ----------------------------------------------------------------------------- * Initialization and Cleanup */ struct vsp1_rwpf *vsp1_rpf_create(struct vsp1_device *vsp1, unsigned int index) { struct vsp1_rwpf *rpf; char name[6]; int ret; rpf = devm_kzalloc(vsp1->dev, sizeof(*rpf), GFP_KERNEL); if (rpf == NULL) return ERR_PTR(-ENOMEM); rpf->max_width = RPF_MAX_WIDTH; rpf->max_height = RPF_MAX_HEIGHT; rpf->entity.ops = &rpf_entity_ops; rpf->entity.type = VSP1_ENTITY_RPF; rpf->entity.index = index; sprintf(name, "rpf.%u", index); ret = vsp1_entity_init(vsp1, &rpf->entity, name, 2, &rpf_ops, MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER); if (ret < 0) return ERR_PTR(ret); /* Initialize the control handler. */ ret = vsp1_rwpf_init_ctrls(rpf, 0); if (ret < 0) { dev_err(vsp1->dev, "rpf%u: failed to initialize controls\n", index); goto error; } v4l2_ctrl_handler_setup(&rpf->ctrls); return rpf; error: vsp1_entity_destroy(&rpf->entity); return ERR_PTR(ret); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1