Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sergei Shtylyov | 2901 | 74.10% | 1 | 5.00% |
Wolfram Sang | 328 | 8.38% | 4 | 20.00% |
Andrew Gabbasov | 262 | 6.69% | 1 | 5.00% |
Lad Prabhakar | 221 | 5.64% | 7 | 35.00% |
Geert Uytterhoeven | 170 | 4.34% | 3 | 15.00% |
Johan Hovold | 22 | 0.56% | 1 | 5.00% |
CongDang | 8 | 0.20% | 1 | 5.00% |
Krzysztof Kozlowski | 3 | 0.08% | 2 | 10.00% |
Total | 3915 | 20 |
// SPDX-License-Identifier: GPL-2.0 /* * Renesas RPC-IF core driver * * Copyright (C) 2018-2019 Renesas Solutions Corp. * Copyright (C) 2019 Macronix International Co., Ltd. * Copyright (C) 2019-2020 Cogent Embedded, Inc. */ #include <linux/clk.h> #include <linux/io.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/regmap.h> #include <linux/reset.h> #include <memory/renesas-rpc-if.h> #define RPCIF_CMNCR 0x0000 /* R/W */ #define RPCIF_CMNCR_MD BIT(31) #define RPCIF_CMNCR_MOIIO3(val) (((val) & 0x3) << 22) #define RPCIF_CMNCR_MOIIO2(val) (((val) & 0x3) << 20) #define RPCIF_CMNCR_MOIIO1(val) (((val) & 0x3) << 18) #define RPCIF_CMNCR_MOIIO0(val) (((val) & 0x3) << 16) #define RPCIF_CMNCR_MOIIO(val) (RPCIF_CMNCR_MOIIO0(val) | RPCIF_CMNCR_MOIIO1(val) | \ RPCIF_CMNCR_MOIIO2(val) | RPCIF_CMNCR_MOIIO3(val)) #define RPCIF_CMNCR_IO3FV(val) (((val) & 0x3) << 14) /* documented for RZ/G2L */ #define RPCIF_CMNCR_IO2FV(val) (((val) & 0x3) << 12) /* documented for RZ/G2L */ #define RPCIF_CMNCR_IO0FV(val) (((val) & 0x3) << 8) #define RPCIF_CMNCR_IOFV(val) (RPCIF_CMNCR_IO0FV(val) | RPCIF_CMNCR_IO2FV(val) | \ RPCIF_CMNCR_IO3FV(val)) #define RPCIF_CMNCR_BSZ(val) (((val) & 0x3) << 0) #define RPCIF_SSLDR 0x0004 /* R/W */ #define RPCIF_SSLDR_SPNDL(d) (((d) & 0x7) << 16) #define RPCIF_SSLDR_SLNDL(d) (((d) & 0x7) << 8) #define RPCIF_SSLDR_SCKDL(d) (((d) & 0x7) << 0) #define RPCIF_DRCR 0x000C /* R/W */ #define RPCIF_DRCR_SSLN BIT(24) #define RPCIF_DRCR_RBURST(v) ((((v) - 1) & 0x1F) << 16) #define RPCIF_DRCR_RCF BIT(9) #define RPCIF_DRCR_RBE BIT(8) #define RPCIF_DRCR_SSLE BIT(0) #define RPCIF_DRCMR 0x0010 /* R/W */ #define RPCIF_DRCMR_CMD(c) (((c) & 0xFF) << 16) #define RPCIF_DRCMR_OCMD(c) (((c) & 0xFF) << 0) #define RPCIF_DREAR 0x0014 /* R/W */ #define RPCIF_DREAR_EAV(c) (((c) & 0xF) << 16) #define RPCIF_DREAR_EAC(c) (((c) & 0x7) << 0) #define RPCIF_DROPR 0x0018 /* R/W */ #define RPCIF_DRENR 0x001C /* R/W */ #define RPCIF_DRENR_CDB(o) (u32)((((o) & 0x3) << 30)) #define RPCIF_DRENR_OCDB(o) (((o) & 0x3) << 28) #define RPCIF_DRENR_ADB(o) (((o) & 0x3) << 24) #define RPCIF_DRENR_OPDB(o) (((o) & 0x3) << 20) #define RPCIF_DRENR_DRDB(o) (((o) & 0x3) << 16) #define RPCIF_DRENR_DME BIT(15) #define RPCIF_DRENR_CDE BIT(14) #define RPCIF_DRENR_OCDE BIT(12) #define RPCIF_DRENR_ADE(v) (((v) & 0xF) << 8) #define RPCIF_DRENR_OPDE(v) (((v) & 0xF) << 4) #define RPCIF_SMCR 0x0020 /* R/W */ #define RPCIF_SMCR_SSLKP BIT(8) #define RPCIF_SMCR_SPIRE BIT(2) #define RPCIF_SMCR_SPIWE BIT(1) #define RPCIF_SMCR_SPIE BIT(0) #define RPCIF_SMCMR 0x0024 /* R/W */ #define RPCIF_SMCMR_CMD(c) (((c) & 0xFF) << 16) #define RPCIF_SMCMR_OCMD(c) (((c) & 0xFF) << 0) #define RPCIF_SMADR 0x0028 /* R/W */ #define RPCIF_SMOPR 0x002C /* R/W */ #define RPCIF_SMOPR_OPD3(o) (((o) & 0xFF) << 24) #define RPCIF_SMOPR_OPD2(o) (((o) & 0xFF) << 16) #define RPCIF_SMOPR_OPD1(o) (((o) & 0xFF) << 8) #define RPCIF_SMOPR_OPD0(o) (((o) & 0xFF) << 0) #define RPCIF_SMENR 0x0030 /* R/W */ #define RPCIF_SMENR_CDB(o) (((o) & 0x3) << 30) #define RPCIF_SMENR_OCDB(o) (((o) & 0x3) << 28) #define RPCIF_SMENR_ADB(o) (((o) & 0x3) << 24) #define RPCIF_SMENR_OPDB(o) (((o) & 0x3) << 20) #define RPCIF_SMENR_SPIDB(o) (((o) & 0x3) << 16) #define RPCIF_SMENR_DME BIT(15) #define RPCIF_SMENR_CDE BIT(14) #define RPCIF_SMENR_OCDE BIT(12) #define RPCIF_SMENR_ADE(v) (((v) & 0xF) << 8) #define RPCIF_SMENR_OPDE(v) (((v) & 0xF) << 4) #define RPCIF_SMENR_SPIDE(v) (((v) & 0xF) << 0) #define RPCIF_SMRDR0 0x0038 /* R */ #define RPCIF_SMRDR1 0x003C /* R */ #define RPCIF_SMWDR0 0x0040 /* W */ #define RPCIF_SMWDR1 0x0044 /* W */ #define RPCIF_CMNSR 0x0048 /* R */ #define RPCIF_CMNSR_SSLF BIT(1) #define RPCIF_CMNSR_TEND BIT(0) #define RPCIF_DRDMCR 0x0058 /* R/W */ #define RPCIF_DMDMCR_DMCYC(v) ((((v) - 1) & 0x1F) << 0) #define RPCIF_DRDRENR 0x005C /* R/W */ #define RPCIF_DRDRENR_HYPE(v) (((v) & 0x7) << 12) #define RPCIF_DRDRENR_ADDRE BIT(8) #define RPCIF_DRDRENR_OPDRE BIT(4) #define RPCIF_DRDRENR_DRDRE BIT(0) #define RPCIF_SMDMCR 0x0060 /* R/W */ #define RPCIF_SMDMCR_DMCYC(v) ((((v) - 1) & 0x1F) << 0) #define RPCIF_SMDRENR 0x0064 /* R/W */ #define RPCIF_SMDRENR_HYPE(v) (((v) & 0x7) << 12) #define RPCIF_SMDRENR_ADDRE BIT(8) #define RPCIF_SMDRENR_OPDRE BIT(4) #define RPCIF_SMDRENR_SPIDRE BIT(0) #define RPCIF_PHYADD 0x0070 /* R/W available on R-Car E3/D3/V3M and RZ/G2{E,L} */ #define RPCIF_PHYWR 0x0074 /* R/W available on R-Car E3/D3/V3M and RZ/G2{E,L} */ #define RPCIF_PHYCNT 0x007C /* R/W */ #define RPCIF_PHYCNT_CAL BIT(31) #define RPCIF_PHYCNT_OCTA(v) (((v) & 0x3) << 22) #define RPCIF_PHYCNT_EXDS BIT(21) #define RPCIF_PHYCNT_OCT BIT(20) #define RPCIF_PHYCNT_DDRCAL BIT(19) #define RPCIF_PHYCNT_HS BIT(18) #define RPCIF_PHYCNT_CKSEL(v) (((v) & 0x3) << 16) /* valid only for RZ/G2L */ #define RPCIF_PHYCNT_STRTIM(v) (((v) & 0x7) << 15 | ((v) & 0x8) << 24) /* valid for R-Car and RZ/G2{E,H,M,N} */ #define RPCIF_PHYCNT_WBUF2 BIT(4) #define RPCIF_PHYCNT_WBUF BIT(2) #define RPCIF_PHYCNT_PHYMEM(v) (((v) & 0x3) << 0) #define RPCIF_PHYCNT_PHYMEM_MASK GENMASK(1, 0) #define RPCIF_PHYOFFSET1 0x0080 /* R/W */ #define RPCIF_PHYOFFSET1_DDRTMG(v) (((v) & 0x3) << 28) #define RPCIF_PHYOFFSET2 0x0084 /* R/W */ #define RPCIF_PHYOFFSET2_OCTTMG(v) (((v) & 0x7) << 8) #define RPCIF_PHYINT 0x0088 /* R/W */ #define RPCIF_PHYINT_WPVAL BIT(1) static const struct regmap_range rpcif_volatile_ranges[] = { regmap_reg_range(RPCIF_SMRDR0, RPCIF_SMRDR1), regmap_reg_range(RPCIF_SMWDR0, RPCIF_SMWDR1), regmap_reg_range(RPCIF_CMNSR, RPCIF_CMNSR), }; static const struct regmap_access_table rpcif_volatile_table = { .yes_ranges = rpcif_volatile_ranges, .n_yes_ranges = ARRAY_SIZE(rpcif_volatile_ranges), }; /* * Custom accessor functions to ensure SM[RW]DR[01] are always accessed with * proper width. Requires rpcif.xfer_size to be correctly set before! */ static int rpcif_reg_read(void *context, unsigned int reg, unsigned int *val) { struct rpcif *rpc = context; switch (reg) { case RPCIF_SMRDR0: case RPCIF_SMWDR0: switch (rpc->xfer_size) { case 1: *val = readb(rpc->base + reg); return 0; case 2: *val = readw(rpc->base + reg); return 0; case 4: case 8: *val = readl(rpc->base + reg); return 0; default: return -EILSEQ; } case RPCIF_SMRDR1: case RPCIF_SMWDR1: if (rpc->xfer_size != 8) return -EILSEQ; break; } *val = readl(rpc->base + reg); return 0; } static int rpcif_reg_write(void *context, unsigned int reg, unsigned int val) { struct rpcif *rpc = context; switch (reg) { case RPCIF_SMWDR0: switch (rpc->xfer_size) { case 1: writeb(val, rpc->base + reg); return 0; case 2: writew(val, rpc->base + reg); return 0; case 4: case 8: writel(val, rpc->base + reg); return 0; default: return -EILSEQ; } case RPCIF_SMWDR1: if (rpc->xfer_size != 8) return -EILSEQ; break; case RPCIF_SMRDR0: case RPCIF_SMRDR1: return -EPERM; } writel(val, rpc->base + reg); return 0; } static const struct regmap_config rpcif_regmap_config = { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, .reg_read = rpcif_reg_read, .reg_write = rpcif_reg_write, .fast_io = true, .max_register = RPCIF_PHYINT, .volatile_table = &rpcif_volatile_table, }; int rpcif_sw_init(struct rpcif *rpc, struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct resource *res; rpc->dev = dev; rpc->base = devm_platform_ioremap_resource_byname(pdev, "regs"); if (IS_ERR(rpc->base)) return PTR_ERR(rpc->base); rpc->regmap = devm_regmap_init(&pdev->dev, NULL, rpc, &rpcif_regmap_config); if (IS_ERR(rpc->regmap)) { dev_err(&pdev->dev, "failed to init regmap for rpcif, error %ld\n", PTR_ERR(rpc->regmap)); return PTR_ERR(rpc->regmap); } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dirmap"); rpc->dirmap = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(rpc->dirmap)) return PTR_ERR(rpc->dirmap); rpc->size = resource_size(res); rpc->type = (uintptr_t)of_device_get_match_data(dev); rpc->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL); return PTR_ERR_OR_ZERO(rpc->rstc); } EXPORT_SYMBOL(rpcif_sw_init); static void rpcif_rzg2l_timing_adjust_sdr(struct rpcif *rpc) { regmap_write(rpc->regmap, RPCIF_PHYWR, 0xa5390000); regmap_write(rpc->regmap, RPCIF_PHYADD, 0x80000000); regmap_write(rpc->regmap, RPCIF_PHYWR, 0x00008080); regmap_write(rpc->regmap, RPCIF_PHYADD, 0x80000022); regmap_write(rpc->regmap, RPCIF_PHYWR, 0x00008080); regmap_write(rpc->regmap, RPCIF_PHYADD, 0x80000024); regmap_update_bits(rpc->regmap, RPCIF_PHYCNT, RPCIF_PHYCNT_CKSEL(3), RPCIF_PHYCNT_CKSEL(3)); regmap_write(rpc->regmap, RPCIF_PHYWR, 0x00000030); regmap_write(rpc->regmap, RPCIF_PHYADD, 0x80000032); } int rpcif_hw_init(struct rpcif *rpc, bool hyperflash) { u32 dummy; pm_runtime_get_sync(rpc->dev); if (rpc->type == RPCIF_RZ_G2L) { int ret; ret = reset_control_reset(rpc->rstc); if (ret) return ret; usleep_range(200, 300); rpcif_rzg2l_timing_adjust_sdr(rpc); } regmap_update_bits(rpc->regmap, RPCIF_PHYCNT, RPCIF_PHYCNT_PHYMEM_MASK, RPCIF_PHYCNT_PHYMEM(hyperflash ? 3 : 0)); /* DMA Transfer is not supported */ regmap_update_bits(rpc->regmap, RPCIF_PHYCNT, RPCIF_PHYCNT_HS, 0); if (rpc->type == RPCIF_RCAR_GEN3) regmap_update_bits(rpc->regmap, RPCIF_PHYCNT, RPCIF_PHYCNT_STRTIM(7), RPCIF_PHYCNT_STRTIM(7)); else if (rpc->type == RPCIF_RCAR_GEN4) regmap_update_bits(rpc->regmap, RPCIF_PHYCNT, RPCIF_PHYCNT_STRTIM(15), RPCIF_PHYCNT_STRTIM(15)); regmap_update_bits(rpc->regmap, RPCIF_PHYOFFSET1, RPCIF_PHYOFFSET1_DDRTMG(3), RPCIF_PHYOFFSET1_DDRTMG(3)); regmap_update_bits(rpc->regmap, RPCIF_PHYOFFSET2, RPCIF_PHYOFFSET2_OCTTMG(7), RPCIF_PHYOFFSET2_OCTTMG(4)); if (hyperflash) regmap_update_bits(rpc->regmap, RPCIF_PHYINT, RPCIF_PHYINT_WPVAL, 0); if (rpc->type == RPCIF_RZ_G2L) regmap_update_bits(rpc->regmap, RPCIF_CMNCR, RPCIF_CMNCR_MOIIO(3) | RPCIF_CMNCR_IOFV(3) | RPCIF_CMNCR_BSZ(3), RPCIF_CMNCR_MOIIO(1) | RPCIF_CMNCR_IOFV(2) | RPCIF_CMNCR_BSZ(hyperflash ? 1 : 0)); else regmap_update_bits(rpc->regmap, RPCIF_CMNCR, RPCIF_CMNCR_MOIIO(3) | RPCIF_CMNCR_BSZ(3), RPCIF_CMNCR_MOIIO(3) | RPCIF_CMNCR_BSZ(hyperflash ? 1 : 0)); /* Set RCF after BSZ update */ regmap_write(rpc->regmap, RPCIF_DRCR, RPCIF_DRCR_RCF); /* Dummy read according to spec */ regmap_read(rpc->regmap, RPCIF_DRCR, &dummy); regmap_write(rpc->regmap, RPCIF_SSLDR, RPCIF_SSLDR_SPNDL(7) | RPCIF_SSLDR_SLNDL(7) | RPCIF_SSLDR_SCKDL(7)); pm_runtime_put(rpc->dev); rpc->bus_size = hyperflash ? 2 : 1; return 0; } EXPORT_SYMBOL(rpcif_hw_init); static int wait_msg_xfer_end(struct rpcif *rpc) { u32 sts; return regmap_read_poll_timeout(rpc->regmap, RPCIF_CMNSR, sts, sts & RPCIF_CMNSR_TEND, 0, USEC_PER_SEC); } static u8 rpcif_bits_set(struct rpcif *rpc, u32 nbytes) { if (rpc->bus_size == 2) nbytes /= 2; nbytes = clamp(nbytes, 1U, 4U); return GENMASK(3, 4 - nbytes); } static u8 rpcif_bit_size(u8 buswidth) { return buswidth > 4 ? 2 : ilog2(buswidth); } void rpcif_prepare(struct rpcif *rpc, const struct rpcif_op *op, u64 *offs, size_t *len) { rpc->smcr = 0; rpc->smadr = 0; rpc->enable = 0; rpc->command = 0; rpc->option = 0; rpc->dummy = 0; rpc->ddr = 0; rpc->xferlen = 0; if (op->cmd.buswidth) { rpc->enable = RPCIF_SMENR_CDE | RPCIF_SMENR_CDB(rpcif_bit_size(op->cmd.buswidth)); rpc->command = RPCIF_SMCMR_CMD(op->cmd.opcode); if (op->cmd.ddr) rpc->ddr = RPCIF_SMDRENR_HYPE(0x5); } if (op->ocmd.buswidth) { rpc->enable |= RPCIF_SMENR_OCDE | RPCIF_SMENR_OCDB(rpcif_bit_size(op->ocmd.buswidth)); rpc->command |= RPCIF_SMCMR_OCMD(op->ocmd.opcode); } if (op->addr.buswidth) { rpc->enable |= RPCIF_SMENR_ADB(rpcif_bit_size(op->addr.buswidth)); if (op->addr.nbytes == 4) rpc->enable |= RPCIF_SMENR_ADE(0xF); else rpc->enable |= RPCIF_SMENR_ADE(GENMASK( 2, 3 - op->addr.nbytes)); if (op->addr.ddr) rpc->ddr |= RPCIF_SMDRENR_ADDRE; if (offs && len) rpc->smadr = *offs; else rpc->smadr = op->addr.val; } if (op->dummy.buswidth) { rpc->enable |= RPCIF_SMENR_DME; rpc->dummy = RPCIF_SMDMCR_DMCYC(op->dummy.ncycles / op->dummy.buswidth); } if (op->option.buswidth) { rpc->enable |= RPCIF_SMENR_OPDE( rpcif_bits_set(rpc, op->option.nbytes)) | RPCIF_SMENR_OPDB(rpcif_bit_size(op->option.buswidth)); if (op->option.ddr) rpc->ddr |= RPCIF_SMDRENR_OPDRE; rpc->option = op->option.val; } rpc->dir = op->data.dir; if (op->data.buswidth) { u32 nbytes; rpc->buffer = op->data.buf.in; switch (op->data.dir) { case RPCIF_DATA_IN: rpc->smcr = RPCIF_SMCR_SPIRE; break; case RPCIF_DATA_OUT: rpc->smcr = RPCIF_SMCR_SPIWE; break; default: break; } if (op->data.ddr) rpc->ddr |= RPCIF_SMDRENR_SPIDRE; if (offs && len) nbytes = *len; else nbytes = op->data.nbytes; rpc->xferlen = nbytes; rpc->enable |= RPCIF_SMENR_SPIDB(rpcif_bit_size(op->data.buswidth)); } } EXPORT_SYMBOL(rpcif_prepare); int rpcif_manual_xfer(struct rpcif *rpc) { u32 smenr, smcr, pos = 0, max = rpc->bus_size == 2 ? 8 : 4; int ret = 0; pm_runtime_get_sync(rpc->dev); regmap_update_bits(rpc->regmap, RPCIF_PHYCNT, RPCIF_PHYCNT_CAL, RPCIF_PHYCNT_CAL); regmap_update_bits(rpc->regmap, RPCIF_CMNCR, RPCIF_CMNCR_MD, RPCIF_CMNCR_MD); regmap_write(rpc->regmap, RPCIF_SMCMR, rpc->command); regmap_write(rpc->regmap, RPCIF_SMOPR, rpc->option); regmap_write(rpc->regmap, RPCIF_SMDMCR, rpc->dummy); regmap_write(rpc->regmap, RPCIF_SMDRENR, rpc->ddr); regmap_write(rpc->regmap, RPCIF_SMADR, rpc->smadr); smenr = rpc->enable; switch (rpc->dir) { case RPCIF_DATA_OUT: while (pos < rpc->xferlen) { u32 bytes_left = rpc->xferlen - pos; u32 nbytes, data[2], *p = data; smcr = rpc->smcr | RPCIF_SMCR_SPIE; /* nbytes may only be 1, 2, 4, or 8 */ nbytes = bytes_left >= max ? max : (1 << ilog2(bytes_left)); if (bytes_left > nbytes) smcr |= RPCIF_SMCR_SSLKP; smenr |= RPCIF_SMENR_SPIDE(rpcif_bits_set(rpc, nbytes)); regmap_write(rpc->regmap, RPCIF_SMENR, smenr); rpc->xfer_size = nbytes; memcpy(data, rpc->buffer + pos, nbytes); if (nbytes == 8) regmap_write(rpc->regmap, RPCIF_SMWDR1, *p++); regmap_write(rpc->regmap, RPCIF_SMWDR0, *p); regmap_write(rpc->regmap, RPCIF_SMCR, smcr); ret = wait_msg_xfer_end(rpc); if (ret) goto err_out; pos += nbytes; smenr = rpc->enable & ~RPCIF_SMENR_CDE & ~RPCIF_SMENR_ADE(0xF); } break; case RPCIF_DATA_IN: /* * RPC-IF spoils the data for the commands without an address * phase (like RDID) in the manual mode, so we'll have to work * around this issue by using the external address space read * mode instead. */ if (!(smenr & RPCIF_SMENR_ADE(0xF)) && rpc->dirmap) { u32 dummy; regmap_update_bits(rpc->regmap, RPCIF_CMNCR, RPCIF_CMNCR_MD, 0); regmap_write(rpc->regmap, RPCIF_DRCR, RPCIF_DRCR_RBURST(32) | RPCIF_DRCR_RBE); regmap_write(rpc->regmap, RPCIF_DRCMR, rpc->command); regmap_write(rpc->regmap, RPCIF_DREAR, RPCIF_DREAR_EAC(1)); regmap_write(rpc->regmap, RPCIF_DROPR, rpc->option); regmap_write(rpc->regmap, RPCIF_DRENR, smenr & ~RPCIF_SMENR_SPIDE(0xF)); regmap_write(rpc->regmap, RPCIF_DRDMCR, rpc->dummy); regmap_write(rpc->regmap, RPCIF_DRDRENR, rpc->ddr); memcpy_fromio(rpc->buffer, rpc->dirmap, rpc->xferlen); regmap_write(rpc->regmap, RPCIF_DRCR, RPCIF_DRCR_RCF); /* Dummy read according to spec */ regmap_read(rpc->regmap, RPCIF_DRCR, &dummy); break; } while (pos < rpc->xferlen) { u32 bytes_left = rpc->xferlen - pos; u32 nbytes, data[2], *p = data; /* nbytes may only be 1, 2, 4, or 8 */ nbytes = bytes_left >= max ? max : (1 << ilog2(bytes_left)); regmap_write(rpc->regmap, RPCIF_SMADR, rpc->smadr + pos); smenr &= ~RPCIF_SMENR_SPIDE(0xF); smenr |= RPCIF_SMENR_SPIDE(rpcif_bits_set(rpc, nbytes)); regmap_write(rpc->regmap, RPCIF_SMENR, smenr); regmap_write(rpc->regmap, RPCIF_SMCR, rpc->smcr | RPCIF_SMCR_SPIE); rpc->xfer_size = nbytes; ret = wait_msg_xfer_end(rpc); if (ret) goto err_out; if (nbytes == 8) regmap_read(rpc->regmap, RPCIF_SMRDR1, p++); regmap_read(rpc->regmap, RPCIF_SMRDR0, p); memcpy(rpc->buffer + pos, data, nbytes); pos += nbytes; } break; default: regmap_write(rpc->regmap, RPCIF_SMENR, rpc->enable); regmap_write(rpc->regmap, RPCIF_SMCR, rpc->smcr | RPCIF_SMCR_SPIE); ret = wait_msg_xfer_end(rpc); if (ret) goto err_out; } exit: pm_runtime_put(rpc->dev); return ret; err_out: if (reset_control_reset(rpc->rstc)) dev_err(rpc->dev, "Failed to reset HW\n"); rpcif_hw_init(rpc, rpc->bus_size == 2); goto exit; } EXPORT_SYMBOL(rpcif_manual_xfer); static void memcpy_fromio_readw(void *to, const void __iomem *from, size_t count) { const int maxw = (IS_ENABLED(CONFIG_64BIT)) ? 8 : 4; u8 buf[2]; if (count && ((unsigned long)from & 1)) { *(u16 *)buf = __raw_readw((void __iomem *)((unsigned long)from & ~1)); *(u8 *)to = buf[1]; from++; to++; count--; } while (count >= 2 && !IS_ALIGNED((unsigned long)from, maxw)) { *(u16 *)to = __raw_readw(from); from += 2; to += 2; count -= 2; } while (count >= maxw) { #ifdef CONFIG_64BIT *(u64 *)to = __raw_readq(from); #else *(u32 *)to = __raw_readl(from); #endif from += maxw; to += maxw; count -= maxw; } while (count >= 2) { *(u16 *)to = __raw_readw(from); from += 2; to += 2; count -= 2; } if (count) { *(u16 *)buf = __raw_readw(from); *(u8 *)to = buf[0]; } } ssize_t rpcif_dirmap_read(struct rpcif *rpc, u64 offs, size_t len, void *buf) { loff_t from = offs & (rpc->size - 1); size_t size = rpc->size - from; if (len > size) len = size; pm_runtime_get_sync(rpc->dev); regmap_update_bits(rpc->regmap, RPCIF_CMNCR, RPCIF_CMNCR_MD, 0); regmap_write(rpc->regmap, RPCIF_DRCR, 0); regmap_write(rpc->regmap, RPCIF_DRCMR, rpc->command); regmap_write(rpc->regmap, RPCIF_DREAR, RPCIF_DREAR_EAV(offs >> 25) | RPCIF_DREAR_EAC(1)); regmap_write(rpc->regmap, RPCIF_DROPR, rpc->option); regmap_write(rpc->regmap, RPCIF_DRENR, rpc->enable & ~RPCIF_SMENR_SPIDE(0xF)); regmap_write(rpc->regmap, RPCIF_DRDMCR, rpc->dummy); regmap_write(rpc->regmap, RPCIF_DRDRENR, rpc->ddr); if (rpc->bus_size == 2) memcpy_fromio_readw(buf, rpc->dirmap + from, len); else memcpy_fromio(buf, rpc->dirmap + from, len); pm_runtime_put(rpc->dev); return len; } EXPORT_SYMBOL(rpcif_dirmap_read); static int rpcif_probe(struct platform_device *pdev) { struct platform_device *vdev; struct device_node *flash; const char *name; int ret; flash = of_get_next_child(pdev->dev.of_node, NULL); if (!flash) { dev_warn(&pdev->dev, "no flash node found\n"); return -ENODEV; } if (of_device_is_compatible(flash, "jedec,spi-nor")) { name = "rpc-if-spi"; } else if (of_device_is_compatible(flash, "cfi-flash")) { name = "rpc-if-hyperflash"; } else { of_node_put(flash); dev_warn(&pdev->dev, "unknown flash type\n"); return -ENODEV; } of_node_put(flash); vdev = platform_device_alloc(name, pdev->id); if (!vdev) return -ENOMEM; vdev->dev.parent = &pdev->dev; platform_set_drvdata(pdev, vdev); ret = platform_device_add(vdev); if (ret) { platform_device_put(vdev); return ret; } return 0; } static int rpcif_remove(struct platform_device *pdev) { struct platform_device *vdev = platform_get_drvdata(pdev); platform_device_unregister(vdev); return 0; } static const struct of_device_id rpcif_of_match[] = { { .compatible = "renesas,rcar-gen3-rpc-if", .data = (void *)RPCIF_RCAR_GEN3 }, { .compatible = "renesas,rcar-gen4-rpc-if", .data = (void *)RPCIF_RCAR_GEN4 }, { .compatible = "renesas,rzg2l-rpc-if", .data = (void *)RPCIF_RZ_G2L }, {}, }; MODULE_DEVICE_TABLE(of, rpcif_of_match); static struct platform_driver rpcif_driver = { .probe = rpcif_probe, .remove = rpcif_remove, .driver = { .name = "rpc-if", .of_match_table = rpcif_of_match, }, }; module_platform_driver(rpcif_driver); MODULE_DESCRIPTION("Renesas RPC-IF core driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1