Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Oded Gabbay | 1531 | 65.09% | 21 | 42.00% |
Ohad Sharabi | 272 | 11.56% | 6 | 12.00% |
Ofir Bitton | 240 | 10.20% | 10 | 20.00% |
Dani Liberman | 136 | 5.78% | 1 | 2.00% |
farah kassabri | 83 | 3.53% | 2 | 4.00% |
Alon Mizrahi | 37 | 1.57% | 2 | 4.00% |
Rajaravi Krishna Katta | 26 | 1.11% | 3 | 6.00% |
Omer Shpigelman | 8 | 0.34% | 1 | 2.00% |
Sagiv Ozeri | 6 | 0.26% | 1 | 2.00% |
Tomer Tayar | 6 | 0.26% | 1 | 2.00% |
ran shalit | 4 | 0.17% | 1 | 2.00% |
Gustavo A. R. Silva | 3 | 0.13% | 1 | 2.00% |
Total | 2352 | 50 |
/* SPDX-License-Identifier: GPL-2.0 * * Copyright 2020-2022 HabanaLabs, Ltd. * All Rights Reserved. * */ #ifndef CPUCP_IF_H #define CPUCP_IF_H #include <linux/types.h> #include <linux/if_ether.h> #include "hl_boot_if.h" #define NUM_HBM_PSEUDO_CH 2 #define NUM_HBM_CH_PER_DEV 8 #define CPUCP_PKT_HBM_ECC_INFO_WR_PAR_SHIFT 0 #define CPUCP_PKT_HBM_ECC_INFO_WR_PAR_MASK 0x00000001 #define CPUCP_PKT_HBM_ECC_INFO_RD_PAR_SHIFT 1 #define CPUCP_PKT_HBM_ECC_INFO_RD_PAR_MASK 0x00000002 #define CPUCP_PKT_HBM_ECC_INFO_CA_PAR_SHIFT 2 #define CPUCP_PKT_HBM_ECC_INFO_CA_PAR_MASK 0x00000004 #define CPUCP_PKT_HBM_ECC_INFO_DERR_SHIFT 3 #define CPUCP_PKT_HBM_ECC_INFO_DERR_MASK 0x00000008 #define CPUCP_PKT_HBM_ECC_INFO_SERR_SHIFT 4 #define CPUCP_PKT_HBM_ECC_INFO_SERR_MASK 0x00000010 #define CPUCP_PKT_HBM_ECC_INFO_TYPE_SHIFT 5 #define CPUCP_PKT_HBM_ECC_INFO_TYPE_MASK 0x00000020 #define CPUCP_PKT_HBM_ECC_INFO_HBM_CH_SHIFT 6 #define CPUCP_PKT_HBM_ECC_INFO_HBM_CH_MASK 0x000007C0 #define PLL_MAP_MAX_BITS 128 #define PLL_MAP_LEN (PLL_MAP_MAX_BITS / 8) /* * info of the pkt queue pointers in the first async occurrence */ struct cpucp_pkt_sync_err { __le32 pi; __le32 ci; }; struct hl_eq_hbm_ecc_data { /* SERR counter */ __le32 sec_cnt; /* DERR counter */ __le32 dec_cnt; /* Supplemental Information according to the mask bits */ __le32 hbm_ecc_info; /* Address in hbm where the ecc happened */ __le32 first_addr; /* SERR continuous address counter */ __le32 sec_cont_cnt; __le32 pad; }; /* * EVENT QUEUE */ struct hl_eq_header { __le32 reserved; __le32 ctl; }; struct hl_eq_ecc_data { __le64 ecc_address; __le64 ecc_syndrom; __u8 memory_wrapper_idx; __u8 is_critical; __u8 pad[6]; }; enum hl_sm_sei_cause { SM_SEI_SO_OVERFLOW, SM_SEI_LBW_4B_UNALIGNED, SM_SEI_AXI_RESPONSE_ERR }; struct hl_eq_sm_sei_data { __le32 sei_log; /* enum hl_sm_sei_cause */ __u8 sei_cause; __u8 pad[3]; }; enum hl_fw_alive_severity { FW_ALIVE_SEVERITY_MINOR, FW_ALIVE_SEVERITY_CRITICAL }; struct hl_eq_fw_alive { __le64 uptime_seconds; __le32 process_id; __le32 thread_id; /* enum hl_fw_alive_severity */ __u8 severity; __u8 pad[7]; }; struct hl_eq_intr_cause { __le64 intr_cause_data; }; struct hl_eq_pcie_drain_ind_data { struct hl_eq_intr_cause intr_cause; __le64 drain_wr_addr_lbw; __le64 drain_rd_addr_lbw; __le64 drain_wr_addr_hbw; __le64 drain_rd_addr_hbw; }; struct hl_eq_razwi_lbw_info_regs { __le32 rr_aw_razwi_reg; __le32 rr_aw_razwi_id_reg; __le32 rr_ar_razwi_reg; __le32 rr_ar_razwi_id_reg; }; struct hl_eq_razwi_hbw_info_regs { __le32 rr_aw_razwi_hi_reg; __le32 rr_aw_razwi_lo_reg; __le32 rr_aw_razwi_id_reg; __le32 rr_ar_razwi_hi_reg; __le32 rr_ar_razwi_lo_reg; __le32 rr_ar_razwi_id_reg; }; /* razwi_happened masks */ #define RAZWI_HAPPENED_HBW 0x1 #define RAZWI_HAPPENED_LBW 0x2 #define RAZWI_HAPPENED_AW 0x4 #define RAZWI_HAPPENED_AR 0x8 struct hl_eq_razwi_info { __le32 razwi_happened_mask; union { struct hl_eq_razwi_lbw_info_regs lbw; struct hl_eq_razwi_hbw_info_regs hbw; }; __le32 pad; }; struct hl_eq_razwi_with_intr_cause { struct hl_eq_razwi_info razwi_info; struct hl_eq_intr_cause intr_cause; }; #define HBM_CA_ERR_CMD_LIFO_LEN 8 #define HBM_RD_ERR_DATA_LIFO_LEN 8 #define HBM_WR_PAR_CMD_LIFO_LEN 11 enum hl_hbm_sei_cause { /* Command/address parity error event is split into 2 events due to * size limitation: ODD suffix for odd HBM CK_t cycles and EVEN suffix * for even HBM CK_t cycles */ HBM_SEI_CMD_PARITY_EVEN, HBM_SEI_CMD_PARITY_ODD, /* Read errors can be reflected as a combination of SERR/DERR/parity * errors. Therefore, we define one event for all read error types. * LKD will perform further proccessing. */ HBM_SEI_READ_ERR, HBM_SEI_WRITE_DATA_PARITY_ERR, HBM_SEI_CATTRIP, HBM_SEI_MEM_BIST_FAIL, HBM_SEI_DFI, HBM_SEI_INV_TEMP_READ_OUT, HBM_SEI_BIST_FAIL, }; /* Masks for parsing hl_hbm_sei_headr fields */ #define HBM_ECC_SERR_CNTR_MASK 0xFF #define HBM_ECC_DERR_CNTR_MASK 0xFF00 #define HBM_RD_PARITY_CNTR_MASK 0xFF0000 /* HBM index and MC index are known by the event_id */ struct hl_hbm_sei_header { union { /* relevant only in case of HBM read error */ struct { __u8 ecc_serr_cnt; __u8 ecc_derr_cnt; __u8 read_par_cnt; __u8 reserved; }; /* All other cases */ __le32 cnt; }; __u8 sei_cause; /* enum hl_hbm_sei_cause */ __u8 mc_channel; /* range: 0-3 */ __u8 mc_pseudo_channel; /* range: 0-7 */ __u8 is_critical; }; #define HBM_RD_ADDR_SID_SHIFT 0 #define HBM_RD_ADDR_SID_MASK 0x1 #define HBM_RD_ADDR_BG_SHIFT 1 #define HBM_RD_ADDR_BG_MASK 0x6 #define HBM_RD_ADDR_BA_SHIFT 3 #define HBM_RD_ADDR_BA_MASK 0x18 #define HBM_RD_ADDR_COL_SHIFT 5 #define HBM_RD_ADDR_COL_MASK 0x7E0 #define HBM_RD_ADDR_ROW_SHIFT 11 #define HBM_RD_ADDR_ROW_MASK 0x3FFF800 struct hbm_rd_addr { union { /* bit fields are only for FW use */ struct { u32 dbg_rd_err_addr_sid:1; u32 dbg_rd_err_addr_bg:2; u32 dbg_rd_err_addr_ba:2; u32 dbg_rd_err_addr_col:6; u32 dbg_rd_err_addr_row:15; u32 reserved:6; }; __le32 rd_addr_val; }; }; #define HBM_RD_ERR_BEAT_SHIFT 2 /* dbg_rd_err_misc fields: */ /* Read parity is calculated per DW on every beat */ #define HBM_RD_ERR_PAR_ERR_BEAT0_SHIFT 0 #define HBM_RD_ERR_PAR_ERR_BEAT0_MASK 0x3 #define HBM_RD_ERR_PAR_DATA_BEAT0_SHIFT 8 #define HBM_RD_ERR_PAR_DATA_BEAT0_MASK 0x300 /* ECC is calculated per PC on every beat */ #define HBM_RD_ERR_SERR_BEAT0_SHIFT 16 #define HBM_RD_ERR_SERR_BEAT0_MASK 0x10000 #define HBM_RD_ERR_DERR_BEAT0_SHIFT 24 #define HBM_RD_ERR_DERR_BEAT0_MASK 0x100000 struct hl_eq_hbm_sei_read_err_intr_info { /* DFI_RD_ERR_REP_ADDR */ struct hbm_rd_addr dbg_rd_err_addr; /* DFI_RD_ERR_REP_ERR */ union { struct { /* bit fields are only for FW use */ u32 dbg_rd_err_par:8; u32 dbg_rd_err_par_data:8; u32 dbg_rd_err_serr:4; u32 dbg_rd_err_derr:4; u32 reserved:8; }; __le32 dbg_rd_err_misc; }; /* DFI_RD_ERR_REP_DM */ __le32 dbg_rd_err_dm; /* DFI_RD_ERR_REP_SYNDROME */ __le32 dbg_rd_err_syndrome; /* DFI_RD_ERR_REP_DATA */ __le32 dbg_rd_err_data[HBM_RD_ERR_DATA_LIFO_LEN]; }; struct hl_eq_hbm_sei_ca_par_intr_info { /* 14 LSBs */ __le16 dbg_row[HBM_CA_ERR_CMD_LIFO_LEN]; /* 18 LSBs */ __le32 dbg_col[HBM_CA_ERR_CMD_LIFO_LEN]; }; #define WR_PAR_LAST_CMD_COL_SHIFT 0 #define WR_PAR_LAST_CMD_COL_MASK 0x3F #define WR_PAR_LAST_CMD_BG_SHIFT 6 #define WR_PAR_LAST_CMD_BG_MASK 0xC0 #define WR_PAR_LAST_CMD_BA_SHIFT 8 #define WR_PAR_LAST_CMD_BA_MASK 0x300 #define WR_PAR_LAST_CMD_SID_SHIFT 10 #define WR_PAR_LAST_CMD_SID_MASK 0x400 /* Row address isn't latched */ struct hbm_sei_wr_cmd_address { /* DFI_DERR_LAST_CMD */ union { struct { /* bit fields are only for FW use */ u32 col:6; u32 bg:2; u32 ba:2; u32 sid:1; u32 reserved:21; }; __le32 dbg_wr_cmd_addr; }; }; struct hl_eq_hbm_sei_wr_par_intr_info { /* entry 0: WR command address from the 1st cycle prior to the error * entry 1: WR command address from the 2nd cycle prior to the error * and so on... */ struct hbm_sei_wr_cmd_address dbg_last_wr_cmds[HBM_WR_PAR_CMD_LIFO_LEN]; /* derr[0:1] - 1st HBM cycle DERR output * derr[2:3] - 2nd HBM cycle DERR output */ __u8 dbg_derr; /* extend to reach 8B */ __u8 pad[3]; }; /* * this struct represents the following sei causes: * command parity, ECC double error, ECC single error, dfi error, cattrip, * temperature read-out, read parity error and write parity error. * some only use the header while some have extra data. */ struct hl_eq_hbm_sei_data { struct hl_hbm_sei_header hdr; union { struct hl_eq_hbm_sei_ca_par_intr_info ca_parity_even_info; struct hl_eq_hbm_sei_ca_par_intr_info ca_parity_odd_info; struct hl_eq_hbm_sei_read_err_intr_info read_err_info; struct hl_eq_hbm_sei_wr_par_intr_info wr_parity_info; }; }; /* Engine/farm arc interrupt type */ enum hl_engine_arc_interrupt_type { /* Qman/farm ARC DCCM QUEUE FULL interrupt type */ ENGINE_ARC_DCCM_QUEUE_FULL_IRQ = 1 }; /* Data structure specifies details of payload of DCCM QUEUE FULL interrupt */ struct hl_engine_arc_dccm_queue_full_irq { /* Queue index value which caused DCCM QUEUE FULL */ __le32 queue_index; __le32 pad; }; /* Data structure specifies details of QM/FARM ARC interrupt */ struct hl_eq_engine_arc_intr_data { /* ARC engine id e.g. DCORE0_TPC0_QM_ARC, DCORE0_TCP1_QM_ARC */ __le32 engine_id; __le32 intr_type; /* enum hl_engine_arc_interrupt_type */ /* More info related to the interrupt e.g. queue index * incase of DCCM_QUEUE_FULL interrupt. */ __le64 payload; __le64 pad[5]; }; struct hl_eq_entry { struct hl_eq_header hdr; union { struct hl_eq_ecc_data ecc_data; struct hl_eq_hbm_ecc_data hbm_ecc_data; /* Gaudi1 HBM */ struct hl_eq_sm_sei_data sm_sei_data; struct cpucp_pkt_sync_err pkt_sync_err; struct hl_eq_fw_alive fw_alive; struct hl_eq_intr_cause intr_cause; struct hl_eq_pcie_drain_ind_data pcie_drain_ind_data; struct hl_eq_razwi_info razwi_info; struct hl_eq_razwi_with_intr_cause razwi_with_intr_cause; struct hl_eq_hbm_sei_data sei_data; /* Gaudi2 HBM */ struct hl_eq_engine_arc_intr_data arc_data; __le64 data[7]; }; }; #define HL_EQ_ENTRY_SIZE sizeof(struct hl_eq_entry) #define EQ_CTL_READY_SHIFT 31 #define EQ_CTL_READY_MASK 0x80000000 #define EQ_CTL_EVENT_TYPE_SHIFT 16 #define EQ_CTL_EVENT_TYPE_MASK 0x0FFF0000 #define EQ_CTL_INDEX_SHIFT 0 #define EQ_CTL_INDEX_MASK 0x0000FFFF enum pq_init_status { PQ_INIT_STATUS_NA = 0, PQ_INIT_STATUS_READY_FOR_CP, PQ_INIT_STATUS_READY_FOR_HOST, PQ_INIT_STATUS_READY_FOR_CP_SINGLE_MSI, PQ_INIT_STATUS_LEN_NOT_POWER_OF_TWO_ERR, PQ_INIT_STATUS_ILLEGAL_Q_ADDR_ERR }; /* * CpuCP Primary Queue Packets * * During normal operation, the host's kernel driver needs to send various * messages to CpuCP, usually either to SET some value into a H/W periphery or * to GET the current value of some H/W periphery. For example, SET the * frequency of MME/TPC and GET the value of the thermal sensor. * * These messages can be initiated either by the User application or by the * host's driver itself, e.g. power management code. In either case, the * communication from the host's driver to CpuCP will *always* be in * synchronous mode, meaning that the host will send a single message and poll * until the message was acknowledged and the results are ready (if results are * needed). * * This means that only a single message can be sent at a time and the host's * driver must wait for its result before sending the next message. Having said * that, because these are control messages which are sent in a relatively low * frequency, this limitation seems acceptable. It's important to note that * in case of multiple devices, messages to different devices *can* be sent * at the same time. * * The message, inputs/outputs (if relevant) and fence object will be located * on the device DDR at an address that will be determined by the host's driver. * During device initialization phase, the host will pass to CpuCP that address. * Most of the message types will contain inputs/outputs inside the message * itself. The common part of each message will contain the opcode of the * message (its type) and a field representing a fence object. * * When the host's driver wishes to send a message to CPU CP, it will write the * message contents to the device DDR, clear the fence object and then write to * the PSOC_ARC1_AUX_SW_INTR, to issue interrupt 121 to ARC Management CPU. * * Upon receiving the interrupt (#121), CpuCP will read the message from the * DDR. In case the message is a SET operation, CpuCP will first perform the * operation and then write to the fence object on the device DDR. In case the * message is a GET operation, CpuCP will first fill the results section on the * device DDR and then write to the fence object. If an error occurred, CpuCP * will fill the rc field with the right error code. * * In the meantime, the host's driver will poll on the fence object. Once the * host sees that the fence object is signaled, it will read the results from * the device DDR (if relevant) and resume the code execution in the host's * driver. * * To use QMAN packets, the opcode must be the QMAN opcode, shifted by 8 * so the value being put by the host's driver matches the value read by CpuCP * * Non-QMAN packets should be limited to values 1 through (2^8 - 1) * * Detailed description: * * CPUCP_PACKET_DISABLE_PCI_ACCESS - * After receiving this packet the embedded CPU must NOT issue PCI * transactions (read/write) towards the Host CPU. This also include * sending MSI-X interrupts. * This packet is usually sent before the device is moved to D3Hot state. * * CPUCP_PACKET_ENABLE_PCI_ACCESS - * After receiving this packet the embedded CPU is allowed to issue PCI * transactions towards the Host CPU, including sending MSI-X interrupts. * This packet is usually send after the device is moved to D0 state. * * CPUCP_PACKET_TEMPERATURE_GET - * Fetch the current temperature / Max / Max Hyst / Critical / * Critical Hyst of a specified thermal sensor. The packet's * arguments specify the desired sensor and the field to get. * * CPUCP_PACKET_VOLTAGE_GET - * Fetch the voltage / Max / Min of a specified sensor. The packet's * arguments specify the sensor and type. * * CPUCP_PACKET_CURRENT_GET - * Fetch the current / Max / Min of a specified sensor. The packet's * arguments specify the sensor and type. * * CPUCP_PACKET_FAN_SPEED_GET - * Fetch the speed / Max / Min of a specified fan. The packet's * arguments specify the sensor and type. * * CPUCP_PACKET_PWM_GET - * Fetch the pwm value / mode of a specified pwm. The packet's * arguments specify the sensor and type. * * CPUCP_PACKET_PWM_SET - * Set the pwm value / mode of a specified pwm. The packet's * arguments specify the sensor, type and value. * * CPUCP_PACKET_FREQUENCY_SET - * Set the frequency of a specified PLL. The packet's arguments specify * the PLL and the desired frequency. The actual frequency in the device * might differ from the requested frequency. * * CPUCP_PACKET_FREQUENCY_GET - * Fetch the frequency of a specified PLL. The packet's arguments specify * the PLL. * * CPUCP_PACKET_LED_SET - * Set the state of a specified led. The packet's arguments * specify the led and the desired state. * * CPUCP_PACKET_I2C_WR - * Write 32-bit value to I2C device. The packet's arguments specify the * I2C bus, address and value. * * CPUCP_PACKET_I2C_RD - * Read 32-bit value from I2C device. The packet's arguments specify the * I2C bus and address. * * CPUCP_PACKET_INFO_GET - * Fetch information from the device as specified in the packet's * structure. The host's driver passes the max size it allows the CpuCP to * write to the structure, to prevent data corruption in case of * mismatched driver/FW versions. * * CPUCP_PACKET_FLASH_PROGRAM_REMOVED - this packet was removed * * CPUCP_PACKET_UNMASK_RAZWI_IRQ - * Unmask the given IRQ. The IRQ number is specified in the value field. * The packet is sent after receiving an interrupt and printing its * relevant information. * * CPUCP_PACKET_UNMASK_RAZWI_IRQ_ARRAY - * Unmask the given IRQs. The IRQs numbers are specified in an array right * after the cpucp_packet structure, where its first element is the array * length. The packet is sent after a soft reset was done in order to * handle any interrupts that were sent during the reset process. * * CPUCP_PACKET_TEST - * Test packet for CpuCP connectivity. The CPU will put the fence value * in the result field. * * CPUCP_PACKET_FREQUENCY_CURR_GET - * Fetch the current frequency of a specified PLL. The packet's arguments * specify the PLL. * * CPUCP_PACKET_MAX_POWER_GET - * Fetch the maximal power of the device. * * CPUCP_PACKET_MAX_POWER_SET - * Set the maximal power of the device. The packet's arguments specify * the power. * * CPUCP_PACKET_EEPROM_DATA_GET - * Get EEPROM data from the CpuCP kernel. The buffer is specified in the * addr field. The CPU will put the returned data size in the result * field. In addition, the host's driver passes the max size it allows the * CpuCP to write to the structure, to prevent data corruption in case of * mismatched driver/FW versions. * * CPUCP_PACKET_NIC_INFO_GET - * Fetch information from the device regarding the NIC. the host's driver * passes the max size it allows the CpuCP to write to the structure, to * prevent data corruption in case of mismatched driver/FW versions. * * CPUCP_PACKET_TEMPERATURE_SET - * Set the value of the offset property of a specified thermal sensor. * The packet's arguments specify the desired sensor and the field to * set. * * CPUCP_PACKET_VOLTAGE_SET - * Trigger the reset_history property of a specified voltage sensor. * The packet's arguments specify the desired sensor and the field to * set. * * CPUCP_PACKET_CURRENT_SET - * Trigger the reset_history property of a specified current sensor. * The packet's arguments specify the desired sensor and the field to * set. * * CPUCP_PACKET_PCIE_THROUGHPUT_GET - * Get throughput of PCIe. * The packet's arguments specify the transaction direction (TX/RX). * The window measurement is 10[msec], and the return value is in KB/sec. * * CPUCP_PACKET_PCIE_REPLAY_CNT_GET * Replay count measures number of "replay" events, which is basicly * number of retries done by PCIe. * * CPUCP_PACKET_TOTAL_ENERGY_GET - * Total Energy is measurement of energy from the time FW Linux * is loaded. It is calculated by multiplying the average power * by time (passed from armcp start). The units are in MilliJouls. * * CPUCP_PACKET_PLL_INFO_GET - * Fetch frequencies of PLL from the required PLL IP. * The packet's arguments specify the device PLL type * Pll type is the PLL from device pll_index enum. * The result is composed of 4 outputs, each is 16-bit * frequency in MHz. * * CPUCP_PACKET_POWER_GET - * Fetch the present power consumption of the device (Current * Voltage). * * CPUCP_PACKET_NIC_PFC_SET - * Enable/Disable the NIC PFC feature. The packet's arguments specify the * NIC port, relevant lanes to configure and one bit indication for * enable/disable. * * CPUCP_PACKET_NIC_FAULT_GET - * Fetch the current indication for local/remote faults from the NIC MAC. * The result is 32-bit value of the relevant register. * * CPUCP_PACKET_NIC_LPBK_SET - * Enable/Disable the MAC loopback feature. The packet's arguments specify * the NIC port, relevant lanes to configure and one bit indication for * enable/disable. * * CPUCP_PACKET_NIC_MAC_INIT - * Configure the NIC MAC channels. The packet's arguments specify the * NIC port and the speed. * * CPUCP_PACKET_MSI_INFO_SET - * set the index number for each supported msi type going from * host to device * * CPUCP_PACKET_NIC_XPCS91_REGS_GET - * Fetch the un/correctable counters values from the NIC MAC. * * CPUCP_PACKET_NIC_STAT_REGS_GET - * Fetch various NIC MAC counters from the NIC STAT. * * CPUCP_PACKET_NIC_STAT_REGS_CLR - * Clear the various NIC MAC counters in the NIC STAT. * * CPUCP_PACKET_NIC_STAT_REGS_ALL_GET - * Fetch all NIC MAC counters from the NIC STAT. * * CPUCP_PACKET_IS_IDLE_CHECK - * Check if the device is IDLE in regard to the DMA/compute engines * and QMANs. The f/w will return a bitmask where each bit represents * a different engine or QMAN according to enum cpucp_idle_mask. * The bit will be 1 if the engine is NOT idle. * * CPUCP_PACKET_HBM_REPLACED_ROWS_INFO_GET - * Fetch all HBM replaced-rows and prending to be replaced rows data. * * CPUCP_PACKET_HBM_PENDING_ROWS_STATUS - * Fetch status of HBM rows pending replacement and need a reboot to * be replaced. * * CPUCP_PACKET_POWER_SET - * Resets power history of device to 0 * * CPUCP_PACKET_ENGINE_CORE_ASID_SET - * Packet to perform engine core ASID configuration * * CPUCP_PACKET_SEC_ATTEST_GET - * Get the attestaion data that is collected during various stages of the * boot sequence. the attestation data is also hashed with some unique * number (nonce) provided by the host to prevent replay attacks. * public key and certificate also provided as part of the FW response. * * CPUCP_PACKET_MONITOR_DUMP_GET - * Get monitors registers dump from the CpuCP kernel. * The CPU will put the registers dump in the a buffer allocated by the driver * which address is passed via the CpuCp packet. In addition, the host's driver * passes the max size it allows the CpuCP to write to the structure, to prevent * data corruption in case of mismatched driver/FW versions. * Relevant only to Gaudi. * * CPUCP_PACKET_ACTIVE_STATUS_SET - * LKD sends FW indication whether device is free or in use, this indication is reported * also to the BMC. */ enum cpucp_packet_id { CPUCP_PACKET_DISABLE_PCI_ACCESS = 1, /* internal */ CPUCP_PACKET_ENABLE_PCI_ACCESS, /* internal */ CPUCP_PACKET_TEMPERATURE_GET, /* sysfs */ CPUCP_PACKET_VOLTAGE_GET, /* sysfs */ CPUCP_PACKET_CURRENT_GET, /* sysfs */ CPUCP_PACKET_FAN_SPEED_GET, /* sysfs */ CPUCP_PACKET_PWM_GET, /* sysfs */ CPUCP_PACKET_PWM_SET, /* sysfs */ CPUCP_PACKET_FREQUENCY_SET, /* sysfs */ CPUCP_PACKET_FREQUENCY_GET, /* sysfs */ CPUCP_PACKET_LED_SET, /* debugfs */ CPUCP_PACKET_I2C_WR, /* debugfs */ CPUCP_PACKET_I2C_RD, /* debugfs */ CPUCP_PACKET_INFO_GET, /* IOCTL */ CPUCP_PACKET_FLASH_PROGRAM_REMOVED, CPUCP_PACKET_UNMASK_RAZWI_IRQ, /* internal */ CPUCP_PACKET_UNMASK_RAZWI_IRQ_ARRAY, /* internal */ CPUCP_PACKET_TEST, /* internal */ CPUCP_PACKET_FREQUENCY_CURR_GET, /* sysfs */ CPUCP_PACKET_MAX_POWER_GET, /* sysfs */ CPUCP_PACKET_MAX_POWER_SET, /* sysfs */ CPUCP_PACKET_EEPROM_DATA_GET, /* sysfs */ CPUCP_PACKET_NIC_INFO_GET, /* internal */ CPUCP_PACKET_TEMPERATURE_SET, /* sysfs */ CPUCP_PACKET_VOLTAGE_SET, /* sysfs */ CPUCP_PACKET_CURRENT_SET, /* sysfs */ CPUCP_PACKET_PCIE_THROUGHPUT_GET, /* internal */ CPUCP_PACKET_PCIE_REPLAY_CNT_GET, /* internal */ CPUCP_PACKET_TOTAL_ENERGY_GET, /* internal */ CPUCP_PACKET_PLL_INFO_GET, /* internal */ CPUCP_PACKET_NIC_STATUS, /* internal */ CPUCP_PACKET_POWER_GET, /* internal */ CPUCP_PACKET_NIC_PFC_SET, /* internal */ CPUCP_PACKET_NIC_FAULT_GET, /* internal */ CPUCP_PACKET_NIC_LPBK_SET, /* internal */ CPUCP_PACKET_NIC_MAC_CFG, /* internal */ CPUCP_PACKET_MSI_INFO_SET, /* internal */ CPUCP_PACKET_NIC_XPCS91_REGS_GET, /* internal */ CPUCP_PACKET_NIC_STAT_REGS_GET, /* internal */ CPUCP_PACKET_NIC_STAT_REGS_CLR, /* internal */ CPUCP_PACKET_NIC_STAT_REGS_ALL_GET, /* internal */ CPUCP_PACKET_IS_IDLE_CHECK, /* internal */ CPUCP_PACKET_HBM_REPLACED_ROWS_INFO_GET,/* internal */ CPUCP_PACKET_HBM_PENDING_ROWS_STATUS, /* internal */ CPUCP_PACKET_POWER_SET, /* internal */ CPUCP_PACKET_RESERVED, /* not used */ CPUCP_PACKET_ENGINE_CORE_ASID_SET, /* internal */ CPUCP_PACKET_RESERVED2, /* not used */ CPUCP_PACKET_SEC_ATTEST_GET, /* internal */ CPUCP_PACKET_RESERVED3, /* not used */ CPUCP_PACKET_RESERVED4, /* not used */ CPUCP_PACKET_MONITOR_DUMP_GET, /* debugfs */ CPUCP_PACKET_RESERVED5, /* not used */ CPUCP_PACKET_RESERVED6, /* not used */ CPUCP_PACKET_RESERVED7, /* not used */ CPUCP_PACKET_RESERVED8, /* not used */ CPUCP_PACKET_RESERVED9, /* not used */ CPUCP_PACKET_ACTIVE_STATUS_SET, /* internal */ CPUCP_PACKET_ID_MAX /* must be last */ }; #define CPUCP_PACKET_FENCE_VAL 0xFE8CE7A5 #define CPUCP_PKT_CTL_RC_SHIFT 12 #define CPUCP_PKT_CTL_RC_MASK 0x0000F000 #define CPUCP_PKT_CTL_OPCODE_SHIFT 16 #define CPUCP_PKT_CTL_OPCODE_MASK 0x1FFF0000 #define CPUCP_PKT_RES_PLL_OUT0_SHIFT 0 #define CPUCP_PKT_RES_PLL_OUT0_MASK 0x000000000000FFFFull #define CPUCP_PKT_RES_PLL_OUT1_SHIFT 16 #define CPUCP_PKT_RES_PLL_OUT1_MASK 0x00000000FFFF0000ull #define CPUCP_PKT_RES_PLL_OUT2_SHIFT 32 #define CPUCP_PKT_RES_PLL_OUT2_MASK 0x0000FFFF00000000ull #define CPUCP_PKT_RES_PLL_OUT3_SHIFT 48 #define CPUCP_PKT_RES_PLL_OUT3_MASK 0xFFFF000000000000ull #define CPUCP_PKT_VAL_PFC_IN1_SHIFT 0 #define CPUCP_PKT_VAL_PFC_IN1_MASK 0x0000000000000001ull #define CPUCP_PKT_VAL_PFC_IN2_SHIFT 1 #define CPUCP_PKT_VAL_PFC_IN2_MASK 0x000000000000001Eull #define CPUCP_PKT_VAL_LPBK_IN1_SHIFT 0 #define CPUCP_PKT_VAL_LPBK_IN1_MASK 0x0000000000000001ull #define CPUCP_PKT_VAL_LPBK_IN2_SHIFT 1 #define CPUCP_PKT_VAL_LPBK_IN2_MASK 0x000000000000001Eull #define CPUCP_PKT_VAL_MAC_CNT_IN1_SHIFT 0 #define CPUCP_PKT_VAL_MAC_CNT_IN1_MASK 0x0000000000000001ull #define CPUCP_PKT_VAL_MAC_CNT_IN2_SHIFT 1 #define CPUCP_PKT_VAL_MAC_CNT_IN2_MASK 0x00000000FFFFFFFEull /* heartbeat status bits */ #define CPUCP_PKT_HB_STATUS_EQ_FAULT_SHIFT 0 #define CPUCP_PKT_HB_STATUS_EQ_FAULT_MASK 0x00000001 struct cpucp_packet { union { __le64 value; /* For SET packets */ __le64 result; /* For GET packets */ __le64 addr; /* For PQ */ }; __le32 ctl; __le32 fence; /* Signal to host that message is completed */ union { struct {/* For temperature/current/voltage/fan/pwm get/set */ __le16 sensor_index; __le16 type; }; struct { /* For I2C read/write */ __u8 i2c_bus; __u8 i2c_addr; __u8 i2c_reg; /* * In legacy implemetations, i2c_len was not present, * was unused and just added as pad. * So if i2c_len is 0, it is treated as legacy * and r/w 1 Byte, else if i2c_len is specified, * its treated as new multibyte r/w support. */ __u8 i2c_len; }; struct {/* For PLL info fetch */ __le16 pll_type; /* TODO pll_reg is kept temporary before removal */ __le16 pll_reg; }; /* For any general request */ __le32 index; /* For frequency get/set */ __le32 pll_index; /* For led set */ __le32 led_index; /* For get CpuCP info/EEPROM data/NIC info */ __le32 data_max_size; /* * For any general status bitmask. Shall be used whenever the * result cannot be used to hold general purpose data. */ __le32 status_mask; /* random, used once number, for security packets */ __le32 nonce; }; /* For NIC requests */ __le32 port_index; }; struct cpucp_unmask_irq_arr_packet { struct cpucp_packet cpucp_pkt; __le32 length; __le32 irqs[]; }; struct cpucp_nic_status_packet { struct cpucp_packet cpucp_pkt; __le32 length; __le32 data[]; }; struct cpucp_array_data_packet { struct cpucp_packet cpucp_pkt; __le32 length; __le32 data[]; }; enum cpucp_led_index { CPUCP_LED0_INDEX = 0, CPUCP_LED1_INDEX, CPUCP_LED2_INDEX }; /* * enum cpucp_packet_rc - Error return code * @cpucp_packet_success -> in case of success. * @cpucp_packet_invalid -> this is to support Goya and Gaudi platform. * @cpucp_packet_fault -> in case of processing error like failing to * get device binding or semaphore etc. * @cpucp_packet_invalid_pkt -> when cpucp packet is un-supported. This is * supported Greco onwards. * @cpucp_packet_invalid_params -> when checking parameter like length of buffer * or attribute value etc. Supported Greco onwards. * @cpucp_packet_rc_max -> It indicates size of enum so should be at last. */ enum cpucp_packet_rc { cpucp_packet_success, cpucp_packet_invalid, cpucp_packet_fault, cpucp_packet_invalid_pkt, cpucp_packet_invalid_params, cpucp_packet_rc_max }; /* * cpucp_temp_type should adhere to hwmon_temp_attributes * defined in Linux kernel hwmon.h file */ enum cpucp_temp_type { cpucp_temp_input, cpucp_temp_min = 4, cpucp_temp_min_hyst, cpucp_temp_max = 6, cpucp_temp_max_hyst, cpucp_temp_crit, cpucp_temp_crit_hyst, cpucp_temp_offset = 19, cpucp_temp_lowest = 21, cpucp_temp_highest = 22, cpucp_temp_reset_history = 23, cpucp_temp_warn = 24, cpucp_temp_max_crit = 25, cpucp_temp_max_warn = 26, }; enum cpucp_in_attributes { cpucp_in_input, cpucp_in_min, cpucp_in_max, cpucp_in_lowest = 6, cpucp_in_highest = 7, cpucp_in_reset_history }; enum cpucp_curr_attributes { cpucp_curr_input, cpucp_curr_min, cpucp_curr_max, cpucp_curr_lowest = 6, cpucp_curr_highest = 7, cpucp_curr_reset_history }; enum cpucp_fan_attributes { cpucp_fan_input, cpucp_fan_min = 2, cpucp_fan_max }; enum cpucp_pwm_attributes { cpucp_pwm_input, cpucp_pwm_enable }; enum cpucp_pcie_throughput_attributes { cpucp_pcie_throughput_tx, cpucp_pcie_throughput_rx }; /* TODO temporary kept before removal */ enum cpucp_pll_reg_attributes { cpucp_pll_nr_reg, cpucp_pll_nf_reg, cpucp_pll_od_reg, cpucp_pll_div_factor_reg, cpucp_pll_div_sel_reg }; /* TODO temporary kept before removal */ enum cpucp_pll_type_attributes { cpucp_pll_cpu, cpucp_pll_pci, }; /* * cpucp_power_type aligns with hwmon_power_attributes * defined in Linux kernel hwmon.h file */ enum cpucp_power_type { CPUCP_POWER_INPUT = 8, CPUCP_POWER_INPUT_HIGHEST = 9, CPUCP_POWER_RESET_INPUT_HISTORY = 11 }; /* * MSI type enumeration table for all ASICs and future SW versions. * For future ASIC-LKD compatibility, we can only add new enumerations. * at the end of the table (before CPUCP_NUM_OF_MSI_TYPES). * Changing the order of entries or removing entries is not allowed. */ enum cpucp_msi_type { CPUCP_EVENT_QUEUE_MSI_TYPE, CPUCP_NIC_PORT1_MSI_TYPE, CPUCP_NIC_PORT3_MSI_TYPE, CPUCP_NIC_PORT5_MSI_TYPE, CPUCP_NIC_PORT7_MSI_TYPE, CPUCP_NIC_PORT9_MSI_TYPE, CPUCP_NUM_OF_MSI_TYPES }; /* * PLL enumeration table used for all ASICs and future SW versions. * For future ASIC-LKD compatibility, we can only add new enumerations. * at the end of the table. * Changing the order of entries or removing entries is not allowed. */ enum pll_index { CPU_PLL = 0, PCI_PLL = 1, NIC_PLL = 2, DMA_PLL = 3, MESH_PLL = 4, MME_PLL = 5, TPC_PLL = 6, IF_PLL = 7, SRAM_PLL = 8, NS_PLL = 9, HBM_PLL = 10, MSS_PLL = 11, DDR_PLL = 12, VID_PLL = 13, BANK_PLL = 14, MMU_PLL = 15, IC_PLL = 16, MC_PLL = 17, EMMC_PLL = 18, PLL_MAX }; enum rl_index { TPC_RL = 0, MME_RL, EDMA_RL, }; enum pvt_index { PVT_SW, PVT_SE, PVT_NW, PVT_NE }; /* Event Queue Packets */ struct eq_generic_event { __le64 data[7]; }; /* * CpuCP info */ #define CARD_NAME_MAX_LEN 16 #define CPUCP_MAX_SENSORS 128 #define CPUCP_MAX_NICS 128 #define CPUCP_LANES_PER_NIC 4 #define CPUCP_NIC_QSFP_EEPROM_MAX_LEN 1024 #define CPUCP_MAX_NIC_LANES (CPUCP_MAX_NICS * CPUCP_LANES_PER_NIC) #define CPUCP_NIC_MASK_ARR_LEN ((CPUCP_MAX_NICS + 63) / 64) #define CPUCP_NIC_POLARITY_ARR_LEN ((CPUCP_MAX_NIC_LANES + 63) / 64) #define CPUCP_HBM_ROW_REPLACE_MAX 32 struct cpucp_sensor { __le32 type; __le32 flags; }; /** * struct cpucp_card_types - ASIC card type. * @cpucp_card_type_pci: PCI card. * @cpucp_card_type_pmc: PCI Mezzanine Card. */ enum cpucp_card_types { cpucp_card_type_pci, cpucp_card_type_pmc }; #define CPUCP_SEC_CONF_ENABLED_SHIFT 0 #define CPUCP_SEC_CONF_ENABLED_MASK 0x00000001 #define CPUCP_SEC_CONF_FLASH_WP_SHIFT 1 #define CPUCP_SEC_CONF_FLASH_WP_MASK 0x00000002 #define CPUCP_SEC_CONF_EEPROM_WP_SHIFT 2 #define CPUCP_SEC_CONF_EEPROM_WP_MASK 0x00000004 /** * struct cpucp_security_info - Security information. * @config: configuration bit field * @keys_num: number of stored keys * @revoked_keys: revoked keys bit field * @min_svn: minimal security version */ struct cpucp_security_info { __u8 config; __u8 keys_num; __u8 revoked_keys; __u8 min_svn; }; /** * struct cpucp_info - Info from CpuCP that is necessary to the host's driver * @sensors: available sensors description. * @kernel_version: CpuCP linux kernel version. * @reserved: reserved field. * @card_type: card configuration type. * @card_location: in a server, each card has different connections topology * depending on its location (relevant for PMC card type) * @cpld_version: CPLD programmed F/W version. * @infineon_version: Infineon main DC-DC version. * @fuse_version: silicon production FUSE information. * @thermal_version: thermald S/W version. * @cpucp_version: CpuCP S/W version. * @infineon_second_stage_version: Infineon 2nd stage DC-DC version. * @dram_size: available DRAM size. * @card_name: card name that will be displayed in HWMON subsystem on the host * @tpc_binning_mask: TPC binning mask, 1 bit per TPC instance * (0 = functional, 1 = binned) * @decoder_binning_mask: Decoder binning mask, 1 bit per decoder instance * (0 = functional, 1 = binned), maximum 1 per dcore * @sram_binning: Categorize SRAM functionality * (0 = fully functional, 1 = lower-half is not functional, * 2 = upper-half is not functional) * @sec_info: security information * @pll_map: Bit map of supported PLLs for current ASIC version. * @mme_binning_mask: MME binning mask, * bits [0:6] <==> dcore0 mme fma * bits [7:13] <==> dcore1 mme fma * bits [14:20] <==> dcore0 mme ima * bits [21:27] <==> dcore1 mme ima * For each group, if the 6th bit is set then first 5 bits * represent the col's idx [0-31], otherwise these bits are * ignored, and col idx 32 is binned. 7th bit is don't care. * @dram_binning_mask: DRAM binning mask, 1 bit per dram instance * (0 = functional 1 = binned) * @memory_repair_flag: eFuse flag indicating memory repair * @edma_binning_mask: EDMA binning mask, 1 bit per EDMA instance * (0 = functional 1 = binned) * @xbar_binning_mask: Xbar binning mask, 1 bit per Xbar instance * (0 = functional 1 = binned) * @interposer_version: Interposer version programmed in eFuse * @substrate_version: Substrate version programmed in eFuse * @fw_os_version: Firmware OS Version */ struct cpucp_info { struct cpucp_sensor sensors[CPUCP_MAX_SENSORS]; __u8 kernel_version[VERSION_MAX_LEN]; __le32 reserved; __le32 card_type; __le32 card_location; __le32 cpld_version; __le32 infineon_version; __u8 fuse_version[VERSION_MAX_LEN]; __u8 thermal_version[VERSION_MAX_LEN]; __u8 cpucp_version[VERSION_MAX_LEN]; __le32 infineon_second_stage_version; __le64 dram_size; char card_name[CARD_NAME_MAX_LEN]; __le64 tpc_binning_mask; __le64 decoder_binning_mask; __u8 sram_binning; __u8 dram_binning_mask; __u8 memory_repair_flag; __u8 edma_binning_mask; __u8 xbar_binning_mask; __u8 interposer_version; __u8 substrate_version; __u8 reserved2; struct cpucp_security_info sec_info; __le32 reserved3; __u8 pll_map[PLL_MAP_LEN]; __le64 mme_binning_mask; __u8 fw_os_version[VERSION_MAX_LEN]; }; struct cpucp_mac_addr { __u8 mac_addr[ETH_ALEN]; }; enum cpucp_serdes_type { TYPE_1_SERDES_TYPE, TYPE_2_SERDES_TYPE, HLS1_SERDES_TYPE, HLS1H_SERDES_TYPE, HLS2_SERDES_TYPE, UNKNOWN_SERDES_TYPE, MAX_NUM_SERDES_TYPE = UNKNOWN_SERDES_TYPE }; struct cpucp_nic_info { struct cpucp_mac_addr mac_addrs[CPUCP_MAX_NICS]; __le64 link_mask[CPUCP_NIC_MASK_ARR_LEN]; __le64 pol_tx_mask[CPUCP_NIC_POLARITY_ARR_LEN]; __le64 pol_rx_mask[CPUCP_NIC_POLARITY_ARR_LEN]; __le64 link_ext_mask[CPUCP_NIC_MASK_ARR_LEN]; __u8 qsfp_eeprom[CPUCP_NIC_QSFP_EEPROM_MAX_LEN]; __le64 auto_neg_mask[CPUCP_NIC_MASK_ARR_LEN]; __le16 serdes_type; /* enum cpucp_serdes_type */ __le16 tx_swap_map[CPUCP_MAX_NICS]; __u8 reserved[6]; }; #define PAGE_DISCARD_MAX 64 struct page_discard_info { __u8 num_entries; __u8 reserved[7]; __le32 mmu_page_idx[PAGE_DISCARD_MAX]; }; /* * struct ser_val - the SER (symbol error rate) value is represented by "integer * 10 ^ -exp". * @integer: the integer part of the SER value; * @exp: the exponent part of the SER value. */ struct ser_val { __le16 integer; __le16 exp; }; /* * struct cpucp_nic_status - describes the status of a NIC port. * @port: NIC port index. * @bad_format_cnt: e.g. CRC. * @responder_out_of_sequence_psn_cnt: e.g NAK. * @high_ber_reinit_cnt: link reinit due to high BER. * @correctable_err_cnt: e.g. bit-flip. * @uncorrectable_err_cnt: e.g. MAC errors. * @retraining_cnt: re-training counter. * @up: is port up. * @pcs_link: has PCS link. * @phy_ready: is PHY ready. * @auto_neg: is Autoneg enabled. * @timeout_retransmission_cnt: timeout retransmission events * @high_ber_cnt: high ber events */ struct cpucp_nic_status { __le32 port; __le32 bad_format_cnt; __le32 responder_out_of_sequence_psn_cnt; __le32 high_ber_reinit; __le32 correctable_err_cnt; __le32 uncorrectable_err_cnt; __le32 retraining_cnt; __u8 up; __u8 pcs_link; __u8 phy_ready; __u8 auto_neg; __le32 timeout_retransmission_cnt; __le32 high_ber_cnt; }; enum cpucp_hbm_row_replace_cause { REPLACE_CAUSE_DOUBLE_ECC_ERR, REPLACE_CAUSE_MULTI_SINGLE_ECC_ERR, }; struct cpucp_hbm_row_info { __u8 hbm_idx; __u8 pc; __u8 sid; __u8 bank_idx; __le16 row_addr; __u8 replaced_row_cause; /* enum cpucp_hbm_row_replace_cause */ __u8 pad; }; struct cpucp_hbm_row_replaced_rows_info { __le16 num_replaced_rows; __u8 pad[6]; struct cpucp_hbm_row_info replaced_rows[CPUCP_HBM_ROW_REPLACE_MAX]; }; enum cpu_reset_status { CPU_RST_STATUS_NA = 0, CPU_RST_STATUS_SOFT_RST_DONE = 1, }; #define SEC_PCR_DATA_BUF_SZ 256 #define SEC_PCR_QUOTE_BUF_SZ 510 /* (512 - 2) 2 bytes used for size */ #define SEC_SIGNATURE_BUF_SZ 255 /* (256 - 1) 1 byte used for size */ #define SEC_PUB_DATA_BUF_SZ 510 /* (512 - 2) 2 bytes used for size */ #define SEC_CERTIFICATE_BUF_SZ 2046 /* (2048 - 2) 2 bytes used for size */ /* * struct cpucp_sec_attest_info - attestation report of the boot * @pcr_data: raw values of the PCR registers * @pcr_num_reg: number of PCR registers in the pcr_data array * @pcr_reg_len: length of each PCR register in the pcr_data array (bytes) * @nonce: number only used once. random number provided by host. this also * passed to the quote command as a qualifying data. * @pcr_quote_len: length of the attestation quote data (bytes) * @pcr_quote: attestation report data structure * @quote_sig_len: length of the attestation report signature (bytes) * @quote_sig: signature structure of the attestation report * @pub_data_len: length of the public data (bytes) * @public_data: public key for the signed attestation * (outPublic + name + qualifiedName) * @certificate_len: length of the certificate (bytes) * @certificate: certificate for the attestation signing key */ struct cpucp_sec_attest_info { __u8 pcr_data[SEC_PCR_DATA_BUF_SZ]; __u8 pcr_num_reg; __u8 pcr_reg_len; __le16 pad0; __le32 nonce; __le16 pcr_quote_len; __u8 pcr_quote[SEC_PCR_QUOTE_BUF_SZ]; __u8 quote_sig_len; __u8 quote_sig[SEC_SIGNATURE_BUF_SZ]; __le16 pub_data_len; __u8 public_data[SEC_PUB_DATA_BUF_SZ]; __le16 certificate_len; __u8 certificate[SEC_CERTIFICATE_BUF_SZ]; }; /* * struct cpucp_dev_info_signed - device information signed by a secured device * @info: device information structure as defined above * @nonce: number only used once. random number provided by host. this number is * hashed and signed along with the device information. * @info_sig_len: length of the attestation signature (bytes) * @info_sig: signature of the info + nonce data. * @pub_data_len: length of the public data (bytes) * @public_data: public key info signed info data * (outPublic + name + qualifiedName) * @certificate_len: length of the certificate (bytes) * @certificate: certificate for the signing key */ struct cpucp_dev_info_signed { struct cpucp_info info; /* assumed to be 64bit aligned */ __le32 nonce; __le32 pad0; __u8 info_sig_len; __u8 info_sig[SEC_SIGNATURE_BUF_SZ]; __le16 pub_data_len; __u8 public_data[SEC_PUB_DATA_BUF_SZ]; __le16 certificate_len; __u8 certificate[SEC_CERTIFICATE_BUF_SZ]; }; /* * struct dcore_monitor_regs_data - DCORE monitor regs data. * the structure follows sync manager block layout. relevant only to Gaudi. * @mon_pay_addrl: array of payload address low bits. * @mon_pay_addrh: array of payload address high bits. * @mon_pay_data: array of payload data. * @mon_arm: array of monitor arm. * @mon_status: array of monitor status. */ struct dcore_monitor_regs_data { __le32 mon_pay_addrl[512]; __le32 mon_pay_addrh[512]; __le32 mon_pay_data[512]; __le32 mon_arm[512]; __le32 mon_status[512]; }; /* contains SM data for each SYNC_MNGR (relevant only to Gaudi) */ struct cpucp_monitor_dump { struct dcore_monitor_regs_data sync_mngr_w_s; struct dcore_monitor_regs_data sync_mngr_e_s; struct dcore_monitor_regs_data sync_mngr_w_n; struct dcore_monitor_regs_data sync_mngr_e_n; }; #endif /* CPUCP_IF_H */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1