Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Brownell | 2897 | 69.87% | 7 | 12.96% |
Michael Hennerich | 382 | 9.21% | 1 | 1.85% |
Andrey Smirnov | 300 | 7.24% | 6 | 11.11% |
Andrew Morton | 139 | 3.35% | 1 | 1.85% |
Artem B. Bityutskiy | 71 | 1.71% | 3 | 5.56% |
Vitaly Wool | 70 | 1.69% | 1 | 1.85% |
Shawn Guo | 49 | 1.18% | 1 | 1.85% |
Mark Brown | 32 | 0.77% | 3 | 5.56% |
Jon Hunter | 32 | 0.77% | 1 | 1.85% |
Kay Sievers | 30 | 0.72% | 1 | 1.85% |
Christian Riesch | 23 | 0.55% | 2 | 3.70% |
H Hartley Sweeten | 20 | 0.48% | 1 | 1.85% |
Linus Torvalds (pre-git) | 17 | 0.41% | 4 | 7.41% |
Brian Norris | 12 | 0.29% | 1 | 1.85% |
Javier Martinez Canillas | 11 | 0.27% | 1 | 1.85% |
Matthias Kaehlcke | 10 | 0.24% | 1 | 1.85% |
Dmitry Eremin-Solenikov | 7 | 0.17% | 1 | 1.85% |
Thomas Gleixner | 6 | 0.14% | 2 | 3.70% |
Jingoo Han | 6 | 0.14% | 2 | 3.70% |
Anton Vorontsov | 5 | 0.12% | 1 | 1.85% |
Uwe Kleine-König | 4 | 0.10% | 2 | 3.70% |
Luca Ellero | 4 | 0.10% | 1 | 1.85% |
Will Newton | 4 | 0.10% | 1 | 1.85% |
Sachin Kamat | 3 | 0.07% | 1 | 1.85% |
Linus Torvalds | 2 | 0.05% | 1 | 1.85% |
Jamie Iles | 2 | 0.05% | 1 | 1.85% |
Robert P. J. Day | 2 | 0.05% | 1 | 1.85% |
Geert Uytterhoeven | 2 | 0.05% | 1 | 1.85% |
Håvard Skinnemoen | 1 | 0.02% | 1 | 1.85% |
Peter Korsgaard | 1 | 0.02% | 1 | 1.85% |
Tudor-Dan Ambarus | 1 | 0.02% | 1 | 1.85% |
Axel Lin | 1 | 0.02% | 1 | 1.85% |
Total | 4146 | 54 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Atmel AT45xxx DataFlash MTD driver for lightweight SPI framework * * Largely derived from at91_dataflash.c: * Copyright (C) 2003-2005 SAN People (Pty) Ltd */ #include <linux/module.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/mutex.h> #include <linux/err.h> #include <linux/math64.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/spi/spi.h> #include <linux/spi/flash.h> #include <linux/mtd/mtd.h> #include <linux/mtd/partitions.h> /* * DataFlash is a kind of SPI flash. Most AT45 chips have two buffers in * each chip, which may be used for double buffered I/O; but this driver * doesn't (yet) use these for any kind of i/o overlap or prefetching. * * Sometimes DataFlash is packaged in MMC-format cards, although the * MMC stack can't (yet?) distinguish between MMC and DataFlash * protocols during enumeration. */ /* reads can bypass the buffers */ #define OP_READ_CONTINUOUS 0xE8 #define OP_READ_PAGE 0xD2 /* group B requests can run even while status reports "busy" */ #define OP_READ_STATUS 0xD7 /* group B */ /* move data between host and buffer */ #define OP_READ_BUFFER1 0xD4 /* group B */ #define OP_READ_BUFFER2 0xD6 /* group B */ #define OP_WRITE_BUFFER1 0x84 /* group B */ #define OP_WRITE_BUFFER2 0x87 /* group B */ /* erasing flash */ #define OP_ERASE_PAGE 0x81 #define OP_ERASE_BLOCK 0x50 /* move data between buffer and flash */ #define OP_TRANSFER_BUF1 0x53 #define OP_TRANSFER_BUF2 0x55 #define OP_MREAD_BUFFER1 0xD4 #define OP_MREAD_BUFFER2 0xD6 #define OP_MWERASE_BUFFER1 0x83 #define OP_MWERASE_BUFFER2 0x86 #define OP_MWRITE_BUFFER1 0x88 /* sector must be pre-erased */ #define OP_MWRITE_BUFFER2 0x89 /* sector must be pre-erased */ /* write to buffer, then write-erase to flash */ #define OP_PROGRAM_VIA_BUF1 0x82 #define OP_PROGRAM_VIA_BUF2 0x85 /* compare buffer to flash */ #define OP_COMPARE_BUF1 0x60 #define OP_COMPARE_BUF2 0x61 /* read flash to buffer, then write-erase to flash */ #define OP_REWRITE_VIA_BUF1 0x58 #define OP_REWRITE_VIA_BUF2 0x59 /* newer chips report JEDEC manufacturer and device IDs; chip * serial number and OTP bits; and per-sector writeprotect. */ #define OP_READ_ID 0x9F #define OP_READ_SECURITY 0x77 #define OP_WRITE_SECURITY_REVC 0x9A #define OP_WRITE_SECURITY 0x9B /* revision D */ #define CFI_MFR_ATMEL 0x1F #define DATAFLASH_SHIFT_EXTID 24 #define DATAFLASH_SHIFT_ID 40 struct dataflash { u8 command[4]; char name[24]; unsigned short page_offset; /* offset in flash address */ unsigned int page_size; /* of bytes per page */ struct mutex lock; struct spi_device *spi; struct mtd_info mtd; }; static const struct spi_device_id dataflash_dev_ids[] = { { "at45" }, { "dataflash" }, { }, }; MODULE_DEVICE_TABLE(spi, dataflash_dev_ids); #ifdef CONFIG_OF static const struct of_device_id dataflash_dt_ids[] = { { .compatible = "atmel,at45", }, { .compatible = "atmel,dataflash", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, dataflash_dt_ids); #endif static const struct spi_device_id dataflash_spi_ids[] = { { .name = "at45", }, { .name = "dataflash", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(spi, dataflash_spi_ids); /* ......................................................................... */ /* * Return the status of the DataFlash device. */ static inline int dataflash_status(struct spi_device *spi) { /* NOTE: at45db321c over 25 MHz wants to write * a dummy byte after the opcode... */ return spi_w8r8(spi, OP_READ_STATUS); } /* * Poll the DataFlash device until it is READY. * This usually takes 5-20 msec or so; more for sector erase. */ static int dataflash_waitready(struct spi_device *spi) { int status; for (;;) { status = dataflash_status(spi); if (status < 0) { dev_dbg(&spi->dev, "status %d?\n", status); status = 0; } if (status & (1 << 7)) /* RDY/nBSY */ return status; usleep_range(3000, 4000); } } /* ......................................................................... */ /* * Erase pages of flash. */ static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr) { struct dataflash *priv = mtd->priv; struct spi_device *spi = priv->spi; struct spi_transfer x = { }; struct spi_message msg; unsigned blocksize = priv->page_size << 3; u8 *command; u32 rem; dev_dbg(&spi->dev, "erase addr=0x%llx len 0x%llx\n", (long long)instr->addr, (long long)instr->len); div_u64_rem(instr->len, priv->page_size, &rem); if (rem) return -EINVAL; div_u64_rem(instr->addr, priv->page_size, &rem); if (rem) return -EINVAL; spi_message_init(&msg); x.tx_buf = command = priv->command; x.len = 4; spi_message_add_tail(&x, &msg); mutex_lock(&priv->lock); while (instr->len > 0) { unsigned int pageaddr; int status; int do_block; /* Calculate flash page address; use block erase (for speed) if * we're at a block boundary and need to erase the whole block. */ pageaddr = div_u64(instr->addr, priv->page_size); do_block = (pageaddr & 0x7) == 0 && instr->len >= blocksize; pageaddr = pageaddr << priv->page_offset; command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE; command[1] = (u8)(pageaddr >> 16); command[2] = (u8)(pageaddr >> 8); command[3] = 0; dev_dbg(&spi->dev, "ERASE %s: (%x) %x %x %x [%i]\n", do_block ? "block" : "page", command[0], command[1], command[2], command[3], pageaddr); status = spi_sync(spi, &msg); (void) dataflash_waitready(spi); if (status < 0) { dev_err(&spi->dev, "erase %x, err %d\n", pageaddr, status); /* REVISIT: can retry instr->retries times; or * giveup and instr->fail_addr = instr->addr; */ continue; } if (do_block) { instr->addr += blocksize; instr->len -= blocksize; } else { instr->addr += priv->page_size; instr->len -= priv->page_size; } } mutex_unlock(&priv->lock); return 0; } /* * Read from the DataFlash device. * from : Start offset in flash device * len : Amount to read * retlen : About of data actually read * buf : Buffer containing the data */ static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct dataflash *priv = mtd->priv; struct spi_transfer x[2] = { }; struct spi_message msg; unsigned int addr; u8 *command; int status; dev_dbg(&priv->spi->dev, "read 0x%x..0x%x\n", (unsigned int)from, (unsigned int)(from + len)); /* Calculate flash page/byte address */ addr = (((unsigned)from / priv->page_size) << priv->page_offset) + ((unsigned)from % priv->page_size); command = priv->command; dev_dbg(&priv->spi->dev, "READ: (%x) %x %x %x\n", command[0], command[1], command[2], command[3]); spi_message_init(&msg); x[0].tx_buf = command; x[0].len = 8; spi_message_add_tail(&x[0], &msg); x[1].rx_buf = buf; x[1].len = len; spi_message_add_tail(&x[1], &msg); mutex_lock(&priv->lock); /* Continuous read, max clock = f(car) which may be less than * the peak rate available. Some chips support commands with * fewer "don't care" bytes. Both buffers stay unchanged. */ command[0] = OP_READ_CONTINUOUS; command[1] = (u8)(addr >> 16); command[2] = (u8)(addr >> 8); command[3] = (u8)(addr >> 0); /* plus 4 "don't care" bytes */ status = spi_sync(priv->spi, &msg); mutex_unlock(&priv->lock); if (status >= 0) { *retlen = msg.actual_length - 8; status = 0; } else dev_dbg(&priv->spi->dev, "read %x..%x --> %d\n", (unsigned)from, (unsigned)(from + len), status); return status; } /* * Write to the DataFlash device. * to : Start offset in flash device * len : Amount to write * retlen : Amount of data actually written * buf : Buffer containing the data */ static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf) { struct dataflash *priv = mtd->priv; struct spi_device *spi = priv->spi; struct spi_transfer x[2] = { }; struct spi_message msg; unsigned int pageaddr, addr, offset, writelen; size_t remaining = len; u_char *writebuf = (u_char *) buf; int status = -EINVAL; u8 *command; dev_dbg(&spi->dev, "write 0x%x..0x%x\n", (unsigned int)to, (unsigned int)(to + len)); spi_message_init(&msg); x[0].tx_buf = command = priv->command; x[0].len = 4; spi_message_add_tail(&x[0], &msg); pageaddr = ((unsigned)to / priv->page_size); offset = ((unsigned)to % priv->page_size); if (offset + len > priv->page_size) writelen = priv->page_size - offset; else writelen = len; mutex_lock(&priv->lock); while (remaining > 0) { dev_dbg(&spi->dev, "write @ %i:%i len=%i\n", pageaddr, offset, writelen); /* REVISIT: * (a) each page in a sector must be rewritten at least * once every 10K sibling erase/program operations. * (b) for pages that are already erased, we could * use WRITE+MWRITE not PROGRAM for ~30% speedup. * (c) WRITE to buffer could be done while waiting for * a previous MWRITE/MWERASE to complete ... * (d) error handling here seems to be mostly missing. * * Two persistent bits per page, plus a per-sector counter, * could support (a) and (b) ... we might consider using * the second half of sector zero, which is just one block, * to track that state. (On AT91, that sector should also * support boot-from-DataFlash.) */ addr = pageaddr << priv->page_offset; /* (1) Maybe transfer partial page to Buffer1 */ if (writelen != priv->page_size) { command[0] = OP_TRANSFER_BUF1; command[1] = (addr & 0x00FF0000) >> 16; command[2] = (addr & 0x0000FF00) >> 8; command[3] = 0; dev_dbg(&spi->dev, "TRANSFER: (%x) %x %x %x\n", command[0], command[1], command[2], command[3]); status = spi_sync(spi, &msg); if (status < 0) dev_dbg(&spi->dev, "xfer %u -> %d\n", addr, status); (void) dataflash_waitready(priv->spi); } /* (2) Program full page via Buffer1 */ addr += offset; command[0] = OP_PROGRAM_VIA_BUF1; command[1] = (addr & 0x00FF0000) >> 16; command[2] = (addr & 0x0000FF00) >> 8; command[3] = (addr & 0x000000FF); dev_dbg(&spi->dev, "PROGRAM: (%x) %x %x %x\n", command[0], command[1], command[2], command[3]); x[1].tx_buf = writebuf; x[1].len = writelen; spi_message_add_tail(x + 1, &msg); status = spi_sync(spi, &msg); spi_transfer_del(x + 1); if (status < 0) dev_dbg(&spi->dev, "pgm %u/%u -> %d\n", addr, writelen, status); (void) dataflash_waitready(priv->spi); #ifdef CONFIG_MTD_DATAFLASH_WRITE_VERIFY /* (3) Compare to Buffer1 */ addr = pageaddr << priv->page_offset; command[0] = OP_COMPARE_BUF1; command[1] = (addr & 0x00FF0000) >> 16; command[2] = (addr & 0x0000FF00) >> 8; command[3] = 0; dev_dbg(&spi->dev, "COMPARE: (%x) %x %x %x\n", command[0], command[1], command[2], command[3]); status = spi_sync(spi, &msg); if (status < 0) dev_dbg(&spi->dev, "compare %u -> %d\n", addr, status); status = dataflash_waitready(priv->spi); /* Check result of the compare operation */ if (status & (1 << 6)) { dev_err(&spi->dev, "compare page %u, err %d\n", pageaddr, status); remaining = 0; status = -EIO; break; } else status = 0; #endif /* CONFIG_MTD_DATAFLASH_WRITE_VERIFY */ remaining = remaining - writelen; pageaddr++; offset = 0; writebuf += writelen; *retlen += writelen; if (remaining > priv->page_size) writelen = priv->page_size; else writelen = remaining; } mutex_unlock(&priv->lock); return status; } /* ......................................................................... */ #ifdef CONFIG_MTD_DATAFLASH_OTP static int dataflash_get_otp_info(struct mtd_info *mtd, size_t len, size_t *retlen, struct otp_info *info) { /* Report both blocks as identical: bytes 0..64, locked. * Unless the user block changed from all-ones, we can't * tell whether it's still writable; so we assume it isn't. */ info->start = 0; info->length = 64; info->locked = 1; *retlen = sizeof(*info); return 0; } static ssize_t otp_read(struct spi_device *spi, unsigned base, u8 *buf, loff_t off, size_t len) { struct spi_message m; size_t l; u8 *scratch; struct spi_transfer t; int status; if (off > 64) return -EINVAL; if ((off + len) > 64) len = 64 - off; spi_message_init(&m); l = 4 + base + off + len; scratch = kzalloc(l, GFP_KERNEL); if (!scratch) return -ENOMEM; /* OUT: OP_READ_SECURITY, 3 don't-care bytes, zeroes * IN: ignore 4 bytes, data bytes 0..N (max 127) */ scratch[0] = OP_READ_SECURITY; memset(&t, 0, sizeof t); t.tx_buf = scratch; t.rx_buf = scratch; t.len = l; spi_message_add_tail(&t, &m); dataflash_waitready(spi); status = spi_sync(spi, &m); if (status >= 0) { memcpy(buf, scratch + 4 + base + off, len); status = len; } kfree(scratch); return status; } static int dataflash_read_fact_otp(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct dataflash *priv = mtd->priv; int status; /* 64 bytes, from 0..63 ... start at 64 on-chip */ mutex_lock(&priv->lock); status = otp_read(priv->spi, 64, buf, from, len); mutex_unlock(&priv->lock); if (status < 0) return status; *retlen = status; return 0; } static int dataflash_read_user_otp(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct dataflash *priv = mtd->priv; int status; /* 64 bytes, from 0..63 ... start at 0 on-chip */ mutex_lock(&priv->lock); status = otp_read(priv->spi, 0, buf, from, len); mutex_unlock(&priv->lock); if (status < 0) return status; *retlen = status; return 0; } static int dataflash_write_user_otp(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, const u_char *buf) { struct spi_message m; const size_t l = 4 + 64; u8 *scratch; struct spi_transfer t; struct dataflash *priv = mtd->priv; int status; if (from >= 64) { /* * Attempting to write beyond the end of OTP memory, * no data can be written. */ *retlen = 0; return 0; } /* Truncate the write to fit into OTP memory. */ if ((from + len) > 64) len = 64 - from; /* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes * IN: ignore all */ scratch = kzalloc(l, GFP_KERNEL); if (!scratch) return -ENOMEM; scratch[0] = OP_WRITE_SECURITY; memcpy(scratch + 4 + from, buf, len); spi_message_init(&m); memset(&t, 0, sizeof t); t.tx_buf = scratch; t.len = l; spi_message_add_tail(&t, &m); /* Write the OTP bits, if they've not yet been written. * This modifies SRAM buffer1. */ mutex_lock(&priv->lock); dataflash_waitready(priv->spi); status = spi_sync(priv->spi, &m); mutex_unlock(&priv->lock); kfree(scratch); if (status >= 0) { status = 0; *retlen = len; } return status; } static char *otp_setup(struct mtd_info *device, char revision) { device->_get_fact_prot_info = dataflash_get_otp_info; device->_read_fact_prot_reg = dataflash_read_fact_otp; device->_get_user_prot_info = dataflash_get_otp_info; device->_read_user_prot_reg = dataflash_read_user_otp; /* rev c parts (at45db321c and at45db1281 only!) use a * different write procedure; not (yet?) implemented. */ if (revision > 'c') device->_write_user_prot_reg = dataflash_write_user_otp; return ", OTP"; } #else static char *otp_setup(struct mtd_info *device, char revision) { return " (OTP)"; } #endif /* ......................................................................... */ /* * Register DataFlash device with MTD subsystem. */ static int add_dataflash_otp(struct spi_device *spi, char *name, int nr_pages, int pagesize, int pageoffset, char revision) { struct dataflash *priv; struct mtd_info *device; struct flash_platform_data *pdata = dev_get_platdata(&spi->dev); char *otp_tag = ""; int err = 0; priv = kzalloc(sizeof *priv, GFP_KERNEL); if (!priv) return -ENOMEM; mutex_init(&priv->lock); priv->spi = spi; priv->page_size = pagesize; priv->page_offset = pageoffset; /* name must be usable with cmdlinepart */ sprintf(priv->name, "spi%d.%d-%s", spi->master->bus_num, spi->chip_select, name); device = &priv->mtd; device->name = (pdata && pdata->name) ? pdata->name : priv->name; device->size = nr_pages * pagesize; device->erasesize = pagesize; device->writesize = pagesize; device->type = MTD_DATAFLASH; device->flags = MTD_WRITEABLE; device->_erase = dataflash_erase; device->_read = dataflash_read; device->_write = dataflash_write; device->priv = priv; device->dev.parent = &spi->dev; mtd_set_of_node(device, spi->dev.of_node); if (revision >= 'c') otp_tag = otp_setup(device, revision); dev_info(&spi->dev, "%s (%lld KBytes) pagesize %d bytes%s\n", name, (long long)((device->size + 1023) >> 10), pagesize, otp_tag); spi_set_drvdata(spi, priv); err = mtd_device_register(device, pdata ? pdata->parts : NULL, pdata ? pdata->nr_parts : 0); if (!err) return 0; kfree(priv); return err; } static inline int add_dataflash(struct spi_device *spi, char *name, int nr_pages, int pagesize, int pageoffset) { return add_dataflash_otp(spi, name, nr_pages, pagesize, pageoffset, 0); } struct flash_info { char *name; /* JEDEC id has a high byte of zero plus three data bytes: * the manufacturer id, then a two byte device id. */ u64 jedec_id; /* The size listed here is what works with OP_ERASE_PAGE. */ unsigned nr_pages; u16 pagesize; u16 pageoffset; u16 flags; #define SUP_EXTID 0x0004 /* supports extended ID data */ #define SUP_POW2PS 0x0002 /* supports 2^N byte pages */ #define IS_POW2PS 0x0001 /* uses 2^N byte pages */ }; static struct flash_info dataflash_data[] = { /* * NOTE: chips with SUP_POW2PS (rev D and up) need two entries, * one with IS_POW2PS and the other without. The entry with the * non-2^N byte page size can't name exact chip revisions without * losing backwards compatibility for cmdlinepart. * * These newer chips also support 128-byte security registers (with * 64 bytes one-time-programmable) and software write-protection. */ { "AT45DB011B", 0x1f2200, 512, 264, 9, SUP_POW2PS}, { "at45db011d", 0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS}, { "AT45DB021B", 0x1f2300, 1024, 264, 9, SUP_POW2PS}, { "at45db021d", 0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS}, { "AT45DB041x", 0x1f2400, 2048, 264, 9, SUP_POW2PS}, { "at45db041d", 0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS}, { "AT45DB081B", 0x1f2500, 4096, 264, 9, SUP_POW2PS}, { "at45db081d", 0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS}, { "AT45DB161x", 0x1f2600, 4096, 528, 10, SUP_POW2PS}, { "at45db161d", 0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS}, { "AT45DB321x", 0x1f2700, 8192, 528, 10, 0}, /* rev C */ { "AT45DB321x", 0x1f2701, 8192, 528, 10, SUP_POW2PS}, { "at45db321d", 0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS}, { "AT45DB642x", 0x1f2800, 8192, 1056, 11, SUP_POW2PS}, { "at45db642d", 0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS}, { "AT45DB641E", 0x1f28000100ULL, 32768, 264, 9, SUP_EXTID | SUP_POW2PS}, { "at45db641e", 0x1f28000100ULL, 32768, 256, 8, SUP_EXTID | SUP_POW2PS | IS_POW2PS}, }; static struct flash_info *jedec_lookup(struct spi_device *spi, u64 jedec, bool use_extid) { struct flash_info *info; int status; for (info = dataflash_data; info < dataflash_data + ARRAY_SIZE(dataflash_data); info++) { if (use_extid && !(info->flags & SUP_EXTID)) continue; if (info->jedec_id == jedec) { dev_dbg(&spi->dev, "OTP, sector protect%s\n", (info->flags & SUP_POW2PS) ? ", binary pagesize" : ""); if (info->flags & SUP_POW2PS) { status = dataflash_status(spi); if (status < 0) { dev_dbg(&spi->dev, "status error %d\n", status); return ERR_PTR(status); } if (status & 0x1) { if (info->flags & IS_POW2PS) return info; } else { if (!(info->flags & IS_POW2PS)) return info; } } else return info; } } return ERR_PTR(-ENODEV); } static struct flash_info *jedec_probe(struct spi_device *spi) { int ret; u8 code = OP_READ_ID; u64 jedec; u8 id[sizeof(jedec)] = {0}; const unsigned int id_size = 5; struct flash_info *info; /* * JEDEC also defines an optional "extended device information" * string for after vendor-specific data, after the three bytes * we use here. Supporting some chips might require using it. * * If the vendor ID isn't Atmel's (0x1f), assume this call failed. * That's not an error; only rev C and newer chips handle it, and * only Atmel sells these chips. */ ret = spi_write_then_read(spi, &code, 1, id, id_size); if (ret < 0) { dev_dbg(&spi->dev, "error %d reading JEDEC ID\n", ret); return ERR_PTR(ret); } if (id[0] != CFI_MFR_ATMEL) return NULL; jedec = be64_to_cpup((__be64 *)id); /* * First, try to match device using extended device * information */ info = jedec_lookup(spi, jedec >> DATAFLASH_SHIFT_EXTID, true); if (!IS_ERR(info)) return info; /* * If that fails, make another pass using regular ID * information */ info = jedec_lookup(spi, jedec >> DATAFLASH_SHIFT_ID, false); if (!IS_ERR(info)) return info; /* * Treat other chips as errors ... we won't know the right page * size (it might be binary) even when we can tell which density * class is involved (legacy chip id scheme). */ dev_warn(&spi->dev, "JEDEC id %016llx not handled\n", jedec); return ERR_PTR(-ENODEV); } /* * Detect and initialize DataFlash device, using JEDEC IDs on newer chips * or else the ID code embedded in the status bits: * * Device Density ID code #Pages PageSize Offset * AT45DB011B 1Mbit (128K) xx0011xx (0x0c) 512 264 9 * AT45DB021B 2Mbit (256K) xx0101xx (0x14) 1024 264 9 * AT45DB041B 4Mbit (512K) xx0111xx (0x1c) 2048 264 9 * AT45DB081B 8Mbit (1M) xx1001xx (0x24) 4096 264 9 * AT45DB0161B 16Mbit (2M) xx1011xx (0x2c) 4096 528 10 * AT45DB0321B 32Mbit (4M) xx1101xx (0x34) 8192 528 10 * AT45DB0642 64Mbit (8M) xx111xxx (0x3c) 8192 1056 11 * AT45DB1282 128Mbit (16M) xx0100xx (0x10) 16384 1056 11 */ static int dataflash_probe(struct spi_device *spi) { int status; struct flash_info *info; /* * Try to detect dataflash by JEDEC ID. * If it succeeds we know we have either a C or D part. * D will support power of 2 pagesize option. * Both support the security register, though with different * write procedures. */ info = jedec_probe(spi); if (IS_ERR(info)) return PTR_ERR(info); if (info != NULL) return add_dataflash_otp(spi, info->name, info->nr_pages, info->pagesize, info->pageoffset, (info->flags & SUP_POW2PS) ? 'd' : 'c'); /* * Older chips support only legacy commands, identifing * capacity using bits in the status byte. */ status = dataflash_status(spi); if (status <= 0 || status == 0xff) { dev_dbg(&spi->dev, "status error %d\n", status); if (status == 0 || status == 0xff) status = -ENODEV; return status; } /* if there's a device there, assume it's dataflash. * board setup should have set spi->max_speed_max to * match f(car) for continuous reads, mode 0 or 3. */ switch (status & 0x3c) { case 0x0c: /* 0 0 1 1 x x */ status = add_dataflash(spi, "AT45DB011B", 512, 264, 9); break; case 0x14: /* 0 1 0 1 x x */ status = add_dataflash(spi, "AT45DB021B", 1024, 264, 9); break; case 0x1c: /* 0 1 1 1 x x */ status = add_dataflash(spi, "AT45DB041x", 2048, 264, 9); break; case 0x24: /* 1 0 0 1 x x */ status = add_dataflash(spi, "AT45DB081B", 4096, 264, 9); break; case 0x2c: /* 1 0 1 1 x x */ status = add_dataflash(spi, "AT45DB161x", 4096, 528, 10); break; case 0x34: /* 1 1 0 1 x x */ status = add_dataflash(spi, "AT45DB321x", 8192, 528, 10); break; case 0x38: /* 1 1 1 x x x */ case 0x3c: status = add_dataflash(spi, "AT45DB642x", 8192, 1056, 11); break; /* obsolete AT45DB1282 not (yet?) supported */ default: dev_info(&spi->dev, "unsupported device (%x)\n", status & 0x3c); status = -ENODEV; } if (status < 0) dev_dbg(&spi->dev, "add_dataflash --> %d\n", status); return status; } static void dataflash_remove(struct spi_device *spi) { struct dataflash *flash = spi_get_drvdata(spi); dev_dbg(&spi->dev, "remove\n"); WARN_ON(mtd_device_unregister(&flash->mtd)); kfree(flash); } static struct spi_driver dataflash_driver = { .driver = { .name = "mtd_dataflash", .of_match_table = of_match_ptr(dataflash_dt_ids), }, .id_table = dataflash_dev_ids, .probe = dataflash_probe, .remove = dataflash_remove, .id_table = dataflash_spi_ids, /* FIXME: investigate suspend and resume... */ }; module_spi_driver(dataflash_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Andrew Victor, David Brownell"); MODULE_DESCRIPTION("MTD DataFlash driver"); MODULE_ALIAS("spi:mtd_dataflash");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1