Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Raghu Vatsavayi | 6854 | 93.14% | 15 | 62.50% |
Rick Farrington | 243 | 3.30% | 3 | 12.50% |
Intiyaz Basha | 239 | 3.25% | 1 | 4.17% |
Felix Manlunas | 17 | 0.23% | 1 | 4.17% |
Colin Ian King | 3 | 0.04% | 1 | 4.17% |
Yue haibing | 1 | 0.01% | 1 | 4.17% |
Tianjia Zhang | 1 | 0.01% | 1 | 4.17% |
Prasad Kanneganti | 1 | 0.01% | 1 | 4.17% |
Total | 7359 | 24 |
/********************************************************************** * Author: Cavium, Inc. * * Contact: support@cavium.com * Please include "LiquidIO" in the subject. * * Copyright (c) 2003-2016 Cavium, Inc. * * This file is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, Version 2, as * published by the Free Software Foundation. * * This file is distributed in the hope that it will be useful, but * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or * NONINFRINGEMENT. See the GNU General Public License for more details. ***********************************************************************/ #include <linux/pci.h> #include <linux/vmalloc.h> #include <linux/etherdevice.h> #include "liquidio_common.h" #include "octeon_droq.h" #include "octeon_iq.h" #include "response_manager.h" #include "octeon_device.h" #include "cn23xx_pf_device.h" #include "octeon_main.h" #include "octeon_mailbox.h" #define RESET_NOTDONE 0 #define RESET_DONE 1 /* Change the value of SLI Packet Input Jabber Register to allow * VXLAN TSO packets which can be 64424 bytes, exceeding the * MAX_GSO_SIZE we supplied to the kernel */ #define CN23XX_INPUT_JABBER 64600 void cn23xx_dump_pf_initialized_regs(struct octeon_device *oct) { int i = 0; u32 regval = 0; struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; /*In cn23xx_soft_reset*/ dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%llx\n", "CN23XX_WIN_WR_MASK_REG", CVM_CAST64(CN23XX_WIN_WR_MASK_REG), CVM_CAST64(octeon_read_csr64(oct, CN23XX_WIN_WR_MASK_REG))); dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", "CN23XX_SLI_SCRATCH1", CVM_CAST64(CN23XX_SLI_SCRATCH1), CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_SCRATCH1))); dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", "CN23XX_RST_SOFT_RST", CN23XX_RST_SOFT_RST, lio_pci_readq(oct, CN23XX_RST_SOFT_RST)); /*In cn23xx_set_dpi_regs*/ dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", "CN23XX_DPI_DMA_CONTROL", CN23XX_DPI_DMA_CONTROL, lio_pci_readq(oct, CN23XX_DPI_DMA_CONTROL)); for (i = 0; i < 6; i++) { dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", "CN23XX_DPI_DMA_ENG_ENB", i, CN23XX_DPI_DMA_ENG_ENB(i), lio_pci_readq(oct, CN23XX_DPI_DMA_ENG_ENB(i))); dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", "CN23XX_DPI_DMA_ENG_BUF", i, CN23XX_DPI_DMA_ENG_BUF(i), lio_pci_readq(oct, CN23XX_DPI_DMA_ENG_BUF(i))); } dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", "CN23XX_DPI_CTL", CN23XX_DPI_CTL, lio_pci_readq(oct, CN23XX_DPI_CTL)); /*In cn23xx_setup_pcie_mps and cn23xx_setup_pcie_mrrs */ pci_read_config_dword(oct->pci_dev, CN23XX_CONFIG_PCIE_DEVCTL, ®val); dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", "CN23XX_CONFIG_PCIE_DEVCTL", CVM_CAST64(CN23XX_CONFIG_PCIE_DEVCTL), CVM_CAST64(regval)); dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", "CN23XX_DPI_SLI_PRTX_CFG", oct->pcie_port, CN23XX_DPI_SLI_PRTX_CFG(oct->pcie_port), lio_pci_readq(oct, CN23XX_DPI_SLI_PRTX_CFG(oct->pcie_port))); /*In cn23xx_specific_regs_setup */ dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", "CN23XX_SLI_S2M_PORTX_CTL", oct->pcie_port, CVM_CAST64(CN23XX_SLI_S2M_PORTX_CTL(oct->pcie_port)), CVM_CAST64(octeon_read_csr64( oct, CN23XX_SLI_S2M_PORTX_CTL(oct->pcie_port)))); dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", "CN23XX_SLI_RING_RST", CVM_CAST64(CN23XX_SLI_PKT_IOQ_RING_RST), (u64)octeon_read_csr64(oct, CN23XX_SLI_PKT_IOQ_RING_RST)); /*In cn23xx_setup_global_mac_regs*/ for (i = 0; i < CN23XX_MAX_MACS; i++) { dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", "CN23XX_SLI_PKT_MAC_RINFO64", i, CVM_CAST64(CN23XX_SLI_PKT_MAC_RINFO64(i, oct->pf_num)), CVM_CAST64(octeon_read_csr64 (oct, CN23XX_SLI_PKT_MAC_RINFO64 (i, oct->pf_num)))); } /*In cn23xx_setup_global_input_regs*/ for (i = 0; i < CN23XX_MAX_INPUT_QUEUES; i++) { dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", "CN23XX_SLI_IQ_PKT_CONTROL64", i, CVM_CAST64(CN23XX_SLI_IQ_PKT_CONTROL64(i)), CVM_CAST64(octeon_read_csr64 (oct, CN23XX_SLI_IQ_PKT_CONTROL64(i)))); } /*In cn23xx_setup_global_output_regs*/ dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", "CN23XX_SLI_OQ_WMARK", CVM_CAST64(CN23XX_SLI_OQ_WMARK), CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_OQ_WMARK))); for (i = 0; i < CN23XX_MAX_OUTPUT_QUEUES; i++) { dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", "CN23XX_SLI_OQ_PKT_CONTROL", i, CVM_CAST64(CN23XX_SLI_OQ_PKT_CONTROL(i)), CVM_CAST64(octeon_read_csr( oct, CN23XX_SLI_OQ_PKT_CONTROL(i)))); dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", "CN23XX_SLI_OQ_PKT_INT_LEVELS", i, CVM_CAST64(CN23XX_SLI_OQ_PKT_INT_LEVELS(i)), CVM_CAST64(octeon_read_csr64( oct, CN23XX_SLI_OQ_PKT_INT_LEVELS(i)))); } /*In cn23xx_enable_interrupt and cn23xx_disable_interrupt*/ dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", "cn23xx->intr_enb_reg64", CVM_CAST64((long)(cn23xx->intr_enb_reg64)), CVM_CAST64(readq(cn23xx->intr_enb_reg64))); dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", "cn23xx->intr_sum_reg64", CVM_CAST64((long)(cn23xx->intr_sum_reg64)), CVM_CAST64(readq(cn23xx->intr_sum_reg64))); /*In cn23xx_setup_iq_regs*/ for (i = 0; i < CN23XX_MAX_INPUT_QUEUES; i++) { dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", "CN23XX_SLI_IQ_BASE_ADDR64", i, CVM_CAST64(CN23XX_SLI_IQ_BASE_ADDR64(i)), CVM_CAST64(octeon_read_csr64( oct, CN23XX_SLI_IQ_BASE_ADDR64(i)))); dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", "CN23XX_SLI_IQ_SIZE", i, CVM_CAST64(CN23XX_SLI_IQ_SIZE(i)), CVM_CAST64(octeon_read_csr (oct, CN23XX_SLI_IQ_SIZE(i)))); dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", "CN23XX_SLI_IQ_DOORBELL", i, CVM_CAST64(CN23XX_SLI_IQ_DOORBELL(i)), CVM_CAST64(octeon_read_csr64( oct, CN23XX_SLI_IQ_DOORBELL(i)))); dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", "CN23XX_SLI_IQ_INSTR_COUNT64", i, CVM_CAST64(CN23XX_SLI_IQ_INSTR_COUNT64(i)), CVM_CAST64(octeon_read_csr64( oct, CN23XX_SLI_IQ_INSTR_COUNT64(i)))); } /*In cn23xx_setup_oq_regs*/ for (i = 0; i < CN23XX_MAX_OUTPUT_QUEUES; i++) { dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", "CN23XX_SLI_OQ_BASE_ADDR64", i, CVM_CAST64(CN23XX_SLI_OQ_BASE_ADDR64(i)), CVM_CAST64(octeon_read_csr64( oct, CN23XX_SLI_OQ_BASE_ADDR64(i)))); dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", "CN23XX_SLI_OQ_SIZE", i, CVM_CAST64(CN23XX_SLI_OQ_SIZE(i)), CVM_CAST64(octeon_read_csr (oct, CN23XX_SLI_OQ_SIZE(i)))); dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", "CN23XX_SLI_OQ_BUFF_INFO_SIZE", i, CVM_CAST64(CN23XX_SLI_OQ_BUFF_INFO_SIZE(i)), CVM_CAST64(octeon_read_csr( oct, CN23XX_SLI_OQ_BUFF_INFO_SIZE(i)))); dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", "CN23XX_SLI_OQ_PKTS_SENT", i, CVM_CAST64(CN23XX_SLI_OQ_PKTS_SENT(i)), CVM_CAST64(octeon_read_csr64( oct, CN23XX_SLI_OQ_PKTS_SENT(i)))); dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", "CN23XX_SLI_OQ_PKTS_CREDIT", i, CVM_CAST64(CN23XX_SLI_OQ_PKTS_CREDIT(i)), CVM_CAST64(octeon_read_csr64( oct, CN23XX_SLI_OQ_PKTS_CREDIT(i)))); } dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", "CN23XX_SLI_PKT_TIME_INT", CVM_CAST64(CN23XX_SLI_PKT_TIME_INT), CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_PKT_TIME_INT))); dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", "CN23XX_SLI_PKT_CNT_INT", CVM_CAST64(CN23XX_SLI_PKT_CNT_INT), CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_PKT_CNT_INT))); } static int cn23xx_pf_soft_reset(struct octeon_device *oct) { octeon_write_csr64(oct, CN23XX_WIN_WR_MASK_REG, 0xFF); dev_dbg(&oct->pci_dev->dev, "OCTEON[%d]: BIST enabled for CN23XX soft reset\n", oct->octeon_id); octeon_write_csr64(oct, CN23XX_SLI_SCRATCH1, 0x1234ULL); /* Initiate chip-wide soft reset */ lio_pci_readq(oct, CN23XX_RST_SOFT_RST); lio_pci_writeq(oct, 1, CN23XX_RST_SOFT_RST); /* Wait for 100ms as Octeon resets. */ mdelay(100); if (octeon_read_csr64(oct, CN23XX_SLI_SCRATCH1)) { dev_err(&oct->pci_dev->dev, "OCTEON[%d]: Soft reset failed\n", oct->octeon_id); return 1; } dev_dbg(&oct->pci_dev->dev, "OCTEON[%d]: Reset completed\n", oct->octeon_id); /* restore the reset value*/ octeon_write_csr64(oct, CN23XX_WIN_WR_MASK_REG, 0xFF); return 0; } static void cn23xx_enable_error_reporting(struct octeon_device *oct) { u32 regval; u32 uncorrectable_err_mask, corrtable_err_status; pci_read_config_dword(oct->pci_dev, CN23XX_CONFIG_PCIE_DEVCTL, ®val); if (regval & CN23XX_CONFIG_PCIE_DEVCTL_MASK) { uncorrectable_err_mask = 0; corrtable_err_status = 0; pci_read_config_dword(oct->pci_dev, CN23XX_CONFIG_PCIE_UNCORRECT_ERR_MASK, &uncorrectable_err_mask); pci_read_config_dword(oct->pci_dev, CN23XX_CONFIG_PCIE_CORRECT_ERR_STATUS, &corrtable_err_status); dev_err(&oct->pci_dev->dev, "PCI-E Fatal error detected;\n" "\tdev_ctl_status_reg = 0x%08x\n" "\tuncorrectable_error_mask_reg = 0x%08x\n" "\tcorrectable_error_status_reg = 0x%08x\n", regval, uncorrectable_err_mask, corrtable_err_status); } regval |= 0xf; /* Enable Link error reporting */ dev_dbg(&oct->pci_dev->dev, "OCTEON[%d]: Enabling PCI-E error reporting..\n", oct->octeon_id); pci_write_config_dword(oct->pci_dev, CN23XX_CONFIG_PCIE_DEVCTL, regval); } static u32 cn23xx_coprocessor_clock(struct octeon_device *oct) { /* Bits 29:24 of RST_BOOT[PNR_MUL] holds the ref.clock MULTIPLIER * for SLI. */ /* TBD: get the info in Hand-shake */ return (((lio_pci_readq(oct, CN23XX_RST_BOOT) >> 24) & 0x3f) * 50); } u32 cn23xx_pf_get_oq_ticks(struct octeon_device *oct, u32 time_intr_in_us) { /* This gives the SLI clock per microsec */ u32 oqticks_per_us = cn23xx_coprocessor_clock(oct); oct->pfvf_hsword.coproc_tics_per_us = oqticks_per_us; /* This gives the clock cycles per millisecond */ oqticks_per_us *= 1000; /* This gives the oq ticks (1024 core clock cycles) per millisecond */ oqticks_per_us /= 1024; /* time_intr is in microseconds. The next 2 steps gives the oq ticks * corressponding to time_intr. */ oqticks_per_us *= time_intr_in_us; oqticks_per_us /= 1000; return oqticks_per_us; } static void cn23xx_setup_global_mac_regs(struct octeon_device *oct) { u16 mac_no = oct->pcie_port; u16 pf_num = oct->pf_num; u64 reg_val; u64 temp; /* programming SRN and TRS for each MAC(0..3) */ dev_dbg(&oct->pci_dev->dev, "%s:Using pcie port %d\n", __func__, mac_no); /* By default, mapping all 64 IOQs to a single MACs */ reg_val = octeon_read_csr64(oct, CN23XX_SLI_PKT_MAC_RINFO64(mac_no, pf_num)); if (oct->rev_id == OCTEON_CN23XX_REV_1_1) { /* setting SRN <6:0> */ reg_val = pf_num * CN23XX_MAX_RINGS_PER_PF_PASS_1_1; } else { /* setting SRN <6:0> */ reg_val = pf_num * CN23XX_MAX_RINGS_PER_PF; } /* setting TRS <23:16> */ reg_val = reg_val | (oct->sriov_info.trs << CN23XX_PKT_MAC_CTL_RINFO_TRS_BIT_POS); /* setting RPVF <39:32> */ temp = oct->sriov_info.rings_per_vf & 0xff; reg_val |= (temp << CN23XX_PKT_MAC_CTL_RINFO_RPVF_BIT_POS); /* setting NVFS <55:48> */ temp = oct->sriov_info.max_vfs & 0xff; reg_val |= (temp << CN23XX_PKT_MAC_CTL_RINFO_NVFS_BIT_POS); /* write these settings to MAC register */ octeon_write_csr64(oct, CN23XX_SLI_PKT_MAC_RINFO64(mac_no, pf_num), reg_val); dev_dbg(&oct->pci_dev->dev, "SLI_PKT_MAC(%d)_PF(%d)_RINFO : 0x%016llx\n", mac_no, pf_num, (u64)octeon_read_csr64 (oct, CN23XX_SLI_PKT_MAC_RINFO64(mac_no, pf_num))); } static int cn23xx_reset_io_queues(struct octeon_device *oct) { int ret_val = 0; u64 d64; u32 q_no, srn, ern; u32 loop = 1000; srn = oct->sriov_info.pf_srn; ern = srn + oct->sriov_info.num_pf_rings; /*As per HRM reg description, s/w cant write 0 to ENB. */ /*to make the queue off, need to set the RST bit. */ /* Reset the Enable bit for all the 64 IQs. */ for (q_no = srn; q_no < ern; q_no++) { /* set RST bit to 1. This bit applies to both IQ and OQ */ d64 = octeon_read_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); d64 = d64 | CN23XX_PKT_INPUT_CTL_RST; octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), d64); } /*wait until the RST bit is clear or the RST and quite bits are set*/ for (q_no = srn; q_no < ern; q_no++) { u64 reg_val = octeon_read_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); while ((READ_ONCE(reg_val) & CN23XX_PKT_INPUT_CTL_RST) && !(READ_ONCE(reg_val) & CN23XX_PKT_INPUT_CTL_QUIET) && loop--) { WRITE_ONCE(reg_val, octeon_read_csr64( oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no))); } if (!loop) { dev_err(&oct->pci_dev->dev, "clearing the reset reg failed or setting the quiet reg failed for qno: %u\n", q_no); return -1; } WRITE_ONCE(reg_val, READ_ONCE(reg_val) & ~CN23XX_PKT_INPUT_CTL_RST); octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), READ_ONCE(reg_val)); WRITE_ONCE(reg_val, octeon_read_csr64( oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no))); if (READ_ONCE(reg_val) & CN23XX_PKT_INPUT_CTL_RST) { dev_err(&oct->pci_dev->dev, "clearing the reset failed for qno: %u\n", q_no); ret_val = -1; } } return ret_val; } static int cn23xx_pf_setup_global_input_regs(struct octeon_device *oct) { struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; struct octeon_instr_queue *iq; u64 intr_threshold, reg_val; u32 q_no, ern, srn; u64 pf_num; u64 vf_num; pf_num = oct->pf_num; srn = oct->sriov_info.pf_srn; ern = srn + oct->sriov_info.num_pf_rings; if (cn23xx_reset_io_queues(oct)) return -1; /** Set the MAC_NUM and PVF_NUM in IQ_PKT_CONTROL reg * for all queues.Only PF can set these bits. * bits 29:30 indicate the MAC num. * bits 32:47 indicate the PVF num. */ for (q_no = 0; q_no < ern; q_no++) { reg_val = (u64)oct->pcie_port << CN23XX_PKT_INPUT_CTL_MAC_NUM_POS; /* for VF assigned queues. */ if (q_no < oct->sriov_info.pf_srn) { vf_num = q_no / oct->sriov_info.rings_per_vf; vf_num += 1; /* VF1, VF2,........ */ } else { vf_num = 0; } reg_val |= vf_num << CN23XX_PKT_INPUT_CTL_VF_NUM_POS; reg_val |= pf_num << CN23XX_PKT_INPUT_CTL_PF_NUM_POS; octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), reg_val); } /* Select ES, RO, NS, RDSIZE,DPTR Fomat#0 for * pf queues */ for (q_no = srn; q_no < ern; q_no++) { void __iomem *inst_cnt_reg; iq = oct->instr_queue[q_no]; if (iq) inst_cnt_reg = iq->inst_cnt_reg; else inst_cnt_reg = (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_IQ_INSTR_COUNT64(q_no); reg_val = octeon_read_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); reg_val |= CN23XX_PKT_INPUT_CTL_MASK; octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), reg_val); /* Set WMARK level for triggering PI_INT */ /* intr_threshold = CN23XX_DEF_IQ_INTR_THRESHOLD & */ intr_threshold = CFG_GET_IQ_INTR_PKT(cn23xx->conf) & CN23XX_PKT_IN_DONE_WMARK_MASK; writeq((readq(inst_cnt_reg) & ~(CN23XX_PKT_IN_DONE_WMARK_MASK << CN23XX_PKT_IN_DONE_WMARK_BIT_POS)) | (intr_threshold << CN23XX_PKT_IN_DONE_WMARK_BIT_POS), inst_cnt_reg); } return 0; } static void cn23xx_pf_setup_global_output_regs(struct octeon_device *oct) { u32 reg_val; u32 q_no, ern, srn; u64 time_threshold; struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; srn = oct->sriov_info.pf_srn; ern = srn + oct->sriov_info.num_pf_rings; if (CFG_GET_IS_SLI_BP_ON(cn23xx->conf)) { octeon_write_csr64(oct, CN23XX_SLI_OQ_WMARK, 32); } else { /** Set Output queue watermark to 0 to disable backpressure */ octeon_write_csr64(oct, CN23XX_SLI_OQ_WMARK, 0); } for (q_no = srn; q_no < ern; q_no++) { reg_val = octeon_read_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(q_no)); /* clear IPTR */ reg_val &= ~CN23XX_PKT_OUTPUT_CTL_IPTR; /* set DPTR */ reg_val |= CN23XX_PKT_OUTPUT_CTL_DPTR; /* reset BMODE */ reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_BMODE); /* No Relaxed Ordering, No Snoop, 64-bit Byte swap * for Output Queue ScatterList * reset ROR_P, NSR_P */ reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_ROR_P); reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_NSR_P); #ifdef __LITTLE_ENDIAN_BITFIELD reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_ES_P); #else reg_val |= (CN23XX_PKT_OUTPUT_CTL_ES_P); #endif /* No Relaxed Ordering, No Snoop, 64-bit Byte swap * for Output Queue Data * reset ROR, NSR */ reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_ROR); reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_NSR); /* set the ES bit */ reg_val |= (CN23XX_PKT_OUTPUT_CTL_ES); /* write all the selected settings */ octeon_write_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(q_no), reg_val); /* Enabling these interrupt in oct->fn_list.enable_interrupt() * routine which called after IOQ init. * Set up interrupt packet and time thresholds * for all the OQs */ time_threshold = cn23xx_pf_get_oq_ticks( oct, (u32)CFG_GET_OQ_INTR_TIME(cn23xx->conf)); octeon_write_csr64(oct, CN23XX_SLI_OQ_PKT_INT_LEVELS(q_no), (CFG_GET_OQ_INTR_PKT(cn23xx->conf) | (time_threshold << 32))); } /** Setting the water mark level for pko back pressure **/ writeq(0x40, (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OQ_WMARK); /** Disabling setting OQs in reset when ring has no dorebells * enabling this will cause of head of line blocking */ /* Do it only for pass1.1. and pass1.2 */ if ((oct->rev_id == OCTEON_CN23XX_REV_1_0) || (oct->rev_id == OCTEON_CN23XX_REV_1_1)) writeq(readq((u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_GBL_CONTROL) | 0x2, (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_GBL_CONTROL); /** Enable channel-level backpressure */ if (oct->pf_num) writeq(0xffffffffffffffffULL, (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OUT_BP_EN2_W1S); else writeq(0xffffffffffffffffULL, (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OUT_BP_EN_W1S); } static int cn23xx_setup_pf_device_regs(struct octeon_device *oct) { cn23xx_enable_error_reporting(oct); /* program the MAC(0..3)_RINFO before setting up input/output regs */ cn23xx_setup_global_mac_regs(oct); if (cn23xx_pf_setup_global_input_regs(oct)) return -1; cn23xx_pf_setup_global_output_regs(oct); /* Default error timeout value should be 0x200000 to avoid host hang * when reads invalid register */ octeon_write_csr64(oct, CN23XX_SLI_WINDOW_CTL, CN23XX_SLI_WINDOW_CTL_DEFAULT); /* set SLI_PKT_IN_JABBER to handle large VXLAN packets */ octeon_write_csr64(oct, CN23XX_SLI_PKT_IN_JABBER, CN23XX_INPUT_JABBER); return 0; } static void cn23xx_setup_iq_regs(struct octeon_device *oct, u32 iq_no) { struct octeon_instr_queue *iq = oct->instr_queue[iq_no]; u64 pkt_in_done; iq_no += oct->sriov_info.pf_srn; /* Write the start of the input queue's ring and its size */ octeon_write_csr64(oct, CN23XX_SLI_IQ_BASE_ADDR64(iq_no), iq->base_addr_dma); octeon_write_csr(oct, CN23XX_SLI_IQ_SIZE(iq_no), iq->max_count); /* Remember the doorbell & instruction count register addr * for this queue */ iq->doorbell_reg = (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_IQ_DOORBELL(iq_no); iq->inst_cnt_reg = (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_IQ_INSTR_COUNT64(iq_no); dev_dbg(&oct->pci_dev->dev, "InstQ[%d]:dbell reg @ 0x%p instcnt_reg @ 0x%p\n", iq_no, iq->doorbell_reg, iq->inst_cnt_reg); /* Store the current instruction counter (used in flush_iq * calculation) */ pkt_in_done = readq(iq->inst_cnt_reg); if (oct->msix_on) { /* Set CINT_ENB to enable IQ interrupt */ writeq((pkt_in_done | CN23XX_INTR_CINT_ENB), iq->inst_cnt_reg); } else { /* Clear the count by writing back what we read, but don't * enable interrupts */ writeq(pkt_in_done, iq->inst_cnt_reg); } iq->reset_instr_cnt = 0; } static void cn23xx_setup_oq_regs(struct octeon_device *oct, u32 oq_no) { u32 reg_val; struct octeon_droq *droq = oct->droq[oq_no]; struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; u64 time_threshold; u64 cnt_threshold; oq_no += oct->sriov_info.pf_srn; octeon_write_csr64(oct, CN23XX_SLI_OQ_BASE_ADDR64(oq_no), droq->desc_ring_dma); octeon_write_csr(oct, CN23XX_SLI_OQ_SIZE(oq_no), droq->max_count); octeon_write_csr(oct, CN23XX_SLI_OQ_BUFF_INFO_SIZE(oq_no), droq->buffer_size); /* Get the mapped address of the pkt_sent and pkts_credit regs */ droq->pkts_sent_reg = (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OQ_PKTS_SENT(oq_no); droq->pkts_credit_reg = (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OQ_PKTS_CREDIT(oq_no); if (!oct->msix_on) { /* Enable this output queue to generate Packet Timer Interrupt */ reg_val = octeon_read_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(oq_no)); reg_val |= CN23XX_PKT_OUTPUT_CTL_TENB; octeon_write_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(oq_no), reg_val); /* Enable this output queue to generate Packet Count Interrupt */ reg_val = octeon_read_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(oq_no)); reg_val |= CN23XX_PKT_OUTPUT_CTL_CENB; octeon_write_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(oq_no), reg_val); } else { time_threshold = cn23xx_pf_get_oq_ticks( oct, (u32)CFG_GET_OQ_INTR_TIME(cn23xx->conf)); cnt_threshold = (u32)CFG_GET_OQ_INTR_PKT(cn23xx->conf); octeon_write_csr64( oct, CN23XX_SLI_OQ_PKT_INT_LEVELS(oq_no), ((time_threshold << 32 | cnt_threshold))); } } static void cn23xx_pf_mbox_thread(struct work_struct *work) { struct cavium_wk *wk = (struct cavium_wk *)work; struct octeon_mbox *mbox = (struct octeon_mbox *)wk->ctxptr; struct octeon_device *oct = mbox->oct_dev; u64 mbox_int_val, val64; u32 q_no, i; if (oct->rev_id < OCTEON_CN23XX_REV_1_1) { /*read and clear by writing 1*/ mbox_int_val = readq(mbox->mbox_int_reg); writeq(mbox_int_val, mbox->mbox_int_reg); for (i = 0; i < oct->sriov_info.num_vfs_alloced; i++) { q_no = i * oct->sriov_info.rings_per_vf; val64 = readq(oct->mbox[q_no]->mbox_write_reg); if (val64 && (val64 != OCTEON_PFVFACK)) { if (octeon_mbox_read(oct->mbox[q_no])) octeon_mbox_process_message( oct->mbox[q_no]); } } schedule_delayed_work(&wk->work, msecs_to_jiffies(10)); } else { octeon_mbox_process_message(mbox); } } static int cn23xx_setup_pf_mbox(struct octeon_device *oct) { struct octeon_mbox *mbox = NULL; u16 mac_no = oct->pcie_port; u16 pf_num = oct->pf_num; u32 q_no, i; if (!oct->sriov_info.max_vfs) return 0; for (i = 0; i < oct->sriov_info.max_vfs; i++) { q_no = i * oct->sriov_info.rings_per_vf; mbox = vmalloc(sizeof(*mbox)); if (!mbox) goto free_mbox; memset(mbox, 0, sizeof(struct octeon_mbox)); spin_lock_init(&mbox->lock); mbox->oct_dev = oct; mbox->q_no = q_no; mbox->state = OCTEON_MBOX_STATE_IDLE; /* PF mbox interrupt reg */ mbox->mbox_int_reg = (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_MAC_PF_MBOX_INT(mac_no, pf_num); /* PF writes into SIG0 reg */ mbox->mbox_write_reg = (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_PKT_PF_VF_MBOX_SIG(q_no, 0); /* PF reads from SIG1 reg */ mbox->mbox_read_reg = (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_PKT_PF_VF_MBOX_SIG(q_no, 1); /*Mail Box Thread creation*/ INIT_DELAYED_WORK(&mbox->mbox_poll_wk.work, cn23xx_pf_mbox_thread); mbox->mbox_poll_wk.ctxptr = (void *)mbox; oct->mbox[q_no] = mbox; writeq(OCTEON_PFVFSIG, mbox->mbox_read_reg); } if (oct->rev_id < OCTEON_CN23XX_REV_1_1) schedule_delayed_work(&oct->mbox[0]->mbox_poll_wk.work, msecs_to_jiffies(0)); return 0; free_mbox: while (i) { i--; vfree(oct->mbox[i]); } return 1; } static int cn23xx_free_pf_mbox(struct octeon_device *oct) { u32 q_no, i; if (!oct->sriov_info.max_vfs) return 0; for (i = 0; i < oct->sriov_info.max_vfs; i++) { q_no = i * oct->sriov_info.rings_per_vf; cancel_delayed_work_sync( &oct->mbox[q_no]->mbox_poll_wk.work); vfree(oct->mbox[q_no]); } return 0; } static int cn23xx_enable_io_queues(struct octeon_device *oct) { u64 reg_val; u32 srn, ern, q_no; u32 loop = 1000; srn = oct->sriov_info.pf_srn; ern = srn + oct->num_iqs; for (q_no = srn; q_no < ern; q_no++) { /* set the corresponding IQ IS_64B bit */ if (oct->io_qmask.iq64B & BIT_ULL(q_no - srn)) { reg_val = octeon_read_csr64( oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); reg_val = reg_val | CN23XX_PKT_INPUT_CTL_IS_64B; octeon_write_csr64( oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), reg_val); } /* set the corresponding IQ ENB bit */ if (oct->io_qmask.iq & BIT_ULL(q_no - srn)) { /* IOQs are in reset by default in PEM2 mode, * clearing reset bit */ reg_val = octeon_read_csr64( oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); if (reg_val & CN23XX_PKT_INPUT_CTL_RST) { while ((reg_val & CN23XX_PKT_INPUT_CTL_RST) && !(reg_val & CN23XX_PKT_INPUT_CTL_QUIET) && --loop) { reg_val = octeon_read_csr64( oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); } if (!loop) { dev_err(&oct->pci_dev->dev, "clearing the reset reg failed or setting the quiet reg failed for qno: %u\n", q_no); return -1; } reg_val = reg_val & ~CN23XX_PKT_INPUT_CTL_RST; octeon_write_csr64( oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), reg_val); reg_val = octeon_read_csr64( oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); if (reg_val & CN23XX_PKT_INPUT_CTL_RST) { dev_err(&oct->pci_dev->dev, "clearing the reset failed for qno: %u\n", q_no); return -1; } } reg_val = octeon_read_csr64( oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); reg_val = reg_val | CN23XX_PKT_INPUT_CTL_RING_ENB; octeon_write_csr64( oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), reg_val); } } for (q_no = srn; q_no < ern; q_no++) { u32 reg_val; /* set the corresponding OQ ENB bit */ if (oct->io_qmask.oq & BIT_ULL(q_no - srn)) { reg_val = octeon_read_csr( oct, CN23XX_SLI_OQ_PKT_CONTROL(q_no)); reg_val = reg_val | CN23XX_PKT_OUTPUT_CTL_RING_ENB; octeon_write_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(q_no), reg_val); } } return 0; } static void cn23xx_disable_io_queues(struct octeon_device *oct) { int q_no, loop; u64 d64; u32 d32; u32 srn, ern; srn = oct->sriov_info.pf_srn; ern = srn + oct->num_iqs; /*** Disable Input Queues. ***/ for (q_no = srn; q_no < ern; q_no++) { loop = HZ; /* start the Reset for a particular ring */ WRITE_ONCE(d64, octeon_read_csr64( oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no))); WRITE_ONCE(d64, READ_ONCE(d64) & (~(CN23XX_PKT_INPUT_CTL_RING_ENB))); WRITE_ONCE(d64, READ_ONCE(d64) | CN23XX_PKT_INPUT_CTL_RST); octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), READ_ONCE(d64)); /* Wait until hardware indicates that the particular IQ * is out of reset. */ WRITE_ONCE(d64, octeon_read_csr64( oct, CN23XX_SLI_PKT_IOQ_RING_RST)); while (!(READ_ONCE(d64) & BIT_ULL(q_no)) && loop--) { WRITE_ONCE(d64, octeon_read_csr64( oct, CN23XX_SLI_PKT_IOQ_RING_RST)); schedule_timeout_uninterruptible(1); } /* Reset the doorbell register for this Input Queue. */ octeon_write_csr(oct, CN23XX_SLI_IQ_DOORBELL(q_no), 0xFFFFFFFF); while (octeon_read_csr64(oct, CN23XX_SLI_IQ_DOORBELL(q_no)) && loop--) { schedule_timeout_uninterruptible(1); } } /*** Disable Output Queues. ***/ for (q_no = srn; q_no < ern; q_no++) { loop = HZ; /* Wait until hardware indicates that the particular IQ * is out of reset.It given that SLI_PKT_RING_RST is * common for both IQs and OQs */ WRITE_ONCE(d64, octeon_read_csr64( oct, CN23XX_SLI_PKT_IOQ_RING_RST)); while (!(READ_ONCE(d64) & BIT_ULL(q_no)) && loop--) { WRITE_ONCE(d64, octeon_read_csr64( oct, CN23XX_SLI_PKT_IOQ_RING_RST)); schedule_timeout_uninterruptible(1); } /* Reset the doorbell register for this Output Queue. */ octeon_write_csr(oct, CN23XX_SLI_OQ_PKTS_CREDIT(q_no), 0xFFFFFFFF); while (octeon_read_csr64(oct, CN23XX_SLI_OQ_PKTS_CREDIT(q_no)) && loop--) { schedule_timeout_uninterruptible(1); } /* clear the SLI_PKT(0..63)_CNTS[CNT] reg value */ WRITE_ONCE(d32, octeon_read_csr( oct, CN23XX_SLI_OQ_PKTS_SENT(q_no))); octeon_write_csr(oct, CN23XX_SLI_OQ_PKTS_SENT(q_no), READ_ONCE(d32)); } } static u64 cn23xx_pf_msix_interrupt_handler(void *dev) { struct octeon_ioq_vector *ioq_vector = (struct octeon_ioq_vector *)dev; struct octeon_device *oct = ioq_vector->oct_dev; u64 pkts_sent; u64 ret = 0; struct octeon_droq *droq = oct->droq[ioq_vector->droq_index]; dev_dbg(&oct->pci_dev->dev, "In %s octeon_dev @ %p\n", __func__, oct); if (!droq) { dev_err(&oct->pci_dev->dev, "23XX bringup FIXME: oct pfnum:%d ioq_vector->ioq_num :%d droq is NULL\n", oct->pf_num, ioq_vector->ioq_num); return 0; } pkts_sent = readq(droq->pkts_sent_reg); /* If our device has interrupted, then proceed. Also check * for all f's if interrupt was triggered on an error * and the PCI read fails. */ if (!pkts_sent || (pkts_sent == 0xFFFFFFFFFFFFFFFFULL)) return ret; /* Write count reg in sli_pkt_cnts to clear these int.*/ if ((pkts_sent & CN23XX_INTR_PO_INT) || (pkts_sent & CN23XX_INTR_PI_INT)) { if (pkts_sent & CN23XX_INTR_PO_INT) ret |= MSIX_PO_INT; } if (pkts_sent & CN23XX_INTR_PI_INT) /* We will clear the count when we update the read_index. */ ret |= MSIX_PI_INT; /* Never need to handle msix mbox intr for pf. They arrive on the last * msix */ return ret; } static void cn23xx_handle_pf_mbox_intr(struct octeon_device *oct) { struct delayed_work *work; u64 mbox_int_val; u32 i, q_no; mbox_int_val = readq(oct->mbox[0]->mbox_int_reg); for (i = 0; i < oct->sriov_info.num_vfs_alloced; i++) { q_no = i * oct->sriov_info.rings_per_vf; if (mbox_int_val & BIT_ULL(q_no)) { writeq(BIT_ULL(q_no), oct->mbox[0]->mbox_int_reg); if (octeon_mbox_read(oct->mbox[q_no])) { work = &oct->mbox[q_no]->mbox_poll_wk.work; schedule_delayed_work(work, msecs_to_jiffies(0)); } } } } static irqreturn_t cn23xx_interrupt_handler(void *dev) { struct octeon_device *oct = (struct octeon_device *)dev; struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; u64 intr64; dev_dbg(&oct->pci_dev->dev, "In %s octeon_dev @ %p\n", __func__, oct); intr64 = readq(cn23xx->intr_sum_reg64); oct->int_status = 0; if (intr64 & CN23XX_INTR_ERR) dev_err(&oct->pci_dev->dev, "OCTEON[%d]: Error Intr: 0x%016llx\n", oct->octeon_id, CVM_CAST64(intr64)); /* When VFs write into MBOX_SIG2 reg,these intr is set in PF */ if (intr64 & CN23XX_INTR_VF_MBOX) cn23xx_handle_pf_mbox_intr(oct); if (oct->msix_on != LIO_FLAG_MSIX_ENABLED) { if (intr64 & CN23XX_INTR_PKT_DATA) oct->int_status |= OCT_DEV_INTR_PKT_DATA; } if (intr64 & (CN23XX_INTR_DMA0_FORCE)) oct->int_status |= OCT_DEV_INTR_DMA0_FORCE; if (intr64 & (CN23XX_INTR_DMA1_FORCE)) oct->int_status |= OCT_DEV_INTR_DMA1_FORCE; /* Clear the current interrupts */ writeq(intr64, cn23xx->intr_sum_reg64); return IRQ_HANDLED; } static void cn23xx_bar1_idx_setup(struct octeon_device *oct, u64 core_addr, u32 idx, int valid) { u64 bar1; u64 reg_adr; if (!valid) { reg_adr = lio_pci_readq( oct, CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx)); WRITE_ONCE(bar1, reg_adr); lio_pci_writeq(oct, (READ_ONCE(bar1) & 0xFFFFFFFEULL), CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx)); reg_adr = lio_pci_readq( oct, CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx)); WRITE_ONCE(bar1, reg_adr); return; } /* The PEM(0..3)_BAR1_INDEX(0..15)[ADDR_IDX]<23:4> stores * bits <41:22> of the Core Addr */ lio_pci_writeq(oct, (((core_addr >> 22) << 4) | PCI_BAR1_MASK), CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx)); WRITE_ONCE(bar1, lio_pci_readq( oct, CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx))); } static void cn23xx_bar1_idx_write(struct octeon_device *oct, u32 idx, u32 mask) { lio_pci_writeq(oct, mask, CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx)); } static u32 cn23xx_bar1_idx_read(struct octeon_device *oct, u32 idx) { return (u32)lio_pci_readq( oct, CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx)); } /* always call with lock held */ static u32 cn23xx_update_read_index(struct octeon_instr_queue *iq) { u32 new_idx; u32 last_done; u32 pkt_in_done = readl(iq->inst_cnt_reg); last_done = pkt_in_done - iq->pkt_in_done; iq->pkt_in_done = pkt_in_done; /* Modulo of the new index with the IQ size will give us * the new index. The iq->reset_instr_cnt is always zero for * cn23xx, so no extra adjustments are needed. */ new_idx = (iq->octeon_read_index + (u32)(last_done & CN23XX_PKT_IN_DONE_CNT_MASK)) % iq->max_count; return new_idx; } static void cn23xx_enable_pf_interrupt(struct octeon_device *oct, u8 intr_flag) { struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; u64 intr_val = 0; /* Divide the single write to multiple writes based on the flag. */ /* Enable Interrupt */ if (intr_flag == OCTEON_ALL_INTR) { writeq(cn23xx->intr_mask64, cn23xx->intr_enb_reg64); } else if (intr_flag & OCTEON_OUTPUT_INTR) { intr_val = readq(cn23xx->intr_enb_reg64); intr_val |= CN23XX_INTR_PKT_DATA; writeq(intr_val, cn23xx->intr_enb_reg64); } else if ((intr_flag & OCTEON_MBOX_INTR) && (oct->sriov_info.max_vfs > 0)) { if (oct->rev_id >= OCTEON_CN23XX_REV_1_1) { intr_val = readq(cn23xx->intr_enb_reg64); intr_val |= CN23XX_INTR_VF_MBOX; writeq(intr_val, cn23xx->intr_enb_reg64); } } } static void cn23xx_disable_pf_interrupt(struct octeon_device *oct, u8 intr_flag) { struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; u64 intr_val = 0; /* Disable Interrupts */ if (intr_flag == OCTEON_ALL_INTR) { writeq(0, cn23xx->intr_enb_reg64); } else if (intr_flag & OCTEON_OUTPUT_INTR) { intr_val = readq(cn23xx->intr_enb_reg64); intr_val &= ~CN23XX_INTR_PKT_DATA; writeq(intr_val, cn23xx->intr_enb_reg64); } else if ((intr_flag & OCTEON_MBOX_INTR) && (oct->sriov_info.max_vfs > 0)) { if (oct->rev_id >= OCTEON_CN23XX_REV_1_1) { intr_val = readq(cn23xx->intr_enb_reg64); intr_val &= ~CN23XX_INTR_VF_MBOX; writeq(intr_val, cn23xx->intr_enb_reg64); } } } static void cn23xx_get_pcie_qlmport(struct octeon_device *oct) { oct->pcie_port = (octeon_read_csr(oct, CN23XX_SLI_MAC_NUMBER)) & 0xff; dev_dbg(&oct->pci_dev->dev, "OCTEON: CN23xx uses PCIE Port %d\n", oct->pcie_port); } static int cn23xx_get_pf_num(struct octeon_device *oct) { u32 fdl_bit = 0; u64 pkt0_in_ctl, d64; int pfnum, mac, trs, ret; ret = 0; /** Read Function Dependency Link reg to get the function number */ if (pci_read_config_dword(oct->pci_dev, CN23XX_PCIE_SRIOV_FDL, &fdl_bit) == 0) { oct->pf_num = ((fdl_bit >> CN23XX_PCIE_SRIOV_FDL_BIT_POS) & CN23XX_PCIE_SRIOV_FDL_MASK); } else { ret = -EINVAL; /* Under some virtual environments, extended PCI regs are * inaccessible, in which case the above read will have failed. * In this case, read the PF number from the * SLI_PKT0_INPUT_CONTROL reg (written by f/w) */ pkt0_in_ctl = octeon_read_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(0)); pfnum = (pkt0_in_ctl >> CN23XX_PKT_INPUT_CTL_PF_NUM_POS) & CN23XX_PKT_INPUT_CTL_PF_NUM_MASK; mac = (octeon_read_csr(oct, CN23XX_SLI_MAC_NUMBER)) & 0xff; /* validate PF num by reading RINFO; f/w writes RINFO.trs == 1*/ d64 = octeon_read_csr64(oct, CN23XX_SLI_PKT_MAC_RINFO64(mac, pfnum)); trs = (int)(d64 >> CN23XX_PKT_MAC_CTL_RINFO_TRS_BIT_POS) & 0xff; if (trs == 1) { dev_err(&oct->pci_dev->dev, "OCTEON: error reading PCI cfg space pfnum, re-read %u\n", pfnum); oct->pf_num = pfnum; ret = 0; } else { dev_err(&oct->pci_dev->dev, "OCTEON: error reading PCI cfg space pfnum; could not ascertain PF number\n"); } } return ret; } static void cn23xx_setup_reg_address(struct octeon_device *oct) { u8 __iomem *bar0_pciaddr = oct->mmio[0].hw_addr; struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; oct->reg_list.pci_win_wr_addr_hi = (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_ADDR_HI); oct->reg_list.pci_win_wr_addr_lo = (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_ADDR_LO); oct->reg_list.pci_win_wr_addr = (u64 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_ADDR64); oct->reg_list.pci_win_rd_addr_hi = (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_ADDR_HI); oct->reg_list.pci_win_rd_addr_lo = (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_ADDR_LO); oct->reg_list.pci_win_rd_addr = (u64 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_ADDR64); oct->reg_list.pci_win_wr_data_hi = (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_DATA_HI); oct->reg_list.pci_win_wr_data_lo = (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_DATA_LO); oct->reg_list.pci_win_wr_data = (u64 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_DATA64); oct->reg_list.pci_win_rd_data_hi = (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_DATA_HI); oct->reg_list.pci_win_rd_data_lo = (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_DATA_LO); oct->reg_list.pci_win_rd_data = (u64 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_DATA64); cn23xx_get_pcie_qlmport(oct); cn23xx->intr_mask64 = CN23XX_INTR_MASK; if (!oct->msix_on) cn23xx->intr_mask64 |= CN23XX_INTR_PKT_TIME; if (oct->rev_id >= OCTEON_CN23XX_REV_1_1) cn23xx->intr_mask64 |= CN23XX_INTR_VF_MBOX; cn23xx->intr_sum_reg64 = bar0_pciaddr + CN23XX_SLI_MAC_PF_INT_SUM64(oct->pcie_port, oct->pf_num); cn23xx->intr_enb_reg64 = bar0_pciaddr + CN23XX_SLI_MAC_PF_INT_ENB64(oct->pcie_port, oct->pf_num); } int cn23xx_sriov_config(struct octeon_device *oct) { struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; u32 max_rings, total_rings, max_vfs, rings_per_vf; u32 pf_srn, num_pf_rings; u32 max_possible_vfs; cn23xx->conf = (struct octeon_config *)oct_get_config_info(oct, LIO_23XX); switch (oct->rev_id) { case OCTEON_CN23XX_REV_1_0: max_rings = CN23XX_MAX_RINGS_PER_PF_PASS_1_0; max_possible_vfs = CN23XX_MAX_VFS_PER_PF_PASS_1_0; break; case OCTEON_CN23XX_REV_1_1: max_rings = CN23XX_MAX_RINGS_PER_PF_PASS_1_1; max_possible_vfs = CN23XX_MAX_VFS_PER_PF_PASS_1_1; break; default: max_rings = CN23XX_MAX_RINGS_PER_PF; max_possible_vfs = CN23XX_MAX_VFS_PER_PF; break; } if (oct->sriov_info.num_pf_rings) num_pf_rings = oct->sriov_info.num_pf_rings; else num_pf_rings = num_present_cpus(); #ifdef CONFIG_PCI_IOV max_vfs = min_t(u32, (max_rings - num_pf_rings), max_possible_vfs); rings_per_vf = 1; #else max_vfs = 0; rings_per_vf = 0; #endif total_rings = num_pf_rings + max_vfs; /* the first ring of the pf */ pf_srn = total_rings - num_pf_rings; oct->sriov_info.trs = total_rings; oct->sriov_info.max_vfs = max_vfs; oct->sriov_info.rings_per_vf = rings_per_vf; oct->sriov_info.pf_srn = pf_srn; oct->sriov_info.num_pf_rings = num_pf_rings; dev_notice(&oct->pci_dev->dev, "trs:%d max_vfs:%d rings_per_vf:%d pf_srn:%d num_pf_rings:%d\n", oct->sriov_info.trs, oct->sriov_info.max_vfs, oct->sriov_info.rings_per_vf, oct->sriov_info.pf_srn, oct->sriov_info.num_pf_rings); oct->sriov_info.sriov_enabled = 0; return 0; } int setup_cn23xx_octeon_pf_device(struct octeon_device *oct) { u32 data32; u64 BAR0, BAR1; pci_read_config_dword(oct->pci_dev, PCI_BASE_ADDRESS_0, &data32); BAR0 = (u64)(data32 & ~0xf); pci_read_config_dword(oct->pci_dev, PCI_BASE_ADDRESS_1, &data32); BAR0 |= ((u64)data32 << 32); pci_read_config_dword(oct->pci_dev, PCI_BASE_ADDRESS_2, &data32); BAR1 = (u64)(data32 & ~0xf); pci_read_config_dword(oct->pci_dev, PCI_BASE_ADDRESS_3, &data32); BAR1 |= ((u64)data32 << 32); if (!BAR0 || !BAR1) { if (!BAR0) dev_err(&oct->pci_dev->dev, "device BAR0 unassigned\n"); if (!BAR1) dev_err(&oct->pci_dev->dev, "device BAR1 unassigned\n"); return 1; } if (octeon_map_pci_barx(oct, 0, 0)) return 1; if (octeon_map_pci_barx(oct, 1, MAX_BAR1_IOREMAP_SIZE)) { dev_err(&oct->pci_dev->dev, "%s CN23XX BAR1 map failed\n", __func__); octeon_unmap_pci_barx(oct, 0); return 1; } if (cn23xx_get_pf_num(oct) != 0) return 1; if (cn23xx_sriov_config(oct)) { octeon_unmap_pci_barx(oct, 0); octeon_unmap_pci_barx(oct, 1); return 1; } octeon_write_csr64(oct, CN23XX_SLI_MAC_CREDIT_CNT, 0x3F802080802080ULL); oct->fn_list.setup_iq_regs = cn23xx_setup_iq_regs; oct->fn_list.setup_oq_regs = cn23xx_setup_oq_regs; oct->fn_list.setup_mbox = cn23xx_setup_pf_mbox; oct->fn_list.free_mbox = cn23xx_free_pf_mbox; oct->fn_list.process_interrupt_regs = cn23xx_interrupt_handler; oct->fn_list.msix_interrupt_handler = cn23xx_pf_msix_interrupt_handler; oct->fn_list.soft_reset = cn23xx_pf_soft_reset; oct->fn_list.setup_device_regs = cn23xx_setup_pf_device_regs; oct->fn_list.update_iq_read_idx = cn23xx_update_read_index; oct->fn_list.bar1_idx_setup = cn23xx_bar1_idx_setup; oct->fn_list.bar1_idx_write = cn23xx_bar1_idx_write; oct->fn_list.bar1_idx_read = cn23xx_bar1_idx_read; oct->fn_list.enable_interrupt = cn23xx_enable_pf_interrupt; oct->fn_list.disable_interrupt = cn23xx_disable_pf_interrupt; oct->fn_list.enable_io_queues = cn23xx_enable_io_queues; oct->fn_list.disable_io_queues = cn23xx_disable_io_queues; cn23xx_setup_reg_address(oct); oct->coproc_clock_rate = 1000000ULL * cn23xx_coprocessor_clock(oct); return 0; } int validate_cn23xx_pf_config_info(struct octeon_device *oct, struct octeon_config *conf23xx) { if (CFG_GET_IQ_MAX_Q(conf23xx) > CN23XX_MAX_INPUT_QUEUES) { dev_err(&oct->pci_dev->dev, "%s: Num IQ (%d) exceeds Max (%d)\n", __func__, CFG_GET_IQ_MAX_Q(conf23xx), CN23XX_MAX_INPUT_QUEUES); return 1; } if (CFG_GET_OQ_MAX_Q(conf23xx) > CN23XX_MAX_OUTPUT_QUEUES) { dev_err(&oct->pci_dev->dev, "%s: Num OQ (%d) exceeds Max (%d)\n", __func__, CFG_GET_OQ_MAX_Q(conf23xx), CN23XX_MAX_OUTPUT_QUEUES); return 1; } if (CFG_GET_IQ_INSTR_TYPE(conf23xx) != OCTEON_32BYTE_INSTR && CFG_GET_IQ_INSTR_TYPE(conf23xx) != OCTEON_64BYTE_INSTR) { dev_err(&oct->pci_dev->dev, "%s: Invalid instr type for IQ\n", __func__); return 1; } if (!CFG_GET_OQ_REFILL_THRESHOLD(conf23xx)) { dev_err(&oct->pci_dev->dev, "%s: Invalid parameter for OQ\n", __func__); return 1; } if (!(CFG_GET_OQ_INTR_TIME(conf23xx))) { dev_err(&oct->pci_dev->dev, "%s: Invalid parameter for OQ\n", __func__); return 1; } return 0; } int cn23xx_fw_loaded(struct octeon_device *oct) { u64 val; /* If there's more than one active PF on this NIC, then that * implies that the NIC firmware is loaded and running. This check * prevents a rare false negative that might occur if we only relied * on checking the SCR2_BIT_FW_LOADED flag. The false negative would * happen if the PF driver sees SCR2_BIT_FW_LOADED as cleared even * though the firmware was already loaded but still booting and has yet * to set SCR2_BIT_FW_LOADED. */ if (atomic_read(oct->adapter_refcount) > 1) return 1; val = octeon_read_csr64(oct, CN23XX_SLI_SCRATCH2); return (val >> SCR2_BIT_FW_LOADED) & 1ULL; } void cn23xx_tell_vf_its_macaddr_changed(struct octeon_device *oct, int vfidx, u8 *mac) { if (oct->sriov_info.vf_drv_loaded_mask & BIT_ULL(vfidx)) { struct octeon_mbox_cmd mbox_cmd; mbox_cmd.msg.u64 = 0; mbox_cmd.msg.s.type = OCTEON_MBOX_REQUEST; mbox_cmd.msg.s.resp_needed = 0; mbox_cmd.msg.s.cmd = OCTEON_PF_CHANGED_VF_MACADDR; mbox_cmd.msg.s.len = 1; mbox_cmd.recv_len = 0; mbox_cmd.recv_status = 0; mbox_cmd.fn = NULL; mbox_cmd.fn_arg = NULL; ether_addr_copy(mbox_cmd.msg.s.params, mac); mbox_cmd.q_no = vfidx * oct->sriov_info.rings_per_vf; octeon_mbox_write(oct, &mbox_cmd); } } static void cn23xx_get_vf_stats_callback(struct octeon_device *oct, struct octeon_mbox_cmd *cmd, void *arg) { struct oct_vf_stats_ctx *ctx = arg; memcpy(ctx->stats, cmd->data, sizeof(struct oct_vf_stats)); atomic_set(&ctx->status, 1); } int cn23xx_get_vf_stats(struct octeon_device *oct, int vfidx, struct oct_vf_stats *stats) { u32 timeout = HZ; // 1sec struct octeon_mbox_cmd mbox_cmd; struct oct_vf_stats_ctx ctx; u32 count = 0, ret; if (!(oct->sriov_info.vf_drv_loaded_mask & (1ULL << vfidx))) return -1; if (sizeof(struct oct_vf_stats) > sizeof(mbox_cmd.data)) return -1; mbox_cmd.msg.u64 = 0; mbox_cmd.msg.s.type = OCTEON_MBOX_REQUEST; mbox_cmd.msg.s.resp_needed = 1; mbox_cmd.msg.s.cmd = OCTEON_GET_VF_STATS; mbox_cmd.msg.s.len = 1; mbox_cmd.q_no = vfidx * oct->sriov_info.rings_per_vf; mbox_cmd.recv_len = 0; mbox_cmd.recv_status = 0; mbox_cmd.fn = (octeon_mbox_callback_t)cn23xx_get_vf_stats_callback; ctx.stats = stats; atomic_set(&ctx.status, 0); mbox_cmd.fn_arg = (void *)&ctx; memset(mbox_cmd.data, 0, sizeof(mbox_cmd.data)); octeon_mbox_write(oct, &mbox_cmd); do { schedule_timeout_uninterruptible(1); } while ((atomic_read(&ctx.status) == 0) && (count++ < timeout)); ret = atomic_read(&ctx.status); if (ret == 0) { octeon_mbox_cancel(oct, 0); dev_err(&oct->pci_dev->dev, "Unable to get stats from VF-%d, timedout\n", vfidx); return -1; } return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1