Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Raghu Vatsavayi | 3045 | 83.08% | 8 | 36.36% |
Weilin Chang | 305 | 8.32% | 1 | 4.55% |
Rick Farrington | 132 | 3.60% | 3 | 13.64% |
VSR Burru | 115 | 3.14% | 1 | 4.55% |
Felix Manlunas | 43 | 1.17% | 1 | 4.55% |
Pankaj Bharadiya | 8 | 0.22% | 1 | 4.55% |
Jesse Brandeburg | 6 | 0.16% | 1 | 4.55% |
xupanda | 4 | 0.11% | 1 | 4.55% |
Russell King | 3 | 0.08% | 1 | 4.55% |
Arnd Bergmann | 1 | 0.03% | 1 | 4.55% |
Gustavo A. R. Silva | 1 | 0.03% | 1 | 4.55% |
Denys Vlasenko | 1 | 0.03% | 1 | 4.55% |
Muhammad Falak R Wani | 1 | 0.03% | 1 | 4.55% |
Total | 3665 | 22 |
/********************************************************************** * Author: Cavium, Inc. * * Contact: support@cavium.com * Please include "LiquidIO" in the subject. * * Copyright (c) 2003-2016 Cavium, Inc. * * This file is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, Version 2, as * published by the Free Software Foundation. * * This file is distributed in the hope that it will be useful, but * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or * NONINFRINGEMENT. See the GNU General Public License for more details. ***********************************************************************/ /* * @file octeon_console.c */ #include <linux/moduleparam.h> #include <linux/pci.h> #include <linux/netdevice.h> #include <linux/crc32.h> #include "liquidio_common.h" #include "octeon_droq.h" #include "octeon_iq.h" #include "response_manager.h" #include "octeon_device.h" #include "liquidio_image.h" #include "octeon_mem_ops.h" static void octeon_remote_lock(void); static void octeon_remote_unlock(void); static u64 cvmx_bootmem_phy_named_block_find(struct octeon_device *oct, const char *name, u32 flags); static int octeon_console_read(struct octeon_device *oct, u32 console_num, char *buffer, u32 buf_size); #define BOOTLOADER_PCI_READ_BUFFER_DATA_ADDR 0x0006c008 #define BOOTLOADER_PCI_READ_BUFFER_LEN_ADDR 0x0006c004 #define BOOTLOADER_PCI_READ_BUFFER_OWNER_ADDR 0x0006c000 #define BOOTLOADER_PCI_READ_DESC_ADDR 0x0006c100 #define BOOTLOADER_PCI_WRITE_BUFFER_STR_LEN 248 #define OCTEON_PCI_IO_BUF_OWNER_OCTEON 0x00000001 #define OCTEON_PCI_IO_BUF_OWNER_HOST 0x00000002 /** Can change without breaking ABI */ #define CVMX_BOOTMEM_NUM_NAMED_BLOCKS 64 /** minimum alignment of bootmem alloced blocks */ #define CVMX_BOOTMEM_ALIGNMENT_SIZE (16ull) /** CVMX bootmem descriptor major version */ #define CVMX_BOOTMEM_DESC_MAJ_VER 3 /* CVMX bootmem descriptor minor version */ #define CVMX_BOOTMEM_DESC_MIN_VER 0 /* Current versions */ #define OCTEON_PCI_CONSOLE_MAJOR_VERSION 1 #define OCTEON_PCI_CONSOLE_MINOR_VERSION 0 #define OCTEON_PCI_CONSOLE_BLOCK_NAME "__pci_console" #define OCTEON_CONSOLE_POLL_INTERVAL_MS 100 /* 10 times per second */ /* First three members of cvmx_bootmem_desc are left in original * positions for backwards compatibility. * Assumes big endian target */ struct cvmx_bootmem_desc { /** spinlock to control access to list */ u32 lock; /** flags for indicating various conditions */ u32 flags; u64 head_addr; /** incremented changed when incompatible changes made */ u32 major_version; /** incremented changed when compatible changes made, * reset to zero when major incremented */ u32 minor_version; u64 app_data_addr; u64 app_data_size; /** number of elements in named blocks array */ u32 nb_num_blocks; /** length of name array in bootmem blocks */ u32 named_block_name_len; /** address of named memory block descriptors */ u64 named_block_array_addr; }; /* Structure that defines a single console. * * Note: when read_index == write_index, the buffer is empty. * The actual usable size of each console is console_buf_size -1; */ struct octeon_pci_console { u64 input_base_addr; u32 input_read_index; u32 input_write_index; u64 output_base_addr; u32 output_read_index; u32 output_write_index; u32 lock; u32 buf_size; }; /* This is the main container structure that contains all the information * about all PCI consoles. The address of this structure is passed to various * routines that operation on PCI consoles. */ struct octeon_pci_console_desc { u32 major_version; u32 minor_version; u32 lock; u32 flags; u32 num_consoles; u32 pad; /* must be 64 bit aligned here... */ /* Array of addresses of octeon_pci_console structures */ u64 console_addr_array[]; /* Implicit storage for console_addr_array */ }; /* * This function is the implementation of the get macros defined * for individual structure members. The argument are generated * by the macros inorder to read only the needed memory. * * @param oct Pointer to current octeon device * @param base 64bit physical address of the complete structure * @param offset Offset from the beginning of the structure to the member being * accessed. * @param size Size of the structure member. * * @return Value of the structure member promoted into a u64. */ static inline u64 __cvmx_bootmem_desc_get(struct octeon_device *oct, u64 base, u32 offset, u32 size) { base = (1ull << 63) | (base + offset); switch (size) { case 4: return octeon_read_device_mem32(oct, base); case 8: return octeon_read_device_mem64(oct, base); default: return 0; } } /* * This function retrieves the string name of a named block. It is * more complicated than a simple memcpy() since the named block * descriptor may not be directly accessible. * * @param addr Physical address of the named block descriptor * @param str String to receive the named block string name * @param len Length of the string buffer, which must match the length * stored in the bootmem descriptor. */ static void CVMX_BOOTMEM_NAMED_GET_NAME(struct octeon_device *oct, u64 addr, char *str, u32 len) { addr += offsetof(struct cvmx_bootmem_named_block_desc, name); octeon_pci_read_core_mem(oct, addr, (u8 *)str, len); str[len] = 0; } /* See header file for descriptions of functions */ /* * Check the version information on the bootmem descriptor * * @param exact_match * Exact major version to check against. A zero means * check that the version supports named blocks. * * @return Zero if the version is correct. Negative if the version is * incorrect. Failures also cause a message to be displayed. */ static int __cvmx_bootmem_check_version(struct octeon_device *oct, u32 exact_match) { u32 major_version; u32 minor_version; if (!oct->bootmem_desc_addr) oct->bootmem_desc_addr = octeon_read_device_mem64(oct, BOOTLOADER_PCI_READ_DESC_ADDR); major_version = (u32)__cvmx_bootmem_desc_get( oct, oct->bootmem_desc_addr, offsetof(struct cvmx_bootmem_desc, major_version), sizeof_field(struct cvmx_bootmem_desc, major_version)); minor_version = (u32)__cvmx_bootmem_desc_get( oct, oct->bootmem_desc_addr, offsetof(struct cvmx_bootmem_desc, minor_version), sizeof_field(struct cvmx_bootmem_desc, minor_version)); dev_dbg(&oct->pci_dev->dev, "%s: major_version=%d\n", __func__, major_version); if ((major_version > 3) || (exact_match && major_version != exact_match)) { dev_err(&oct->pci_dev->dev, "bootmem ver mismatch %d.%d addr:0x%llx\n", major_version, minor_version, (long long)oct->bootmem_desc_addr); return -1; } else { return 0; } } static const struct cvmx_bootmem_named_block_desc *__cvmx_bootmem_find_named_block_flags(struct octeon_device *oct, const char *name, u32 flags) { struct cvmx_bootmem_named_block_desc *desc = &oct->bootmem_named_block_desc; u64 named_addr = cvmx_bootmem_phy_named_block_find(oct, name, flags); if (named_addr) { desc->base_addr = __cvmx_bootmem_desc_get( oct, named_addr, offsetof(struct cvmx_bootmem_named_block_desc, base_addr), sizeof_field( struct cvmx_bootmem_named_block_desc, base_addr)); desc->size = __cvmx_bootmem_desc_get(oct, named_addr, offsetof(struct cvmx_bootmem_named_block_desc, size), sizeof_field( struct cvmx_bootmem_named_block_desc, size)); strscpy(desc->name, name, sizeof(desc->name)); return &oct->bootmem_named_block_desc; } else { return NULL; } } static u64 cvmx_bootmem_phy_named_block_find(struct octeon_device *oct, const char *name, u32 flags) { u64 result = 0; if (!__cvmx_bootmem_check_version(oct, 3)) { u32 i; u64 named_block_array_addr = __cvmx_bootmem_desc_get( oct, oct->bootmem_desc_addr, offsetof(struct cvmx_bootmem_desc, named_block_array_addr), sizeof_field(struct cvmx_bootmem_desc, named_block_array_addr)); u32 num_blocks = (u32)__cvmx_bootmem_desc_get( oct, oct->bootmem_desc_addr, offsetof(struct cvmx_bootmem_desc, nb_num_blocks), sizeof_field(struct cvmx_bootmem_desc, nb_num_blocks)); u32 name_length = (u32)__cvmx_bootmem_desc_get( oct, oct->bootmem_desc_addr, offsetof(struct cvmx_bootmem_desc, named_block_name_len), sizeof_field(struct cvmx_bootmem_desc, named_block_name_len)); u64 named_addr = named_block_array_addr; for (i = 0; i < num_blocks; i++) { u64 named_size = __cvmx_bootmem_desc_get( oct, named_addr, offsetof( struct cvmx_bootmem_named_block_desc, size), sizeof_field( struct cvmx_bootmem_named_block_desc, size)); if (name && named_size) { char *name_tmp = kmalloc(name_length + 1, GFP_KERNEL); if (!name_tmp) break; CVMX_BOOTMEM_NAMED_GET_NAME(oct, named_addr, name_tmp, name_length); if (!strncmp(name, name_tmp, name_length)) { result = named_addr; kfree(name_tmp); break; } kfree(name_tmp); } else if (!name && !named_size) { result = named_addr; break; } named_addr += sizeof(struct cvmx_bootmem_named_block_desc); } } return result; } /* * Find a named block on the remote Octeon * * @param name Name of block to find * @param base_addr Address the block is at (OUTPUT) * @param size The size of the block (OUTPUT) * * @return Zero on success, One on failure. */ static int octeon_named_block_find(struct octeon_device *oct, const char *name, u64 *base_addr, u64 *size) { const struct cvmx_bootmem_named_block_desc *named_block; octeon_remote_lock(); named_block = __cvmx_bootmem_find_named_block_flags(oct, name, 0); octeon_remote_unlock(); if (named_block) { *base_addr = named_block->base_addr; *size = named_block->size; return 0; } return 1; } static void octeon_remote_lock(void) { /* fill this in if any sharing is needed */ } static void octeon_remote_unlock(void) { /* fill this in if any sharing is needed */ } int octeon_console_send_cmd(struct octeon_device *oct, char *cmd_str, u32 wait_hundredths) { u32 len = (u32)strlen(cmd_str); dev_dbg(&oct->pci_dev->dev, "sending \"%s\" to bootloader\n", cmd_str); if (len > BOOTLOADER_PCI_WRITE_BUFFER_STR_LEN - 1) { dev_err(&oct->pci_dev->dev, "Command string too long, max length is: %d\n", BOOTLOADER_PCI_WRITE_BUFFER_STR_LEN - 1); return -1; } if (octeon_wait_for_bootloader(oct, wait_hundredths) != 0) { dev_err(&oct->pci_dev->dev, "Bootloader not ready for command.\n"); return -1; } /* Write command to bootloader */ octeon_remote_lock(); octeon_pci_write_core_mem(oct, BOOTLOADER_PCI_READ_BUFFER_DATA_ADDR, (u8 *)cmd_str, len); octeon_write_device_mem32(oct, BOOTLOADER_PCI_READ_BUFFER_LEN_ADDR, len); octeon_write_device_mem32(oct, BOOTLOADER_PCI_READ_BUFFER_OWNER_ADDR, OCTEON_PCI_IO_BUF_OWNER_OCTEON); /* Bootloader should accept command very quickly * if it really was ready */ if (octeon_wait_for_bootloader(oct, 200) != 0) { octeon_remote_unlock(); dev_err(&oct->pci_dev->dev, "Bootloader did not accept command.\n"); return -1; } octeon_remote_unlock(); return 0; } int octeon_wait_for_bootloader(struct octeon_device *oct, u32 wait_time_hundredths) { dev_dbg(&oct->pci_dev->dev, "waiting %d0 ms for bootloader\n", wait_time_hundredths); if (octeon_mem_access_ok(oct)) return -1; while (wait_time_hundredths > 0 && octeon_read_device_mem32(oct, BOOTLOADER_PCI_READ_BUFFER_OWNER_ADDR) != OCTEON_PCI_IO_BUF_OWNER_HOST) { if (--wait_time_hundredths <= 0) return -1; schedule_timeout_uninterruptible(HZ / 100); } return 0; } static void octeon_console_handle_result(struct octeon_device *oct, size_t console_num) { struct octeon_console *console; console = &oct->console[console_num]; console->waiting = 0; } static char console_buffer[OCTEON_CONSOLE_MAX_READ_BYTES]; static void output_console_line(struct octeon_device *oct, struct octeon_console *console, size_t console_num, char *console_buffer, s32 bytes_read) { char *line; s32 i; size_t len; line = console_buffer; for (i = 0; i < bytes_read; i++) { /* Output a line at a time, prefixed */ if (console_buffer[i] == '\n') { console_buffer[i] = '\0'; /* We need to output 'line', prefaced by 'leftover'. * However, it is possible we're being called to * output 'leftover' by itself (in the case of nothing * having been read from the console). * * To avoid duplication, check for this condition. */ if (console->leftover[0] && (line != console->leftover)) { if (console->print) (*console->print)(oct, (u32)console_num, console->leftover, line); console->leftover[0] = '\0'; } else { if (console->print) (*console->print)(oct, (u32)console_num, line, NULL); } line = &console_buffer[i + 1]; } } /* Save off any leftovers */ if (line != &console_buffer[bytes_read]) { console_buffer[bytes_read] = '\0'; len = strlen(console->leftover); strscpy(&console->leftover[len], line, sizeof(console->leftover) - len + 1); } } static void check_console(struct work_struct *work) { s32 bytes_read, tries, total_read; size_t len; struct octeon_console *console; struct cavium_wk *wk = (struct cavium_wk *)work; struct octeon_device *oct = (struct octeon_device *)wk->ctxptr; u32 console_num = (u32)wk->ctxul; u32 delay; console = &oct->console[console_num]; tries = 0; total_read = 0; do { /* Take console output regardless of whether it will * be logged */ bytes_read = octeon_console_read(oct, console_num, console_buffer, sizeof(console_buffer) - 1); if (bytes_read > 0) { total_read += bytes_read; if (console->waiting) octeon_console_handle_result(oct, console_num); if (console->print) { output_console_line(oct, console, console_num, console_buffer, bytes_read); } } else if (bytes_read < 0) { dev_err(&oct->pci_dev->dev, "Error reading console %u, ret=%d\n", console_num, bytes_read); } tries++; } while ((bytes_read > 0) && (tries < 16)); /* If nothing is read after polling the console, * output any leftovers if any */ if (console->print && (total_read == 0) && (console->leftover[0])) { /* append '\n' as terminator for 'output_console_line' */ len = strlen(console->leftover); console->leftover[len] = '\n'; output_console_line(oct, console, console_num, console->leftover, (s32)(len + 1)); console->leftover[0] = '\0'; } delay = OCTEON_CONSOLE_POLL_INTERVAL_MS; schedule_delayed_work(&wk->work, msecs_to_jiffies(delay)); } int octeon_init_consoles(struct octeon_device *oct) { int ret = 0; u64 addr, size; ret = octeon_mem_access_ok(oct); if (ret) { dev_err(&oct->pci_dev->dev, "Memory access not okay'\n"); return ret; } ret = octeon_named_block_find(oct, OCTEON_PCI_CONSOLE_BLOCK_NAME, &addr, &size); if (ret) { dev_err(&oct->pci_dev->dev, "Could not find console '%s'\n", OCTEON_PCI_CONSOLE_BLOCK_NAME); return ret; } /* Dedicate one of Octeon's BAR1 index registers to create a static * mapping to a region of Octeon DRAM that contains the PCI console * named block. */ oct->console_nb_info.bar1_index = BAR1_INDEX_STATIC_MAP; oct->fn_list.bar1_idx_setup(oct, addr, oct->console_nb_info.bar1_index, true); oct->console_nb_info.dram_region_base = addr & ~(OCTEON_BAR1_ENTRY_SIZE - 1ULL); /* num_consoles > 0, is an indication that the consoles * are accessible */ oct->num_consoles = octeon_read_device_mem32(oct, addr + offsetof(struct octeon_pci_console_desc, num_consoles)); oct->console_desc_addr = addr; dev_dbg(&oct->pci_dev->dev, "Initialized consoles. %d available\n", oct->num_consoles); return ret; } static void octeon_get_uboot_version(struct octeon_device *oct) { s32 bytes_read, tries, total_read; struct octeon_console *console; u32 console_num = 0; char *uboot_ver; char *buf; char *p; #define OCTEON_UBOOT_VER_BUF_SIZE 512 buf = kmalloc(OCTEON_UBOOT_VER_BUF_SIZE, GFP_KERNEL); if (!buf) return; if (octeon_console_send_cmd(oct, "setenv stdout pci\n", 50)) { kfree(buf); return; } if (octeon_console_send_cmd(oct, "version\n", 1)) { kfree(buf); return; } console = &oct->console[console_num]; tries = 0; total_read = 0; do { /* Take console output regardless of whether it will * be logged */ bytes_read = octeon_console_read(oct, console_num, buf + total_read, OCTEON_UBOOT_VER_BUF_SIZE - 1 - total_read); if (bytes_read > 0) { buf[bytes_read] = '\0'; total_read += bytes_read; if (console->waiting) octeon_console_handle_result(oct, console_num); } else if (bytes_read < 0) { dev_err(&oct->pci_dev->dev, "Error reading console %u, ret=%d\n", console_num, bytes_read); } tries++; } while ((bytes_read > 0) && (tries < 16)); /* If nothing is read after polling the console, * output any leftovers if any */ if ((total_read == 0) && (console->leftover[0])) { dev_dbg(&oct->pci_dev->dev, "%u: %s\n", console_num, console->leftover); console->leftover[0] = '\0'; } buf[OCTEON_UBOOT_VER_BUF_SIZE - 1] = '\0'; uboot_ver = strstr(buf, "U-Boot"); if (uboot_ver) { p = strstr(uboot_ver, "mips"); if (p) { p--; *p = '\0'; dev_info(&oct->pci_dev->dev, "%s\n", uboot_ver); } } kfree(buf); octeon_console_send_cmd(oct, "setenv stdout serial\n", 50); } int octeon_add_console(struct octeon_device *oct, u32 console_num, char *dbg_enb) { int ret = 0; u32 delay; u64 coreaddr; struct delayed_work *work; struct octeon_console *console; if (console_num >= oct->num_consoles) { dev_err(&oct->pci_dev->dev, "trying to read from console number %d when only 0 to %d exist\n", console_num, oct->num_consoles); } else { console = &oct->console[console_num]; console->waiting = 0; coreaddr = oct->console_desc_addr + console_num * 8 + offsetof(struct octeon_pci_console_desc, console_addr_array); console->addr = octeon_read_device_mem64(oct, coreaddr); coreaddr = console->addr + offsetof(struct octeon_pci_console, buf_size); console->buffer_size = octeon_read_device_mem32(oct, coreaddr); coreaddr = console->addr + offsetof(struct octeon_pci_console, input_base_addr); console->input_base_addr = octeon_read_device_mem64(oct, coreaddr); coreaddr = console->addr + offsetof(struct octeon_pci_console, output_base_addr); console->output_base_addr = octeon_read_device_mem64(oct, coreaddr); console->leftover[0] = '\0'; work = &oct->console_poll_work[console_num].work; octeon_get_uboot_version(oct); INIT_DELAYED_WORK(work, check_console); oct->console_poll_work[console_num].ctxptr = (void *)oct; oct->console_poll_work[console_num].ctxul = console_num; delay = OCTEON_CONSOLE_POLL_INTERVAL_MS; schedule_delayed_work(work, msecs_to_jiffies(delay)); /* an empty string means use default debug console enablement */ if (dbg_enb && !dbg_enb[0]) dbg_enb = "setenv pci_console_active 1"; if (dbg_enb) ret = octeon_console_send_cmd(oct, dbg_enb, 2000); console->active = 1; } return ret; } /* * Removes all consoles * * @param oct octeon device */ void octeon_remove_consoles(struct octeon_device *oct) { u32 i; struct octeon_console *console; for (i = 0; i < oct->num_consoles; i++) { console = &oct->console[i]; if (!console->active) continue; cancel_delayed_work_sync(&oct->console_poll_work[i]. work); console->addr = 0; console->buffer_size = 0; console->input_base_addr = 0; console->output_base_addr = 0; } oct->num_consoles = 0; } static inline int octeon_console_free_bytes(u32 buffer_size, u32 wr_idx, u32 rd_idx) { if (rd_idx >= buffer_size || wr_idx >= buffer_size) return -1; return ((buffer_size - 1) - (wr_idx - rd_idx)) % buffer_size; } static inline int octeon_console_avail_bytes(u32 buffer_size, u32 wr_idx, u32 rd_idx) { if (rd_idx >= buffer_size || wr_idx >= buffer_size) return -1; return buffer_size - 1 - octeon_console_free_bytes(buffer_size, wr_idx, rd_idx); } static int octeon_console_read(struct octeon_device *oct, u32 console_num, char *buffer, u32 buf_size) { int bytes_to_read; u32 rd_idx, wr_idx; struct octeon_console *console; if (console_num >= oct->num_consoles) { dev_err(&oct->pci_dev->dev, "Attempted to read from disabled console %d\n", console_num); return 0; } console = &oct->console[console_num]; /* Check to see if any data is available. * Maybe optimize this with 64-bit read. */ rd_idx = octeon_read_device_mem32(oct, console->addr + offsetof(struct octeon_pci_console, output_read_index)); wr_idx = octeon_read_device_mem32(oct, console->addr + offsetof(struct octeon_pci_console, output_write_index)); bytes_to_read = octeon_console_avail_bytes(console->buffer_size, wr_idx, rd_idx); if (bytes_to_read <= 0) return bytes_to_read; bytes_to_read = min_t(s32, bytes_to_read, buf_size); /* Check to see if what we want to read is not contiguous, and limit * ourselves to the contiguous block */ if (rd_idx + bytes_to_read >= console->buffer_size) bytes_to_read = console->buffer_size - rd_idx; octeon_pci_read_core_mem(oct, console->output_base_addr + rd_idx, (u8 *)buffer, bytes_to_read); octeon_write_device_mem32(oct, console->addr + offsetof(struct octeon_pci_console, output_read_index), (rd_idx + bytes_to_read) % console->buffer_size); return bytes_to_read; } #define FBUF_SIZE (4 * 1024 * 1024) #define MAX_BOOTTIME_SIZE 80 int octeon_download_firmware(struct octeon_device *oct, const u8 *data, size_t size) { struct octeon_firmware_file_header *h; char boottime[MAX_BOOTTIME_SIZE]; struct timespec64 ts; u32 crc32_result; u64 load_addr; u32 image_len; int ret = 0; u32 i, rem; if (size < sizeof(struct octeon_firmware_file_header)) { dev_err(&oct->pci_dev->dev, "Firmware file too small (%d < %d).\n", (u32)size, (u32)sizeof(struct octeon_firmware_file_header)); return -EINVAL; } h = (struct octeon_firmware_file_header *)data; if (be32_to_cpu(h->magic) != LIO_NIC_MAGIC) { dev_err(&oct->pci_dev->dev, "Unrecognized firmware file.\n"); return -EINVAL; } crc32_result = crc32((unsigned int)~0, data, sizeof(struct octeon_firmware_file_header) - sizeof(u32)) ^ ~0U; if (crc32_result != be32_to_cpu(h->crc32)) { dev_err(&oct->pci_dev->dev, "Firmware CRC mismatch (0x%08x != 0x%08x).\n", crc32_result, be32_to_cpu(h->crc32)); return -EINVAL; } if (memcmp(LIQUIDIO_BASE_VERSION, h->version, strlen(LIQUIDIO_BASE_VERSION))) { dev_err(&oct->pci_dev->dev, "Unmatched firmware version. Expected %s.x, got %s.\n", LIQUIDIO_BASE_VERSION, h->version); return -EINVAL; } if (be32_to_cpu(h->num_images) > LIO_MAX_IMAGES) { dev_err(&oct->pci_dev->dev, "Too many images in firmware file (%d).\n", be32_to_cpu(h->num_images)); return -EINVAL; } dev_info(&oct->pci_dev->dev, "Firmware version: %s\n", h->version); snprintf(oct->fw_info.liquidio_firmware_version, 32, "LIQUIDIO: %s", h->version); data += sizeof(struct octeon_firmware_file_header); dev_info(&oct->pci_dev->dev, "%s: Loading %d images\n", __func__, be32_to_cpu(h->num_images)); /* load all images */ for (i = 0; i < be32_to_cpu(h->num_images); i++) { load_addr = be64_to_cpu(h->desc[i].addr); image_len = be32_to_cpu(h->desc[i].len); dev_info(&oct->pci_dev->dev, "Loading firmware %d at %llx\n", image_len, load_addr); /* Write in 4MB chunks*/ rem = image_len; while (rem) { if (rem < FBUF_SIZE) size = rem; else size = FBUF_SIZE; /* download the image */ octeon_pci_write_core_mem(oct, load_addr, data, (u32)size); data += size; rem -= (u32)size; load_addr += size; } } /* Pass date and time information to NIC at the time of loading * firmware and periodically update the host time to NIC firmware. * This is to make NIC firmware use the same time reference as Host, * so that it is easy to correlate logs from firmware and host for * debugging. * * Octeon always uses UTC time. so timezone information is not sent. */ ktime_get_real_ts64(&ts); ret = snprintf(boottime, MAX_BOOTTIME_SIZE, " time_sec=%lld time_nsec=%ld", (s64)ts.tv_sec, ts.tv_nsec); if ((sizeof(h->bootcmd) - strnlen(h->bootcmd, sizeof(h->bootcmd))) < ret) { dev_err(&oct->pci_dev->dev, "Boot command buffer too small\n"); return -EINVAL; } strncat(h->bootcmd, boottime, sizeof(h->bootcmd) - strnlen(h->bootcmd, sizeof(h->bootcmd))); dev_info(&oct->pci_dev->dev, "Writing boot command: %s\n", h->bootcmd); /* Invoke the bootcmd */ ret = octeon_console_send_cmd(oct, h->bootcmd, 50); if (ret) dev_info(&oct->pci_dev->dev, "Boot command send failed\n"); return ret; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1