Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Arseny Solokha | 8260 | 47.22% | 3 | 1.20% |
Claudiu Manoil | 3302 | 18.88% | 62 | 24.90% |
Kumar Gala | 1663 | 9.51% | 8 | 3.21% |
Sandeep Gopalpet | 1384 | 7.91% | 8 | 3.21% |
Anton Vorontsov | 683 | 3.90% | 16 | 6.43% |
Andy Fleming | 353 | 2.02% | 15 | 6.02% |
Esben Haabendal | 352 | 2.01% | 4 | 1.61% |
Manfred Rudigier | 171 | 0.98% | 5 | 2.01% |
Matei Pavaluca | 168 | 0.96% | 2 | 0.80% |
Dai Haruki | 141 | 0.81% | 8 | 3.21% |
Paul Gortmaker | 80 | 0.46% | 4 | 1.61% |
Kevin Hao | 67 | 0.38% | 3 | 1.20% |
Scott Wood | 58 | 0.33% | 3 | 1.20% |
Michael Braun | 52 | 0.30% | 1 | 0.40% |
Philippe Reynes | 50 | 0.29% | 1 | 0.40% |
Joe Perches | 48 | 0.27% | 6 | 2.41% |
Tobias Waldekranz | 43 | 0.25% | 1 | 0.40% |
Sebastian Poehn | 38 | 0.22% | 1 | 0.40% |
Stephen Hemminger | 38 | 0.22% | 2 | 0.80% |
Vitaly Wool | 35 | 0.20% | 1 | 0.40% |
Sebastian Andrzej Siewior | 34 | 0.19% | 1 | 0.40% |
Jingchang Lu | 33 | 0.19% | 1 | 0.40% |
Grant C. Likely | 30 | 0.17% | 6 | 2.41% |
Vladimir Oltean | 28 | 0.16% | 2 | 0.80% |
Ben Hutchings | 28 | 0.16% | 2 | 0.80% |
Jiajun Wu | 26 | 0.15% | 3 | 1.20% |
Jan Ceuleers | 23 | 0.13% | 3 | 1.20% |
Andrew Lunn | 22 | 0.13% | 5 | 2.01% |
Maxim Kochetkov | 21 | 0.12% | 1 | 0.40% |
Johan Hovold | 18 | 0.10% | 1 | 0.40% |
Clifford Wolf | 16 | 0.09% | 1 | 0.40% |
Alex Dubov | 15 | 0.09% | 1 | 0.40% |
Eric Dumazet | 11 | 0.06% | 5 | 2.01% |
Florian Fainelli | 11 | 0.06% | 1 | 0.40% |
Russell King | 11 | 0.06% | 3 | 1.20% |
Arnaldo Carvalho de Melo | 11 | 0.06% | 4 | 1.61% |
Sebastian Pöhn | 9 | 0.05% | 1 | 0.40% |
Yangbo Lu | 8 | 0.05% | 2 | 0.80% |
Jiri Pirko | 8 | 0.05% | 3 | 1.20% |
Michał Mirosław | 7 | 0.04% | 1 | 0.40% |
Li Yang | 7 | 0.04% | 4 | 1.61% |
Sumera Priyadarsini | 7 | 0.04% | 1 | 0.40% |
Jarod Wilson | 7 | 0.04% | 1 | 0.40% |
Michael Walle | 6 | 0.03% | 1 | 0.40% |
Guenter Roeck | 6 | 0.03% | 1 | 0.40% |
Masakazu Mokuno | 6 | 0.03% | 1 | 0.40% |
Zefir Kurtisi | 6 | 0.03% | 1 | 0.40% |
Sudeep Holla | 6 | 0.03% | 1 | 0.40% |
Oliver Hartkopp | 5 | 0.03% | 1 | 0.40% |
Yong Zhang | 5 | 0.03% | 1 | 0.40% |
Joakim Tjernlund | 5 | 0.03% | 1 | 0.40% |
Andy Spencer | 4 | 0.02% | 1 | 0.40% |
Jarek Poplawski | 4 | 0.02% | 1 | 0.40% |
Michael S. Tsirkin | 4 | 0.02% | 1 | 0.40% |
Jeff Garzik | 4 | 0.02% | 1 | 0.40% |
Atsushi Nemoto | 3 | 0.02% | 1 | 0.40% |
Vitaly Bordug | 3 | 0.02% | 1 | 0.40% |
David Daney | 3 | 0.02% | 1 | 0.40% |
David S. Miller | 3 | 0.02% | 2 | 0.80% |
Saurabh Sengar | 3 | 0.02% | 1 | 0.40% |
Uwe Kleine-König | 3 | 0.02% | 1 | 0.40% |
Mark Brown | 3 | 0.02% | 1 | 0.40% |
Rob Herring | 3 | 0.02% | 2 | 0.80% |
Trent Piepho | 2 | 0.01% | 1 | 0.40% |
Thomas Gleixner | 2 | 0.01% | 1 | 0.40% |
Fabio Estevam | 2 | 0.01% | 1 | 0.40% |
Florian Westphal | 2 | 0.01% | 1 | 0.40% |
Patrick McHardy | 2 | 0.01% | 1 | 0.40% |
Zumeng Chen | 2 | 0.01% | 1 | 0.40% |
Petr Štetiar | 2 | 0.01% | 1 | 0.40% |
Axel Lin | 2 | 0.01% | 1 | 0.40% |
Jakub Kiciński | 2 | 0.01% | 2 | 0.80% |
Richard Cochran | 2 | 0.01% | 1 | 0.40% |
Fabian Frederick | 1 | 0.01% | 1 | 0.40% |
Eran Liberty | 1 | 0.01% | 1 | 0.40% |
Linus Torvalds | 1 | 0.01% | 1 | 0.40% |
Hamish Martin | 1 | 0.01% | 1 | 0.40% |
Becky Bruce | 1 | 0.01% | 1 | 0.40% |
Arnd Bergmann | 1 | 0.01% | 1 | 0.40% |
Yue haibing | 1 | 0.01% | 1 | 0.40% |
Abhimanyu | 1 | 0.01% | 1 | 0.40% |
Sergei Shtylyov | 1 | 0.01% | 1 | 0.40% |
Total | 17491 | 249 |
// SPDX-License-Identifier: GPL-2.0-or-later /* drivers/net/ethernet/freescale/gianfar.c * * Gianfar Ethernet Driver * This driver is designed for the non-CPM ethernet controllers * on the 85xx and 83xx family of integrated processors * Based on 8260_io/fcc_enet.c * * Author: Andy Fleming * Maintainer: Kumar Gala * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com> * * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc. * Copyright 2007 MontaVista Software, Inc. * * Gianfar: AKA Lambda Draconis, "Dragon" * RA 11 31 24.2 * Dec +69 19 52 * V 3.84 * B-V +1.62 * * Theory of operation * * The driver is initialized through of_device. Configuration information * is therefore conveyed through an OF-style device tree. * * The Gianfar Ethernet Controller uses a ring of buffer * descriptors. The beginning is indicated by a register * pointing to the physical address of the start of the ring. * The end is determined by a "wrap" bit being set in the * last descriptor of the ring. * * When a packet is received, the RXF bit in the * IEVENT register is set, triggering an interrupt when the * corresponding bit in the IMASK register is also set (if * interrupt coalescing is active, then the interrupt may not * happen immediately, but will wait until either a set number * of frames or amount of time have passed). In NAPI, the * interrupt handler will signal there is work to be done, and * exit. This method will start at the last known empty * descriptor, and process every subsequent descriptor until there * are none left with data (NAPI will stop after a set number of * packets to give time to other tasks, but will eventually * process all the packets). The data arrives inside a * pre-allocated skb, and so after the skb is passed up to the * stack, a new skb must be allocated, and the address field in * the buffer descriptor must be updated to indicate this new * skb. * * When the kernel requests that a packet be transmitted, the * driver starts where it left off last time, and points the * descriptor at the buffer which was passed in. The driver * then informs the DMA engine that there are packets ready to * be transmitted. Once the controller is finished transmitting * the packet, an interrupt may be triggered (under the same * conditions as for reception, but depending on the TXF bit). * The driver then cleans up the buffer. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/unistd.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/if_vlan.h> #include <linux/spinlock.h> #include <linux/mm.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/of_mdio.h> #include <linux/of_platform.h> #include <linux/ip.h> #include <linux/tcp.h> #include <linux/udp.h> #include <linux/in.h> #include <linux/net_tstamp.h> #include <asm/io.h> #ifdef CONFIG_PPC #include <asm/reg.h> #include <asm/mpc85xx.h> #endif #include <asm/irq.h> #include <linux/uaccess.h> #include <linux/module.h> #include <linux/dma-mapping.h> #include <linux/crc32.h> #include <linux/mii.h> #include <linux/phy.h> #include <linux/phy_fixed.h> #include <linux/of.h> #include <linux/of_net.h> #include "gianfar.h" #define TX_TIMEOUT (5*HZ) MODULE_AUTHOR("Freescale Semiconductor, Inc"); MODULE_DESCRIPTION("Gianfar Ethernet Driver"); MODULE_LICENSE("GPL"); static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, dma_addr_t buf) { u32 lstatus; bdp->bufPtr = cpu_to_be32(buf); lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT); if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1) lstatus |= BD_LFLAG(RXBD_WRAP); gfar_wmb(); bdp->lstatus = cpu_to_be32(lstatus); } static void gfar_init_tx_rx_base(struct gfar_private *priv) { struct gfar __iomem *regs = priv->gfargrp[0].regs; u32 __iomem *baddr; int i; baddr = ®s->tbase0; for (i = 0; i < priv->num_tx_queues; i++) { gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base); baddr += 2; } baddr = ®s->rbase0; for (i = 0; i < priv->num_rx_queues; i++) { gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base); baddr += 2; } } static void gfar_init_rqprm(struct gfar_private *priv) { struct gfar __iomem *regs = priv->gfargrp[0].regs; u32 __iomem *baddr; int i; baddr = ®s->rqprm0; for (i = 0; i < priv->num_rx_queues; i++) { gfar_write(baddr, priv->rx_queue[i]->rx_ring_size | (DEFAULT_RX_LFC_THR << FBTHR_SHIFT)); baddr++; } } static void gfar_rx_offload_en(struct gfar_private *priv) { /* set this when rx hw offload (TOE) functions are being used */ priv->uses_rxfcb = 0; if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX)) priv->uses_rxfcb = 1; if (priv->hwts_rx_en || priv->rx_filer_enable) priv->uses_rxfcb = 1; } static void gfar_mac_rx_config(struct gfar_private *priv) { struct gfar __iomem *regs = priv->gfargrp[0].regs; u32 rctrl = 0; if (priv->rx_filer_enable) { rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT; /* Program the RIR0 reg with the required distribution */ gfar_write(®s->rir0, DEFAULT_2RXQ_RIR0); } /* Restore PROMISC mode */ if (priv->ndev->flags & IFF_PROMISC) rctrl |= RCTRL_PROM; if (priv->ndev->features & NETIF_F_RXCSUM) rctrl |= RCTRL_CHECKSUMMING; if (priv->extended_hash) rctrl |= RCTRL_EXTHASH | RCTRL_EMEN; if (priv->padding) { rctrl &= ~RCTRL_PAL_MASK; rctrl |= RCTRL_PADDING(priv->padding); } /* Enable HW time stamping if requested from user space */ if (priv->hwts_rx_en) rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE; if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT; /* Clear the LFC bit */ gfar_write(®s->rctrl, rctrl); /* Init flow control threshold values */ gfar_init_rqprm(priv); gfar_write(®s->ptv, DEFAULT_LFC_PTVVAL); rctrl |= RCTRL_LFC; /* Init rctrl based on our settings */ gfar_write(®s->rctrl, rctrl); } static void gfar_mac_tx_config(struct gfar_private *priv) { struct gfar __iomem *regs = priv->gfargrp[0].regs; u32 tctrl = 0; if (priv->ndev->features & NETIF_F_IP_CSUM) tctrl |= TCTRL_INIT_CSUM; if (priv->prio_sched_en) tctrl |= TCTRL_TXSCHED_PRIO; else { tctrl |= TCTRL_TXSCHED_WRRS; gfar_write(®s->tr03wt, DEFAULT_WRRS_WEIGHT); gfar_write(®s->tr47wt, DEFAULT_WRRS_WEIGHT); } if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX) tctrl |= TCTRL_VLINS; gfar_write(®s->tctrl, tctrl); } static void gfar_configure_coalescing(struct gfar_private *priv, unsigned long tx_mask, unsigned long rx_mask) { struct gfar __iomem *regs = priv->gfargrp[0].regs; u32 __iomem *baddr; if (priv->mode == MQ_MG_MODE) { int i = 0; baddr = ®s->txic0; for_each_set_bit(i, &tx_mask, priv->num_tx_queues) { gfar_write(baddr + i, 0); if (likely(priv->tx_queue[i]->txcoalescing)) gfar_write(baddr + i, priv->tx_queue[i]->txic); } baddr = ®s->rxic0; for_each_set_bit(i, &rx_mask, priv->num_rx_queues) { gfar_write(baddr + i, 0); if (likely(priv->rx_queue[i]->rxcoalescing)) gfar_write(baddr + i, priv->rx_queue[i]->rxic); } } else { /* Backward compatible case -- even if we enable * multiple queues, there's only single reg to program */ gfar_write(®s->txic, 0); if (likely(priv->tx_queue[0]->txcoalescing)) gfar_write(®s->txic, priv->tx_queue[0]->txic); gfar_write(®s->rxic, 0); if (unlikely(priv->rx_queue[0]->rxcoalescing)) gfar_write(®s->rxic, priv->rx_queue[0]->rxic); } } static void gfar_configure_coalescing_all(struct gfar_private *priv) { gfar_configure_coalescing(priv, 0xFF, 0xFF); } static void gfar_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) { struct gfar_private *priv = netdev_priv(dev); int i; for (i = 0; i < priv->num_rx_queues; i++) { stats->rx_packets += priv->rx_queue[i]->stats.rx_packets; stats->rx_bytes += priv->rx_queue[i]->stats.rx_bytes; stats->rx_dropped += priv->rx_queue[i]->stats.rx_dropped; } for (i = 0; i < priv->num_tx_queues; i++) { stats->tx_bytes += priv->tx_queue[i]->stats.tx_bytes; stats->tx_packets += priv->tx_queue[i]->stats.tx_packets; } if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { struct rmon_mib __iomem *rmon = &priv->gfargrp[0].regs->rmon; unsigned long flags; u32 rdrp, car, car_before; u64 rdrp_offset; spin_lock_irqsave(&priv->rmon_overflow.lock, flags); car = gfar_read(&rmon->car1) & CAR1_C1RDR; do { car_before = car; rdrp = gfar_read(&rmon->rdrp); car = gfar_read(&rmon->car1) & CAR1_C1RDR; } while (car != car_before); if (car) { priv->rmon_overflow.rdrp++; gfar_write(&rmon->car1, car); } rdrp_offset = priv->rmon_overflow.rdrp; spin_unlock_irqrestore(&priv->rmon_overflow.lock, flags); stats->rx_missed_errors = rdrp + (rdrp_offset << 16); } } /* Set the appropriate hash bit for the given addr */ /* The algorithm works like so: * 1) Take the Destination Address (ie the multicast address), and * do a CRC on it (little endian), and reverse the bits of the * result. * 2) Use the 8 most significant bits as a hash into a 256-entry * table. The table is controlled through 8 32-bit registers: * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is * gaddr7. This means that the 3 most significant bits in the * hash index which gaddr register to use, and the 5 other bits * indicate which bit (assuming an IBM numbering scheme, which * for PowerPC (tm) is usually the case) in the register holds * the entry. */ static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr) { u32 tempval; struct gfar_private *priv = netdev_priv(dev); u32 result = ether_crc(ETH_ALEN, addr); int width = priv->hash_width; u8 whichbit = (result >> (32 - width)) & 0x1f; u8 whichreg = result >> (32 - width + 5); u32 value = (1 << (31-whichbit)); tempval = gfar_read(priv->hash_regs[whichreg]); tempval |= value; gfar_write(priv->hash_regs[whichreg], tempval); } /* There are multiple MAC Address register pairs on some controllers * This function sets the numth pair to a given address */ static void gfar_set_mac_for_addr(struct net_device *dev, int num, const u8 *addr) { struct gfar_private *priv = netdev_priv(dev); struct gfar __iomem *regs = priv->gfargrp[0].regs; u32 tempval; u32 __iomem *macptr = ®s->macstnaddr1; macptr += num*2; /* For a station address of 0x12345678ABCD in transmission * order (BE), MACnADDR1 is set to 0xCDAB7856 and * MACnADDR2 is set to 0x34120000. */ tempval = (addr[5] << 24) | (addr[4] << 16) | (addr[3] << 8) | addr[2]; gfar_write(macptr, tempval); tempval = (addr[1] << 24) | (addr[0] << 16); gfar_write(macptr+1, tempval); } static int gfar_set_mac_addr(struct net_device *dev, void *p) { int ret; ret = eth_mac_addr(dev, p); if (ret) return ret; gfar_set_mac_for_addr(dev, 0, dev->dev_addr); return 0; } static void gfar_ints_disable(struct gfar_private *priv) { int i; for (i = 0; i < priv->num_grps; i++) { struct gfar __iomem *regs = priv->gfargrp[i].regs; /* Clear IEVENT */ gfar_write(®s->ievent, IEVENT_INIT_CLEAR); /* Initialize IMASK */ gfar_write(®s->imask, IMASK_INIT_CLEAR); } } static void gfar_ints_enable(struct gfar_private *priv) { int i; for (i = 0; i < priv->num_grps; i++) { struct gfar __iomem *regs = priv->gfargrp[i].regs; /* Unmask the interrupts we look for */ gfar_write(®s->imask, IMASK_DEFAULT | priv->rmon_overflow.imask); } } static int gfar_alloc_tx_queues(struct gfar_private *priv) { int i; for (i = 0; i < priv->num_tx_queues; i++) { priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q), GFP_KERNEL); if (!priv->tx_queue[i]) return -ENOMEM; priv->tx_queue[i]->tx_skbuff = NULL; priv->tx_queue[i]->qindex = i; priv->tx_queue[i]->dev = priv->ndev; spin_lock_init(&(priv->tx_queue[i]->txlock)); } return 0; } static int gfar_alloc_rx_queues(struct gfar_private *priv) { int i; for (i = 0; i < priv->num_rx_queues; i++) { priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q), GFP_KERNEL); if (!priv->rx_queue[i]) return -ENOMEM; priv->rx_queue[i]->qindex = i; priv->rx_queue[i]->ndev = priv->ndev; } return 0; } static void gfar_free_tx_queues(struct gfar_private *priv) { int i; for (i = 0; i < priv->num_tx_queues; i++) kfree(priv->tx_queue[i]); } static void gfar_free_rx_queues(struct gfar_private *priv) { int i; for (i = 0; i < priv->num_rx_queues; i++) kfree(priv->rx_queue[i]); } static void unmap_group_regs(struct gfar_private *priv) { int i; for (i = 0; i < MAXGROUPS; i++) if (priv->gfargrp[i].regs) iounmap(priv->gfargrp[i].regs); } static void free_gfar_dev(struct gfar_private *priv) { int i, j; for (i = 0; i < priv->num_grps; i++) for (j = 0; j < GFAR_NUM_IRQS; j++) { kfree(priv->gfargrp[i].irqinfo[j]); priv->gfargrp[i].irqinfo[j] = NULL; } free_netdev(priv->ndev); } static void disable_napi(struct gfar_private *priv) { int i; for (i = 0; i < priv->num_grps; i++) { napi_disable(&priv->gfargrp[i].napi_rx); napi_disable(&priv->gfargrp[i].napi_tx); } } static void enable_napi(struct gfar_private *priv) { int i; for (i = 0; i < priv->num_grps; i++) { napi_enable(&priv->gfargrp[i].napi_rx); napi_enable(&priv->gfargrp[i].napi_tx); } } static int gfar_parse_group(struct device_node *np, struct gfar_private *priv, const char *model) { struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps]; int i; for (i = 0; i < GFAR_NUM_IRQS; i++) { grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo), GFP_KERNEL); if (!grp->irqinfo[i]) return -ENOMEM; } grp->regs = of_iomap(np, 0); if (!grp->regs) return -ENOMEM; gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0); /* If we aren't the FEC we have multiple interrupts */ if (model && strcasecmp(model, "FEC")) { gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1); gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2); if (!gfar_irq(grp, TX)->irq || !gfar_irq(grp, RX)->irq || !gfar_irq(grp, ER)->irq) return -EINVAL; } grp->priv = priv; spin_lock_init(&grp->grplock); if (priv->mode == MQ_MG_MODE) { /* One Q per interrupt group: Q0 to G0, Q1 to G1 */ grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); } else { grp->rx_bit_map = 0xFF; grp->tx_bit_map = 0xFF; } /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses * right to left, so we need to revert the 8 bits to get the q index */ grp->rx_bit_map = bitrev8(grp->rx_bit_map); grp->tx_bit_map = bitrev8(grp->tx_bit_map); /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values, * also assign queues to groups */ for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) { if (!grp->rx_queue) grp->rx_queue = priv->rx_queue[i]; grp->num_rx_queues++; grp->rstat |= (RSTAT_CLEAR_RHALT >> i); priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i); priv->rx_queue[i]->grp = grp; } for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) { if (!grp->tx_queue) grp->tx_queue = priv->tx_queue[i]; grp->num_tx_queues++; grp->tstat |= (TSTAT_CLEAR_THALT >> i); priv->tqueue |= (TQUEUE_EN0 >> i); priv->tx_queue[i]->grp = grp; } priv->num_grps++; return 0; } static int gfar_of_group_count(struct device_node *np) { struct device_node *child; int num = 0; for_each_available_child_of_node(np, child) if (of_node_name_eq(child, "queue-group")) num++; return num; } /* Reads the controller's registers to determine what interface * connects it to the PHY. */ static phy_interface_t gfar_get_interface(struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); struct gfar __iomem *regs = priv->gfargrp[0].regs; u32 ecntrl; ecntrl = gfar_read(®s->ecntrl); if (ecntrl & ECNTRL_SGMII_MODE) return PHY_INTERFACE_MODE_SGMII; if (ecntrl & ECNTRL_TBI_MODE) { if (ecntrl & ECNTRL_REDUCED_MODE) return PHY_INTERFACE_MODE_RTBI; else return PHY_INTERFACE_MODE_TBI; } if (ecntrl & ECNTRL_REDUCED_MODE) { if (ecntrl & ECNTRL_REDUCED_MII_MODE) { return PHY_INTERFACE_MODE_RMII; } else { phy_interface_t interface = priv->interface; /* This isn't autodetected right now, so it must * be set by the device tree or platform code. */ if (interface == PHY_INTERFACE_MODE_RGMII_ID) return PHY_INTERFACE_MODE_RGMII_ID; return PHY_INTERFACE_MODE_RGMII; } } if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) return PHY_INTERFACE_MODE_GMII; return PHY_INTERFACE_MODE_MII; } static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev) { const char *model; int err = 0, i; phy_interface_t interface; struct net_device *dev = NULL; struct gfar_private *priv = NULL; struct device_node *np = ofdev->dev.of_node; struct device_node *child = NULL; u32 stash_len = 0; u32 stash_idx = 0; unsigned int num_tx_qs, num_rx_qs; unsigned short mode; if (!np) return -ENODEV; if (of_device_is_compatible(np, "fsl,etsec2")) mode = MQ_MG_MODE; else mode = SQ_SG_MODE; if (mode == SQ_SG_MODE) { num_tx_qs = 1; num_rx_qs = 1; } else { /* MQ_MG_MODE */ /* get the actual number of supported groups */ unsigned int num_grps = gfar_of_group_count(np); if (num_grps == 0 || num_grps > MAXGROUPS) { dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n", num_grps); pr_err("Cannot do alloc_etherdev, aborting\n"); return -EINVAL; } num_tx_qs = num_grps; /* one txq per int group */ num_rx_qs = num_grps; /* one rxq per int group */ } if (num_tx_qs > MAX_TX_QS) { pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n", num_tx_qs, MAX_TX_QS); pr_err("Cannot do alloc_etherdev, aborting\n"); return -EINVAL; } if (num_rx_qs > MAX_RX_QS) { pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n", num_rx_qs, MAX_RX_QS); pr_err("Cannot do alloc_etherdev, aborting\n"); return -EINVAL; } *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs); dev = *pdev; if (NULL == dev) return -ENOMEM; priv = netdev_priv(dev); priv->ndev = dev; priv->mode = mode; priv->num_tx_queues = num_tx_qs; netif_set_real_num_rx_queues(dev, num_rx_qs); priv->num_rx_queues = num_rx_qs; err = gfar_alloc_tx_queues(priv); if (err) goto tx_alloc_failed; err = gfar_alloc_rx_queues(priv); if (err) goto rx_alloc_failed; err = of_property_read_string(np, "model", &model); if (err) { pr_err("Device model property missing, aborting\n"); goto rx_alloc_failed; } /* Init Rx queue filer rule set linked list */ INIT_LIST_HEAD(&priv->rx_list.list); priv->rx_list.count = 0; mutex_init(&priv->rx_queue_access); for (i = 0; i < MAXGROUPS; i++) priv->gfargrp[i].regs = NULL; /* Parse and initialize group specific information */ if (priv->mode == MQ_MG_MODE) { for_each_available_child_of_node(np, child) { if (!of_node_name_eq(child, "queue-group")) continue; err = gfar_parse_group(child, priv, model); if (err) { of_node_put(child); goto err_grp_init; } } } else { /* SQ_SG_MODE */ err = gfar_parse_group(np, priv, model); if (err) goto err_grp_init; } if (of_property_read_bool(np, "bd-stash")) { priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING; priv->bd_stash_en = 1; } err = of_property_read_u32(np, "rx-stash-len", &stash_len); if (err == 0) priv->rx_stash_size = stash_len; err = of_property_read_u32(np, "rx-stash-idx", &stash_idx); if (err == 0) priv->rx_stash_index = stash_idx; if (stash_len || stash_idx) priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING; err = of_get_ethdev_address(np, dev); if (err) { eth_hw_addr_random(dev); dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr); } if (model && !strcasecmp(model, "TSEC")) priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | FSL_GIANFAR_DEV_HAS_COALESCE | FSL_GIANFAR_DEV_HAS_RMON | FSL_GIANFAR_DEV_HAS_MULTI_INTR; if (model && !strcasecmp(model, "eTSEC")) priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | FSL_GIANFAR_DEV_HAS_COALESCE | FSL_GIANFAR_DEV_HAS_RMON | FSL_GIANFAR_DEV_HAS_MULTI_INTR | FSL_GIANFAR_DEV_HAS_CSUM | FSL_GIANFAR_DEV_HAS_VLAN | FSL_GIANFAR_DEV_HAS_MAGIC_PACKET | FSL_GIANFAR_DEV_HAS_EXTENDED_HASH | FSL_GIANFAR_DEV_HAS_TIMER | FSL_GIANFAR_DEV_HAS_RX_FILER; /* Use PHY connection type from the DT node if one is specified there. * rgmii-id really needs to be specified. Other types can be * detected by hardware */ err = of_get_phy_mode(np, &interface); if (!err) priv->interface = interface; else priv->interface = gfar_get_interface(dev); if (of_find_property(np, "fsl,magic-packet", NULL)) priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET; if (of_get_property(np, "fsl,wake-on-filer", NULL)) priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER; priv->phy_node = of_parse_phandle(np, "phy-handle", 0); /* In the case of a fixed PHY, the DT node associated * to the PHY is the Ethernet MAC DT node. */ if (!priv->phy_node && of_phy_is_fixed_link(np)) { err = of_phy_register_fixed_link(np); if (err) goto err_grp_init; priv->phy_node = of_node_get(np); } /* Find the TBI PHY. If it's not there, we don't support SGMII */ priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0); return 0; err_grp_init: unmap_group_regs(priv); rx_alloc_failed: gfar_free_rx_queues(priv); tx_alloc_failed: gfar_free_tx_queues(priv); free_gfar_dev(priv); return err; } static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar, u32 class) { u32 rqfpr = FPR_FILER_MASK; u32 rqfcr = 0x0; rqfar--; rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT; priv->ftp_rqfpr[rqfar] = rqfpr; priv->ftp_rqfcr[rqfar] = rqfcr; gfar_write_filer(priv, rqfar, rqfcr, rqfpr); rqfar--; rqfcr = RQFCR_CMP_NOMATCH; priv->ftp_rqfpr[rqfar] = rqfpr; priv->ftp_rqfcr[rqfar] = rqfcr; gfar_write_filer(priv, rqfar, rqfcr, rqfpr); rqfar--; rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND; rqfpr = class; priv->ftp_rqfcr[rqfar] = rqfcr; priv->ftp_rqfpr[rqfar] = rqfpr; gfar_write_filer(priv, rqfar, rqfcr, rqfpr); rqfar--; rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND; rqfpr = class; priv->ftp_rqfcr[rqfar] = rqfcr; priv->ftp_rqfpr[rqfar] = rqfpr; gfar_write_filer(priv, rqfar, rqfcr, rqfpr); return rqfar; } static void gfar_init_filer_table(struct gfar_private *priv) { int i = 0x0; u32 rqfar = MAX_FILER_IDX; u32 rqfcr = 0x0; u32 rqfpr = FPR_FILER_MASK; /* Default rule */ rqfcr = RQFCR_CMP_MATCH; priv->ftp_rqfcr[rqfar] = rqfcr; priv->ftp_rqfpr[rqfar] = rqfpr; gfar_write_filer(priv, rqfar, rqfcr, rqfpr); rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6); rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP); rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP); rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4); rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP); rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP); /* cur_filer_idx indicated the first non-masked rule */ priv->cur_filer_idx = rqfar; /* Rest are masked rules */ rqfcr = RQFCR_CMP_NOMATCH; for (i = 0; i < rqfar; i++) { priv->ftp_rqfcr[i] = rqfcr; priv->ftp_rqfpr[i] = rqfpr; gfar_write_filer(priv, i, rqfcr, rqfpr); } } #ifdef CONFIG_PPC static void __gfar_detect_errata_83xx(struct gfar_private *priv) { unsigned int pvr = mfspr(SPRN_PVR); unsigned int svr = mfspr(SPRN_SVR); unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */ unsigned int rev = svr & 0xffff; /* MPC8313 Rev 2.0 and higher; All MPC837x */ if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) || (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) priv->errata |= GFAR_ERRATA_74; /* MPC8313 and MPC837x all rev */ if ((pvr == 0x80850010 && mod == 0x80b0) || (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) priv->errata |= GFAR_ERRATA_76; /* MPC8313 Rev < 2.0 */ if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) priv->errata |= GFAR_ERRATA_12; } static void __gfar_detect_errata_85xx(struct gfar_private *priv) { unsigned int svr = mfspr(SPRN_SVR); if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20)) priv->errata |= GFAR_ERRATA_12; /* P2020/P1010 Rev 1; MPC8548 Rev 2 */ if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) || ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) || ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31))) priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */ } #endif static void gfar_detect_errata(struct gfar_private *priv) { struct device *dev = &priv->ofdev->dev; /* no plans to fix */ priv->errata |= GFAR_ERRATA_A002; #ifdef CONFIG_PPC if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2)) __gfar_detect_errata_85xx(priv); else /* non-mpc85xx parts, i.e. e300 core based */ __gfar_detect_errata_83xx(priv); #endif if (priv->errata) dev_info(dev, "enabled errata workarounds, flags: 0x%x\n", priv->errata); } static void gfar_init_addr_hash_table(struct gfar_private *priv) { struct gfar __iomem *regs = priv->gfargrp[0].regs; if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) { priv->extended_hash = 1; priv->hash_width = 9; priv->hash_regs[0] = ®s->igaddr0; priv->hash_regs[1] = ®s->igaddr1; priv->hash_regs[2] = ®s->igaddr2; priv->hash_regs[3] = ®s->igaddr3; priv->hash_regs[4] = ®s->igaddr4; priv->hash_regs[5] = ®s->igaddr5; priv->hash_regs[6] = ®s->igaddr6; priv->hash_regs[7] = ®s->igaddr7; priv->hash_regs[8] = ®s->gaddr0; priv->hash_regs[9] = ®s->gaddr1; priv->hash_regs[10] = ®s->gaddr2; priv->hash_regs[11] = ®s->gaddr3; priv->hash_regs[12] = ®s->gaddr4; priv->hash_regs[13] = ®s->gaddr5; priv->hash_regs[14] = ®s->gaddr6; priv->hash_regs[15] = ®s->gaddr7; } else { priv->extended_hash = 0; priv->hash_width = 8; priv->hash_regs[0] = ®s->gaddr0; priv->hash_regs[1] = ®s->gaddr1; priv->hash_regs[2] = ®s->gaddr2; priv->hash_regs[3] = ®s->gaddr3; priv->hash_regs[4] = ®s->gaddr4; priv->hash_regs[5] = ®s->gaddr5; priv->hash_regs[6] = ®s->gaddr6; priv->hash_regs[7] = ®s->gaddr7; } } static int __gfar_is_rx_idle(struct gfar_private *priv) { u32 res; /* Normaly TSEC should not hang on GRS commands, so we should * actually wait for IEVENT_GRSC flag. */ if (!gfar_has_errata(priv, GFAR_ERRATA_A002)) return 0; /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are * the same as bits 23-30, the eTSEC Rx is assumed to be idle * and the Rx can be safely reset. */ res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c); res &= 0x7f807f80; if ((res & 0xffff) == (res >> 16)) return 1; return 0; } /* Halt the receive and transmit queues */ static void gfar_halt_nodisable(struct gfar_private *priv) { struct gfar __iomem *regs = priv->gfargrp[0].regs; u32 tempval; unsigned int timeout; int stopped; gfar_ints_disable(priv); if (gfar_is_dma_stopped(priv)) return; /* Stop the DMA, and wait for it to stop */ tempval = gfar_read(®s->dmactrl); tempval |= (DMACTRL_GRS | DMACTRL_GTS); gfar_write(®s->dmactrl, tempval); retry: timeout = 1000; while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) { cpu_relax(); timeout--; } if (!timeout) stopped = gfar_is_dma_stopped(priv); if (!stopped && !gfar_is_rx_dma_stopped(priv) && !__gfar_is_rx_idle(priv)) goto retry; } /* Halt the receive and transmit queues */ static void gfar_halt(struct gfar_private *priv) { struct gfar __iomem *regs = priv->gfargrp[0].regs; u32 tempval; /* Dissable the Rx/Tx hw queues */ gfar_write(®s->rqueue, 0); gfar_write(®s->tqueue, 0); mdelay(10); gfar_halt_nodisable(priv); /* Disable Rx/Tx DMA */ tempval = gfar_read(®s->maccfg1); tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN); gfar_write(®s->maccfg1, tempval); } static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue) { struct txbd8 *txbdp; struct gfar_private *priv = netdev_priv(tx_queue->dev); int i, j; txbdp = tx_queue->tx_bd_base; for (i = 0; i < tx_queue->tx_ring_size; i++) { if (!tx_queue->tx_skbuff[i]) continue; dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr), be16_to_cpu(txbdp->length), DMA_TO_DEVICE); txbdp->lstatus = 0; for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags; j++) { txbdp++; dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr), be16_to_cpu(txbdp->length), DMA_TO_DEVICE); } txbdp++; dev_kfree_skb_any(tx_queue->tx_skbuff[i]); tx_queue->tx_skbuff[i] = NULL; } kfree(tx_queue->tx_skbuff); tx_queue->tx_skbuff = NULL; } static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue) { int i; struct rxbd8 *rxbdp = rx_queue->rx_bd_base; dev_kfree_skb(rx_queue->skb); for (i = 0; i < rx_queue->rx_ring_size; i++) { struct gfar_rx_buff *rxb = &rx_queue->rx_buff[i]; rxbdp->lstatus = 0; rxbdp->bufPtr = 0; rxbdp++; if (!rxb->page) continue; dma_unmap_page(rx_queue->dev, rxb->dma, PAGE_SIZE, DMA_FROM_DEVICE); __free_page(rxb->page); rxb->page = NULL; } kfree(rx_queue->rx_buff); rx_queue->rx_buff = NULL; } /* If there are any tx skbs or rx skbs still around, free them. * Then free tx_skbuff and rx_skbuff */ static void free_skb_resources(struct gfar_private *priv) { struct gfar_priv_tx_q *tx_queue = NULL; struct gfar_priv_rx_q *rx_queue = NULL; int i; /* Go through all the buffer descriptors and free their data buffers */ for (i = 0; i < priv->num_tx_queues; i++) { struct netdev_queue *txq; tx_queue = priv->tx_queue[i]; txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex); if (tx_queue->tx_skbuff) free_skb_tx_queue(tx_queue); netdev_tx_reset_queue(txq); } for (i = 0; i < priv->num_rx_queues; i++) { rx_queue = priv->rx_queue[i]; if (rx_queue->rx_buff) free_skb_rx_queue(rx_queue); } dma_free_coherent(priv->dev, sizeof(struct txbd8) * priv->total_tx_ring_size + sizeof(struct rxbd8) * priv->total_rx_ring_size, priv->tx_queue[0]->tx_bd_base, priv->tx_queue[0]->tx_bd_dma_base); } void stop_gfar(struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); netif_tx_stop_all_queues(dev); smp_mb__before_atomic(); set_bit(GFAR_DOWN, &priv->state); smp_mb__after_atomic(); disable_napi(priv); /* disable ints and gracefully shut down Rx/Tx DMA */ gfar_halt(priv); phy_stop(dev->phydev); free_skb_resources(priv); } static void gfar_start(struct gfar_private *priv) { struct gfar __iomem *regs = priv->gfargrp[0].regs; u32 tempval; int i = 0; /* Enable Rx/Tx hw queues */ gfar_write(®s->rqueue, priv->rqueue); gfar_write(®s->tqueue, priv->tqueue); /* Initialize DMACTRL to have WWR and WOP */ tempval = gfar_read(®s->dmactrl); tempval |= DMACTRL_INIT_SETTINGS; gfar_write(®s->dmactrl, tempval); /* Make sure we aren't stopped */ tempval = gfar_read(®s->dmactrl); tempval &= ~(DMACTRL_GRS | DMACTRL_GTS); gfar_write(®s->dmactrl, tempval); for (i = 0; i < priv->num_grps; i++) { regs = priv->gfargrp[i].regs; /* Clear THLT/RHLT, so that the DMA starts polling now */ gfar_write(®s->tstat, priv->gfargrp[i].tstat); gfar_write(®s->rstat, priv->gfargrp[i].rstat); } /* Enable Rx/Tx DMA */ tempval = gfar_read(®s->maccfg1); tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN); gfar_write(®s->maccfg1, tempval); gfar_ints_enable(priv); netif_trans_update(priv->ndev); /* prevent tx timeout */ } static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb) { struct page *page; dma_addr_t addr; page = dev_alloc_page(); if (unlikely(!page)) return false; addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(rxq->dev, addr))) { __free_page(page); return false; } rxb->dma = addr; rxb->page = page; rxb->page_offset = 0; return true; } static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue) { struct gfar_private *priv = netdev_priv(rx_queue->ndev); struct gfar_extra_stats *estats = &priv->extra_stats; netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n"); atomic64_inc(&estats->rx_alloc_err); } static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue, int alloc_cnt) { struct rxbd8 *bdp; struct gfar_rx_buff *rxb; int i; i = rx_queue->next_to_use; bdp = &rx_queue->rx_bd_base[i]; rxb = &rx_queue->rx_buff[i]; while (alloc_cnt--) { /* try reuse page */ if (unlikely(!rxb->page)) { if (unlikely(!gfar_new_page(rx_queue, rxb))) { gfar_rx_alloc_err(rx_queue); break; } } /* Setup the new RxBD */ gfar_init_rxbdp(rx_queue, bdp, rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT); /* Update to the next pointer */ bdp++; rxb++; if (unlikely(++i == rx_queue->rx_ring_size)) { i = 0; bdp = rx_queue->rx_bd_base; rxb = rx_queue->rx_buff; } } rx_queue->next_to_use = i; rx_queue->next_to_alloc = i; } static void gfar_init_bds(struct net_device *ndev) { struct gfar_private *priv = netdev_priv(ndev); struct gfar __iomem *regs = priv->gfargrp[0].regs; struct gfar_priv_tx_q *tx_queue = NULL; struct gfar_priv_rx_q *rx_queue = NULL; struct txbd8 *txbdp; u32 __iomem *rfbptr; int i, j; for (i = 0; i < priv->num_tx_queues; i++) { tx_queue = priv->tx_queue[i]; /* Initialize some variables in our dev structure */ tx_queue->num_txbdfree = tx_queue->tx_ring_size; tx_queue->dirty_tx = tx_queue->tx_bd_base; tx_queue->cur_tx = tx_queue->tx_bd_base; tx_queue->skb_curtx = 0; tx_queue->skb_dirtytx = 0; /* Initialize Transmit Descriptor Ring */ txbdp = tx_queue->tx_bd_base; for (j = 0; j < tx_queue->tx_ring_size; j++) { txbdp->lstatus = 0; txbdp->bufPtr = 0; txbdp++; } /* Set the last descriptor in the ring to indicate wrap */ txbdp--; txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) | TXBD_WRAP); } rfbptr = ®s->rfbptr0; for (i = 0; i < priv->num_rx_queues; i++) { rx_queue = priv->rx_queue[i]; rx_queue->next_to_clean = 0; rx_queue->next_to_use = 0; rx_queue->next_to_alloc = 0; /* make sure next_to_clean != next_to_use after this * by leaving at least 1 unused descriptor */ gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue)); rx_queue->rfbptr = rfbptr; rfbptr += 2; } } static int gfar_alloc_skb_resources(struct net_device *ndev) { void *vaddr; dma_addr_t addr; int i, j; struct gfar_private *priv = netdev_priv(ndev); struct device *dev = priv->dev; struct gfar_priv_tx_q *tx_queue = NULL; struct gfar_priv_rx_q *rx_queue = NULL; priv->total_tx_ring_size = 0; for (i = 0; i < priv->num_tx_queues; i++) priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size; priv->total_rx_ring_size = 0; for (i = 0; i < priv->num_rx_queues; i++) priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size; /* Allocate memory for the buffer descriptors */ vaddr = dma_alloc_coherent(dev, (priv->total_tx_ring_size * sizeof(struct txbd8)) + (priv->total_rx_ring_size * sizeof(struct rxbd8)), &addr, GFP_KERNEL); if (!vaddr) return -ENOMEM; for (i = 0; i < priv->num_tx_queues; i++) { tx_queue = priv->tx_queue[i]; tx_queue->tx_bd_base = vaddr; tx_queue->tx_bd_dma_base = addr; tx_queue->dev = ndev; /* enet DMA only understands physical addresses */ addr += sizeof(struct txbd8) * tx_queue->tx_ring_size; vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size; } /* Start the rx descriptor ring where the tx ring leaves off */ for (i = 0; i < priv->num_rx_queues; i++) { rx_queue = priv->rx_queue[i]; rx_queue->rx_bd_base = vaddr; rx_queue->rx_bd_dma_base = addr; rx_queue->ndev = ndev; rx_queue->dev = dev; addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; } /* Setup the skbuff rings */ for (i = 0; i < priv->num_tx_queues; i++) { tx_queue = priv->tx_queue[i]; tx_queue->tx_skbuff = kmalloc_array(tx_queue->tx_ring_size, sizeof(*tx_queue->tx_skbuff), GFP_KERNEL); if (!tx_queue->tx_skbuff) goto cleanup; for (j = 0; j < tx_queue->tx_ring_size; j++) tx_queue->tx_skbuff[j] = NULL; } for (i = 0; i < priv->num_rx_queues; i++) { rx_queue = priv->rx_queue[i]; rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size, sizeof(*rx_queue->rx_buff), GFP_KERNEL); if (!rx_queue->rx_buff) goto cleanup; } gfar_init_bds(ndev); return 0; cleanup: free_skb_resources(priv); return -ENOMEM; } /* Bring the controller up and running */ int startup_gfar(struct net_device *ndev) { struct gfar_private *priv = netdev_priv(ndev); int err; gfar_mac_reset(priv); err = gfar_alloc_skb_resources(ndev); if (err) return err; gfar_init_tx_rx_base(priv); smp_mb__before_atomic(); clear_bit(GFAR_DOWN, &priv->state); smp_mb__after_atomic(); /* Start Rx/Tx DMA and enable the interrupts */ gfar_start(priv); /* force link state update after mac reset */ priv->oldlink = 0; priv->oldspeed = 0; priv->oldduplex = -1; phy_start(ndev->phydev); enable_napi(priv); netif_tx_wake_all_queues(ndev); return 0; } static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv) { struct net_device *ndev = priv->ndev; struct phy_device *phydev = ndev->phydev; u32 val = 0; if (!phydev->duplex) return val; if (!priv->pause_aneg_en) { if (priv->tx_pause_en) val |= MACCFG1_TX_FLOW; if (priv->rx_pause_en) val |= MACCFG1_RX_FLOW; } else { u16 lcl_adv, rmt_adv; u8 flowctrl; /* get link partner capabilities */ rmt_adv = 0; if (phydev->pause) rmt_adv = LPA_PAUSE_CAP; if (phydev->asym_pause) rmt_adv |= LPA_PAUSE_ASYM; lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising); flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv); if (flowctrl & FLOW_CTRL_TX) val |= MACCFG1_TX_FLOW; if (flowctrl & FLOW_CTRL_RX) val |= MACCFG1_RX_FLOW; } return val; } static noinline void gfar_update_link_state(struct gfar_private *priv) { struct gfar __iomem *regs = priv->gfargrp[0].regs; struct net_device *ndev = priv->ndev; struct phy_device *phydev = ndev->phydev; struct gfar_priv_rx_q *rx_queue = NULL; int i; if (unlikely(test_bit(GFAR_RESETTING, &priv->state))) return; if (phydev->link) { u32 tempval1 = gfar_read(®s->maccfg1); u32 tempval = gfar_read(®s->maccfg2); u32 ecntrl = gfar_read(®s->ecntrl); u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW); if (phydev->duplex != priv->oldduplex) { if (!(phydev->duplex)) tempval &= ~(MACCFG2_FULL_DUPLEX); else tempval |= MACCFG2_FULL_DUPLEX; priv->oldduplex = phydev->duplex; } if (phydev->speed != priv->oldspeed) { switch (phydev->speed) { case 1000: tempval = ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII); ecntrl &= ~(ECNTRL_R100); break; case 100: case 10: tempval = ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII); /* Reduced mode distinguishes * between 10 and 100 */ if (phydev->speed == SPEED_100) ecntrl |= ECNTRL_R100; else ecntrl &= ~(ECNTRL_R100); break; default: netif_warn(priv, link, priv->ndev, "Ack! Speed (%d) is not 10/100/1000!\n", phydev->speed); break; } priv->oldspeed = phydev->speed; } tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW); tempval1 |= gfar_get_flowctrl_cfg(priv); /* Turn last free buffer recording on */ if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) { for (i = 0; i < priv->num_rx_queues; i++) { u32 bdp_dma; rx_queue = priv->rx_queue[i]; bdp_dma = gfar_rxbd_dma_lastfree(rx_queue); gfar_write(rx_queue->rfbptr, bdp_dma); } priv->tx_actual_en = 1; } if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval)) priv->tx_actual_en = 0; gfar_write(®s->maccfg1, tempval1); gfar_write(®s->maccfg2, tempval); gfar_write(®s->ecntrl, ecntrl); if (!priv->oldlink) priv->oldlink = 1; } else if (priv->oldlink) { priv->oldlink = 0; priv->oldspeed = 0; priv->oldduplex = -1; } if (netif_msg_link(priv)) phy_print_status(phydev); } /* Called every time the controller might need to be made * aware of new link state. The PHY code conveys this * information through variables in the phydev structure, and this * function converts those variables into the appropriate * register values, and can bring down the device if needed. */ static void adjust_link(struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); struct phy_device *phydev = dev->phydev; if (unlikely(phydev->link != priv->oldlink || (phydev->link && (phydev->duplex != priv->oldduplex || phydev->speed != priv->oldspeed)))) gfar_update_link_state(priv); } /* Initialize TBI PHY interface for communicating with the * SERDES lynx PHY on the chip. We communicate with this PHY * through the MDIO bus on each controller, treating it as a * "normal" PHY at the address found in the TBIPA register. We assume * that the TBIPA register is valid. Either the MDIO bus code will set * it to a value that doesn't conflict with other PHYs on the bus, or the * value doesn't matter, as there are no other PHYs on the bus. */ static void gfar_configure_serdes(struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); struct phy_device *tbiphy; if (!priv->tbi_node) { dev_warn(&dev->dev, "error: SGMII mode requires that the " "device tree specify a tbi-handle\n"); return; } tbiphy = of_phy_find_device(priv->tbi_node); if (!tbiphy) { dev_err(&dev->dev, "error: Could not get TBI device\n"); return; } /* If the link is already up, we must already be ok, and don't need to * configure and reset the TBI<->SerDes link. Maybe U-Boot configured * everything for us? Resetting it takes the link down and requires * several seconds for it to come back. */ if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) { put_device(&tbiphy->mdio.dev); return; } /* Single clk mode, mii mode off(for serdes communication) */ phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT); phy_write(tbiphy, MII_ADVERTISE, ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM); phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000); put_device(&tbiphy->mdio.dev); } /* Initializes driver's PHY state, and attaches to the PHY. * Returns 0 on success. */ static int init_phy(struct net_device *dev) { __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; struct gfar_private *priv = netdev_priv(dev); phy_interface_t interface = priv->interface; struct phy_device *phydev; struct ethtool_eee edata; linkmode_set_bit_array(phy_10_100_features_array, ARRAY_SIZE(phy_10_100_features_array), mask); linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask); linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask); if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask); priv->oldlink = 0; priv->oldspeed = 0; priv->oldduplex = -1; phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0, interface); if (!phydev) { dev_err(&dev->dev, "could not attach to PHY\n"); return -ENODEV; } if (interface == PHY_INTERFACE_MODE_SGMII) gfar_configure_serdes(dev); /* Remove any features not supported by the controller */ linkmode_and(phydev->supported, phydev->supported, mask); linkmode_copy(phydev->advertising, phydev->supported); /* Add support for flow control */ phy_support_asym_pause(phydev); /* disable EEE autoneg, EEE not supported by eTSEC */ memset(&edata, 0, sizeof(struct ethtool_eee)); phy_ethtool_set_eee(phydev, &edata); return 0; } static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb) { struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN); memset(fcb, 0, GMAC_FCB_LEN); return fcb; } static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb, int fcb_length) { /* If we're here, it's a IP packet with a TCP or UDP * payload. We set it to checksum, using a pseudo-header * we provide */ u8 flags = TXFCB_DEFAULT; /* Tell the controller what the protocol is * And provide the already calculated phcs */ if (ip_hdr(skb)->protocol == IPPROTO_UDP) { flags |= TXFCB_UDP; fcb->phcs = (__force __be16)(udp_hdr(skb)->check); } else fcb->phcs = (__force __be16)(tcp_hdr(skb)->check); /* l3os is the distance between the start of the * frame (skb->data) and the start of the IP hdr. * l4os is the distance between the start of the * l3 hdr and the l4 hdr */ fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length); fcb->l4os = skb_network_header_len(skb); fcb->flags = flags; } static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb) { fcb->flags |= TXFCB_VLN; fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb)); } static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride, struct txbd8 *base, int ring_size) { struct txbd8 *new_bd = bdp + stride; return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd; } static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base, int ring_size) { return skip_txbd(bdp, 1, base, ring_size); } /* eTSEC12: csum generation not supported for some fcb offsets */ static inline bool gfar_csum_errata_12(struct gfar_private *priv, unsigned long fcb_addr) { return (gfar_has_errata(priv, GFAR_ERRATA_12) && (fcb_addr % 0x20) > 0x18); } /* eTSEC76: csum generation for frames larger than 2500 may * cause excess delays before start of transmission */ static inline bool gfar_csum_errata_76(struct gfar_private *priv, unsigned int len) { return (gfar_has_errata(priv, GFAR_ERRATA_76) && (len > 2500)); } /* This is called by the kernel when a frame is ready for transmission. * It is pointed to by the dev->hard_start_xmit function pointer */ static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); struct gfar_priv_tx_q *tx_queue = NULL; struct netdev_queue *txq; struct gfar __iomem *regs = NULL; struct txfcb *fcb = NULL; struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL; u32 lstatus; skb_frag_t *frag; int i, rq = 0; int do_tstamp, do_csum, do_vlan; u32 bufaddr; unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0; rq = skb->queue_mapping; tx_queue = priv->tx_queue[rq]; txq = netdev_get_tx_queue(dev, rq); base = tx_queue->tx_bd_base; regs = tx_queue->grp->regs; do_csum = (CHECKSUM_PARTIAL == skb->ip_summed); do_vlan = skb_vlan_tag_present(skb); do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en; if (do_csum || do_vlan) fcb_len = GMAC_FCB_LEN; /* check if time stamp should be generated */ if (unlikely(do_tstamp)) fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN; /* make space for additional header when fcb is needed */ if (fcb_len) { if (unlikely(skb_cow_head(skb, fcb_len))) { dev->stats.tx_errors++; dev_kfree_skb_any(skb); return NETDEV_TX_OK; } } /* total number of fragments in the SKB */ nr_frags = skb_shinfo(skb)->nr_frags; /* calculate the required number of TxBDs for this skb */ if (unlikely(do_tstamp)) nr_txbds = nr_frags + 2; else nr_txbds = nr_frags + 1; /* check if there is space to queue this packet */ if (nr_txbds > tx_queue->num_txbdfree) { /* no space, stop the queue */ netif_tx_stop_queue(txq); dev->stats.tx_fifo_errors++; return NETDEV_TX_BUSY; } /* Update transmit stats */ bytes_sent = skb->len; tx_queue->stats.tx_bytes += bytes_sent; /* keep Tx bytes on wire for BQL accounting */ GFAR_CB(skb)->bytes_sent = bytes_sent; tx_queue->stats.tx_packets++; txbdp = txbdp_start = tx_queue->cur_tx; lstatus = be32_to_cpu(txbdp->lstatus); /* Add TxPAL between FCB and frame if required */ if (unlikely(do_tstamp)) { skb_push(skb, GMAC_TXPAL_LEN); memset(skb->data, 0, GMAC_TXPAL_LEN); } /* Add TxFCB if required */ if (fcb_len) { fcb = gfar_add_fcb(skb); lstatus |= BD_LFLAG(TXBD_TOE); } /* Set up checksumming */ if (do_csum) { gfar_tx_checksum(skb, fcb, fcb_len); if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) || unlikely(gfar_csum_errata_76(priv, skb->len))) { __skb_pull(skb, GMAC_FCB_LEN); skb_checksum_help(skb); if (do_vlan || do_tstamp) { /* put back a new fcb for vlan/tstamp TOE */ fcb = gfar_add_fcb(skb); } else { /* Tx TOE not used */ lstatus &= ~(BD_LFLAG(TXBD_TOE)); fcb = NULL; } } } if (do_vlan) gfar_tx_vlan(skb, fcb); bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); if (unlikely(dma_mapping_error(priv->dev, bufaddr))) goto dma_map_err; txbdp_start->bufPtr = cpu_to_be32(bufaddr); /* Time stamp insertion requires one additional TxBD */ if (unlikely(do_tstamp)) txbdp_tstamp = txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); if (likely(!nr_frags)) { if (likely(!do_tstamp)) lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); } else { u32 lstatus_start = lstatus; /* Place the fragment addresses and lengths into the TxBDs */ frag = &skb_shinfo(skb)->frags[0]; for (i = 0; i < nr_frags; i++, frag++) { unsigned int size; /* Point at the next BD, wrapping as needed */ txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); size = skb_frag_size(frag); lstatus = be32_to_cpu(txbdp->lstatus) | size | BD_LFLAG(TXBD_READY); /* Handle the last BD specially */ if (i == nr_frags - 1) lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); bufaddr = skb_frag_dma_map(priv->dev, frag, 0, size, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(priv->dev, bufaddr))) goto dma_map_err; /* set the TxBD length and buffer pointer */ txbdp->bufPtr = cpu_to_be32(bufaddr); txbdp->lstatus = cpu_to_be32(lstatus); } lstatus = lstatus_start; } /* If time stamping is requested one additional TxBD must be set up. The * first TxBD points to the FCB and must have a data length of * GMAC_FCB_LEN. The second TxBD points to the actual frame data with * the full frame length. */ if (unlikely(do_tstamp)) { u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus); bufaddr = be32_to_cpu(txbdp_start->bufPtr); bufaddr += fcb_len; lstatus_ts |= BD_LFLAG(TXBD_READY) | (skb_headlen(skb) - fcb_len); if (!nr_frags) lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr); txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts); lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN; /* Setup tx hardware time stamping */ skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; fcb->ptp = 1; } else { lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb); } skb_tx_timestamp(skb); netdev_tx_sent_queue(txq, bytes_sent); gfar_wmb(); txbdp_start->lstatus = cpu_to_be32(lstatus); gfar_wmb(); /* force lstatus write before tx_skbuff */ tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb; /* Update the current skb pointer to the next entry we will use * (wrapping if necessary) */ tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) & TX_RING_MOD_MASK(tx_queue->tx_ring_size); tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size); /* We can work in parallel with gfar_clean_tx_ring(), except * when modifying num_txbdfree. Note that we didn't grab the lock * when we were reading the num_txbdfree and checking for available * space, that's because outside of this function it can only grow. */ spin_lock_bh(&tx_queue->txlock); /* reduce TxBD free count */ tx_queue->num_txbdfree -= (nr_txbds); spin_unlock_bh(&tx_queue->txlock); /* If the next BD still needs to be cleaned up, then the bds * are full. We need to tell the kernel to stop sending us stuff. */ if (!tx_queue->num_txbdfree) { netif_tx_stop_queue(txq); dev->stats.tx_fifo_errors++; } /* Tell the DMA to go go go */ gfar_write(®s->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex); return NETDEV_TX_OK; dma_map_err: txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size); if (do_tstamp) txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); for (i = 0; i < nr_frags; i++) { lstatus = be32_to_cpu(txbdp->lstatus); if (!(lstatus & BD_LFLAG(TXBD_READY))) break; lstatus &= ~BD_LFLAG(TXBD_READY); txbdp->lstatus = cpu_to_be32(lstatus); bufaddr = be32_to_cpu(txbdp->bufPtr); dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length), DMA_TO_DEVICE); txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); } gfar_wmb(); dev_kfree_skb_any(skb); return NETDEV_TX_OK; } /* Changes the mac address if the controller is not running. */ static int gfar_set_mac_address(struct net_device *dev) { gfar_set_mac_for_addr(dev, 0, dev->dev_addr); return 0; } static int gfar_change_mtu(struct net_device *dev, int new_mtu) { struct gfar_private *priv = netdev_priv(dev); while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) cpu_relax(); if (dev->flags & IFF_UP) stop_gfar(dev); dev->mtu = new_mtu; if (dev->flags & IFF_UP) startup_gfar(dev); clear_bit_unlock(GFAR_RESETTING, &priv->state); return 0; } static void reset_gfar(struct net_device *ndev) { struct gfar_private *priv = netdev_priv(ndev); while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) cpu_relax(); stop_gfar(ndev); startup_gfar(ndev); clear_bit_unlock(GFAR_RESETTING, &priv->state); } /* gfar_reset_task gets scheduled when a packet has not been * transmitted after a set amount of time. * For now, assume that clearing out all the structures, and * starting over will fix the problem. */ static void gfar_reset_task(struct work_struct *work) { struct gfar_private *priv = container_of(work, struct gfar_private, reset_task); reset_gfar(priv->ndev); } static void gfar_timeout(struct net_device *dev, unsigned int txqueue) { struct gfar_private *priv = netdev_priv(dev); dev->stats.tx_errors++; schedule_work(&priv->reset_task); } static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr) { struct hwtstamp_config config; struct gfar_private *priv = netdev_priv(netdev); if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) return -EFAULT; switch (config.tx_type) { case HWTSTAMP_TX_OFF: priv->hwts_tx_en = 0; break; case HWTSTAMP_TX_ON: if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) return -ERANGE; priv->hwts_tx_en = 1; break; default: return -ERANGE; } switch (config.rx_filter) { case HWTSTAMP_FILTER_NONE: if (priv->hwts_rx_en) { priv->hwts_rx_en = 0; reset_gfar(netdev); } break; default: if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) return -ERANGE; if (!priv->hwts_rx_en) { priv->hwts_rx_en = 1; reset_gfar(netdev); } config.rx_filter = HWTSTAMP_FILTER_ALL; break; } return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; } static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr) { struct hwtstamp_config config; struct gfar_private *priv = netdev_priv(netdev); config.flags = 0; config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; config.rx_filter = (priv->hwts_rx_en ? HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE); return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; } static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct phy_device *phydev = dev->phydev; if (!netif_running(dev)) return -EINVAL; if (cmd == SIOCSHWTSTAMP) return gfar_hwtstamp_set(dev, rq); if (cmd == SIOCGHWTSTAMP) return gfar_hwtstamp_get(dev, rq); if (!phydev) return -ENODEV; return phy_mii_ioctl(phydev, rq, cmd); } /* Interrupt Handler for Transmit complete */ static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue) { struct net_device *dev = tx_queue->dev; struct netdev_queue *txq; struct gfar_private *priv = netdev_priv(dev); struct txbd8 *bdp, *next = NULL; struct txbd8 *lbdp = NULL; struct txbd8 *base = tx_queue->tx_bd_base; struct sk_buff *skb; int skb_dirtytx; int tx_ring_size = tx_queue->tx_ring_size; int frags = 0, nr_txbds = 0; int i; int howmany = 0; int tqi = tx_queue->qindex; unsigned int bytes_sent = 0; u32 lstatus; size_t buflen; txq = netdev_get_tx_queue(dev, tqi); bdp = tx_queue->dirty_tx; skb_dirtytx = tx_queue->skb_dirtytx; while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) { bool do_tstamp; do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en; frags = skb_shinfo(skb)->nr_frags; /* When time stamping, one additional TxBD must be freed. * Also, we need to dma_unmap_single() the TxPAL. */ if (unlikely(do_tstamp)) nr_txbds = frags + 2; else nr_txbds = frags + 1; lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size); lstatus = be32_to_cpu(lbdp->lstatus); /* Only clean completed frames */ if ((lstatus & BD_LFLAG(TXBD_READY)) && (lstatus & BD_LENGTH_MASK)) break; if (unlikely(do_tstamp)) { next = next_txbd(bdp, base, tx_ring_size); buflen = be16_to_cpu(next->length) + GMAC_FCB_LEN + GMAC_TXPAL_LEN; } else buflen = be16_to_cpu(bdp->length); dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr), buflen, DMA_TO_DEVICE); if (unlikely(do_tstamp)) { struct skb_shared_hwtstamps shhwtstamps; u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) & ~0x7UL); memset(&shhwtstamps, 0, sizeof(shhwtstamps)); shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns)); skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN); skb_tstamp_tx(skb, &shhwtstamps); gfar_clear_txbd_status(bdp); bdp = next; } gfar_clear_txbd_status(bdp); bdp = next_txbd(bdp, base, tx_ring_size); for (i = 0; i < frags; i++) { dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr), be16_to_cpu(bdp->length), DMA_TO_DEVICE); gfar_clear_txbd_status(bdp); bdp = next_txbd(bdp, base, tx_ring_size); } bytes_sent += GFAR_CB(skb)->bytes_sent; dev_kfree_skb_any(skb); tx_queue->tx_skbuff[skb_dirtytx] = NULL; skb_dirtytx = (skb_dirtytx + 1) & TX_RING_MOD_MASK(tx_ring_size); howmany++; spin_lock(&tx_queue->txlock); tx_queue->num_txbdfree += nr_txbds; spin_unlock(&tx_queue->txlock); } /* If we freed a buffer, we can restart transmission, if necessary */ if (tx_queue->num_txbdfree && netif_tx_queue_stopped(txq) && !(test_bit(GFAR_DOWN, &priv->state))) netif_wake_subqueue(priv->ndev, tqi); /* Update dirty indicators */ tx_queue->skb_dirtytx = skb_dirtytx; tx_queue->dirty_tx = bdp; netdev_tx_completed_queue(txq, howmany, bytes_sent); } static void count_errors(u32 lstatus, struct net_device *ndev) { struct gfar_private *priv = netdev_priv(ndev); struct net_device_stats *stats = &ndev->stats; struct gfar_extra_stats *estats = &priv->extra_stats; /* If the packet was truncated, none of the other errors matter */ if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) { stats->rx_length_errors++; atomic64_inc(&estats->rx_trunc); return; } /* Count the errors, if there were any */ if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) { stats->rx_length_errors++; if (lstatus & BD_LFLAG(RXBD_LARGE)) atomic64_inc(&estats->rx_large); else atomic64_inc(&estats->rx_short); } if (lstatus & BD_LFLAG(RXBD_NONOCTET)) { stats->rx_frame_errors++; atomic64_inc(&estats->rx_nonoctet); } if (lstatus & BD_LFLAG(RXBD_CRCERR)) { atomic64_inc(&estats->rx_crcerr); stats->rx_crc_errors++; } if (lstatus & BD_LFLAG(RXBD_OVERRUN)) { atomic64_inc(&estats->rx_overrun); stats->rx_over_errors++; } } static irqreturn_t gfar_receive(int irq, void *grp_id) { struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; unsigned long flags; u32 imask, ievent; ievent = gfar_read(&grp->regs->ievent); if (unlikely(ievent & IEVENT_FGPI)) { gfar_write(&grp->regs->ievent, IEVENT_FGPI); return IRQ_HANDLED; } if (likely(napi_schedule_prep(&grp->napi_rx))) { spin_lock_irqsave(&grp->grplock, flags); imask = gfar_read(&grp->regs->imask); imask &= IMASK_RX_DISABLED | grp->priv->rmon_overflow.imask; gfar_write(&grp->regs->imask, imask); spin_unlock_irqrestore(&grp->grplock, flags); __napi_schedule(&grp->napi_rx); } else { /* Clear IEVENT, so interrupts aren't called again * because of the packets that have already arrived. */ gfar_write(&grp->regs->ievent, IEVENT_RX_MASK); } return IRQ_HANDLED; } /* Interrupt Handler for Transmit complete */ static irqreturn_t gfar_transmit(int irq, void *grp_id) { struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; unsigned long flags; u32 imask; if (likely(napi_schedule_prep(&grp->napi_tx))) { spin_lock_irqsave(&grp->grplock, flags); imask = gfar_read(&grp->regs->imask); imask &= IMASK_TX_DISABLED | grp->priv->rmon_overflow.imask; gfar_write(&grp->regs->imask, imask); spin_unlock_irqrestore(&grp->grplock, flags); __napi_schedule(&grp->napi_tx); } else { /* Clear IEVENT, so interrupts aren't called again * because of the packets that have already arrived. */ gfar_write(&grp->regs->ievent, IEVENT_TX_MASK); } return IRQ_HANDLED; } static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus, struct sk_buff *skb, bool first) { int size = lstatus & BD_LENGTH_MASK; struct page *page = rxb->page; if (likely(first)) { skb_put(skb, size); } else { /* the last fragments' length contains the full frame length */ if (lstatus & BD_LFLAG(RXBD_LAST)) size -= skb->len; WARN(size < 0, "gianfar: rx fragment size underflow"); if (size < 0) return false; skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, rxb->page_offset + RXBUF_ALIGNMENT, size, GFAR_RXB_TRUESIZE); } /* try reuse page */ if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page))) return false; /* change offset to the other half */ rxb->page_offset ^= GFAR_RXB_TRUESIZE; page_ref_inc(page); return true; } static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *old_rxb) { struct gfar_rx_buff *new_rxb; u16 nta = rxq->next_to_alloc; new_rxb = &rxq->rx_buff[nta]; /* find next buf that can reuse a page */ nta++; rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0; /* copy page reference */ *new_rxb = *old_rxb; /* sync for use by the device */ dma_sync_single_range_for_device(rxq->dev, old_rxb->dma, old_rxb->page_offset, GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE); } static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue, u32 lstatus, struct sk_buff *skb) { struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean]; struct page *page = rxb->page; bool first = false; if (likely(!skb)) { void *buff_addr = page_address(page) + rxb->page_offset; skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE); if (unlikely(!skb)) { gfar_rx_alloc_err(rx_queue); return NULL; } skb_reserve(skb, RXBUF_ALIGNMENT); first = true; } dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset, GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE); if (gfar_add_rx_frag(rxb, lstatus, skb, first)) { /* reuse the free half of the page */ gfar_reuse_rx_page(rx_queue, rxb); } else { /* page cannot be reused, unmap it */ dma_unmap_page(rx_queue->dev, rxb->dma, PAGE_SIZE, DMA_FROM_DEVICE); } /* clear rxb content */ rxb->page = NULL; return skb; } static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb) { /* If valid headers were found, and valid sums * were verified, then we tell the kernel that no * checksumming is necessary. Otherwise, it is [FIXME] */ if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU)) skb->ip_summed = CHECKSUM_UNNECESSARY; else skb_checksum_none_assert(skb); } /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */ static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb) { struct gfar_private *priv = netdev_priv(ndev); struct rxfcb *fcb = NULL; /* fcb is at the beginning if exists */ fcb = (struct rxfcb *)skb->data; /* Remove the FCB from the skb * Remove the padded bytes, if there are any */ if (priv->uses_rxfcb) skb_pull(skb, GMAC_FCB_LEN); /* Get receive timestamp from the skb */ if (priv->hwts_rx_en) { struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); u64 *ns = (u64 *) skb->data; memset(shhwtstamps, 0, sizeof(*shhwtstamps)); shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns)); } if (priv->padding) skb_pull(skb, priv->padding); /* Trim off the FCS */ pskb_trim(skb, skb->len - ETH_FCS_LEN); if (ndev->features & NETIF_F_RXCSUM) gfar_rx_checksum(skb, fcb); /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here. * Even if vlan rx accel is disabled, on some chips * RXFCB_VLN is pseudo randomly set. */ if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX && be16_to_cpu(fcb->flags) & RXFCB_VLN) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), be16_to_cpu(fcb->vlctl)); } /* gfar_clean_rx_ring() -- Processes each frame in the rx ring * until the budget/quota has been reached. Returns the number * of frames handled */ static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit) { struct net_device *ndev = rx_queue->ndev; struct gfar_private *priv = netdev_priv(ndev); struct rxbd8 *bdp; int i, howmany = 0; struct sk_buff *skb = rx_queue->skb; int cleaned_cnt = gfar_rxbd_unused(rx_queue); unsigned int total_bytes = 0, total_pkts = 0; /* Get the first full descriptor */ i = rx_queue->next_to_clean; while (rx_work_limit--) { u32 lstatus; if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) { gfar_alloc_rx_buffs(rx_queue, cleaned_cnt); cleaned_cnt = 0; } bdp = &rx_queue->rx_bd_base[i]; lstatus = be32_to_cpu(bdp->lstatus); if (lstatus & BD_LFLAG(RXBD_EMPTY)) break; /* lost RXBD_LAST descriptor due to overrun */ if (skb && (lstatus & BD_LFLAG(RXBD_FIRST))) { /* discard faulty buffer */ dev_kfree_skb(skb); skb = NULL; rx_queue->stats.rx_dropped++; /* can continue normally */ } /* order rx buffer descriptor reads */ rmb(); /* fetch next to clean buffer from the ring */ skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb); if (unlikely(!skb)) break; cleaned_cnt++; howmany++; if (unlikely(++i == rx_queue->rx_ring_size)) i = 0; rx_queue->next_to_clean = i; /* fetch next buffer if not the last in frame */ if (!(lstatus & BD_LFLAG(RXBD_LAST))) continue; if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) { count_errors(lstatus, ndev); /* discard faulty buffer */ dev_kfree_skb(skb); skb = NULL; rx_queue->stats.rx_dropped++; continue; } gfar_process_frame(ndev, skb); /* Increment the number of packets */ total_pkts++; total_bytes += skb->len; skb_record_rx_queue(skb, rx_queue->qindex); skb->protocol = eth_type_trans(skb, ndev); /* Send the packet up the stack */ napi_gro_receive(&rx_queue->grp->napi_rx, skb); skb = NULL; } /* Store incomplete frames for completion */ rx_queue->skb = skb; rx_queue->stats.rx_packets += total_pkts; rx_queue->stats.rx_bytes += total_bytes; if (cleaned_cnt) gfar_alloc_rx_buffs(rx_queue, cleaned_cnt); /* Update Last Free RxBD pointer for LFC */ if (unlikely(priv->tx_actual_en)) { u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue); gfar_write(rx_queue->rfbptr, bdp_dma); } return howmany; } static int gfar_poll_rx_sq(struct napi_struct *napi, int budget) { struct gfar_priv_grp *gfargrp = container_of(napi, struct gfar_priv_grp, napi_rx); struct gfar __iomem *regs = gfargrp->regs; struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue; int work_done = 0; /* Clear IEVENT, so interrupts aren't called again * because of the packets that have already arrived */ gfar_write(®s->ievent, IEVENT_RX_MASK); work_done = gfar_clean_rx_ring(rx_queue, budget); if (work_done < budget) { u32 imask; napi_complete_done(napi, work_done); /* Clear the halt bit in RSTAT */ gfar_write(®s->rstat, gfargrp->rstat); spin_lock_irq(&gfargrp->grplock); imask = gfar_read(®s->imask); imask |= IMASK_RX_DEFAULT; gfar_write(®s->imask, imask); spin_unlock_irq(&gfargrp->grplock); } return work_done; } static int gfar_poll_tx_sq(struct napi_struct *napi, int budget) { struct gfar_priv_grp *gfargrp = container_of(napi, struct gfar_priv_grp, napi_tx); struct gfar __iomem *regs = gfargrp->regs; struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue; u32 imask; /* Clear IEVENT, so interrupts aren't called again * because of the packets that have already arrived */ gfar_write(®s->ievent, IEVENT_TX_MASK); /* run Tx cleanup to completion */ if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) gfar_clean_tx_ring(tx_queue); napi_complete(napi); spin_lock_irq(&gfargrp->grplock); imask = gfar_read(®s->imask); imask |= IMASK_TX_DEFAULT; gfar_write(®s->imask, imask); spin_unlock_irq(&gfargrp->grplock); return 0; } /* GFAR error interrupt handler */ static irqreturn_t gfar_error(int irq, void *grp_id) { struct gfar_priv_grp *gfargrp = grp_id; struct gfar __iomem *regs = gfargrp->regs; struct gfar_private *priv= gfargrp->priv; struct net_device *dev = priv->ndev; /* Save ievent for future reference */ u32 events = gfar_read(®s->ievent); /* Clear IEVENT */ gfar_write(®s->ievent, events & IEVENT_ERR_MASK); /* Magic Packet is not an error. */ if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) && (events & IEVENT_MAG)) events &= ~IEVENT_MAG; /* Hmm... */ if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv)) netdev_dbg(dev, "error interrupt (ievent=0x%08x imask=0x%08x)\n", events, gfar_read(®s->imask)); /* Update the error counters */ if (events & IEVENT_TXE) { dev->stats.tx_errors++; if (events & IEVENT_LC) dev->stats.tx_window_errors++; if (events & IEVENT_CRL) dev->stats.tx_aborted_errors++; if (events & IEVENT_XFUN) { netif_dbg(priv, tx_err, dev, "TX FIFO underrun, packet dropped\n"); dev->stats.tx_dropped++; atomic64_inc(&priv->extra_stats.tx_underrun); schedule_work(&priv->reset_task); } netif_dbg(priv, tx_err, dev, "Transmit Error\n"); } if (events & IEVENT_MSRO) { struct rmon_mib __iomem *rmon = ®s->rmon; u32 car; spin_lock(&priv->rmon_overflow.lock); car = gfar_read(&rmon->car1) & CAR1_C1RDR; if (car) { priv->rmon_overflow.rdrp++; gfar_write(&rmon->car1, car); } spin_unlock(&priv->rmon_overflow.lock); } if (events & IEVENT_BSY) { dev->stats.rx_over_errors++; atomic64_inc(&priv->extra_stats.rx_bsy); netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n", gfar_read(®s->rstat)); } if (events & IEVENT_BABR) { dev->stats.rx_errors++; atomic64_inc(&priv->extra_stats.rx_babr); netif_dbg(priv, rx_err, dev, "babbling RX error\n"); } if (events & IEVENT_EBERR) { atomic64_inc(&priv->extra_stats.eberr); netif_dbg(priv, rx_err, dev, "bus error\n"); } if (events & IEVENT_RXC) netif_dbg(priv, rx_status, dev, "control frame\n"); if (events & IEVENT_BABT) { atomic64_inc(&priv->extra_stats.tx_babt); netif_dbg(priv, tx_err, dev, "babbling TX error\n"); } return IRQ_HANDLED; } /* The interrupt handler for devices with one interrupt */ static irqreturn_t gfar_interrupt(int irq, void *grp_id) { struct gfar_priv_grp *gfargrp = grp_id; /* Save ievent for future reference */ u32 events = gfar_read(&gfargrp->regs->ievent); /* Check for reception */ if (events & IEVENT_RX_MASK) gfar_receive(irq, grp_id); /* Check for transmit completion */ if (events & IEVENT_TX_MASK) gfar_transmit(irq, grp_id); /* Check for errors */ if (events & IEVENT_ERR_MASK) gfar_error(irq, grp_id); return IRQ_HANDLED; } #ifdef CONFIG_NET_POLL_CONTROLLER /* Polling 'interrupt' - used by things like netconsole to send skbs * without having to re-enable interrupts. It's not called while * the interrupt routine is executing. */ static void gfar_netpoll(struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); int i; /* If the device has multiple interrupts, run tx/rx */ if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { for (i = 0; i < priv->num_grps; i++) { struct gfar_priv_grp *grp = &priv->gfargrp[i]; disable_irq(gfar_irq(grp, TX)->irq); disable_irq(gfar_irq(grp, RX)->irq); disable_irq(gfar_irq(grp, ER)->irq); gfar_interrupt(gfar_irq(grp, TX)->irq, grp); enable_irq(gfar_irq(grp, ER)->irq); enable_irq(gfar_irq(grp, RX)->irq); enable_irq(gfar_irq(grp, TX)->irq); } } else { for (i = 0; i < priv->num_grps; i++) { struct gfar_priv_grp *grp = &priv->gfargrp[i]; disable_irq(gfar_irq(grp, TX)->irq); gfar_interrupt(gfar_irq(grp, TX)->irq, grp); enable_irq(gfar_irq(grp, TX)->irq); } } } #endif static void free_grp_irqs(struct gfar_priv_grp *grp) { free_irq(gfar_irq(grp, TX)->irq, grp); free_irq(gfar_irq(grp, RX)->irq, grp); free_irq(gfar_irq(grp, ER)->irq, grp); } static int register_grp_irqs(struct gfar_priv_grp *grp) { struct gfar_private *priv = grp->priv; struct net_device *dev = priv->ndev; int err; /* If the device has multiple interrupts, register for * them. Otherwise, only register for the one */ if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { /* Install our interrupt handlers for Error, * Transmit, and Receive */ err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0, gfar_irq(grp, ER)->name, grp); if (err < 0) { netif_err(priv, intr, dev, "Can't get IRQ %d\n", gfar_irq(grp, ER)->irq); goto err_irq_fail; } enable_irq_wake(gfar_irq(grp, ER)->irq); err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0, gfar_irq(grp, TX)->name, grp); if (err < 0) { netif_err(priv, intr, dev, "Can't get IRQ %d\n", gfar_irq(grp, TX)->irq); goto tx_irq_fail; } err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0, gfar_irq(grp, RX)->name, grp); if (err < 0) { netif_err(priv, intr, dev, "Can't get IRQ %d\n", gfar_irq(grp, RX)->irq); goto rx_irq_fail; } enable_irq_wake(gfar_irq(grp, RX)->irq); } else { err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0, gfar_irq(grp, TX)->name, grp); if (err < 0) { netif_err(priv, intr, dev, "Can't get IRQ %d\n", gfar_irq(grp, TX)->irq); goto err_irq_fail; } enable_irq_wake(gfar_irq(grp, TX)->irq); } return 0; rx_irq_fail: free_irq(gfar_irq(grp, TX)->irq, grp); tx_irq_fail: free_irq(gfar_irq(grp, ER)->irq, grp); err_irq_fail: return err; } static void gfar_free_irq(struct gfar_private *priv) { int i; /* Free the IRQs */ if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { for (i = 0; i < priv->num_grps; i++) free_grp_irqs(&priv->gfargrp[i]); } else { for (i = 0; i < priv->num_grps; i++) free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq, &priv->gfargrp[i]); } } static int gfar_request_irq(struct gfar_private *priv) { int err, i, j; for (i = 0; i < priv->num_grps; i++) { err = register_grp_irqs(&priv->gfargrp[i]); if (err) { for (j = 0; j < i; j++) free_grp_irqs(&priv->gfargrp[j]); return err; } } return 0; } /* Called when something needs to use the ethernet device * Returns 0 for success. */ static int gfar_enet_open(struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); int err; err = init_phy(dev); if (err) return err; err = gfar_request_irq(priv); if (err) return err; err = startup_gfar(dev); if (err) return err; return err; } /* Stops the kernel queue, and halts the controller */ static int gfar_close(struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); cancel_work_sync(&priv->reset_task); stop_gfar(dev); /* Disconnect from the PHY */ phy_disconnect(dev->phydev); gfar_free_irq(priv); return 0; } /* Clears each of the exact match registers to zero, so they * don't interfere with normal reception */ static void gfar_clear_exact_match(struct net_device *dev) { int idx; static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0}; for (idx = 1; idx < GFAR_EM_NUM + 1; idx++) gfar_set_mac_for_addr(dev, idx, zero_arr); } /* Update the hash table based on the current list of multicast * addresses we subscribe to. Also, change the promiscuity of * the device based on the flags (this function is called * whenever dev->flags is changed */ static void gfar_set_multi(struct net_device *dev) { struct netdev_hw_addr *ha; struct gfar_private *priv = netdev_priv(dev); struct gfar __iomem *regs = priv->gfargrp[0].regs; u32 tempval; if (dev->flags & IFF_PROMISC) { /* Set RCTRL to PROM */ tempval = gfar_read(®s->rctrl); tempval |= RCTRL_PROM; gfar_write(®s->rctrl, tempval); } else { /* Set RCTRL to not PROM */ tempval = gfar_read(®s->rctrl); tempval &= ~(RCTRL_PROM); gfar_write(®s->rctrl, tempval); } if (dev->flags & IFF_ALLMULTI) { /* Set the hash to rx all multicast frames */ gfar_write(®s->igaddr0, 0xffffffff); gfar_write(®s->igaddr1, 0xffffffff); gfar_write(®s->igaddr2, 0xffffffff); gfar_write(®s->igaddr3, 0xffffffff); gfar_write(®s->igaddr4, 0xffffffff); gfar_write(®s->igaddr5, 0xffffffff); gfar_write(®s->igaddr6, 0xffffffff); gfar_write(®s->igaddr7, 0xffffffff); gfar_write(®s->gaddr0, 0xffffffff); gfar_write(®s->gaddr1, 0xffffffff); gfar_write(®s->gaddr2, 0xffffffff); gfar_write(®s->gaddr3, 0xffffffff); gfar_write(®s->gaddr4, 0xffffffff); gfar_write(®s->gaddr5, 0xffffffff); gfar_write(®s->gaddr6, 0xffffffff); gfar_write(®s->gaddr7, 0xffffffff); } else { int em_num; int idx; /* zero out the hash */ gfar_write(®s->igaddr0, 0x0); gfar_write(®s->igaddr1, 0x0); gfar_write(®s->igaddr2, 0x0); gfar_write(®s->igaddr3, 0x0); gfar_write(®s->igaddr4, 0x0); gfar_write(®s->igaddr5, 0x0); gfar_write(®s->igaddr6, 0x0); gfar_write(®s->igaddr7, 0x0); gfar_write(®s->gaddr0, 0x0); gfar_write(®s->gaddr1, 0x0); gfar_write(®s->gaddr2, 0x0); gfar_write(®s->gaddr3, 0x0); gfar_write(®s->gaddr4, 0x0); gfar_write(®s->gaddr5, 0x0); gfar_write(®s->gaddr6, 0x0); gfar_write(®s->gaddr7, 0x0); /* If we have extended hash tables, we need to * clear the exact match registers to prepare for * setting them */ if (priv->extended_hash) { em_num = GFAR_EM_NUM + 1; gfar_clear_exact_match(dev); idx = 1; } else { idx = 0; em_num = 0; } if (netdev_mc_empty(dev)) return; /* Parse the list, and set the appropriate bits */ netdev_for_each_mc_addr(ha, dev) { if (idx < em_num) { gfar_set_mac_for_addr(dev, idx, ha->addr); idx++; } else gfar_set_hash_for_addr(dev, ha->addr); } } } void gfar_mac_reset(struct gfar_private *priv) { struct gfar __iomem *regs = priv->gfargrp[0].regs; u32 tempval; /* Reset MAC layer */ gfar_write(®s->maccfg1, MACCFG1_SOFT_RESET); /* We need to delay at least 3 TX clocks */ udelay(3); /* the soft reset bit is not self-resetting, so we need to * clear it before resuming normal operation */ gfar_write(®s->maccfg1, 0); udelay(3); gfar_rx_offload_en(priv); /* Initialize the max receive frame/buffer lengths */ gfar_write(®s->maxfrm, GFAR_JUMBO_FRAME_SIZE); gfar_write(®s->mrblr, GFAR_RXB_SIZE); /* Initialize the Minimum Frame Length Register */ gfar_write(®s->minflr, MINFLR_INIT_SETTINGS); /* Initialize MACCFG2. */ tempval = MACCFG2_INIT_SETTINGS; /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1 * are marked as truncated. Avoid this by MACCFG2[Huge Frame]=1, * and by checking RxBD[LG] and discarding larger than MAXFRM. */ if (gfar_has_errata(priv, GFAR_ERRATA_74)) tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK; gfar_write(®s->maccfg2, tempval); /* Clear mac addr hash registers */ gfar_write(®s->igaddr0, 0); gfar_write(®s->igaddr1, 0); gfar_write(®s->igaddr2, 0); gfar_write(®s->igaddr3, 0); gfar_write(®s->igaddr4, 0); gfar_write(®s->igaddr5, 0); gfar_write(®s->igaddr6, 0); gfar_write(®s->igaddr7, 0); gfar_write(®s->gaddr0, 0); gfar_write(®s->gaddr1, 0); gfar_write(®s->gaddr2, 0); gfar_write(®s->gaddr3, 0); gfar_write(®s->gaddr4, 0); gfar_write(®s->gaddr5, 0); gfar_write(®s->gaddr6, 0); gfar_write(®s->gaddr7, 0); if (priv->extended_hash) gfar_clear_exact_match(priv->ndev); gfar_mac_rx_config(priv); gfar_mac_tx_config(priv); gfar_set_mac_address(priv->ndev); gfar_set_multi(priv->ndev); /* clear ievent and imask before configuring coalescing */ gfar_ints_disable(priv); /* Configure the coalescing support */ gfar_configure_coalescing_all(priv); } static void gfar_hw_init(struct gfar_private *priv) { struct gfar __iomem *regs = priv->gfargrp[0].regs; u32 attrs; /* Stop the DMA engine now, in case it was running before * (The firmware could have used it, and left it running). */ gfar_halt(priv); gfar_mac_reset(priv); /* Zero out the rmon mib registers if it has them */ if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { memset_io(®s->rmon, 0, offsetof(struct rmon_mib, car1)); /* Mask off the CAM interrupts */ gfar_write(®s->rmon.cam1, 0xffffffff); gfar_write(®s->rmon.cam2, 0xffffffff); /* Clear the CAR registers (w1c style) */ gfar_write(®s->rmon.car1, 0xffffffff); gfar_write(®s->rmon.car2, 0xffffffff); } /* Initialize ECNTRL */ gfar_write(®s->ecntrl, ECNTRL_INIT_SETTINGS); /* Set the extraction length and index */ attrs = ATTRELI_EL(priv->rx_stash_size) | ATTRELI_EI(priv->rx_stash_index); gfar_write(®s->attreli, attrs); /* Start with defaults, and add stashing * depending on driver parameters */ attrs = ATTR_INIT_SETTINGS; if (priv->bd_stash_en) attrs |= ATTR_BDSTASH; if (priv->rx_stash_size != 0) attrs |= ATTR_BUFSTASH; gfar_write(®s->attr, attrs); /* FIFO configs */ gfar_write(®s->fifo_tx_thr, DEFAULT_FIFO_TX_THR); gfar_write(®s->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE); gfar_write(®s->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF); /* Program the interrupt steering regs, only for MG devices */ if (priv->num_grps > 1) gfar_write_isrg(priv); } static const struct net_device_ops gfar_netdev_ops = { .ndo_open = gfar_enet_open, .ndo_start_xmit = gfar_start_xmit, .ndo_stop = gfar_close, .ndo_change_mtu = gfar_change_mtu, .ndo_set_features = gfar_set_features, .ndo_set_rx_mode = gfar_set_multi, .ndo_tx_timeout = gfar_timeout, .ndo_eth_ioctl = gfar_ioctl, .ndo_get_stats64 = gfar_get_stats64, .ndo_change_carrier = fixed_phy_change_carrier, .ndo_set_mac_address = gfar_set_mac_addr, .ndo_validate_addr = eth_validate_addr, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = gfar_netpoll, #endif }; /* Set up the ethernet device structure, private data, * and anything else we need before we start */ static int gfar_probe(struct platform_device *ofdev) { struct device_node *np = ofdev->dev.of_node; struct net_device *dev = NULL; struct gfar_private *priv = NULL; int err = 0, i; err = gfar_of_init(ofdev, &dev); if (err) return err; priv = netdev_priv(dev); priv->ndev = dev; priv->ofdev = ofdev; priv->dev = &ofdev->dev; SET_NETDEV_DEV(dev, &ofdev->dev); INIT_WORK(&priv->reset_task, gfar_reset_task); platform_set_drvdata(ofdev, priv); gfar_detect_errata(priv); /* Set the dev->base_addr to the gfar reg region */ dev->base_addr = (unsigned long) priv->gfargrp[0].regs; /* Fill in the dev structure */ dev->watchdog_timeo = TX_TIMEOUT; /* MTU range: 50 - 9586 */ dev->mtu = 1500; dev->min_mtu = 50; dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN; dev->netdev_ops = &gfar_netdev_ops; dev->ethtool_ops = &gfar_ethtool_ops; /* Register for napi ...We are registering NAPI for each grp */ for (i = 0; i < priv->num_grps; i++) { netif_napi_add(dev, &priv->gfargrp[i].napi_rx, gfar_poll_rx_sq); netif_napi_add_tx_weight(dev, &priv->gfargrp[i].napi_tx, gfar_poll_tx_sq, 2); } if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) { dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM; dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM | NETIF_F_HIGHDMA; } if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) { dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; dev->features |= NETIF_F_HW_VLAN_CTAG_RX; } dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; gfar_init_addr_hash_table(priv); /* Insert receive time stamps into padding alignment bytes, and * plus 2 bytes padding to ensure the cpu alignment. */ if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) priv->padding = 8 + DEFAULT_PADDING; if (dev->features & NETIF_F_IP_CSUM || priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) dev->needed_headroom = GMAC_FCB_LEN + GMAC_TXPAL_LEN; /* Initializing some of the rx/tx queue level parameters */ for (i = 0; i < priv->num_tx_queues; i++) { priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE; priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE; priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE; priv->tx_queue[i]->txic = DEFAULT_TXIC; } for (i = 0; i < priv->num_rx_queues; i++) { priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE; priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE; priv->rx_queue[i]->rxic = DEFAULT_RXIC; } /* Always enable rx filer if available */ priv->rx_filer_enable = (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0; /* Enable most messages by default */ priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1; /* use pritority h/w tx queue scheduling for single queue devices */ if (priv->num_tx_queues == 1) priv->prio_sched_en = 1; set_bit(GFAR_DOWN, &priv->state); gfar_hw_init(priv); if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { struct rmon_mib __iomem *rmon = &priv->gfargrp[0].regs->rmon; spin_lock_init(&priv->rmon_overflow.lock); priv->rmon_overflow.imask = IMASK_MSRO; gfar_write(&rmon->cam1, gfar_read(&rmon->cam1) & ~CAM1_M1RDR); } /* Carrier starts down, phylib will bring it up */ netif_carrier_off(dev); err = register_netdev(dev); if (err) { pr_err("%s: Cannot register net device, aborting\n", dev->name); goto register_fail; } if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) priv->wol_supported |= GFAR_WOL_MAGIC; if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) && priv->rx_filer_enable) priv->wol_supported |= GFAR_WOL_FILER_UCAST; device_set_wakeup_capable(&ofdev->dev, priv->wol_supported); /* fill out IRQ number and name fields */ for (i = 0; i < priv->num_grps; i++) { struct gfar_priv_grp *grp = &priv->gfargrp[i]; if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s", dev->name, "_g", '0' + i, "_tx"); sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s", dev->name, "_g", '0' + i, "_rx"); sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s", dev->name, "_g", '0' + i, "_er"); } else strcpy(gfar_irq(grp, TX)->name, dev->name); } /* Initialize the filer table */ gfar_init_filer_table(priv); /* Print out the device info */ netdev_info(dev, "mac: %pM\n", dev->dev_addr); /* Even more device info helps when determining which kernel * provided which set of benchmarks. */ netdev_info(dev, "Running with NAPI enabled\n"); for (i = 0; i < priv->num_rx_queues; i++) netdev_info(dev, "RX BD ring size for Q[%d]: %d\n", i, priv->rx_queue[i]->rx_ring_size); for (i = 0; i < priv->num_tx_queues; i++) netdev_info(dev, "TX BD ring size for Q[%d]: %d\n", i, priv->tx_queue[i]->tx_ring_size); return 0; register_fail: if (of_phy_is_fixed_link(np)) of_phy_deregister_fixed_link(np); unmap_group_regs(priv); gfar_free_rx_queues(priv); gfar_free_tx_queues(priv); of_node_put(priv->phy_node); of_node_put(priv->tbi_node); free_gfar_dev(priv); return err; } static int gfar_remove(struct platform_device *ofdev) { struct gfar_private *priv = platform_get_drvdata(ofdev); struct device_node *np = ofdev->dev.of_node; of_node_put(priv->phy_node); of_node_put(priv->tbi_node); unregister_netdev(priv->ndev); if (of_phy_is_fixed_link(np)) of_phy_deregister_fixed_link(np); unmap_group_regs(priv); gfar_free_rx_queues(priv); gfar_free_tx_queues(priv); free_gfar_dev(priv); return 0; } #ifdef CONFIG_PM static void __gfar_filer_disable(struct gfar_private *priv) { struct gfar __iomem *regs = priv->gfargrp[0].regs; u32 temp; temp = gfar_read(®s->rctrl); temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT); gfar_write(®s->rctrl, temp); } static void __gfar_filer_enable(struct gfar_private *priv) { struct gfar __iomem *regs = priv->gfargrp[0].regs; u32 temp; temp = gfar_read(®s->rctrl); temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT; gfar_write(®s->rctrl, temp); } /* Filer rules implementing wol capabilities */ static void gfar_filer_config_wol(struct gfar_private *priv) { unsigned int i; u32 rqfcr; __gfar_filer_disable(priv); /* clear the filer table, reject any packet by default */ rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH; for (i = 0; i <= MAX_FILER_IDX; i++) gfar_write_filer(priv, i, rqfcr, 0); i = 0; if (priv->wol_opts & GFAR_WOL_FILER_UCAST) { /* unicast packet, accept it */ struct net_device *ndev = priv->ndev; /* get the default rx queue index */ u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex; u32 dest_mac_addr = (ndev->dev_addr[0] << 16) | (ndev->dev_addr[1] << 8) | ndev->dev_addr[2]; rqfcr = (qindex << 10) | RQFCR_AND | RQFCR_CMP_EXACT | RQFCR_PID_DAH; gfar_write_filer(priv, i++, rqfcr, dest_mac_addr); dest_mac_addr = (ndev->dev_addr[3] << 16) | (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]; rqfcr = (qindex << 10) | RQFCR_GPI | RQFCR_CMP_EXACT | RQFCR_PID_DAL; gfar_write_filer(priv, i++, rqfcr, dest_mac_addr); } __gfar_filer_enable(priv); } static void gfar_filer_restore_table(struct gfar_private *priv) { u32 rqfcr, rqfpr; unsigned int i; __gfar_filer_disable(priv); for (i = 0; i <= MAX_FILER_IDX; i++) { rqfcr = priv->ftp_rqfcr[i]; rqfpr = priv->ftp_rqfpr[i]; gfar_write_filer(priv, i, rqfcr, rqfpr); } __gfar_filer_enable(priv); } /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */ static void gfar_start_wol_filer(struct gfar_private *priv) { struct gfar __iomem *regs = priv->gfargrp[0].regs; u32 tempval; int i = 0; /* Enable Rx hw queues */ gfar_write(®s->rqueue, priv->rqueue); /* Initialize DMACTRL to have WWR and WOP */ tempval = gfar_read(®s->dmactrl); tempval |= DMACTRL_INIT_SETTINGS; gfar_write(®s->dmactrl, tempval); /* Make sure we aren't stopped */ tempval = gfar_read(®s->dmactrl); tempval &= ~DMACTRL_GRS; gfar_write(®s->dmactrl, tempval); for (i = 0; i < priv->num_grps; i++) { regs = priv->gfargrp[i].regs; /* Clear RHLT, so that the DMA starts polling now */ gfar_write(®s->rstat, priv->gfargrp[i].rstat); /* enable the Filer General Purpose Interrupt */ gfar_write(®s->imask, IMASK_FGPI); } /* Enable Rx DMA */ tempval = gfar_read(®s->maccfg1); tempval |= MACCFG1_RX_EN; gfar_write(®s->maccfg1, tempval); } static int gfar_suspend(struct device *dev) { struct gfar_private *priv = dev_get_drvdata(dev); struct net_device *ndev = priv->ndev; struct gfar __iomem *regs = priv->gfargrp[0].regs; u32 tempval; u16 wol = priv->wol_opts; if (!netif_running(ndev)) return 0; disable_napi(priv); netif_tx_lock(ndev); netif_device_detach(ndev); netif_tx_unlock(ndev); gfar_halt(priv); if (wol & GFAR_WOL_MAGIC) { /* Enable interrupt on Magic Packet */ gfar_write(®s->imask, IMASK_MAG); /* Enable Magic Packet mode */ tempval = gfar_read(®s->maccfg2); tempval |= MACCFG2_MPEN; gfar_write(®s->maccfg2, tempval); /* re-enable the Rx block */ tempval = gfar_read(®s->maccfg1); tempval |= MACCFG1_RX_EN; gfar_write(®s->maccfg1, tempval); } else if (wol & GFAR_WOL_FILER_UCAST) { gfar_filer_config_wol(priv); gfar_start_wol_filer(priv); } else { phy_stop(ndev->phydev); } return 0; } static int gfar_resume(struct device *dev) { struct gfar_private *priv = dev_get_drvdata(dev); struct net_device *ndev = priv->ndev; struct gfar __iomem *regs = priv->gfargrp[0].regs; u32 tempval; u16 wol = priv->wol_opts; if (!netif_running(ndev)) return 0; if (wol & GFAR_WOL_MAGIC) { /* Disable Magic Packet mode */ tempval = gfar_read(®s->maccfg2); tempval &= ~MACCFG2_MPEN; gfar_write(®s->maccfg2, tempval); } else if (wol & GFAR_WOL_FILER_UCAST) { /* need to stop rx only, tx is already down */ gfar_halt(priv); gfar_filer_restore_table(priv); } else { phy_start(ndev->phydev); } gfar_start(priv); netif_device_attach(ndev); enable_napi(priv); return 0; } static int gfar_restore(struct device *dev) { struct gfar_private *priv = dev_get_drvdata(dev); struct net_device *ndev = priv->ndev; if (!netif_running(ndev)) { netif_device_attach(ndev); return 0; } gfar_init_bds(ndev); gfar_mac_reset(priv); gfar_init_tx_rx_base(priv); gfar_start(priv); priv->oldlink = 0; priv->oldspeed = 0; priv->oldduplex = -1; if (ndev->phydev) phy_start(ndev->phydev); netif_device_attach(ndev); enable_napi(priv); return 0; } static const struct dev_pm_ops gfar_pm_ops = { .suspend = gfar_suspend, .resume = gfar_resume, .freeze = gfar_suspend, .thaw = gfar_resume, .restore = gfar_restore, }; #define GFAR_PM_OPS (&gfar_pm_ops) #else #define GFAR_PM_OPS NULL #endif static const struct of_device_id gfar_match[] = { { .type = "network", .compatible = "gianfar", }, { .compatible = "fsl,etsec2", }, {}, }; MODULE_DEVICE_TABLE(of, gfar_match); /* Structure for a device driver */ static struct platform_driver gfar_driver = { .driver = { .name = "fsl-gianfar", .pm = GFAR_PM_OPS, .of_match_table = gfar_match, }, .probe = gfar_probe, .remove = gfar_remove, }; module_platform_driver(gfar_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1