Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Shawn Bohrer | 475 | 45.76% | 1 | 5.26% |
Amir Vadai | 354 | 34.10% | 2 | 10.53% |
Eugenia Emantayev | 76 | 7.32% | 3 | 15.79% |
Yevgeny Petrilin | 54 | 5.20% | 1 | 5.26% |
Eric Dumazet | 34 | 3.28% | 2 | 10.53% |
Richard Cochran | 17 | 1.64% | 5 | 26.32% |
Jacob E Keller | 12 | 1.16% | 1 | 5.26% |
Slava Shwartsman | 6 | 0.58% | 1 | 5.26% |
Nico Pitre | 6 | 0.58% | 1 | 5.26% |
Roland Dreier | 3 | 0.29% | 1 | 5.26% |
Thomas Gleixner | 1 | 0.10% | 1 | 5.26% |
Total | 1038 | 19 |
/* * Copyright (c) 2012 Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/mlx4/device.h> #include <linux/clocksource.h> #include "mlx4_en.h" /* mlx4_en_read_clock - read raw cycle counter (to be used by time counter) */ static u64 mlx4_en_read_clock(const struct cyclecounter *tc) { struct mlx4_en_dev *mdev = container_of(tc, struct mlx4_en_dev, cycles); struct mlx4_dev *dev = mdev->dev; return mlx4_read_clock(dev) & tc->mask; } u64 mlx4_en_get_cqe_ts(struct mlx4_cqe *cqe) { u64 hi, lo; struct mlx4_ts_cqe *ts_cqe = (struct mlx4_ts_cqe *)cqe; lo = (u64)be16_to_cpu(ts_cqe->timestamp_lo); hi = ((u64)be32_to_cpu(ts_cqe->timestamp_hi) + !lo) << 16; return hi | lo; } void mlx4_en_fill_hwtstamps(struct mlx4_en_dev *mdev, struct skb_shared_hwtstamps *hwts, u64 timestamp) { unsigned int seq; u64 nsec; do { seq = read_seqbegin(&mdev->clock_lock); nsec = timecounter_cyc2time(&mdev->clock, timestamp); } while (read_seqretry(&mdev->clock_lock, seq)); memset(hwts, 0, sizeof(struct skb_shared_hwtstamps)); hwts->hwtstamp = ns_to_ktime(nsec); } /** * mlx4_en_remove_timestamp - disable PTP device * @mdev: board private structure * * Stop the PTP support. **/ void mlx4_en_remove_timestamp(struct mlx4_en_dev *mdev) { if (mdev->ptp_clock) { ptp_clock_unregister(mdev->ptp_clock); mdev->ptp_clock = NULL; mlx4_info(mdev, "removed PHC\n"); } } #define MLX4_EN_WRAP_AROUND_SEC 10UL /* By scheduling the overflow check every 5 seconds, we have a reasonably * good chance we wont miss a wrap around. * TOTO: Use a timer instead of a work queue to increase the guarantee. */ #define MLX4_EN_OVERFLOW_PERIOD (MLX4_EN_WRAP_AROUND_SEC * HZ / 2) void mlx4_en_ptp_overflow_check(struct mlx4_en_dev *mdev) { bool timeout = time_is_before_jiffies(mdev->last_overflow_check + MLX4_EN_OVERFLOW_PERIOD); unsigned long flags; if (timeout) { write_seqlock_irqsave(&mdev->clock_lock, flags); timecounter_read(&mdev->clock); write_sequnlock_irqrestore(&mdev->clock_lock, flags); mdev->last_overflow_check = jiffies; } } /** * mlx4_en_phc_adjfine - adjust the frequency of the hardware clock * @ptp: ptp clock structure * @scaled_ppm: Desired frequency change in scaled parts per million * * Adjust the frequency of the PHC cycle counter by the indicated scaled_ppm * from the base frequency. * * Scaled parts per million is ppm with a 16-bit binary fractional field. **/ static int mlx4_en_phc_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) { u32 mult; unsigned long flags; struct mlx4_en_dev *mdev = container_of(ptp, struct mlx4_en_dev, ptp_clock_info); mult = (u32)adjust_by_scaled_ppm(mdev->nominal_c_mult, scaled_ppm); write_seqlock_irqsave(&mdev->clock_lock, flags); timecounter_read(&mdev->clock); mdev->cycles.mult = mult; write_sequnlock_irqrestore(&mdev->clock_lock, flags); return 0; } /** * mlx4_en_phc_adjtime - Shift the time of the hardware clock * @ptp: ptp clock structure * @delta: Desired change in nanoseconds * * Adjust the timer by resetting the timecounter structure. **/ static int mlx4_en_phc_adjtime(struct ptp_clock_info *ptp, s64 delta) { struct mlx4_en_dev *mdev = container_of(ptp, struct mlx4_en_dev, ptp_clock_info); unsigned long flags; write_seqlock_irqsave(&mdev->clock_lock, flags); timecounter_adjtime(&mdev->clock, delta); write_sequnlock_irqrestore(&mdev->clock_lock, flags); return 0; } /** * mlx4_en_phc_gettime - Reads the current time from the hardware clock * @ptp: ptp clock structure * @ts: timespec structure to hold the current time value * * Read the timecounter and return the correct value in ns after converting * it into a struct timespec. **/ static int mlx4_en_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) { struct mlx4_en_dev *mdev = container_of(ptp, struct mlx4_en_dev, ptp_clock_info); unsigned long flags; u64 ns; write_seqlock_irqsave(&mdev->clock_lock, flags); ns = timecounter_read(&mdev->clock); write_sequnlock_irqrestore(&mdev->clock_lock, flags); *ts = ns_to_timespec64(ns); return 0; } /** * mlx4_en_phc_settime - Set the current time on the hardware clock * @ptp: ptp clock structure * @ts: timespec containing the new time for the cycle counter * * Reset the timecounter to use a new base value instead of the kernel * wall timer value. **/ static int mlx4_en_phc_settime(struct ptp_clock_info *ptp, const struct timespec64 *ts) { struct mlx4_en_dev *mdev = container_of(ptp, struct mlx4_en_dev, ptp_clock_info); u64 ns = timespec64_to_ns(ts); unsigned long flags; /* reset the timecounter */ write_seqlock_irqsave(&mdev->clock_lock, flags); timecounter_init(&mdev->clock, &mdev->cycles, ns); write_sequnlock_irqrestore(&mdev->clock_lock, flags); return 0; } /** * mlx4_en_phc_enable - enable or disable an ancillary feature * @ptp: ptp clock structure * @request: Desired resource to enable or disable * @on: Caller passes one to enable or zero to disable * * Enable (or disable) ancillary features of the PHC subsystem. * Currently, no ancillary features are supported. **/ static int mlx4_en_phc_enable(struct ptp_clock_info __always_unused *ptp, struct ptp_clock_request __always_unused *request, int __always_unused on) { return -EOPNOTSUPP; } static const struct ptp_clock_info mlx4_en_ptp_clock_info = { .owner = THIS_MODULE, .max_adj = 100000000, .n_alarm = 0, .n_ext_ts = 0, .n_per_out = 0, .n_pins = 0, .pps = 0, .adjfine = mlx4_en_phc_adjfine, .adjtime = mlx4_en_phc_adjtime, .gettime64 = mlx4_en_phc_gettime, .settime64 = mlx4_en_phc_settime, .enable = mlx4_en_phc_enable, }; /* This function calculates the max shift that enables the user range * of MLX4_EN_WRAP_AROUND_SEC values in the cycles register. */ static u32 freq_to_shift(u16 freq) { u32 freq_khz = freq * 1000; u64 max_val_cycles = freq_khz * 1000 * MLX4_EN_WRAP_AROUND_SEC; u64 max_val_cycles_rounded = 1ULL << fls64(max_val_cycles - 1); /* calculate max possible multiplier in order to fit in 64bit */ u64 max_mul = div64_u64(ULLONG_MAX, max_val_cycles_rounded); /* This comes from the reverse of clocksource_khz2mult */ return ilog2(div_u64(max_mul * freq_khz, 1000000)); } void mlx4_en_init_timestamp(struct mlx4_en_dev *mdev) { struct mlx4_dev *dev = mdev->dev; unsigned long flags; /* mlx4_en_init_timestamp is called for each netdev. * mdev->ptp_clock is common for all ports, skip initialization if * was done for other port. */ if (mdev->ptp_clock) return; seqlock_init(&mdev->clock_lock); memset(&mdev->cycles, 0, sizeof(mdev->cycles)); mdev->cycles.read = mlx4_en_read_clock; mdev->cycles.mask = CLOCKSOURCE_MASK(48); mdev->cycles.shift = freq_to_shift(dev->caps.hca_core_clock); mdev->cycles.mult = clocksource_khz2mult(1000 * dev->caps.hca_core_clock, mdev->cycles.shift); mdev->nominal_c_mult = mdev->cycles.mult; write_seqlock_irqsave(&mdev->clock_lock, flags); timecounter_init(&mdev->clock, &mdev->cycles, ktime_to_ns(ktime_get_real())); write_sequnlock_irqrestore(&mdev->clock_lock, flags); /* Configure the PHC */ mdev->ptp_clock_info = mlx4_en_ptp_clock_info; snprintf(mdev->ptp_clock_info.name, 16, "mlx4 ptp"); mdev->ptp_clock = ptp_clock_register(&mdev->ptp_clock_info, &mdev->pdev->dev); if (IS_ERR(mdev->ptp_clock)) { mdev->ptp_clock = NULL; mlx4_err(mdev, "ptp_clock_register failed\n"); } else if (mdev->ptp_clock) { mlx4_info(mdev, "registered PHC clock\n"); } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1