Contributors: 17
Author Tokens Token Proportion Commits Commit Proportion
Roland Dreier 1599 69.49% 2 7.41%
Jack Morgenstein 343 14.91% 4 14.81%
Stephen Warren 135 5.87% 2 7.41%
Eugenia Emantayev 64 2.78% 1 3.70%
Yishai Hadas 51 2.22% 3 11.11%
Jens Axboe 29 1.26% 2 7.41%
Eric Dumazet 25 1.09% 1 3.70%
Leon Romanovsky 19 0.83% 2 7.41%
Qing Huang 15 0.65% 1 3.70%
Stephen Hemminger 4 0.17% 2 7.41%
zhong jiang 4 0.17% 1 3.70%
Sébastien Dugué 3 0.13% 1 3.70%
Al Viro 3 0.13% 1 3.70%
Jack Wang 2 0.09% 1 3.70%
Linus Torvalds (pre-git) 2 0.09% 1 3.70%
Kees Cook 2 0.09% 1 3.70%
Linus Torvalds 1 0.04% 1 3.70%
Total 2301 27


/*
 * Copyright (c) 2005, 2006, 2007, 2008 Mellanox Technologies. All rights reserved.
 * Copyright (c) 2006, 2007 Cisco Systems, Inc.  All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include <linux/errno.h>
#include <linux/mm.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>

#include <linux/mlx4/cmd.h>

#include "mlx4.h"
#include "icm.h"
#include "fw.h"

/*
 * We allocate in as big chunks as we can, up to a maximum of 256 KB
 * per chunk. Note that the chunks are not necessarily in contiguous
 * physical memory.
 */
enum {
	MLX4_ICM_ALLOC_SIZE	= 1 << 18,
	MLX4_TABLE_CHUNK_SIZE	= 1 << 18,
};

static void mlx4_free_icm_pages(struct mlx4_dev *dev, struct mlx4_icm_chunk *chunk)
{
	int i;

	if (chunk->nsg > 0)
		dma_unmap_sg(&dev->persist->pdev->dev, chunk->sg, chunk->npages,
			     DMA_BIDIRECTIONAL);

	for (i = 0; i < chunk->npages; ++i)
		__free_pages(sg_page(&chunk->sg[i]),
			     get_order(chunk->sg[i].length));
}

static void mlx4_free_icm_coherent(struct mlx4_dev *dev, struct mlx4_icm_chunk *chunk)
{
	int i;

	for (i = 0; i < chunk->npages; ++i)
		dma_free_coherent(&dev->persist->pdev->dev,
				  chunk->buf[i].size,
				  chunk->buf[i].addr,
				  chunk->buf[i].dma_addr);
}

void mlx4_free_icm(struct mlx4_dev *dev, struct mlx4_icm *icm, int coherent)
{
	struct mlx4_icm_chunk *chunk, *tmp;

	if (!icm)
		return;

	list_for_each_entry_safe(chunk, tmp, &icm->chunk_list, list) {
		if (coherent)
			mlx4_free_icm_coherent(dev, chunk);
		else
			mlx4_free_icm_pages(dev, chunk);

		kfree(chunk);
	}

	kfree(icm);
}

static int mlx4_alloc_icm_pages(struct scatterlist *mem, int order,
				gfp_t gfp_mask, int node)
{
	struct page *page;

	page = alloc_pages_node(node, gfp_mask, order);
	if (!page) {
		page = alloc_pages(gfp_mask, order);
		if (!page)
			return -ENOMEM;
	}

	sg_set_page(mem, page, PAGE_SIZE << order, 0);
	return 0;
}

static int mlx4_alloc_icm_coherent(struct device *dev, struct mlx4_icm_buf *buf,
				   int order, gfp_t gfp_mask)
{
	buf->addr = dma_alloc_coherent(dev, PAGE_SIZE << order,
				       &buf->dma_addr, gfp_mask);
	if (!buf->addr)
		return -ENOMEM;

	if (offset_in_page(buf->addr)) {
		dma_free_coherent(dev, PAGE_SIZE << order, buf->addr,
				  buf->dma_addr);
		return -ENOMEM;
	}

	buf->size = PAGE_SIZE << order;
	return 0;
}

struct mlx4_icm *mlx4_alloc_icm(struct mlx4_dev *dev, int npages,
				gfp_t gfp_mask, int coherent)
{
	struct mlx4_icm *icm;
	struct mlx4_icm_chunk *chunk = NULL;
	int cur_order;
	gfp_t mask;
	int ret;

	/* We use sg_set_buf for coherent allocs, which assumes low memory */
	BUG_ON(coherent && (gfp_mask & __GFP_HIGHMEM));

	icm = kmalloc_node(sizeof(*icm),
			   gfp_mask & ~(__GFP_HIGHMEM | __GFP_NOWARN),
			   dev->numa_node);
	if (!icm) {
		icm = kmalloc(sizeof(*icm),
			      gfp_mask & ~(__GFP_HIGHMEM | __GFP_NOWARN));
		if (!icm)
			return NULL;
	}

	icm->refcount = 0;
	INIT_LIST_HEAD(&icm->chunk_list);

	cur_order = get_order(MLX4_ICM_ALLOC_SIZE);

	while (npages > 0) {
		if (!chunk) {
			chunk = kzalloc_node(sizeof(*chunk),
					     gfp_mask & ~(__GFP_HIGHMEM |
							  __GFP_NOWARN),
					     dev->numa_node);
			if (!chunk) {
				chunk = kzalloc(sizeof(*chunk),
						gfp_mask & ~(__GFP_HIGHMEM |
							     __GFP_NOWARN));
				if (!chunk)
					goto fail;
			}
			chunk->coherent = coherent;

			if (!coherent)
				sg_init_table(chunk->sg, MLX4_ICM_CHUNK_LEN);
			list_add_tail(&chunk->list, &icm->chunk_list);
		}

		while (1 << cur_order > npages)
			--cur_order;

		mask = gfp_mask;
		if (cur_order)
			mask &= ~__GFP_DIRECT_RECLAIM;

		if (coherent)
			ret = mlx4_alloc_icm_coherent(&dev->persist->pdev->dev,
						&chunk->buf[chunk->npages],
						cur_order, mask);
		else
			ret = mlx4_alloc_icm_pages(&chunk->sg[chunk->npages],
						   cur_order, mask,
						   dev->numa_node);

		if (ret) {
			if (--cur_order < 0)
				goto fail;
			else
				continue;
		}

		++chunk->npages;

		if (coherent)
			++chunk->nsg;
		else if (chunk->npages == MLX4_ICM_CHUNK_LEN) {
			chunk->nsg = dma_map_sg(&dev->persist->pdev->dev,
						chunk->sg, chunk->npages,
						DMA_BIDIRECTIONAL);

			if (!chunk->nsg)
				goto fail;
		}

		if (chunk->npages == MLX4_ICM_CHUNK_LEN)
			chunk = NULL;

		npages -= 1 << cur_order;
	}

	if (!coherent && chunk) {
		chunk->nsg = dma_map_sg(&dev->persist->pdev->dev, chunk->sg,
					chunk->npages, DMA_BIDIRECTIONAL);

		if (!chunk->nsg)
			goto fail;
	}

	return icm;

fail:
	mlx4_free_icm(dev, icm, coherent);
	return NULL;
}

static int mlx4_MAP_ICM(struct mlx4_dev *dev, struct mlx4_icm *icm, u64 virt)
{
	return mlx4_map_cmd(dev, MLX4_CMD_MAP_ICM, icm, virt);
}

static int mlx4_UNMAP_ICM(struct mlx4_dev *dev, u64 virt, u32 page_count)
{
	return mlx4_cmd(dev, virt, page_count, 0, MLX4_CMD_UNMAP_ICM,
			MLX4_CMD_TIME_CLASS_B, MLX4_CMD_NATIVE);
}

int mlx4_MAP_ICM_AUX(struct mlx4_dev *dev, struct mlx4_icm *icm)
{
	return mlx4_map_cmd(dev, MLX4_CMD_MAP_ICM_AUX, icm, -1);
}

int mlx4_UNMAP_ICM_AUX(struct mlx4_dev *dev)
{
	return mlx4_cmd(dev, 0, 0, 0, MLX4_CMD_UNMAP_ICM_AUX,
			MLX4_CMD_TIME_CLASS_B, MLX4_CMD_NATIVE);
}

int mlx4_table_get(struct mlx4_dev *dev, struct mlx4_icm_table *table, u32 obj)
{
	u32 i = (obj & (table->num_obj - 1)) /
			(MLX4_TABLE_CHUNK_SIZE / table->obj_size);
	int ret = 0;

	mutex_lock(&table->mutex);

	if (table->icm[i]) {
		++table->icm[i]->refcount;
		goto out;
	}

	table->icm[i] = mlx4_alloc_icm(dev, MLX4_TABLE_CHUNK_SIZE >> PAGE_SHIFT,
				       (table->lowmem ? GFP_KERNEL : GFP_HIGHUSER) |
				       __GFP_NOWARN, table->coherent);
	if (!table->icm[i]) {
		ret = -ENOMEM;
		goto out;
	}

	if (mlx4_MAP_ICM(dev, table->icm[i], table->virt +
			 (u64) i * MLX4_TABLE_CHUNK_SIZE)) {
		mlx4_free_icm(dev, table->icm[i], table->coherent);
		table->icm[i] = NULL;
		ret = -ENOMEM;
		goto out;
	}

	++table->icm[i]->refcount;

out:
	mutex_unlock(&table->mutex);
	return ret;
}

void mlx4_table_put(struct mlx4_dev *dev, struct mlx4_icm_table *table, u32 obj)
{
	u32 i;
	u64 offset;

	i = (obj & (table->num_obj - 1)) / (MLX4_TABLE_CHUNK_SIZE / table->obj_size);

	mutex_lock(&table->mutex);

	if (--table->icm[i]->refcount == 0) {
		offset = (u64) i * MLX4_TABLE_CHUNK_SIZE;
		mlx4_UNMAP_ICM(dev, table->virt + offset,
			       MLX4_TABLE_CHUNK_SIZE / MLX4_ICM_PAGE_SIZE);
		mlx4_free_icm(dev, table->icm[i], table->coherent);
		table->icm[i] = NULL;
	}

	mutex_unlock(&table->mutex);
}

void *mlx4_table_find(struct mlx4_icm_table *table, u32 obj,
			dma_addr_t *dma_handle)
{
	int offset, dma_offset, i;
	u64 idx;
	struct mlx4_icm_chunk *chunk;
	struct mlx4_icm *icm;
	void *addr = NULL;

	if (!table->lowmem)
		return NULL;

	mutex_lock(&table->mutex);

	idx = (u64) (obj & (table->num_obj - 1)) * table->obj_size;
	icm = table->icm[idx / MLX4_TABLE_CHUNK_SIZE];
	dma_offset = offset = idx % MLX4_TABLE_CHUNK_SIZE;

	if (!icm)
		goto out;

	list_for_each_entry(chunk, &icm->chunk_list, list) {
		for (i = 0; i < chunk->npages; ++i) {
			dma_addr_t dma_addr;
			size_t len;

			if (table->coherent) {
				len = chunk->buf[i].size;
				dma_addr = chunk->buf[i].dma_addr;
				addr = chunk->buf[i].addr;
			} else {
				struct page *page;

				len = sg_dma_len(&chunk->sg[i]);
				dma_addr = sg_dma_address(&chunk->sg[i]);

				/* XXX: we should never do this for highmem
				 * allocation.  This function either needs
				 * to be split, or the kernel virtual address
				 * return needs to be made optional.
				 */
				page = sg_page(&chunk->sg[i]);
				addr = lowmem_page_address(page);
			}

			if (dma_handle && dma_offset >= 0) {
				if (len > dma_offset)
					*dma_handle = dma_addr + dma_offset;
				dma_offset -= len;
			}

			/*
			 * DMA mapping can merge pages but not split them,
			 * so if we found the page, dma_handle has already
			 * been assigned to.
			 */
			if (len > offset)
				goto out;
			offset -= len;
		}
	}

	addr = NULL;
out:
	mutex_unlock(&table->mutex);
	return addr ? addr + offset : NULL;
}

int mlx4_table_get_range(struct mlx4_dev *dev, struct mlx4_icm_table *table,
			 u32 start, u32 end)
{
	int inc = MLX4_TABLE_CHUNK_SIZE / table->obj_size;
	int err;
	u32 i;

	for (i = start; i <= end; i += inc) {
		err = mlx4_table_get(dev, table, i);
		if (err)
			goto fail;
	}

	return 0;

fail:
	while (i > start) {
		i -= inc;
		mlx4_table_put(dev, table, i);
	}

	return err;
}

void mlx4_table_put_range(struct mlx4_dev *dev, struct mlx4_icm_table *table,
			  u32 start, u32 end)
{
	u32 i;

	for (i = start; i <= end; i += MLX4_TABLE_CHUNK_SIZE / table->obj_size)
		mlx4_table_put(dev, table, i);
}

int mlx4_init_icm_table(struct mlx4_dev *dev, struct mlx4_icm_table *table,
			u64 virt, int obj_size,	u32 nobj, int reserved,
			int use_lowmem, int use_coherent)
{
	int obj_per_chunk;
	int num_icm;
	unsigned chunk_size;
	int i;
	u64 size;

	obj_per_chunk = MLX4_TABLE_CHUNK_SIZE / obj_size;
	if (WARN_ON(!obj_per_chunk))
		return -EINVAL;
	num_icm = DIV_ROUND_UP(nobj, obj_per_chunk);

	table->icm      = kvcalloc(num_icm, sizeof(*table->icm), GFP_KERNEL);
	if (!table->icm)
		return -ENOMEM;
	table->virt     = virt;
	table->num_icm  = num_icm;
	table->num_obj  = nobj;
	table->obj_size = obj_size;
	table->lowmem   = use_lowmem;
	table->coherent = use_coherent;
	mutex_init(&table->mutex);

	size = (u64) nobj * obj_size;
	for (i = 0; i * MLX4_TABLE_CHUNK_SIZE < reserved * obj_size; ++i) {
		chunk_size = MLX4_TABLE_CHUNK_SIZE;
		if ((i + 1) * MLX4_TABLE_CHUNK_SIZE > size)
			chunk_size = PAGE_ALIGN(size -
					i * MLX4_TABLE_CHUNK_SIZE);

		table->icm[i] = mlx4_alloc_icm(dev, chunk_size >> PAGE_SHIFT,
					       (use_lowmem ? GFP_KERNEL : GFP_HIGHUSER) |
					       __GFP_NOWARN, use_coherent);
		if (!table->icm[i])
			goto err;
		if (mlx4_MAP_ICM(dev, table->icm[i], virt + i * MLX4_TABLE_CHUNK_SIZE)) {
			mlx4_free_icm(dev, table->icm[i], use_coherent);
			table->icm[i] = NULL;
			goto err;
		}

		/*
		 * Add a reference to this ICM chunk so that it never
		 * gets freed (since it contains reserved firmware objects).
		 */
		++table->icm[i]->refcount;
	}

	return 0;

err:
	for (i = 0; i < num_icm; ++i)
		if (table->icm[i]) {
			mlx4_UNMAP_ICM(dev, virt + i * MLX4_TABLE_CHUNK_SIZE,
				       MLX4_TABLE_CHUNK_SIZE / MLX4_ICM_PAGE_SIZE);
			mlx4_free_icm(dev, table->icm[i], use_coherent);
		}

	kvfree(table->icm);

	return -ENOMEM;
}

void mlx4_cleanup_icm_table(struct mlx4_dev *dev, struct mlx4_icm_table *table)
{
	int i;

	for (i = 0; i < table->num_icm; ++i)
		if (table->icm[i]) {
			mlx4_UNMAP_ICM(dev, table->virt + i * MLX4_TABLE_CHUNK_SIZE,
				       MLX4_TABLE_CHUNK_SIZE / MLX4_ICM_PAGE_SIZE);
			mlx4_free_icm(dev, table->icm[i], table->coherent);
		}

	kvfree(table->icm);
}