Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Maor Gottlieb | 9651 | 58.31% | 61 | 23.92% |
Mark Bloch | 1162 | 7.02% | 26 | 10.20% |
Matan Barak | 996 | 6.02% | 9 | 3.53% |
Paul Blakey | 784 | 4.74% | 20 | 7.84% |
Parav Pandit | 362 | 2.19% | 11 | 4.31% |
Alex Vesker | 349 | 2.11% | 1 | 0.39% |
Gal Pressman | 304 | 1.84% | 2 | 0.78% |
Shay Drory | 303 | 1.83% | 2 | 0.78% |
Eli Britstein | 279 | 1.69% | 6 | 2.35% |
Mohamad Haj Yahia | 244 | 1.47% | 4 | 1.57% |
Eli Cohen | 215 | 1.30% | 9 | 3.53% |
Michael Guralnik | 173 | 1.05% | 3 | 1.18% |
Roi Dayan | 142 | 0.86% | 8 | 3.14% |
Mark Zhang | 142 | 0.86% | 2 | 0.78% |
Or Gerlitz | 117 | 0.71% | 16 | 6.27% |
Yevgeny Kliteynik | 110 | 0.66% | 5 | 1.96% |
Amir Vadai | 107 | 0.65% | 5 | 1.96% |
Erez Shitrit | 107 | 0.65% | 2 | 0.78% |
Vlad Buslov | 104 | 0.63% | 6 | 2.35% |
Aharon Landau | 92 | 0.56% | 1 | 0.39% |
Yishai Hadas | 84 | 0.51% | 3 | 1.18% |
Saeed Mahameed | 83 | 0.50% | 8 | 3.14% |
Aviad Yehezkel | 71 | 0.43% | 1 | 0.39% |
Aviv Heller | 60 | 0.36% | 2 | 0.78% |
Lior Nahmanson | 60 | 0.36% | 2 | 0.78% |
Shahar Klein | 52 | 0.31% | 2 | 0.78% |
Talat Batheesh | 45 | 0.27% | 1 | 0.39% |
David S. Miller | 45 | 0.27% | 1 | 0.39% |
Hadar Hen Zion | 43 | 0.26% | 4 | 1.57% |
Dima Chumak | 41 | 0.25% | 1 | 0.39% |
Jianbo Liu | 38 | 0.23% | 2 | 0.78% |
Huy Nguyen | 31 | 0.19% | 1 | 0.39% |
Dmytro Linkin | 28 | 0.17% | 1 | 0.39% |
Oz Shlomo | 15 | 0.09% | 1 | 0.39% |
Elena Reshetova | 14 | 0.08% | 1 | 0.39% |
Leon Romanovsky | 14 | 0.08% | 4 | 1.57% |
Jack Morgenstein | 10 | 0.06% | 1 | 0.39% |
Ariel Levkovich | 10 | 0.06% | 1 | 0.39% |
Arnd Bergmann | 10 | 0.06% | 1 | 0.39% |
Alexander Aring | 7 | 0.04% | 1 | 0.39% |
Achiad Shochat | 7 | 0.04% | 1 | 0.39% |
Haggai Abramonvsky | 6 | 0.04% | 1 | 0.39% |
Bodong Wang | 6 | 0.04% | 2 | 0.78% |
Chris Mi | 5 | 0.03% | 1 | 0.39% |
Linus Torvalds | 4 | 0.02% | 1 | 0.39% |
Kees Cook | 4 | 0.02% | 1 | 0.39% |
Rabie Loulou | 3 | 0.02% | 1 | 0.39% |
Pankaj Bharadiya | 2 | 0.01% | 1 | 0.39% |
Tariq Toukan | 2 | 0.01% | 1 | 0.39% |
Wei Yongjun | 2 | 0.01% | 1 | 0.39% |
Maor Dickman | 1 | 0.01% | 1 | 0.39% |
Yuval Avnery | 1 | 0.01% | 1 | 0.39% |
caihuoqing | 1 | 0.01% | 1 | 0.39% |
Jiapeng Chong | 1 | 0.01% | 1 | 0.39% |
Christophe Jaillet | 1 | 0.01% | 1 | 0.39% |
Li Yang | 1 | 0.01% | 1 | 0.39% |
Total | 16551 | 255 |
/* * Copyright (c) 2015, Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/mutex.h> #include <linux/mlx5/driver.h> #include <linux/mlx5/vport.h> #include <linux/mlx5/eswitch.h> #include "mlx5_core.h" #include "fs_core.h" #include "fs_cmd.h" #include "fs_ft_pool.h" #include "diag/fs_tracepoint.h" #define INIT_TREE_NODE_ARRAY_SIZE(...) (sizeof((struct init_tree_node[]){__VA_ARGS__}) /\ sizeof(struct init_tree_node)) #define ADD_PRIO(num_prios_val, min_level_val, num_levels_val, caps_val,\ ...) {.type = FS_TYPE_PRIO,\ .min_ft_level = min_level_val,\ .num_levels = num_levels_val,\ .num_leaf_prios = num_prios_val,\ .caps = caps_val,\ .children = (struct init_tree_node[]) {__VA_ARGS__},\ .ar_size = INIT_TREE_NODE_ARRAY_SIZE(__VA_ARGS__) \ } #define ADD_MULTIPLE_PRIO(num_prios_val, num_levels_val, ...)\ ADD_PRIO(num_prios_val, 0, num_levels_val, {},\ __VA_ARGS__)\ #define ADD_NS(def_miss_act, ...) {.type = FS_TYPE_NAMESPACE, \ .def_miss_action = def_miss_act,\ .children = (struct init_tree_node[]) {__VA_ARGS__},\ .ar_size = INIT_TREE_NODE_ARRAY_SIZE(__VA_ARGS__) \ } #define INIT_CAPS_ARRAY_SIZE(...) (sizeof((long[]){__VA_ARGS__}) /\ sizeof(long)) #define FS_CAP(cap) (__mlx5_bit_off(flow_table_nic_cap, cap)) #define FS_REQUIRED_CAPS(...) {.arr_sz = INIT_CAPS_ARRAY_SIZE(__VA_ARGS__), \ .caps = (long[]) {__VA_ARGS__} } #define FS_CHAINING_CAPS FS_REQUIRED_CAPS(FS_CAP(flow_table_properties_nic_receive.flow_modify_en), \ FS_CAP(flow_table_properties_nic_receive.modify_root), \ FS_CAP(flow_table_properties_nic_receive.identified_miss_table_mode), \ FS_CAP(flow_table_properties_nic_receive.flow_table_modify)) #define FS_CHAINING_CAPS_EGRESS \ FS_REQUIRED_CAPS( \ FS_CAP(flow_table_properties_nic_transmit.flow_modify_en), \ FS_CAP(flow_table_properties_nic_transmit.modify_root), \ FS_CAP(flow_table_properties_nic_transmit \ .identified_miss_table_mode), \ FS_CAP(flow_table_properties_nic_transmit.flow_table_modify)) #define FS_CHAINING_CAPS_RDMA_TX \ FS_REQUIRED_CAPS( \ FS_CAP(flow_table_properties_nic_transmit_rdma.flow_modify_en), \ FS_CAP(flow_table_properties_nic_transmit_rdma.modify_root), \ FS_CAP(flow_table_properties_nic_transmit_rdma \ .identified_miss_table_mode), \ FS_CAP(flow_table_properties_nic_transmit_rdma \ .flow_table_modify)) #define LEFTOVERS_NUM_LEVELS 1 #define LEFTOVERS_NUM_PRIOS 1 #define RDMA_RX_COUNTERS_PRIO_NUM_LEVELS 1 #define RDMA_TX_COUNTERS_PRIO_NUM_LEVELS 1 #define BY_PASS_PRIO_NUM_LEVELS 1 #define BY_PASS_MIN_LEVEL (ETHTOOL_MIN_LEVEL + MLX5_BY_PASS_NUM_PRIOS +\ LEFTOVERS_NUM_PRIOS) #define KERNEL_RX_MACSEC_NUM_PRIOS 1 #define KERNEL_RX_MACSEC_NUM_LEVELS 2 #define KERNEL_RX_MACSEC_MIN_LEVEL (BY_PASS_MIN_LEVEL + KERNEL_RX_MACSEC_NUM_PRIOS) #define ETHTOOL_PRIO_NUM_LEVELS 1 #define ETHTOOL_NUM_PRIOS 11 #define ETHTOOL_MIN_LEVEL (KERNEL_MIN_LEVEL + ETHTOOL_NUM_PRIOS) /* Promiscuous, Vlan, mac, ttc, inner ttc, {UDP/ANY/aRFS/accel/{esp, esp_err}}, IPsec policy */ #define KERNEL_NIC_PRIO_NUM_LEVELS 8 #define KERNEL_NIC_NUM_PRIOS 1 /* One more level for tc */ #define KERNEL_MIN_LEVEL (KERNEL_NIC_PRIO_NUM_LEVELS + 1) #define KERNEL_NIC_TC_NUM_PRIOS 1 #define KERNEL_NIC_TC_NUM_LEVELS 3 #define ANCHOR_NUM_LEVELS 1 #define ANCHOR_NUM_PRIOS 1 #define ANCHOR_MIN_LEVEL (BY_PASS_MIN_LEVEL + 1) #define OFFLOADS_MAX_FT 2 #define OFFLOADS_NUM_PRIOS 2 #define OFFLOADS_MIN_LEVEL (ANCHOR_MIN_LEVEL + OFFLOADS_NUM_PRIOS) #define LAG_PRIO_NUM_LEVELS 1 #define LAG_NUM_PRIOS 1 #define LAG_MIN_LEVEL (OFFLOADS_MIN_LEVEL + KERNEL_RX_MACSEC_MIN_LEVEL + 1) #define KERNEL_TX_IPSEC_NUM_PRIOS 1 #define KERNEL_TX_IPSEC_NUM_LEVELS 2 #define KERNEL_TX_IPSEC_MIN_LEVEL (KERNEL_TX_IPSEC_NUM_LEVELS) #define KERNEL_TX_MACSEC_NUM_PRIOS 1 #define KERNEL_TX_MACSEC_NUM_LEVELS 2 #define KERNEL_TX_MACSEC_MIN_LEVEL (KERNEL_TX_IPSEC_MIN_LEVEL + KERNEL_TX_MACSEC_NUM_PRIOS) struct node_caps { size_t arr_sz; long *caps; }; static struct init_tree_node { enum fs_node_type type; struct init_tree_node *children; int ar_size; struct node_caps caps; int min_ft_level; int num_leaf_prios; int prio; int num_levels; enum mlx5_flow_table_miss_action def_miss_action; } root_fs = { .type = FS_TYPE_NAMESPACE, .ar_size = 8, .children = (struct init_tree_node[]){ ADD_PRIO(0, BY_PASS_MIN_LEVEL, 0, FS_CHAINING_CAPS, ADD_NS(MLX5_FLOW_TABLE_MISS_ACTION_DEF, ADD_MULTIPLE_PRIO(MLX5_BY_PASS_NUM_PRIOS, BY_PASS_PRIO_NUM_LEVELS))), ADD_PRIO(0, KERNEL_RX_MACSEC_MIN_LEVEL, 0, FS_CHAINING_CAPS, ADD_NS(MLX5_FLOW_TABLE_MISS_ACTION_DEF, ADD_MULTIPLE_PRIO(KERNEL_RX_MACSEC_NUM_PRIOS, KERNEL_RX_MACSEC_NUM_LEVELS))), ADD_PRIO(0, LAG_MIN_LEVEL, 0, FS_CHAINING_CAPS, ADD_NS(MLX5_FLOW_TABLE_MISS_ACTION_DEF, ADD_MULTIPLE_PRIO(LAG_NUM_PRIOS, LAG_PRIO_NUM_LEVELS))), ADD_PRIO(0, OFFLOADS_MIN_LEVEL, 0, FS_CHAINING_CAPS, ADD_NS(MLX5_FLOW_TABLE_MISS_ACTION_DEF, ADD_MULTIPLE_PRIO(OFFLOADS_NUM_PRIOS, OFFLOADS_MAX_FT))), ADD_PRIO(0, ETHTOOL_MIN_LEVEL, 0, FS_CHAINING_CAPS, ADD_NS(MLX5_FLOW_TABLE_MISS_ACTION_DEF, ADD_MULTIPLE_PRIO(ETHTOOL_NUM_PRIOS, ETHTOOL_PRIO_NUM_LEVELS))), ADD_PRIO(0, KERNEL_MIN_LEVEL, 0, {}, ADD_NS(MLX5_FLOW_TABLE_MISS_ACTION_DEF, ADD_MULTIPLE_PRIO(KERNEL_NIC_TC_NUM_PRIOS, KERNEL_NIC_TC_NUM_LEVELS), ADD_MULTIPLE_PRIO(KERNEL_NIC_NUM_PRIOS, KERNEL_NIC_PRIO_NUM_LEVELS))), ADD_PRIO(0, BY_PASS_MIN_LEVEL, 0, FS_CHAINING_CAPS, ADD_NS(MLX5_FLOW_TABLE_MISS_ACTION_DEF, ADD_MULTIPLE_PRIO(LEFTOVERS_NUM_PRIOS, LEFTOVERS_NUM_LEVELS))), ADD_PRIO(0, ANCHOR_MIN_LEVEL, 0, {}, ADD_NS(MLX5_FLOW_TABLE_MISS_ACTION_DEF, ADD_MULTIPLE_PRIO(ANCHOR_NUM_PRIOS, ANCHOR_NUM_LEVELS))), } }; static struct init_tree_node egress_root_fs = { .type = FS_TYPE_NAMESPACE, .ar_size = 3, .children = (struct init_tree_node[]) { ADD_PRIO(0, MLX5_BY_PASS_NUM_PRIOS, 0, FS_CHAINING_CAPS_EGRESS, ADD_NS(MLX5_FLOW_TABLE_MISS_ACTION_DEF, ADD_MULTIPLE_PRIO(MLX5_BY_PASS_NUM_PRIOS, BY_PASS_PRIO_NUM_LEVELS))), ADD_PRIO(0, KERNEL_TX_IPSEC_MIN_LEVEL, 0, FS_CHAINING_CAPS_EGRESS, ADD_NS(MLX5_FLOW_TABLE_MISS_ACTION_DEF, ADD_MULTIPLE_PRIO(KERNEL_TX_IPSEC_NUM_PRIOS, KERNEL_TX_IPSEC_NUM_LEVELS))), ADD_PRIO(0, KERNEL_TX_MACSEC_MIN_LEVEL, 0, FS_CHAINING_CAPS_EGRESS, ADD_NS(MLX5_FLOW_TABLE_MISS_ACTION_DEF, ADD_MULTIPLE_PRIO(KERNEL_TX_MACSEC_NUM_PRIOS, KERNEL_TX_MACSEC_NUM_LEVELS))), } }; enum { RDMA_RX_COUNTERS_PRIO, RDMA_RX_BYPASS_PRIO, RDMA_RX_KERNEL_PRIO, }; #define RDMA_RX_BYPASS_MIN_LEVEL MLX5_BY_PASS_NUM_REGULAR_PRIOS #define RDMA_RX_KERNEL_MIN_LEVEL (RDMA_RX_BYPASS_MIN_LEVEL + 1) #define RDMA_RX_COUNTERS_MIN_LEVEL (RDMA_RX_KERNEL_MIN_LEVEL + 2) static struct init_tree_node rdma_rx_root_fs = { .type = FS_TYPE_NAMESPACE, .ar_size = 3, .children = (struct init_tree_node[]) { [RDMA_RX_COUNTERS_PRIO] = ADD_PRIO(0, RDMA_RX_COUNTERS_MIN_LEVEL, 0, FS_CHAINING_CAPS, ADD_NS(MLX5_FLOW_TABLE_MISS_ACTION_DEF, ADD_MULTIPLE_PRIO(MLX5_RDMA_RX_NUM_COUNTERS_PRIOS, RDMA_RX_COUNTERS_PRIO_NUM_LEVELS))), [RDMA_RX_BYPASS_PRIO] = ADD_PRIO(0, RDMA_RX_BYPASS_MIN_LEVEL, 0, FS_CHAINING_CAPS, ADD_NS(MLX5_FLOW_TABLE_MISS_ACTION_DEF, ADD_MULTIPLE_PRIO(MLX5_BY_PASS_NUM_REGULAR_PRIOS, BY_PASS_PRIO_NUM_LEVELS))), [RDMA_RX_KERNEL_PRIO] = ADD_PRIO(0, RDMA_RX_KERNEL_MIN_LEVEL, 0, FS_CHAINING_CAPS, ADD_NS(MLX5_FLOW_TABLE_MISS_ACTION_SWITCH_DOMAIN, ADD_MULTIPLE_PRIO(1, 1))), } }; enum { RDMA_TX_COUNTERS_PRIO, RDMA_TX_BYPASS_PRIO, }; #define RDMA_TX_BYPASS_MIN_LEVEL MLX5_BY_PASS_NUM_PRIOS #define RDMA_TX_COUNTERS_MIN_LEVEL (RDMA_TX_BYPASS_MIN_LEVEL + 1) static struct init_tree_node rdma_tx_root_fs = { .type = FS_TYPE_NAMESPACE, .ar_size = 2, .children = (struct init_tree_node[]) { [RDMA_TX_COUNTERS_PRIO] = ADD_PRIO(0, RDMA_TX_COUNTERS_MIN_LEVEL, 0, FS_CHAINING_CAPS, ADD_NS(MLX5_FLOW_TABLE_MISS_ACTION_DEF, ADD_MULTIPLE_PRIO(MLX5_RDMA_TX_NUM_COUNTERS_PRIOS, RDMA_TX_COUNTERS_PRIO_NUM_LEVELS))), [RDMA_TX_BYPASS_PRIO] = ADD_PRIO(0, RDMA_TX_BYPASS_MIN_LEVEL, 0, FS_CHAINING_CAPS_RDMA_TX, ADD_NS(MLX5_FLOW_TABLE_MISS_ACTION_DEF, ADD_MULTIPLE_PRIO(RDMA_TX_BYPASS_MIN_LEVEL, BY_PASS_PRIO_NUM_LEVELS))), } }; enum fs_i_lock_class { FS_LOCK_GRANDPARENT, FS_LOCK_PARENT, FS_LOCK_CHILD }; static const struct rhashtable_params rhash_fte = { .key_len = sizeof_field(struct fs_fte, val), .key_offset = offsetof(struct fs_fte, val), .head_offset = offsetof(struct fs_fte, hash), .automatic_shrinking = true, .min_size = 1, }; static const struct rhashtable_params rhash_fg = { .key_len = sizeof_field(struct mlx5_flow_group, mask), .key_offset = offsetof(struct mlx5_flow_group, mask), .head_offset = offsetof(struct mlx5_flow_group, hash), .automatic_shrinking = true, .min_size = 1, }; static void del_hw_flow_table(struct fs_node *node); static void del_hw_flow_group(struct fs_node *node); static void del_hw_fte(struct fs_node *node); static void del_sw_flow_table(struct fs_node *node); static void del_sw_flow_group(struct fs_node *node); static void del_sw_fte(struct fs_node *node); static void del_sw_prio(struct fs_node *node); static void del_sw_ns(struct fs_node *node); /* Delete rule (destination) is special case that * requires to lock the FTE for all the deletion process. */ static void del_sw_hw_rule(struct fs_node *node); static bool mlx5_flow_dests_cmp(struct mlx5_flow_destination *d1, struct mlx5_flow_destination *d2); static void cleanup_root_ns(struct mlx5_flow_root_namespace *root_ns); static struct mlx5_flow_rule * find_flow_rule(struct fs_fte *fte, struct mlx5_flow_destination *dest); static void tree_init_node(struct fs_node *node, void (*del_hw_func)(struct fs_node *), void (*del_sw_func)(struct fs_node *)) { refcount_set(&node->refcount, 1); INIT_LIST_HEAD(&node->list); INIT_LIST_HEAD(&node->children); init_rwsem(&node->lock); node->del_hw_func = del_hw_func; node->del_sw_func = del_sw_func; node->active = false; } static void tree_add_node(struct fs_node *node, struct fs_node *parent) { if (parent) refcount_inc(&parent->refcount); node->parent = parent; /* Parent is the root */ if (!parent) node->root = node; else node->root = parent->root; } static int tree_get_node(struct fs_node *node) { return refcount_inc_not_zero(&node->refcount); } static void nested_down_read_ref_node(struct fs_node *node, enum fs_i_lock_class class) { if (node) { down_read_nested(&node->lock, class); refcount_inc(&node->refcount); } } static void nested_down_write_ref_node(struct fs_node *node, enum fs_i_lock_class class) { if (node) { down_write_nested(&node->lock, class); refcount_inc(&node->refcount); } } static void down_write_ref_node(struct fs_node *node, bool locked) { if (node) { if (!locked) down_write(&node->lock); refcount_inc(&node->refcount); } } static void up_read_ref_node(struct fs_node *node) { refcount_dec(&node->refcount); up_read(&node->lock); } static void up_write_ref_node(struct fs_node *node, bool locked) { refcount_dec(&node->refcount); if (!locked) up_write(&node->lock); } static void tree_put_node(struct fs_node *node, bool locked) { struct fs_node *parent_node = node->parent; if (refcount_dec_and_test(&node->refcount)) { if (node->del_hw_func) node->del_hw_func(node); if (parent_node) { down_write_ref_node(parent_node, locked); list_del_init(&node->list); } node->del_sw_func(node); if (parent_node) up_write_ref_node(parent_node, locked); node = NULL; } if (!node && parent_node) tree_put_node(parent_node, locked); } static int tree_remove_node(struct fs_node *node, bool locked) { if (refcount_read(&node->refcount) > 1) { refcount_dec(&node->refcount); return -EEXIST; } tree_put_node(node, locked); return 0; } static struct fs_prio *find_prio(struct mlx5_flow_namespace *ns, unsigned int prio) { struct fs_prio *iter_prio; fs_for_each_prio(iter_prio, ns) { if (iter_prio->prio == prio) return iter_prio; } return NULL; } static bool is_fwd_next_action(u32 action) { return action & (MLX5_FLOW_CONTEXT_ACTION_FWD_NEXT_PRIO | MLX5_FLOW_CONTEXT_ACTION_FWD_NEXT_NS); } static bool is_fwd_dest_type(enum mlx5_flow_destination_type type) { return type == MLX5_FLOW_DESTINATION_TYPE_FLOW_TABLE_NUM || type == MLX5_FLOW_DESTINATION_TYPE_FLOW_TABLE || type == MLX5_FLOW_DESTINATION_TYPE_UPLINK || type == MLX5_FLOW_DESTINATION_TYPE_VPORT || type == MLX5_FLOW_DESTINATION_TYPE_FLOW_SAMPLER || type == MLX5_FLOW_DESTINATION_TYPE_TIR || type == MLX5_FLOW_DESTINATION_TYPE_RANGE; } static bool check_valid_spec(const struct mlx5_flow_spec *spec) { int i; for (i = 0; i < MLX5_ST_SZ_DW_MATCH_PARAM; i++) if (spec->match_value[i] & ~spec->match_criteria[i]) { pr_warn("mlx5_core: match_value differs from match_criteria\n"); return false; } return true; } struct mlx5_flow_root_namespace *find_root(struct fs_node *node) { struct fs_node *root; struct mlx5_flow_namespace *ns; root = node->root; if (WARN_ON(root->type != FS_TYPE_NAMESPACE)) { pr_warn("mlx5: flow steering node is not in tree or garbaged\n"); return NULL; } ns = container_of(root, struct mlx5_flow_namespace, node); return container_of(ns, struct mlx5_flow_root_namespace, ns); } static inline struct mlx5_flow_steering *get_steering(struct fs_node *node) { struct mlx5_flow_root_namespace *root = find_root(node); if (root) return root->dev->priv.steering; return NULL; } static inline struct mlx5_core_dev *get_dev(struct fs_node *node) { struct mlx5_flow_root_namespace *root = find_root(node); if (root) return root->dev; return NULL; } static void del_sw_ns(struct fs_node *node) { kfree(node); } static void del_sw_prio(struct fs_node *node) { kfree(node); } static void del_hw_flow_table(struct fs_node *node) { struct mlx5_flow_root_namespace *root; struct mlx5_flow_table *ft; struct mlx5_core_dev *dev; int err; fs_get_obj(ft, node); dev = get_dev(&ft->node); root = find_root(&ft->node); trace_mlx5_fs_del_ft(ft); if (node->active) { err = root->cmds->destroy_flow_table(root, ft); if (err) mlx5_core_warn(dev, "flow steering can't destroy ft\n"); } } static void del_sw_flow_table(struct fs_node *node) { struct mlx5_flow_table *ft; struct fs_prio *prio; fs_get_obj(ft, node); rhltable_destroy(&ft->fgs_hash); if (ft->node.parent) { fs_get_obj(prio, ft->node.parent); prio->num_ft--; } kfree(ft); } static void modify_fte(struct fs_fte *fte) { struct mlx5_flow_root_namespace *root; struct mlx5_flow_table *ft; struct mlx5_flow_group *fg; struct mlx5_core_dev *dev; int err; fs_get_obj(fg, fte->node.parent); fs_get_obj(ft, fg->node.parent); dev = get_dev(&fte->node); root = find_root(&ft->node); err = root->cmds->update_fte(root, ft, fg, fte->modify_mask, fte); if (err) mlx5_core_warn(dev, "%s can't del rule fg id=%d fte_index=%d\n", __func__, fg->id, fte->index); fte->modify_mask = 0; } static void del_sw_hw_rule(struct fs_node *node) { struct mlx5_flow_rule *rule; struct fs_fte *fte; fs_get_obj(rule, node); fs_get_obj(fte, rule->node.parent); trace_mlx5_fs_del_rule(rule); if (is_fwd_next_action(rule->sw_action)) { mutex_lock(&rule->dest_attr.ft->lock); list_del(&rule->next_ft); mutex_unlock(&rule->dest_attr.ft->lock); } if (rule->dest_attr.type == MLX5_FLOW_DESTINATION_TYPE_COUNTER) { --fte->dests_size; fte->modify_mask |= BIT(MLX5_SET_FTE_MODIFY_ENABLE_MASK_ACTION) | BIT(MLX5_SET_FTE_MODIFY_ENABLE_MASK_FLOW_COUNTERS); fte->action.action &= ~MLX5_FLOW_CONTEXT_ACTION_COUNT; goto out; } if (rule->dest_attr.type == MLX5_FLOW_DESTINATION_TYPE_PORT) { --fte->dests_size; fte->modify_mask |= BIT(MLX5_SET_FTE_MODIFY_ENABLE_MASK_ACTION); fte->action.action &= ~MLX5_FLOW_CONTEXT_ACTION_ALLOW; goto out; } if (is_fwd_dest_type(rule->dest_attr.type)) { --fte->dests_size; --fte->fwd_dests; if (!fte->fwd_dests) fte->action.action &= ~MLX5_FLOW_CONTEXT_ACTION_FWD_DEST; fte->modify_mask |= BIT(MLX5_SET_FTE_MODIFY_ENABLE_MASK_DESTINATION_LIST); goto out; } out: kfree(rule); } static void del_hw_fte(struct fs_node *node) { struct mlx5_flow_root_namespace *root; struct mlx5_flow_table *ft; struct mlx5_flow_group *fg; struct mlx5_core_dev *dev; struct fs_fte *fte; int err; fs_get_obj(fte, node); fs_get_obj(fg, fte->node.parent); fs_get_obj(ft, fg->node.parent); trace_mlx5_fs_del_fte(fte); WARN_ON(fte->dests_size); dev = get_dev(&ft->node); root = find_root(&ft->node); if (node->active) { err = root->cmds->delete_fte(root, ft, fte); if (err) mlx5_core_warn(dev, "flow steering can't delete fte in index %d of flow group id %d\n", fte->index, fg->id); node->active = false; } } static void del_sw_fte(struct fs_node *node) { struct mlx5_flow_steering *steering = get_steering(node); struct mlx5_flow_group *fg; struct fs_fte *fte; int err; fs_get_obj(fte, node); fs_get_obj(fg, fte->node.parent); err = rhashtable_remove_fast(&fg->ftes_hash, &fte->hash, rhash_fte); WARN_ON(err); ida_free(&fg->fte_allocator, fte->index - fg->start_index); kmem_cache_free(steering->ftes_cache, fte); } static void del_hw_flow_group(struct fs_node *node) { struct mlx5_flow_root_namespace *root; struct mlx5_flow_group *fg; struct mlx5_flow_table *ft; struct mlx5_core_dev *dev; fs_get_obj(fg, node); fs_get_obj(ft, fg->node.parent); dev = get_dev(&ft->node); trace_mlx5_fs_del_fg(fg); root = find_root(&ft->node); if (fg->node.active && root->cmds->destroy_flow_group(root, ft, fg)) mlx5_core_warn(dev, "flow steering can't destroy fg %d of ft %d\n", fg->id, ft->id); } static void del_sw_flow_group(struct fs_node *node) { struct mlx5_flow_steering *steering = get_steering(node); struct mlx5_flow_group *fg; struct mlx5_flow_table *ft; int err; fs_get_obj(fg, node); fs_get_obj(ft, fg->node.parent); rhashtable_destroy(&fg->ftes_hash); ida_destroy(&fg->fte_allocator); if (ft->autogroup.active && fg->max_ftes == ft->autogroup.group_size && fg->start_index < ft->autogroup.max_fte) ft->autogroup.num_groups--; err = rhltable_remove(&ft->fgs_hash, &fg->hash, rhash_fg); WARN_ON(err); kmem_cache_free(steering->fgs_cache, fg); } static int insert_fte(struct mlx5_flow_group *fg, struct fs_fte *fte) { int index; int ret; index = ida_alloc_max(&fg->fte_allocator, fg->max_ftes - 1, GFP_KERNEL); if (index < 0) return index; fte->index = index + fg->start_index; ret = rhashtable_insert_fast(&fg->ftes_hash, &fte->hash, rhash_fte); if (ret) goto err_ida_remove; tree_add_node(&fte->node, &fg->node); list_add_tail(&fte->node.list, &fg->node.children); return 0; err_ida_remove: ida_free(&fg->fte_allocator, index); return ret; } static struct fs_fte *alloc_fte(struct mlx5_flow_table *ft, const struct mlx5_flow_spec *spec, struct mlx5_flow_act *flow_act) { struct mlx5_flow_steering *steering = get_steering(&ft->node); struct fs_fte *fte; fte = kmem_cache_zalloc(steering->ftes_cache, GFP_KERNEL); if (!fte) return ERR_PTR(-ENOMEM); memcpy(fte->val, &spec->match_value, sizeof(fte->val)); fte->node.type = FS_TYPE_FLOW_ENTRY; fte->action = *flow_act; fte->flow_context = spec->flow_context; tree_init_node(&fte->node, del_hw_fte, del_sw_fte); return fte; } static void dealloc_flow_group(struct mlx5_flow_steering *steering, struct mlx5_flow_group *fg) { rhashtable_destroy(&fg->ftes_hash); kmem_cache_free(steering->fgs_cache, fg); } static struct mlx5_flow_group *alloc_flow_group(struct mlx5_flow_steering *steering, u8 match_criteria_enable, const void *match_criteria, int start_index, int end_index) { struct mlx5_flow_group *fg; int ret; fg = kmem_cache_zalloc(steering->fgs_cache, GFP_KERNEL); if (!fg) return ERR_PTR(-ENOMEM); ret = rhashtable_init(&fg->ftes_hash, &rhash_fte); if (ret) { kmem_cache_free(steering->fgs_cache, fg); return ERR_PTR(ret); } ida_init(&fg->fte_allocator); fg->mask.match_criteria_enable = match_criteria_enable; memcpy(&fg->mask.match_criteria, match_criteria, sizeof(fg->mask.match_criteria)); fg->node.type = FS_TYPE_FLOW_GROUP; fg->start_index = start_index; fg->max_ftes = end_index - start_index + 1; return fg; } static struct mlx5_flow_group *alloc_insert_flow_group(struct mlx5_flow_table *ft, u8 match_criteria_enable, const void *match_criteria, int start_index, int end_index, struct list_head *prev) { struct mlx5_flow_steering *steering = get_steering(&ft->node); struct mlx5_flow_group *fg; int ret; fg = alloc_flow_group(steering, match_criteria_enable, match_criteria, start_index, end_index); if (IS_ERR(fg)) return fg; /* initialize refcnt, add to parent list */ ret = rhltable_insert(&ft->fgs_hash, &fg->hash, rhash_fg); if (ret) { dealloc_flow_group(steering, fg); return ERR_PTR(ret); } tree_init_node(&fg->node, del_hw_flow_group, del_sw_flow_group); tree_add_node(&fg->node, &ft->node); /* Add node to group list */ list_add(&fg->node.list, prev); atomic_inc(&ft->node.version); return fg; } static struct mlx5_flow_table *alloc_flow_table(int level, u16 vport, enum fs_flow_table_type table_type, enum fs_flow_table_op_mod op_mod, u32 flags) { struct mlx5_flow_table *ft; int ret; ft = kzalloc(sizeof(*ft), GFP_KERNEL); if (!ft) return ERR_PTR(-ENOMEM); ret = rhltable_init(&ft->fgs_hash, &rhash_fg); if (ret) { kfree(ft); return ERR_PTR(ret); } ft->level = level; ft->node.type = FS_TYPE_FLOW_TABLE; ft->op_mod = op_mod; ft->type = table_type; ft->vport = vport; ft->flags = flags; INIT_LIST_HEAD(&ft->fwd_rules); mutex_init(&ft->lock); return ft; } /* If reverse is false, then we search for the first flow table in the * root sub-tree from start(closest from right), else we search for the * last flow table in the root sub-tree till start(closest from left). */ static struct mlx5_flow_table *find_closest_ft_recursive(struct fs_node *root, struct list_head *start, bool reverse) { #define list_advance_entry(pos, reverse) \ ((reverse) ? list_prev_entry(pos, list) : list_next_entry(pos, list)) #define list_for_each_advance_continue(pos, head, reverse) \ for (pos = list_advance_entry(pos, reverse); \ &pos->list != (head); \ pos = list_advance_entry(pos, reverse)) struct fs_node *iter = list_entry(start, struct fs_node, list); struct mlx5_flow_table *ft = NULL; if (!root || root->type == FS_TYPE_PRIO_CHAINS) return NULL; list_for_each_advance_continue(iter, &root->children, reverse) { if (iter->type == FS_TYPE_FLOW_TABLE) { fs_get_obj(ft, iter); return ft; } ft = find_closest_ft_recursive(iter, &iter->children, reverse); if (ft) return ft; } return ft; } /* If reverse is false then return the first flow table in next priority of * prio in the tree, else return the last flow table in the previous priority * of prio in the tree. */ static struct mlx5_flow_table *find_closest_ft(struct fs_prio *prio, bool reverse) { struct mlx5_flow_table *ft = NULL; struct fs_node *curr_node; struct fs_node *parent; parent = prio->node.parent; curr_node = &prio->node; while (!ft && parent) { ft = find_closest_ft_recursive(parent, &curr_node->list, reverse); curr_node = parent; parent = curr_node->parent; } return ft; } /* Assuming all the tree is locked by mutex chain lock */ static struct mlx5_flow_table *find_next_chained_ft(struct fs_prio *prio) { return find_closest_ft(prio, false); } /* Assuming all the tree is locked by mutex chain lock */ static struct mlx5_flow_table *find_prev_chained_ft(struct fs_prio *prio) { return find_closest_ft(prio, true); } static struct mlx5_flow_table *find_next_fwd_ft(struct mlx5_flow_table *ft, struct mlx5_flow_act *flow_act) { struct fs_prio *prio; bool next_ns; next_ns = flow_act->action & MLX5_FLOW_CONTEXT_ACTION_FWD_NEXT_NS; fs_get_obj(prio, next_ns ? ft->ns->node.parent : ft->node.parent); return find_next_chained_ft(prio); } static int connect_fts_in_prio(struct mlx5_core_dev *dev, struct fs_prio *prio, struct mlx5_flow_table *ft) { struct mlx5_flow_root_namespace *root = find_root(&prio->node); struct mlx5_flow_table *iter; int err; fs_for_each_ft(iter, prio) { err = root->cmds->modify_flow_table(root, iter, ft); if (err) { mlx5_core_err(dev, "Failed to modify flow table id %d, type %d, err %d\n", iter->id, iter->type, err); /* The driver is out of sync with the FW */ return err; } } return 0; } /* Connect flow tables from previous priority of prio to ft */ static int connect_prev_fts(struct mlx5_core_dev *dev, struct mlx5_flow_table *ft, struct fs_prio *prio) { struct mlx5_flow_table *prev_ft; prev_ft = find_prev_chained_ft(prio); if (prev_ft) { struct fs_prio *prev_prio; fs_get_obj(prev_prio, prev_ft->node.parent); return connect_fts_in_prio(dev, prev_prio, ft); } return 0; } static int update_root_ft_create(struct mlx5_flow_table *ft, struct fs_prio *prio) { struct mlx5_flow_root_namespace *root = find_root(&prio->node); struct mlx5_ft_underlay_qp *uqp; int min_level = INT_MAX; int err = 0; u32 qpn; if (root->root_ft) min_level = root->root_ft->level; if (ft->level >= min_level) return 0; if (list_empty(&root->underlay_qpns)) { /* Don't set any QPN (zero) in case QPN list is empty */ qpn = 0; err = root->cmds->update_root_ft(root, ft, qpn, false); } else { list_for_each_entry(uqp, &root->underlay_qpns, list) { qpn = uqp->qpn; err = root->cmds->update_root_ft(root, ft, qpn, false); if (err) break; } } if (err) mlx5_core_warn(root->dev, "Update root flow table of id(%u) qpn(%d) failed\n", ft->id, qpn); else root->root_ft = ft; return err; } static int _mlx5_modify_rule_destination(struct mlx5_flow_rule *rule, struct mlx5_flow_destination *dest) { struct mlx5_flow_root_namespace *root; struct mlx5_flow_table *ft; struct mlx5_flow_group *fg; struct fs_fte *fte; int modify_mask = BIT(MLX5_SET_FTE_MODIFY_ENABLE_MASK_DESTINATION_LIST); int err = 0; fs_get_obj(fte, rule->node.parent); if (!(fte->action.action & MLX5_FLOW_CONTEXT_ACTION_FWD_DEST)) return -EINVAL; down_write_ref_node(&fte->node, false); fs_get_obj(fg, fte->node.parent); fs_get_obj(ft, fg->node.parent); memcpy(&rule->dest_attr, dest, sizeof(*dest)); root = find_root(&ft->node); err = root->cmds->update_fte(root, ft, fg, modify_mask, fte); up_write_ref_node(&fte->node, false); return err; } int mlx5_modify_rule_destination(struct mlx5_flow_handle *handle, struct mlx5_flow_destination *new_dest, struct mlx5_flow_destination *old_dest) { int i; if (!old_dest) { if (handle->num_rules != 1) return -EINVAL; return _mlx5_modify_rule_destination(handle->rule[0], new_dest); } for (i = 0; i < handle->num_rules; i++) { if (mlx5_flow_dests_cmp(new_dest, &handle->rule[i]->dest_attr)) return _mlx5_modify_rule_destination(handle->rule[i], new_dest); } return -EINVAL; } /* Modify/set FWD rules that point on old_next_ft to point on new_next_ft */ static int connect_fwd_rules(struct mlx5_core_dev *dev, struct mlx5_flow_table *new_next_ft, struct mlx5_flow_table *old_next_ft) { struct mlx5_flow_destination dest = {}; struct mlx5_flow_rule *iter; int err = 0; /* new_next_ft and old_next_ft could be NULL only * when we create/destroy the anchor flow table. */ if (!new_next_ft || !old_next_ft) return 0; dest.type = MLX5_FLOW_DESTINATION_TYPE_FLOW_TABLE; dest.ft = new_next_ft; mutex_lock(&old_next_ft->lock); list_splice_init(&old_next_ft->fwd_rules, &new_next_ft->fwd_rules); mutex_unlock(&old_next_ft->lock); list_for_each_entry(iter, &new_next_ft->fwd_rules, next_ft) { if ((iter->sw_action & MLX5_FLOW_CONTEXT_ACTION_FWD_NEXT_NS) && iter->ft->ns == new_next_ft->ns) continue; err = _mlx5_modify_rule_destination(iter, &dest); if (err) pr_err("mlx5_core: failed to modify rule to point on flow table %d\n", new_next_ft->id); } return 0; } static int connect_flow_table(struct mlx5_core_dev *dev, struct mlx5_flow_table *ft, struct fs_prio *prio) { struct mlx5_flow_table *next_ft, *first_ft; int err = 0; /* Connect_prev_fts and update_root_ft_create are mutually exclusive */ first_ft = list_first_entry_or_null(&prio->node.children, struct mlx5_flow_table, node.list); if (!first_ft || first_ft->level > ft->level) { err = connect_prev_fts(dev, ft, prio); if (err) return err; next_ft = first_ft ? first_ft : find_next_chained_ft(prio); err = connect_fwd_rules(dev, ft, next_ft); if (err) return err; } if (MLX5_CAP_FLOWTABLE(dev, flow_table_properties_nic_receive.modify_root)) err = update_root_ft_create(ft, prio); return err; } static void list_add_flow_table(struct mlx5_flow_table *ft, struct fs_prio *prio) { struct list_head *prev = &prio->node.children; struct mlx5_flow_table *iter; fs_for_each_ft(iter, prio) { if (iter->level > ft->level) break; prev = &iter->node.list; } list_add(&ft->node.list, prev); } static struct mlx5_flow_table *__mlx5_create_flow_table(struct mlx5_flow_namespace *ns, struct mlx5_flow_table_attr *ft_attr, enum fs_flow_table_op_mod op_mod, u16 vport) { struct mlx5_flow_root_namespace *root = find_root(&ns->node); bool unmanaged = ft_attr->flags & MLX5_FLOW_TABLE_UNMANAGED; struct mlx5_flow_table *next_ft; struct fs_prio *fs_prio = NULL; struct mlx5_flow_table *ft; int err; if (!root) { pr_err("mlx5: flow steering failed to find root of namespace\n"); return ERR_PTR(-ENODEV); } mutex_lock(&root->chain_lock); fs_prio = find_prio(ns, ft_attr->prio); if (!fs_prio) { err = -EINVAL; goto unlock_root; } if (!unmanaged) { /* The level is related to the * priority level range. */ if (ft_attr->level >= fs_prio->num_levels) { err = -ENOSPC; goto unlock_root; } ft_attr->level += fs_prio->start_level; } /* The level is related to the * priority level range. */ ft = alloc_flow_table(ft_attr->level, vport, root->table_type, op_mod, ft_attr->flags); if (IS_ERR(ft)) { err = PTR_ERR(ft); goto unlock_root; } tree_init_node(&ft->node, del_hw_flow_table, del_sw_flow_table); next_ft = unmanaged ? ft_attr->next_ft : find_next_chained_ft(fs_prio); ft->def_miss_action = ns->def_miss_action; ft->ns = ns; err = root->cmds->create_flow_table(root, ft, ft_attr, next_ft); if (err) goto free_ft; if (!unmanaged) { err = connect_flow_table(root->dev, ft, fs_prio); if (err) goto destroy_ft; } ft->node.active = true; down_write_ref_node(&fs_prio->node, false); if (!unmanaged) { tree_add_node(&ft->node, &fs_prio->node); list_add_flow_table(ft, fs_prio); } else { ft->node.root = fs_prio->node.root; } fs_prio->num_ft++; up_write_ref_node(&fs_prio->node, false); mutex_unlock(&root->chain_lock); trace_mlx5_fs_add_ft(ft); return ft; destroy_ft: root->cmds->destroy_flow_table(root, ft); free_ft: rhltable_destroy(&ft->fgs_hash); kfree(ft); unlock_root: mutex_unlock(&root->chain_lock); return ERR_PTR(err); } struct mlx5_flow_table *mlx5_create_flow_table(struct mlx5_flow_namespace *ns, struct mlx5_flow_table_attr *ft_attr) { return __mlx5_create_flow_table(ns, ft_attr, FS_FT_OP_MOD_NORMAL, 0); } EXPORT_SYMBOL(mlx5_create_flow_table); u32 mlx5_flow_table_id(struct mlx5_flow_table *ft) { return ft->id; } EXPORT_SYMBOL(mlx5_flow_table_id); struct mlx5_flow_table * mlx5_create_vport_flow_table(struct mlx5_flow_namespace *ns, struct mlx5_flow_table_attr *ft_attr, u16 vport) { return __mlx5_create_flow_table(ns, ft_attr, FS_FT_OP_MOD_NORMAL, vport); } struct mlx5_flow_table* mlx5_create_lag_demux_flow_table(struct mlx5_flow_namespace *ns, int prio, u32 level) { struct mlx5_flow_table_attr ft_attr = {}; ft_attr.level = level; ft_attr.prio = prio; ft_attr.max_fte = 1; return __mlx5_create_flow_table(ns, &ft_attr, FS_FT_OP_MOD_LAG_DEMUX, 0); } EXPORT_SYMBOL(mlx5_create_lag_demux_flow_table); #define MAX_FLOW_GROUP_SIZE BIT(24) struct mlx5_flow_table* mlx5_create_auto_grouped_flow_table(struct mlx5_flow_namespace *ns, struct mlx5_flow_table_attr *ft_attr) { int num_reserved_entries = ft_attr->autogroup.num_reserved_entries; int max_num_groups = ft_attr->autogroup.max_num_groups; struct mlx5_flow_table *ft; int autogroups_max_fte; ft = mlx5_create_flow_table(ns, ft_attr); if (IS_ERR(ft)) return ft; autogroups_max_fte = ft->max_fte - num_reserved_entries; if (max_num_groups > autogroups_max_fte) goto err_validate; if (num_reserved_entries > ft->max_fte) goto err_validate; /* Align the number of groups according to the largest group size */ if (autogroups_max_fte / (max_num_groups + 1) > MAX_FLOW_GROUP_SIZE) max_num_groups = (autogroups_max_fte / MAX_FLOW_GROUP_SIZE) - 1; ft->autogroup.active = true; ft->autogroup.required_groups = max_num_groups; ft->autogroup.max_fte = autogroups_max_fte; /* We save place for flow groups in addition to max types */ ft->autogroup.group_size = autogroups_max_fte / (max_num_groups + 1); return ft; err_validate: mlx5_destroy_flow_table(ft); return ERR_PTR(-ENOSPC); } EXPORT_SYMBOL(mlx5_create_auto_grouped_flow_table); struct mlx5_flow_group *mlx5_create_flow_group(struct mlx5_flow_table *ft, u32 *fg_in) { struct mlx5_flow_root_namespace *root = find_root(&ft->node); void *match_criteria = MLX5_ADDR_OF(create_flow_group_in, fg_in, match_criteria); u8 match_criteria_enable = MLX5_GET(create_flow_group_in, fg_in, match_criteria_enable); int start_index = MLX5_GET(create_flow_group_in, fg_in, start_flow_index); int end_index = MLX5_GET(create_flow_group_in, fg_in, end_flow_index); struct mlx5_flow_group *fg; int err; if (ft->autogroup.active && start_index < ft->autogroup.max_fte) return ERR_PTR(-EPERM); down_write_ref_node(&ft->node, false); fg = alloc_insert_flow_group(ft, match_criteria_enable, match_criteria, start_index, end_index, ft->node.children.prev); up_write_ref_node(&ft->node, false); if (IS_ERR(fg)) return fg; err = root->cmds->create_flow_group(root, ft, fg_in, fg); if (err) { tree_put_node(&fg->node, false); return ERR_PTR(err); } trace_mlx5_fs_add_fg(fg); fg->node.active = true; return fg; } EXPORT_SYMBOL(mlx5_create_flow_group); static struct mlx5_flow_rule *alloc_rule(struct mlx5_flow_destination *dest) { struct mlx5_flow_rule *rule; rule = kzalloc(sizeof(*rule), GFP_KERNEL); if (!rule) return NULL; INIT_LIST_HEAD(&rule->next_ft); rule->node.type = FS_TYPE_FLOW_DEST; if (dest) memcpy(&rule->dest_attr, dest, sizeof(*dest)); else rule->dest_attr.type = MLX5_FLOW_DESTINATION_TYPE_NONE; return rule; } static struct mlx5_flow_handle *alloc_handle(int num_rules) { struct mlx5_flow_handle *handle; handle = kzalloc(struct_size(handle, rule, num_rules), GFP_KERNEL); if (!handle) return NULL; handle->num_rules = num_rules; return handle; } static void destroy_flow_handle(struct fs_fte *fte, struct mlx5_flow_handle *handle, struct mlx5_flow_destination *dest, int i) { for (; --i >= 0;) { if (refcount_dec_and_test(&handle->rule[i]->node.refcount)) { fte->dests_size--; list_del(&handle->rule[i]->node.list); kfree(handle->rule[i]); } } kfree(handle); } static struct mlx5_flow_handle * create_flow_handle(struct fs_fte *fte, struct mlx5_flow_destination *dest, int dest_num, int *modify_mask, bool *new_rule) { struct mlx5_flow_handle *handle; struct mlx5_flow_rule *rule = NULL; static int count = BIT(MLX5_SET_FTE_MODIFY_ENABLE_MASK_FLOW_COUNTERS); static int dst = BIT(MLX5_SET_FTE_MODIFY_ENABLE_MASK_DESTINATION_LIST); int type; int i = 0; handle = alloc_handle((dest_num) ? dest_num : 1); if (!handle) return ERR_PTR(-ENOMEM); do { if (dest) { rule = find_flow_rule(fte, dest + i); if (rule) { refcount_inc(&rule->node.refcount); goto rule_found; } } *new_rule = true; rule = alloc_rule(dest + i); if (!rule) goto free_rules; /* Add dest to dests list- we need flow tables to be in the * end of the list for forward to next prio rules. */ tree_init_node(&rule->node, NULL, del_sw_hw_rule); if (dest && dest[i].type != MLX5_FLOW_DESTINATION_TYPE_FLOW_TABLE) list_add(&rule->node.list, &fte->node.children); else list_add_tail(&rule->node.list, &fte->node.children); if (dest) { fte->dests_size++; if (is_fwd_dest_type(dest[i].type)) fte->fwd_dests++; type = dest[i].type == MLX5_FLOW_DESTINATION_TYPE_COUNTER; *modify_mask |= type ? count : dst; } rule_found: handle->rule[i] = rule; } while (++i < dest_num); return handle; free_rules: destroy_flow_handle(fte, handle, dest, i); return ERR_PTR(-ENOMEM); } /* fte should not be deleted while calling this function */ static struct mlx5_flow_handle * add_rule_fte(struct fs_fte *fte, struct mlx5_flow_group *fg, struct mlx5_flow_destination *dest, int dest_num, bool update_action) { struct mlx5_flow_root_namespace *root; struct mlx5_flow_handle *handle; struct mlx5_flow_table *ft; int modify_mask = 0; int err; bool new_rule = false; handle = create_flow_handle(fte, dest, dest_num, &modify_mask, &new_rule); if (IS_ERR(handle) || !new_rule) goto out; if (update_action) modify_mask |= BIT(MLX5_SET_FTE_MODIFY_ENABLE_MASK_ACTION); fs_get_obj(ft, fg->node.parent); root = find_root(&fg->node); if (!(fte->status & FS_FTE_STATUS_EXISTING)) err = root->cmds->create_fte(root, ft, fg, fte); else err = root->cmds->update_fte(root, ft, fg, modify_mask, fte); if (err) goto free_handle; fte->node.active = true; fte->status |= FS_FTE_STATUS_EXISTING; atomic_inc(&fg->node.version); out: return handle; free_handle: destroy_flow_handle(fte, handle, dest, handle->num_rules); return ERR_PTR(err); } static struct mlx5_flow_group *alloc_auto_flow_group(struct mlx5_flow_table *ft, const struct mlx5_flow_spec *spec) { struct list_head *prev = &ft->node.children; u32 max_fte = ft->autogroup.max_fte; unsigned int candidate_index = 0; unsigned int group_size = 0; struct mlx5_flow_group *fg; if (!ft->autogroup.active) return ERR_PTR(-ENOENT); if (ft->autogroup.num_groups < ft->autogroup.required_groups) group_size = ft->autogroup.group_size; /* max_fte == ft->autogroup.max_types */ if (group_size == 0) group_size = 1; /* sorted by start_index */ fs_for_each_fg(fg, ft) { if (candidate_index + group_size > fg->start_index) candidate_index = fg->start_index + fg->max_ftes; else break; prev = &fg->node.list; } if (candidate_index + group_size > max_fte) return ERR_PTR(-ENOSPC); fg = alloc_insert_flow_group(ft, spec->match_criteria_enable, spec->match_criteria, candidate_index, candidate_index + group_size - 1, prev); if (IS_ERR(fg)) goto out; if (group_size == ft->autogroup.group_size) ft->autogroup.num_groups++; out: return fg; } static int create_auto_flow_group(struct mlx5_flow_table *ft, struct mlx5_flow_group *fg) { struct mlx5_flow_root_namespace *root = find_root(&ft->node); int inlen = MLX5_ST_SZ_BYTES(create_flow_group_in); void *match_criteria_addr; u8 src_esw_owner_mask_on; void *misc; int err; u32 *in; in = kvzalloc(inlen, GFP_KERNEL); if (!in) return -ENOMEM; MLX5_SET(create_flow_group_in, in, match_criteria_enable, fg->mask.match_criteria_enable); MLX5_SET(create_flow_group_in, in, start_flow_index, fg->start_index); MLX5_SET(create_flow_group_in, in, end_flow_index, fg->start_index + fg->max_ftes - 1); misc = MLX5_ADDR_OF(fte_match_param, fg->mask.match_criteria, misc_parameters); src_esw_owner_mask_on = !!MLX5_GET(fte_match_set_misc, misc, source_eswitch_owner_vhca_id); MLX5_SET(create_flow_group_in, in, source_eswitch_owner_vhca_id_valid, src_esw_owner_mask_on); match_criteria_addr = MLX5_ADDR_OF(create_flow_group_in, in, match_criteria); memcpy(match_criteria_addr, fg->mask.match_criteria, sizeof(fg->mask.match_criteria)); err = root->cmds->create_flow_group(root, ft, in, fg); if (!err) { fg->node.active = true; trace_mlx5_fs_add_fg(fg); } kvfree(in); return err; } static bool mlx5_flow_dests_cmp(struct mlx5_flow_destination *d1, struct mlx5_flow_destination *d2) { if (d1->type == d2->type) { if (((d1->type == MLX5_FLOW_DESTINATION_TYPE_VPORT || d1->type == MLX5_FLOW_DESTINATION_TYPE_UPLINK) && d1->vport.num == d2->vport.num && d1->vport.flags == d2->vport.flags && ((d1->vport.flags & MLX5_FLOW_DEST_VPORT_VHCA_ID) ? (d1->vport.vhca_id == d2->vport.vhca_id) : true) && ((d1->vport.flags & MLX5_FLOW_DEST_VPORT_REFORMAT_ID) ? (d1->vport.pkt_reformat->id == d2->vport.pkt_reformat->id) : true)) || (d1->type == MLX5_FLOW_DESTINATION_TYPE_FLOW_TABLE && d1->ft == d2->ft) || (d1->type == MLX5_FLOW_DESTINATION_TYPE_TIR && d1->tir_num == d2->tir_num) || (d1->type == MLX5_FLOW_DESTINATION_TYPE_FLOW_TABLE_NUM && d1->ft_num == d2->ft_num) || (d1->type == MLX5_FLOW_DESTINATION_TYPE_FLOW_SAMPLER && d1->sampler_id == d2->sampler_id) || (d1->type == MLX5_FLOW_DESTINATION_TYPE_RANGE && d1->range.field == d2->range.field && d1->range.hit_ft == d2->range.hit_ft && d1->range.miss_ft == d2->range.miss_ft && d1->range.min == d2->range.min && d1->range.max == d2->range.max)) return true; } return false; } static struct mlx5_flow_rule *find_flow_rule(struct fs_fte *fte, struct mlx5_flow_destination *dest) { struct mlx5_flow_rule *rule; list_for_each_entry(rule, &fte->node.children, node.list) { if (mlx5_flow_dests_cmp(&rule->dest_attr, dest)) return rule; } return NULL; } static bool check_conflicting_actions_vlan(const struct mlx5_fs_vlan *vlan0, const struct mlx5_fs_vlan *vlan1) { return vlan0->ethtype != vlan1->ethtype || vlan0->vid != vlan1->vid || vlan0->prio != vlan1->prio; } static bool check_conflicting_actions(const struct mlx5_flow_act *act1, const struct mlx5_flow_act *act2) { u32 action1 = act1->action; u32 action2 = act2->action; u32 xored_actions; xored_actions = action1 ^ action2; /* if one rule only wants to count, it's ok */ if (action1 == MLX5_FLOW_CONTEXT_ACTION_COUNT || action2 == MLX5_FLOW_CONTEXT_ACTION_COUNT) return false; if (xored_actions & (MLX5_FLOW_CONTEXT_ACTION_DROP | MLX5_FLOW_CONTEXT_ACTION_PACKET_REFORMAT | MLX5_FLOW_CONTEXT_ACTION_DECAP | MLX5_FLOW_CONTEXT_ACTION_MOD_HDR | MLX5_FLOW_CONTEXT_ACTION_VLAN_POP | MLX5_FLOW_CONTEXT_ACTION_VLAN_PUSH | MLX5_FLOW_CONTEXT_ACTION_VLAN_POP_2 | MLX5_FLOW_CONTEXT_ACTION_VLAN_PUSH_2)) return true; if (action1 & MLX5_FLOW_CONTEXT_ACTION_PACKET_REFORMAT && act1->pkt_reformat != act2->pkt_reformat) return true; if (action1 & MLX5_FLOW_CONTEXT_ACTION_MOD_HDR && act1->modify_hdr != act2->modify_hdr) return true; if (action1 & MLX5_FLOW_CONTEXT_ACTION_VLAN_PUSH && check_conflicting_actions_vlan(&act1->vlan[0], &act2->vlan[0])) return true; if (action1 & MLX5_FLOW_CONTEXT_ACTION_VLAN_PUSH_2 && check_conflicting_actions_vlan(&act1->vlan[1], &act2->vlan[1])) return true; return false; } static int check_conflicting_ftes(struct fs_fte *fte, const struct mlx5_flow_context *flow_context, const struct mlx5_flow_act *flow_act) { if (check_conflicting_actions(flow_act, &fte->action)) { mlx5_core_warn(get_dev(&fte->node), "Found two FTEs with conflicting actions\n"); return -EEXIST; } if ((flow_context->flags & FLOW_CONTEXT_HAS_TAG) && fte->flow_context.flow_tag != flow_context->flow_tag) { mlx5_core_warn(get_dev(&fte->node), "FTE flow tag %u already exists with different flow tag %u\n", fte->flow_context.flow_tag, flow_context->flow_tag); return -EEXIST; } return 0; } static struct mlx5_flow_handle *add_rule_fg(struct mlx5_flow_group *fg, const struct mlx5_flow_spec *spec, struct mlx5_flow_act *flow_act, struct mlx5_flow_destination *dest, int dest_num, struct fs_fte *fte) { struct mlx5_flow_handle *handle; int old_action; int i; int ret; ret = check_conflicting_ftes(fte, &spec->flow_context, flow_act); if (ret) return ERR_PTR(ret); old_action = fte->action.action; fte->action.action |= flow_act->action; handle = add_rule_fte(fte, fg, dest, dest_num, old_action != flow_act->action); if (IS_ERR(handle)) { fte->action.action = old_action; return handle; } trace_mlx5_fs_set_fte(fte, false); for (i = 0; i < handle->num_rules; i++) { if (refcount_read(&handle->rule[i]->node.refcount) == 1) { tree_add_node(&handle->rule[i]->node, &fte->node); trace_mlx5_fs_add_rule(handle->rule[i]); } } return handle; } static bool counter_is_valid(u32 action) { return (action & (MLX5_FLOW_CONTEXT_ACTION_DROP | MLX5_FLOW_CONTEXT_ACTION_ALLOW | MLX5_FLOW_CONTEXT_ACTION_FWD_DEST)); } static bool dest_is_valid(struct mlx5_flow_destination *dest, struct mlx5_flow_act *flow_act, struct mlx5_flow_table *ft) { bool ignore_level = flow_act->flags & FLOW_ACT_IGNORE_FLOW_LEVEL; u32 action = flow_act->action; if (dest && (dest->type == MLX5_FLOW_DESTINATION_TYPE_COUNTER)) return counter_is_valid(action); if (!(action & MLX5_FLOW_CONTEXT_ACTION_FWD_DEST)) return true; if (ignore_level) { if (ft->type != FS_FT_FDB && ft->type != FS_FT_NIC_RX) return false; if (dest->type == MLX5_FLOW_DESTINATION_TYPE_FLOW_TABLE && ft->type != dest->ft->type) return false; } if (!dest || ((dest->type == MLX5_FLOW_DESTINATION_TYPE_FLOW_TABLE) && (dest->ft->level <= ft->level && !ignore_level))) return false; return true; } struct match_list { struct list_head list; struct mlx5_flow_group *g; }; static void free_match_list(struct match_list *head, bool ft_locked) { struct match_list *iter, *match_tmp; list_for_each_entry_safe(iter, match_tmp, &head->list, list) { tree_put_node(&iter->g->node, ft_locked); list_del(&iter->list); kfree(iter); } } static int build_match_list(struct match_list *match_head, struct mlx5_flow_table *ft, const struct mlx5_flow_spec *spec, struct mlx5_flow_group *fg, bool ft_locked) { struct rhlist_head *tmp, *list; struct mlx5_flow_group *g; int err = 0; rcu_read_lock(); INIT_LIST_HEAD(&match_head->list); /* Collect all fgs which has a matching match_criteria */ list = rhltable_lookup(&ft->fgs_hash, spec, rhash_fg); /* RCU is atomic, we can't execute FW commands here */ rhl_for_each_entry_rcu(g, tmp, list, hash) { struct match_list *curr_match; if (fg && fg != g) continue; if (unlikely(!tree_get_node(&g->node))) continue; curr_match = kmalloc(sizeof(*curr_match), GFP_ATOMIC); if (!curr_match) { rcu_read_unlock(); free_match_list(match_head, ft_locked); return -ENOMEM; } curr_match->g = g; list_add_tail(&curr_match->list, &match_head->list); } rcu_read_unlock(); return err; } static u64 matched_fgs_get_version(struct list_head *match_head) { struct match_list *iter; u64 version = 0; list_for_each_entry(iter, match_head, list) version += (u64)atomic_read(&iter->g->node.version); return version; } static struct fs_fte * lookup_fte_locked(struct mlx5_flow_group *g, const u32 *match_value, bool take_write) { struct fs_fte *fte_tmp; if (take_write) nested_down_write_ref_node(&g->node, FS_LOCK_PARENT); else nested_down_read_ref_node(&g->node, FS_LOCK_PARENT); fte_tmp = rhashtable_lookup_fast(&g->ftes_hash, match_value, rhash_fte); if (!fte_tmp || !tree_get_node(&fte_tmp->node)) { fte_tmp = NULL; goto out; } if (!fte_tmp->node.active) { tree_put_node(&fte_tmp->node, false); fte_tmp = NULL; goto out; } nested_down_write_ref_node(&fte_tmp->node, FS_LOCK_CHILD); out: if (take_write) up_write_ref_node(&g->node, false); else up_read_ref_node(&g->node); return fte_tmp; } static struct mlx5_flow_handle * try_add_to_existing_fg(struct mlx5_flow_table *ft, struct list_head *match_head, const struct mlx5_flow_spec *spec, struct mlx5_flow_act *flow_act, struct mlx5_flow_destination *dest, int dest_num, int ft_version) { struct mlx5_flow_steering *steering = get_steering(&ft->node); struct mlx5_flow_group *g; struct mlx5_flow_handle *rule; struct match_list *iter; bool take_write = false; struct fs_fte *fte; u64 version = 0; int err; fte = alloc_fte(ft, spec, flow_act); if (IS_ERR(fte)) return ERR_PTR(-ENOMEM); search_again_locked: if (flow_act->flags & FLOW_ACT_NO_APPEND) goto skip_search; version = matched_fgs_get_version(match_head); /* Try to find an fte with identical match value and attempt update its * action. */ list_for_each_entry(iter, match_head, list) { struct fs_fte *fte_tmp; g = iter->g; fte_tmp = lookup_fte_locked(g, spec->match_value, take_write); if (!fte_tmp) continue; rule = add_rule_fg(g, spec, flow_act, dest, dest_num, fte_tmp); /* No error check needed here, because insert_fte() is not called */ up_write_ref_node(&fte_tmp->node, false); tree_put_node(&fte_tmp->node, false); kmem_cache_free(steering->ftes_cache, fte); return rule; } skip_search: /* No group with matching fte found, or we skipped the search. * Try to add a new fte to any matching fg. */ /* Check the ft version, for case that new flow group * was added while the fgs weren't locked */ if (atomic_read(&ft->node.version) != ft_version) { rule = ERR_PTR(-EAGAIN); goto out; } /* Check the fgs version. If version have changed it could be that an * FTE with the same match value was added while the fgs weren't * locked. */ if (!(flow_act->flags & FLOW_ACT_NO_APPEND) && version != matched_fgs_get_version(match_head)) { take_write = true; goto search_again_locked; } list_for_each_entry(iter, match_head, list) { g = iter->g; nested_down_write_ref_node(&g->node, FS_LOCK_PARENT); if (!g->node.active) { up_write_ref_node(&g->node, false); continue; } err = insert_fte(g, fte); if (err) { up_write_ref_node(&g->node, false); if (err == -ENOSPC) continue; kmem_cache_free(steering->ftes_cache, fte); return ERR_PTR(err); } nested_down_write_ref_node(&fte->node, FS_LOCK_CHILD); up_write_ref_node(&g->node, false); rule = add_rule_fg(g, spec, flow_act, dest, dest_num, fte); up_write_ref_node(&fte->node, false); if (IS_ERR(rule)) tree_put_node(&fte->node, false); return rule; } rule = ERR_PTR(-ENOENT); out: kmem_cache_free(steering->ftes_cache, fte); return rule; } static struct mlx5_flow_handle * _mlx5_add_flow_rules(struct mlx5_flow_table *ft, const struct mlx5_flow_spec *spec, struct mlx5_flow_act *flow_act, struct mlx5_flow_destination *dest, int dest_num) { struct mlx5_flow_steering *steering = get_steering(&ft->node); struct mlx5_flow_handle *rule; struct match_list match_head; struct mlx5_flow_group *g; bool take_write = false; struct fs_fte *fte; int version; int err; int i; if (!check_valid_spec(spec)) return ERR_PTR(-EINVAL); if (flow_act->fg && ft->autogroup.active) return ERR_PTR(-EINVAL); if (dest && dest_num <= 0) return ERR_PTR(-EINVAL); for (i = 0; i < dest_num; i++) { if (!dest_is_valid(&dest[i], flow_act, ft)) return ERR_PTR(-EINVAL); } nested_down_read_ref_node(&ft->node, FS_LOCK_GRANDPARENT); search_again_locked: version = atomic_read(&ft->node.version); /* Collect all fgs which has a matching match_criteria */ err = build_match_list(&match_head, ft, spec, flow_act->fg, take_write); if (err) { if (take_write) up_write_ref_node(&ft->node, false); else up_read_ref_node(&ft->node); return ERR_PTR(err); } if (!take_write) up_read_ref_node(&ft->node); rule = try_add_to_existing_fg(ft, &match_head.list, spec, flow_act, dest, dest_num, version); free_match_list(&match_head, take_write); if (!IS_ERR(rule) || (PTR_ERR(rule) != -ENOENT && PTR_ERR(rule) != -EAGAIN)) { if (take_write) up_write_ref_node(&ft->node, false); return rule; } if (!take_write) { nested_down_write_ref_node(&ft->node, FS_LOCK_GRANDPARENT); take_write = true; } if (PTR_ERR(rule) == -EAGAIN || version != atomic_read(&ft->node.version)) goto search_again_locked; g = alloc_auto_flow_group(ft, spec); if (IS_ERR(g)) { rule = ERR_CAST(g); up_write_ref_node(&ft->node, false); return rule; } fte = alloc_fte(ft, spec, flow_act); if (IS_ERR(fte)) { up_write_ref_node(&ft->node, false); err = PTR_ERR(fte); goto err_alloc_fte; } nested_down_write_ref_node(&g->node, FS_LOCK_PARENT); up_write_ref_node(&ft->node, false); err = create_auto_flow_group(ft, g); if (err) goto err_release_fg; err = insert_fte(g, fte); if (err) goto err_release_fg; nested_down_write_ref_node(&fte->node, FS_LOCK_CHILD); up_write_ref_node(&g->node, false); rule = add_rule_fg(g, spec, flow_act, dest, dest_num, fte); up_write_ref_node(&fte->node, false); if (IS_ERR(rule)) tree_put_node(&fte->node, false); tree_put_node(&g->node, false); return rule; err_release_fg: up_write_ref_node(&g->node, false); kmem_cache_free(steering->ftes_cache, fte); err_alloc_fte: tree_put_node(&g->node, false); return ERR_PTR(err); } static bool fwd_next_prio_supported(struct mlx5_flow_table *ft) { return ((ft->type == FS_FT_NIC_RX) && (MLX5_CAP_FLOWTABLE(get_dev(&ft->node), nic_rx_multi_path_tirs))); } struct mlx5_flow_handle * mlx5_add_flow_rules(struct mlx5_flow_table *ft, const struct mlx5_flow_spec *spec, struct mlx5_flow_act *flow_act, struct mlx5_flow_destination *dest, int num_dest) { struct mlx5_flow_root_namespace *root = find_root(&ft->node); static const struct mlx5_flow_spec zero_spec = {}; struct mlx5_flow_destination *gen_dest = NULL; struct mlx5_flow_table *next_ft = NULL; struct mlx5_flow_handle *handle = NULL; u32 sw_action = flow_act->action; int i; if (!spec) spec = &zero_spec; if (!is_fwd_next_action(sw_action)) return _mlx5_add_flow_rules(ft, spec, flow_act, dest, num_dest); if (!fwd_next_prio_supported(ft)) return ERR_PTR(-EOPNOTSUPP); mutex_lock(&root->chain_lock); next_ft = find_next_fwd_ft(ft, flow_act); if (!next_ft) { handle = ERR_PTR(-EOPNOTSUPP); goto unlock; } gen_dest = kcalloc(num_dest + 1, sizeof(*dest), GFP_KERNEL); if (!gen_dest) { handle = ERR_PTR(-ENOMEM); goto unlock; } for (i = 0; i < num_dest; i++) gen_dest[i] = dest[i]; gen_dest[i].type = MLX5_FLOW_DESTINATION_TYPE_FLOW_TABLE; gen_dest[i].ft = next_ft; dest = gen_dest; num_dest++; flow_act->action &= ~(MLX5_FLOW_CONTEXT_ACTION_FWD_NEXT_PRIO | MLX5_FLOW_CONTEXT_ACTION_FWD_NEXT_NS); flow_act->action |= MLX5_FLOW_CONTEXT_ACTION_FWD_DEST; handle = _mlx5_add_flow_rules(ft, spec, flow_act, dest, num_dest); if (IS_ERR(handle)) goto unlock; if (list_empty(&handle->rule[num_dest - 1]->next_ft)) { mutex_lock(&next_ft->lock); list_add(&handle->rule[num_dest - 1]->next_ft, &next_ft->fwd_rules); mutex_unlock(&next_ft->lock); handle->rule[num_dest - 1]->sw_action = sw_action; handle->rule[num_dest - 1]->ft = ft; } unlock: mutex_unlock(&root->chain_lock); kfree(gen_dest); return handle; } EXPORT_SYMBOL(mlx5_add_flow_rules); void mlx5_del_flow_rules(struct mlx5_flow_handle *handle) { struct fs_fte *fte; int i; /* In order to consolidate the HW changes we lock the FTE for other * changes, and increase its refcount, in order not to perform the * "del" functions of the FTE. Will handle them here. * The removal of the rules is done under locked FTE. * After removing all the handle's rules, if there are remaining * rules, it means we just need to modify the FTE in FW, and * unlock/decrease the refcount we increased before. * Otherwise, it means the FTE should be deleted. First delete the * FTE in FW. Then, unlock the FTE, and proceed the tree_put_node of * the FTE, which will handle the last decrease of the refcount, as * well as required handling of its parent. */ fs_get_obj(fte, handle->rule[0]->node.parent); down_write_ref_node(&fte->node, false); for (i = handle->num_rules - 1; i >= 0; i--) tree_remove_node(&handle->rule[i]->node, true); if (list_empty(&fte->node.children)) { fte->node.del_hw_func(&fte->node); /* Avoid double call to del_hw_fte */ fte->node.del_hw_func = NULL; up_write_ref_node(&fte->node, false); tree_put_node(&fte->node, false); } else if (fte->dests_size) { if (fte->modify_mask) modify_fte(fte); up_write_ref_node(&fte->node, false); } else { up_write_ref_node(&fte->node, false); } kfree(handle); } EXPORT_SYMBOL(mlx5_del_flow_rules); /* Assuming prio->node.children(flow tables) is sorted by level */ static struct mlx5_flow_table *find_next_ft(struct mlx5_flow_table *ft) { struct fs_prio *prio; fs_get_obj(prio, ft->node.parent); if (!list_is_last(&ft->node.list, &prio->node.children)) return list_next_entry(ft, node.list); return find_next_chained_ft(prio); } static int update_root_ft_destroy(struct mlx5_flow_table *ft) { struct mlx5_flow_root_namespace *root = find_root(&ft->node); struct mlx5_ft_underlay_qp *uqp; struct mlx5_flow_table *new_root_ft = NULL; int err = 0; u32 qpn; if (root->root_ft != ft) return 0; new_root_ft = find_next_ft(ft); if (!new_root_ft) { root->root_ft = NULL; return 0; } if (list_empty(&root->underlay_qpns)) { /* Don't set any QPN (zero) in case QPN list is empty */ qpn = 0; err = root->cmds->update_root_ft(root, new_root_ft, qpn, false); } else { list_for_each_entry(uqp, &root->underlay_qpns, list) { qpn = uqp->qpn; err = root->cmds->update_root_ft(root, new_root_ft, qpn, false); if (err) break; } } if (err) mlx5_core_warn(root->dev, "Update root flow table of id(%u) qpn(%d) failed\n", ft->id, qpn); else root->root_ft = new_root_ft; return 0; } /* Connect flow table from previous priority to * the next flow table. */ static int disconnect_flow_table(struct mlx5_flow_table *ft) { struct mlx5_core_dev *dev = get_dev(&ft->node); struct mlx5_flow_table *next_ft; struct fs_prio *prio; int err = 0; err = update_root_ft_destroy(ft); if (err) return err; fs_get_obj(prio, ft->node.parent); if (!(list_first_entry(&prio->node.children, struct mlx5_flow_table, node.list) == ft)) return 0; next_ft = find_next_ft(ft); err = connect_fwd_rules(dev, next_ft, ft); if (err) return err; err = connect_prev_fts(dev, next_ft, prio); if (err) mlx5_core_warn(dev, "Failed to disconnect flow table %d\n", ft->id); return err; } int mlx5_destroy_flow_table(struct mlx5_flow_table *ft) { struct mlx5_flow_root_namespace *root = find_root(&ft->node); int err = 0; mutex_lock(&root->chain_lock); if (!(ft->flags & MLX5_FLOW_TABLE_UNMANAGED)) err = disconnect_flow_table(ft); if (err) { mutex_unlock(&root->chain_lock); return err; } if (tree_remove_node(&ft->node, false)) mlx5_core_warn(get_dev(&ft->node), "Flow table %d wasn't destroyed, refcount > 1\n", ft->id); mutex_unlock(&root->chain_lock); return err; } EXPORT_SYMBOL(mlx5_destroy_flow_table); void mlx5_destroy_flow_group(struct mlx5_flow_group *fg) { if (tree_remove_node(&fg->node, false)) mlx5_core_warn(get_dev(&fg->node), "Flow group %d wasn't destroyed, refcount > 1\n", fg->id); } EXPORT_SYMBOL(mlx5_destroy_flow_group); struct mlx5_flow_namespace *mlx5_get_fdb_sub_ns(struct mlx5_core_dev *dev, int n) { struct mlx5_flow_steering *steering = dev->priv.steering; if (!steering || !steering->fdb_sub_ns) return NULL; return steering->fdb_sub_ns[n]; } EXPORT_SYMBOL(mlx5_get_fdb_sub_ns); static bool is_nic_rx_ns(enum mlx5_flow_namespace_type type) { switch (type) { case MLX5_FLOW_NAMESPACE_BYPASS: case MLX5_FLOW_NAMESPACE_KERNEL_RX_MACSEC: case MLX5_FLOW_NAMESPACE_LAG: case MLX5_FLOW_NAMESPACE_OFFLOADS: case MLX5_FLOW_NAMESPACE_ETHTOOL: case MLX5_FLOW_NAMESPACE_KERNEL: case MLX5_FLOW_NAMESPACE_LEFTOVERS: case MLX5_FLOW_NAMESPACE_ANCHOR: return true; default: return false; } } struct mlx5_flow_namespace *mlx5_get_flow_namespace(struct mlx5_core_dev *dev, enum mlx5_flow_namespace_type type) { struct mlx5_flow_steering *steering = dev->priv.steering; struct mlx5_flow_root_namespace *root_ns; int prio = 0; struct fs_prio *fs_prio; struct mlx5_flow_namespace *ns; if (!steering) return NULL; switch (type) { case MLX5_FLOW_NAMESPACE_FDB: if (steering->fdb_root_ns) return &steering->fdb_root_ns->ns; return NULL; case MLX5_FLOW_NAMESPACE_PORT_SEL: if (steering->port_sel_root_ns) return &steering->port_sel_root_ns->ns; return NULL; case MLX5_FLOW_NAMESPACE_SNIFFER_RX: if (steering->sniffer_rx_root_ns) return &steering->sniffer_rx_root_ns->ns; return NULL; case MLX5_FLOW_NAMESPACE_SNIFFER_TX: if (steering->sniffer_tx_root_ns) return &steering->sniffer_tx_root_ns->ns; return NULL; case MLX5_FLOW_NAMESPACE_FDB_BYPASS: root_ns = steering->fdb_root_ns; prio = FDB_BYPASS_PATH; break; case MLX5_FLOW_NAMESPACE_EGRESS: case MLX5_FLOW_NAMESPACE_EGRESS_IPSEC: case MLX5_FLOW_NAMESPACE_EGRESS_MACSEC: root_ns = steering->egress_root_ns; prio = type - MLX5_FLOW_NAMESPACE_EGRESS; break; case MLX5_FLOW_NAMESPACE_RDMA_RX: root_ns = steering->rdma_rx_root_ns; prio = RDMA_RX_BYPASS_PRIO; break; case MLX5_FLOW_NAMESPACE_RDMA_RX_KERNEL: root_ns = steering->rdma_rx_root_ns; prio = RDMA_RX_KERNEL_PRIO; break; case MLX5_FLOW_NAMESPACE_RDMA_TX: root_ns = steering->rdma_tx_root_ns; break; case MLX5_FLOW_NAMESPACE_RDMA_RX_COUNTERS: root_ns = steering->rdma_rx_root_ns; prio = RDMA_RX_COUNTERS_PRIO; break; case MLX5_FLOW_NAMESPACE_RDMA_TX_COUNTERS: root_ns = steering->rdma_tx_root_ns; prio = RDMA_TX_COUNTERS_PRIO; break; default: /* Must be NIC RX */ WARN_ON(!is_nic_rx_ns(type)); root_ns = steering->root_ns; prio = type; break; } if (!root_ns) return NULL; fs_prio = find_prio(&root_ns->ns, prio); if (!fs_prio) return NULL; ns = list_first_entry(&fs_prio->node.children, typeof(*ns), node.list); return ns; } EXPORT_SYMBOL(mlx5_get_flow_namespace); struct mlx5_flow_namespace *mlx5_get_flow_vport_acl_namespace(struct mlx5_core_dev *dev, enum mlx5_flow_namespace_type type, int vport) { struct mlx5_flow_steering *steering = dev->priv.steering; if (!steering) return NULL; switch (type) { case MLX5_FLOW_NAMESPACE_ESW_EGRESS: if (vport >= steering->esw_egress_acl_vports) return NULL; if (steering->esw_egress_root_ns && steering->esw_egress_root_ns[vport]) return &steering->esw_egress_root_ns[vport]->ns; else return NULL; case MLX5_FLOW_NAMESPACE_ESW_INGRESS: if (vport >= steering->esw_ingress_acl_vports) return NULL; if (steering->esw_ingress_root_ns && steering->esw_ingress_root_ns[vport]) return &steering->esw_ingress_root_ns[vport]->ns; else return NULL; default: return NULL; } } static struct fs_prio *_fs_create_prio(struct mlx5_flow_namespace *ns, unsigned int prio, int num_levels, enum fs_node_type type) { struct fs_prio *fs_prio; fs_prio = kzalloc(sizeof(*fs_prio), GFP_KERNEL); if (!fs_prio) return ERR_PTR(-ENOMEM); fs_prio->node.type = type; tree_init_node(&fs_prio->node, NULL, del_sw_prio); tree_add_node(&fs_prio->node, &ns->node); fs_prio->num_levels = num_levels; fs_prio->prio = prio; list_add_tail(&fs_prio->node.list, &ns->node.children); return fs_prio; } static struct fs_prio *fs_create_prio_chained(struct mlx5_flow_namespace *ns, unsigned int prio, int num_levels) { return _fs_create_prio(ns, prio, num_levels, FS_TYPE_PRIO_CHAINS); } static struct fs_prio *fs_create_prio(struct mlx5_flow_namespace *ns, unsigned int prio, int num_levels) { return _fs_create_prio(ns, prio, num_levels, FS_TYPE_PRIO); } static struct mlx5_flow_namespace *fs_init_namespace(struct mlx5_flow_namespace *ns) { ns->node.type = FS_TYPE_NAMESPACE; return ns; } static struct mlx5_flow_namespace *fs_create_namespace(struct fs_prio *prio, int def_miss_act) { struct mlx5_flow_namespace *ns; ns = kzalloc(sizeof(*ns), GFP_KERNEL); if (!ns) return ERR_PTR(-ENOMEM); fs_init_namespace(ns); ns->def_miss_action = def_miss_act; tree_init_node(&ns->node, NULL, del_sw_ns); tree_add_node(&ns->node, &prio->node); list_add_tail(&ns->node.list, &prio->node.children); return ns; } static int create_leaf_prios(struct mlx5_flow_namespace *ns, int prio, struct init_tree_node *prio_metadata) { struct fs_prio *fs_prio; int i; for (i = 0; i < prio_metadata->num_leaf_prios; i++) { fs_prio = fs_create_prio(ns, prio++, prio_metadata->num_levels); if (IS_ERR(fs_prio)) return PTR_ERR(fs_prio); } return 0; } #define FLOW_TABLE_BIT_SZ 1 #define GET_FLOW_TABLE_CAP(dev, offset) \ ((be32_to_cpu(*((__be32 *)(dev->caps.hca[MLX5_CAP_FLOW_TABLE]->cur) + \ offset / 32)) >> \ (32 - FLOW_TABLE_BIT_SZ - (offset & 0x1f))) & FLOW_TABLE_BIT_SZ) static bool has_required_caps(struct mlx5_core_dev *dev, struct node_caps *caps) { int i; for (i = 0; i < caps->arr_sz; i++) { if (!GET_FLOW_TABLE_CAP(dev, caps->caps[i])) return false; } return true; } static int init_root_tree_recursive(struct mlx5_flow_steering *steering, struct init_tree_node *init_node, struct fs_node *fs_parent_node, struct init_tree_node *init_parent_node, int prio) { int max_ft_level = MLX5_CAP_FLOWTABLE(steering->dev, flow_table_properties_nic_receive. max_ft_level); struct mlx5_flow_namespace *fs_ns; struct fs_prio *fs_prio; struct fs_node *base; int i; int err; if (init_node->type == FS_TYPE_PRIO) { if ((init_node->min_ft_level > max_ft_level) || !has_required_caps(steering->dev, &init_node->caps)) return 0; fs_get_obj(fs_ns, fs_parent_node); if (init_node->num_leaf_prios) return create_leaf_prios(fs_ns, prio, init_node); fs_prio = fs_create_prio(fs_ns, prio, init_node->num_levels); if (IS_ERR(fs_prio)) return PTR_ERR(fs_prio); base = &fs_prio->node; } else if (init_node->type == FS_TYPE_NAMESPACE) { fs_get_obj(fs_prio, fs_parent_node); fs_ns = fs_create_namespace(fs_prio, init_node->def_miss_action); if (IS_ERR(fs_ns)) return PTR_ERR(fs_ns); base = &fs_ns->node; } else { return -EINVAL; } prio = 0; for (i = 0; i < init_node->ar_size; i++) { err = init_root_tree_recursive(steering, &init_node->children[i], base, init_node, prio); if (err) return err; if (init_node->children[i].type == FS_TYPE_PRIO && init_node->children[i].num_leaf_prios) { prio += init_node->children[i].num_leaf_prios; } } return 0; } static int init_root_tree(struct mlx5_flow_steering *steering, struct init_tree_node *init_node, struct fs_node *fs_parent_node) { int err; int i; for (i = 0; i < init_node->ar_size; i++) { err = init_root_tree_recursive(steering, &init_node->children[i], fs_parent_node, init_node, i); if (err) return err; } return 0; } static void del_sw_root_ns(struct fs_node *node) { struct mlx5_flow_root_namespace *root_ns; struct mlx5_flow_namespace *ns; fs_get_obj(ns, node); root_ns = container_of(ns, struct mlx5_flow_root_namespace, ns); mutex_destroy(&root_ns->chain_lock); kfree(node); } static struct mlx5_flow_root_namespace *create_root_ns(struct mlx5_flow_steering *steering, enum fs_flow_table_type table_type) { const struct mlx5_flow_cmds *cmds = mlx5_fs_cmd_get_default(table_type); struct mlx5_flow_root_namespace *root_ns; struct mlx5_flow_namespace *ns; /* Create the root namespace */ root_ns = kzalloc(sizeof(*root_ns), GFP_KERNEL); if (!root_ns) return NULL; root_ns->dev = steering->dev; root_ns->table_type = table_type; root_ns->cmds = cmds; INIT_LIST_HEAD(&root_ns->underlay_qpns); ns = &root_ns->ns; fs_init_namespace(ns); mutex_init(&root_ns->chain_lock); tree_init_node(&ns->node, NULL, del_sw_root_ns); tree_add_node(&ns->node, NULL); return root_ns; } static void set_prio_attrs_in_prio(struct fs_prio *prio, int acc_level); static int set_prio_attrs_in_ns(struct mlx5_flow_namespace *ns, int acc_level) { struct fs_prio *prio; fs_for_each_prio(prio, ns) { /* This updates prio start_level and num_levels */ set_prio_attrs_in_prio(prio, acc_level); acc_level += prio->num_levels; } return acc_level; } static void set_prio_attrs_in_prio(struct fs_prio *prio, int acc_level) { struct mlx5_flow_namespace *ns; int acc_level_ns = acc_level; prio->start_level = acc_level; fs_for_each_ns(ns, prio) { /* This updates start_level and num_levels of ns's priority descendants */ acc_level_ns = set_prio_attrs_in_ns(ns, acc_level); /* If this a prio with chains, and we can jump from one chain * (namespace) to another, so we accumulate the levels */ if (prio->node.type == FS_TYPE_PRIO_CHAINS) acc_level = acc_level_ns; } if (!prio->num_levels) prio->num_levels = acc_level_ns - prio->start_level; WARN_ON(prio->num_levels < acc_level_ns - prio->start_level); } static void set_prio_attrs(struct mlx5_flow_root_namespace *root_ns) { struct mlx5_flow_namespace *ns = &root_ns->ns; struct fs_prio *prio; int start_level = 0; fs_for_each_prio(prio, ns) { set_prio_attrs_in_prio(prio, start_level); start_level += prio->num_levels; } } #define ANCHOR_PRIO 0 #define ANCHOR_SIZE 1 #define ANCHOR_LEVEL 0 static int create_anchor_flow_table(struct mlx5_flow_steering *steering) { struct mlx5_flow_namespace *ns = NULL; struct mlx5_flow_table_attr ft_attr = {}; struct mlx5_flow_table *ft; ns = mlx5_get_flow_namespace(steering->dev, MLX5_FLOW_NAMESPACE_ANCHOR); if (WARN_ON(!ns)) return -EINVAL; ft_attr.max_fte = ANCHOR_SIZE; ft_attr.level = ANCHOR_LEVEL; ft_attr.prio = ANCHOR_PRIO; ft = mlx5_create_flow_table(ns, &ft_attr); if (IS_ERR(ft)) { mlx5_core_err(steering->dev, "Failed to create last anchor flow table"); return PTR_ERR(ft); } return 0; } static int init_root_ns(struct mlx5_flow_steering *steering) { int err; steering->root_ns = create_root_ns(steering, FS_FT_NIC_RX); if (!steering->root_ns) return -ENOMEM; err = init_root_tree(steering, &root_fs, &steering->root_ns->ns.node); if (err) goto out_err; set_prio_attrs(steering->root_ns); err = create_anchor_flow_table(steering); if (err) goto out_err; return 0; out_err: cleanup_root_ns(steering->root_ns); steering->root_ns = NULL; return err; } static void clean_tree(struct fs_node *node) { if (node) { struct fs_node *iter; struct fs_node *temp; tree_get_node(node); list_for_each_entry_safe(iter, temp, &node->children, list) clean_tree(iter); tree_put_node(node, false); tree_remove_node(node, false); } } static void cleanup_root_ns(struct mlx5_flow_root_namespace *root_ns) { if (!root_ns) return; clean_tree(&root_ns->ns.node); } static int init_sniffer_tx_root_ns(struct mlx5_flow_steering *steering) { struct fs_prio *prio; steering->sniffer_tx_root_ns = create_root_ns(steering, FS_FT_SNIFFER_TX); if (!steering->sniffer_tx_root_ns) return -ENOMEM; /* Create single prio */ prio = fs_create_prio(&steering->sniffer_tx_root_ns->ns, 0, 1); return PTR_ERR_OR_ZERO(prio); } static int init_sniffer_rx_root_ns(struct mlx5_flow_steering *steering) { struct fs_prio *prio; steering->sniffer_rx_root_ns = create_root_ns(steering, FS_FT_SNIFFER_RX); if (!steering->sniffer_rx_root_ns) return -ENOMEM; /* Create single prio */ prio = fs_create_prio(&steering->sniffer_rx_root_ns->ns, 0, 1); return PTR_ERR_OR_ZERO(prio); } #define PORT_SEL_NUM_LEVELS 3 static int init_port_sel_root_ns(struct mlx5_flow_steering *steering) { struct fs_prio *prio; steering->port_sel_root_ns = create_root_ns(steering, FS_FT_PORT_SEL); if (!steering->port_sel_root_ns) return -ENOMEM; /* Create single prio */ prio = fs_create_prio(&steering->port_sel_root_ns->ns, 0, PORT_SEL_NUM_LEVELS); return PTR_ERR_OR_ZERO(prio); } static int init_rdma_rx_root_ns(struct mlx5_flow_steering *steering) { int err; steering->rdma_rx_root_ns = create_root_ns(steering, FS_FT_RDMA_RX); if (!steering->rdma_rx_root_ns) return -ENOMEM; err = init_root_tree(steering, &rdma_rx_root_fs, &steering->rdma_rx_root_ns->ns.node); if (err) goto out_err; set_prio_attrs(steering->rdma_rx_root_ns); return 0; out_err: cleanup_root_ns(steering->rdma_rx_root_ns); steering->rdma_rx_root_ns = NULL; return err; } static int init_rdma_tx_root_ns(struct mlx5_flow_steering *steering) { int err; steering->rdma_tx_root_ns = create_root_ns(steering, FS_FT_RDMA_TX); if (!steering->rdma_tx_root_ns) return -ENOMEM; err = init_root_tree(steering, &rdma_tx_root_fs, &steering->rdma_tx_root_ns->ns.node); if (err) goto out_err; set_prio_attrs(steering->rdma_tx_root_ns); return 0; out_err: cleanup_root_ns(steering->rdma_tx_root_ns); steering->rdma_tx_root_ns = NULL; return err; } /* FT and tc chains are stored in the same array so we can re-use the * mlx5_get_fdb_sub_ns() and tc api for FT chains. * When creating a new ns for each chain store it in the first available slot. * Assume tc chains are created and stored first and only then the FT chain. */ static void store_fdb_sub_ns_prio_chain(struct mlx5_flow_steering *steering, struct mlx5_flow_namespace *ns) { int chain = 0; while (steering->fdb_sub_ns[chain]) ++chain; steering->fdb_sub_ns[chain] = ns; } static int create_fdb_sub_ns_prio_chain(struct mlx5_flow_steering *steering, struct fs_prio *maj_prio) { struct mlx5_flow_namespace *ns; struct fs_prio *min_prio; int prio; ns = fs_create_namespace(maj_prio, MLX5_FLOW_TABLE_MISS_ACTION_DEF); if (IS_ERR(ns)) return PTR_ERR(ns); for (prio = 0; prio < FDB_TC_MAX_PRIO; prio++) { min_prio = fs_create_prio(ns, prio, FDB_TC_LEVELS_PER_PRIO); if (IS_ERR(min_prio)) return PTR_ERR(min_prio); } store_fdb_sub_ns_prio_chain(steering, ns); return 0; } static int create_fdb_chains(struct mlx5_flow_steering *steering, int fs_prio, int chains) { struct fs_prio *maj_prio; int levels; int chain; int err; levels = FDB_TC_LEVELS_PER_PRIO * FDB_TC_MAX_PRIO * chains; maj_prio = fs_create_prio_chained(&steering->fdb_root_ns->ns, fs_prio, levels); if (IS_ERR(maj_prio)) return PTR_ERR(maj_prio); for (chain = 0; chain < chains; chain++) { err = create_fdb_sub_ns_prio_chain(steering, maj_prio); if (err) return err; } return 0; } static int create_fdb_fast_path(struct mlx5_flow_steering *steering) { int err; steering->fdb_sub_ns = kcalloc(FDB_NUM_CHAINS, sizeof(*steering->fdb_sub_ns), GFP_KERNEL); if (!steering->fdb_sub_ns) return -ENOMEM; err = create_fdb_chains(steering, FDB_TC_OFFLOAD, FDB_TC_MAX_CHAIN + 1); if (err) return err; err = create_fdb_chains(steering, FDB_FT_OFFLOAD, 1); if (err) return err; return 0; } static int create_fdb_bypass(struct mlx5_flow_steering *steering) { struct mlx5_flow_namespace *ns; struct fs_prio *prio; int i; prio = fs_create_prio(&steering->fdb_root_ns->ns, FDB_BYPASS_PATH, 0); if (IS_ERR(prio)) return PTR_ERR(prio); ns = fs_create_namespace(prio, MLX5_FLOW_TABLE_MISS_ACTION_DEF); if (IS_ERR(ns)) return PTR_ERR(ns); for (i = 0; i < MLX5_BY_PASS_NUM_REGULAR_PRIOS; i++) { prio = fs_create_prio(ns, i, 1); if (IS_ERR(prio)) return PTR_ERR(prio); } return 0; } static void cleanup_fdb_root_ns(struct mlx5_flow_steering *steering) { cleanup_root_ns(steering->fdb_root_ns); steering->fdb_root_ns = NULL; kfree(steering->fdb_sub_ns); steering->fdb_sub_ns = NULL; } static int init_fdb_root_ns(struct mlx5_flow_steering *steering) { struct fs_prio *maj_prio; int err; steering->fdb_root_ns = create_root_ns(steering, FS_FT_FDB); if (!steering->fdb_root_ns) return -ENOMEM; err = create_fdb_bypass(steering); if (err) goto out_err; err = create_fdb_fast_path(steering); if (err) goto out_err; maj_prio = fs_create_prio(&steering->fdb_root_ns->ns, FDB_TC_MISS, 1); if (IS_ERR(maj_prio)) { err = PTR_ERR(maj_prio); goto out_err; } maj_prio = fs_create_prio(&steering->fdb_root_ns->ns, FDB_BR_OFFLOAD, 3); if (IS_ERR(maj_prio)) { err = PTR_ERR(maj_prio); goto out_err; } maj_prio = fs_create_prio(&steering->fdb_root_ns->ns, FDB_SLOW_PATH, 1); if (IS_ERR(maj_prio)) { err = PTR_ERR(maj_prio); goto out_err; } /* We put this priority last, knowing that nothing will get here * unless explicitly forwarded to. This is possible because the * slow path tables have catch all rules and nothing gets passed * those tables. */ maj_prio = fs_create_prio(&steering->fdb_root_ns->ns, FDB_PER_VPORT, 1); if (IS_ERR(maj_prio)) { err = PTR_ERR(maj_prio); goto out_err; } set_prio_attrs(steering->fdb_root_ns); return 0; out_err: cleanup_fdb_root_ns(steering); return err; } static int init_egress_acl_root_ns(struct mlx5_flow_steering *steering, int vport) { struct fs_prio *prio; steering->esw_egress_root_ns[vport] = create_root_ns(steering, FS_FT_ESW_EGRESS_ACL); if (!steering->esw_egress_root_ns[vport]) return -ENOMEM; /* create 1 prio*/ prio = fs_create_prio(&steering->esw_egress_root_ns[vport]->ns, 0, 1); return PTR_ERR_OR_ZERO(prio); } static int init_ingress_acl_root_ns(struct mlx5_flow_steering *steering, int vport) { struct fs_prio *prio; steering->esw_ingress_root_ns[vport] = create_root_ns(steering, FS_FT_ESW_INGRESS_ACL); if (!steering->esw_ingress_root_ns[vport]) return -ENOMEM; /* create 1 prio*/ prio = fs_create_prio(&steering->esw_ingress_root_ns[vport]->ns, 0, 1); return PTR_ERR_OR_ZERO(prio); } int mlx5_fs_egress_acls_init(struct mlx5_core_dev *dev, int total_vports) { struct mlx5_flow_steering *steering = dev->priv.steering; int err; int i; steering->esw_egress_root_ns = kcalloc(total_vports, sizeof(*steering->esw_egress_root_ns), GFP_KERNEL); if (!steering->esw_egress_root_ns) return -ENOMEM; for (i = 0; i < total_vports; i++) { err = init_egress_acl_root_ns(steering, i); if (err) goto cleanup_root_ns; } steering->esw_egress_acl_vports = total_vports; return 0; cleanup_root_ns: for (i--; i >= 0; i--) cleanup_root_ns(steering->esw_egress_root_ns[i]); kfree(steering->esw_egress_root_ns); steering->esw_egress_root_ns = NULL; return err; } void mlx5_fs_egress_acls_cleanup(struct mlx5_core_dev *dev) { struct mlx5_flow_steering *steering = dev->priv.steering; int i; if (!steering->esw_egress_root_ns) return; for (i = 0; i < steering->esw_egress_acl_vports; i++) cleanup_root_ns(steering->esw_egress_root_ns[i]); kfree(steering->esw_egress_root_ns); steering->esw_egress_root_ns = NULL; } int mlx5_fs_ingress_acls_init(struct mlx5_core_dev *dev, int total_vports) { struct mlx5_flow_steering *steering = dev->priv.steering; int err; int i; steering->esw_ingress_root_ns = kcalloc(total_vports, sizeof(*steering->esw_ingress_root_ns), GFP_KERNEL); if (!steering->esw_ingress_root_ns) return -ENOMEM; for (i = 0; i < total_vports; i++) { err = init_ingress_acl_root_ns(steering, i); if (err) goto cleanup_root_ns; } steering->esw_ingress_acl_vports = total_vports; return 0; cleanup_root_ns: for (i--; i >= 0; i--) cleanup_root_ns(steering->esw_ingress_root_ns[i]); kfree(steering->esw_ingress_root_ns); steering->esw_ingress_root_ns = NULL; return err; } void mlx5_fs_ingress_acls_cleanup(struct mlx5_core_dev *dev) { struct mlx5_flow_steering *steering = dev->priv.steering; int i; if (!steering->esw_ingress_root_ns) return; for (i = 0; i < steering->esw_ingress_acl_vports; i++) cleanup_root_ns(steering->esw_ingress_root_ns[i]); kfree(steering->esw_ingress_root_ns); steering->esw_ingress_root_ns = NULL; } u32 mlx5_fs_get_capabilities(struct mlx5_core_dev *dev, enum mlx5_flow_namespace_type type) { struct mlx5_flow_root_namespace *root; struct mlx5_flow_namespace *ns; ns = mlx5_get_flow_namespace(dev, type); if (!ns) return 0; root = find_root(&ns->node); if (!root) return 0; return root->cmds->get_capabilities(root, root->table_type); } static int init_egress_root_ns(struct mlx5_flow_steering *steering) { int err; steering->egress_root_ns = create_root_ns(steering, FS_FT_NIC_TX); if (!steering->egress_root_ns) return -ENOMEM; err = init_root_tree(steering, &egress_root_fs, &steering->egress_root_ns->ns.node); if (err) goto cleanup; set_prio_attrs(steering->egress_root_ns); return 0; cleanup: cleanup_root_ns(steering->egress_root_ns); steering->egress_root_ns = NULL; return err; } void mlx5_fs_core_cleanup(struct mlx5_core_dev *dev) { struct mlx5_flow_steering *steering = dev->priv.steering; cleanup_root_ns(steering->root_ns); cleanup_fdb_root_ns(steering); cleanup_root_ns(steering->port_sel_root_ns); cleanup_root_ns(steering->sniffer_rx_root_ns); cleanup_root_ns(steering->sniffer_tx_root_ns); cleanup_root_ns(steering->rdma_rx_root_ns); cleanup_root_ns(steering->rdma_tx_root_ns); cleanup_root_ns(steering->egress_root_ns); } int mlx5_fs_core_init(struct mlx5_core_dev *dev) { struct mlx5_flow_steering *steering = dev->priv.steering; int err = 0; if ((((MLX5_CAP_GEN(dev, port_type) == MLX5_CAP_PORT_TYPE_ETH) && (MLX5_CAP_GEN(dev, nic_flow_table))) || ((MLX5_CAP_GEN(dev, port_type) == MLX5_CAP_PORT_TYPE_IB) && MLX5_CAP_GEN(dev, ipoib_enhanced_offloads))) && MLX5_CAP_FLOWTABLE_NIC_RX(dev, ft_support)) { err = init_root_ns(steering); if (err) goto err; } if (MLX5_ESWITCH_MANAGER(dev)) { if (MLX5_CAP_ESW_FLOWTABLE_FDB(dev, ft_support)) { err = init_fdb_root_ns(steering); if (err) goto err; } } if (MLX5_CAP_FLOWTABLE_SNIFFER_RX(dev, ft_support)) { err = init_sniffer_rx_root_ns(steering); if (err) goto err; } if (MLX5_CAP_FLOWTABLE_SNIFFER_TX(dev, ft_support)) { err = init_sniffer_tx_root_ns(steering); if (err) goto err; } if (MLX5_CAP_FLOWTABLE_PORT_SELECTION(dev, ft_support)) { err = init_port_sel_root_ns(steering); if (err) goto err; } if (MLX5_CAP_FLOWTABLE_RDMA_RX(dev, ft_support) && MLX5_CAP_FLOWTABLE_RDMA_RX(dev, table_miss_action_domain)) { err = init_rdma_rx_root_ns(steering); if (err) goto err; } if (MLX5_CAP_FLOWTABLE_RDMA_TX(dev, ft_support)) { err = init_rdma_tx_root_ns(steering); if (err) goto err; } if (MLX5_CAP_FLOWTABLE_NIC_TX(dev, ft_support)) { err = init_egress_root_ns(steering); if (err) goto err; } return 0; err: mlx5_fs_core_cleanup(dev); return err; } void mlx5_fs_core_free(struct mlx5_core_dev *dev) { struct mlx5_flow_steering *steering = dev->priv.steering; kmem_cache_destroy(steering->ftes_cache); kmem_cache_destroy(steering->fgs_cache); kfree(steering); mlx5_ft_pool_destroy(dev); mlx5_cleanup_fc_stats(dev); } int mlx5_fs_core_alloc(struct mlx5_core_dev *dev) { struct mlx5_flow_steering *steering; int err = 0; err = mlx5_init_fc_stats(dev); if (err) return err; err = mlx5_ft_pool_init(dev); if (err) goto err; steering = kzalloc(sizeof(*steering), GFP_KERNEL); if (!steering) { err = -ENOMEM; goto err; } steering->dev = dev; dev->priv.steering = steering; if (mlx5_fs_dr_is_supported(dev)) steering->mode = MLX5_FLOW_STEERING_MODE_SMFS; else steering->mode = MLX5_FLOW_STEERING_MODE_DMFS; steering->fgs_cache = kmem_cache_create("mlx5_fs_fgs", sizeof(struct mlx5_flow_group), 0, 0, NULL); steering->ftes_cache = kmem_cache_create("mlx5_fs_ftes", sizeof(struct fs_fte), 0, 0, NULL); if (!steering->ftes_cache || !steering->fgs_cache) { err = -ENOMEM; goto err; } return 0; err: mlx5_fs_core_free(dev); return err; } int mlx5_fs_add_rx_underlay_qpn(struct mlx5_core_dev *dev, u32 underlay_qpn) { struct mlx5_flow_root_namespace *root = dev->priv.steering->root_ns; struct mlx5_ft_underlay_qp *new_uqp; int err = 0; new_uqp = kzalloc(sizeof(*new_uqp), GFP_KERNEL); if (!new_uqp) return -ENOMEM; mutex_lock(&root->chain_lock); if (!root->root_ft) { err = -EINVAL; goto update_ft_fail; } err = root->cmds->update_root_ft(root, root->root_ft, underlay_qpn, false); if (err) { mlx5_core_warn(dev, "Failed adding underlay QPN (%u) to root FT err(%d)\n", underlay_qpn, err); goto update_ft_fail; } new_uqp->qpn = underlay_qpn; list_add_tail(&new_uqp->list, &root->underlay_qpns); mutex_unlock(&root->chain_lock); return 0; update_ft_fail: mutex_unlock(&root->chain_lock); kfree(new_uqp); return err; } EXPORT_SYMBOL(mlx5_fs_add_rx_underlay_qpn); int mlx5_fs_remove_rx_underlay_qpn(struct mlx5_core_dev *dev, u32 underlay_qpn) { struct mlx5_flow_root_namespace *root = dev->priv.steering->root_ns; struct mlx5_ft_underlay_qp *uqp; bool found = false; int err = 0; mutex_lock(&root->chain_lock); list_for_each_entry(uqp, &root->underlay_qpns, list) { if (uqp->qpn == underlay_qpn) { found = true; break; } } if (!found) { mlx5_core_warn(dev, "Failed finding underlay qp (%u) in qpn list\n", underlay_qpn); err = -EINVAL; goto out; } err = root->cmds->update_root_ft(root, root->root_ft, underlay_qpn, true); if (err) mlx5_core_warn(dev, "Failed removing underlay QPN (%u) from root FT err(%d)\n", underlay_qpn, err); list_del(&uqp->list); mutex_unlock(&root->chain_lock); kfree(uqp); return 0; out: mutex_unlock(&root->chain_lock); return err; } EXPORT_SYMBOL(mlx5_fs_remove_rx_underlay_qpn); static struct mlx5_flow_root_namespace *get_root_namespace(struct mlx5_core_dev *dev, enum mlx5_flow_namespace_type ns_type) { struct mlx5_flow_namespace *ns; if (ns_type == MLX5_FLOW_NAMESPACE_ESW_EGRESS || ns_type == MLX5_FLOW_NAMESPACE_ESW_INGRESS) ns = mlx5_get_flow_vport_acl_namespace(dev, ns_type, 0); else ns = mlx5_get_flow_namespace(dev, ns_type); if (!ns) return NULL; return find_root(&ns->node); } struct mlx5_modify_hdr *mlx5_modify_header_alloc(struct mlx5_core_dev *dev, u8 ns_type, u8 num_actions, void *modify_actions) { struct mlx5_flow_root_namespace *root; struct mlx5_modify_hdr *modify_hdr; int err; root = get_root_namespace(dev, ns_type); if (!root) return ERR_PTR(-EOPNOTSUPP); modify_hdr = kzalloc(sizeof(*modify_hdr), GFP_KERNEL); if (!modify_hdr) return ERR_PTR(-ENOMEM); modify_hdr->ns_type = ns_type; err = root->cmds->modify_header_alloc(root, ns_type, num_actions, modify_actions, modify_hdr); if (err) { kfree(modify_hdr); return ERR_PTR(err); } return modify_hdr; } EXPORT_SYMBOL(mlx5_modify_header_alloc); void mlx5_modify_header_dealloc(struct mlx5_core_dev *dev, struct mlx5_modify_hdr *modify_hdr) { struct mlx5_flow_root_namespace *root; root = get_root_namespace(dev, modify_hdr->ns_type); if (WARN_ON(!root)) return; root->cmds->modify_header_dealloc(root, modify_hdr); kfree(modify_hdr); } EXPORT_SYMBOL(mlx5_modify_header_dealloc); struct mlx5_pkt_reformat *mlx5_packet_reformat_alloc(struct mlx5_core_dev *dev, struct mlx5_pkt_reformat_params *params, enum mlx5_flow_namespace_type ns_type) { struct mlx5_pkt_reformat *pkt_reformat; struct mlx5_flow_root_namespace *root; int err; root = get_root_namespace(dev, ns_type); if (!root) return ERR_PTR(-EOPNOTSUPP); pkt_reformat = kzalloc(sizeof(*pkt_reformat), GFP_KERNEL); if (!pkt_reformat) return ERR_PTR(-ENOMEM); pkt_reformat->ns_type = ns_type; pkt_reformat->reformat_type = params->type; err = root->cmds->packet_reformat_alloc(root, params, ns_type, pkt_reformat); if (err) { kfree(pkt_reformat); return ERR_PTR(err); } return pkt_reformat; } EXPORT_SYMBOL(mlx5_packet_reformat_alloc); void mlx5_packet_reformat_dealloc(struct mlx5_core_dev *dev, struct mlx5_pkt_reformat *pkt_reformat) { struct mlx5_flow_root_namespace *root; root = get_root_namespace(dev, pkt_reformat->ns_type); if (WARN_ON(!root)) return; root->cmds->packet_reformat_dealloc(root, pkt_reformat); kfree(pkt_reformat); } EXPORT_SYMBOL(mlx5_packet_reformat_dealloc); int mlx5_get_match_definer_id(struct mlx5_flow_definer *definer) { return definer->id; } struct mlx5_flow_definer * mlx5_create_match_definer(struct mlx5_core_dev *dev, enum mlx5_flow_namespace_type ns_type, u16 format_id, u32 *match_mask) { struct mlx5_flow_root_namespace *root; struct mlx5_flow_definer *definer; int id; root = get_root_namespace(dev, ns_type); if (!root) return ERR_PTR(-EOPNOTSUPP); definer = kzalloc(sizeof(*definer), GFP_KERNEL); if (!definer) return ERR_PTR(-ENOMEM); definer->ns_type = ns_type; id = root->cmds->create_match_definer(root, format_id, match_mask); if (id < 0) { mlx5_core_warn(root->dev, "Failed to create match definer (%d)\n", id); kfree(definer); return ERR_PTR(id); } definer->id = id; return definer; } void mlx5_destroy_match_definer(struct mlx5_core_dev *dev, struct mlx5_flow_definer *definer) { struct mlx5_flow_root_namespace *root; root = get_root_namespace(dev, definer->ns_type); if (WARN_ON(!root)) return; root->cmds->destroy_match_definer(root, definer->id); kfree(definer); } int mlx5_flow_namespace_set_peer(struct mlx5_flow_root_namespace *ns, struct mlx5_flow_root_namespace *peer_ns) { if (peer_ns && ns->mode != peer_ns->mode) { mlx5_core_err(ns->dev, "Can't peer namespace of different steering mode\n"); return -EINVAL; } return ns->cmds->set_peer(ns, peer_ns); } /* This function should be called only at init stage of the namespace. * It is not safe to call this function while steering operations * are executed in the namespace. */ int mlx5_flow_namespace_set_mode(struct mlx5_flow_namespace *ns, enum mlx5_flow_steering_mode mode) { struct mlx5_flow_root_namespace *root; const struct mlx5_flow_cmds *cmds; int err; root = find_root(&ns->node); if (&root->ns != ns) /* Can't set cmds to non root namespace */ return -EINVAL; if (root->table_type != FS_FT_FDB) return -EOPNOTSUPP; if (root->mode == mode) return 0; if (mode == MLX5_FLOW_STEERING_MODE_SMFS) cmds = mlx5_fs_cmd_get_dr_cmds(); else cmds = mlx5_fs_cmd_get_fw_cmds(); if (!cmds) return -EOPNOTSUPP; err = cmds->create_ns(root); if (err) { mlx5_core_err(root->dev, "Failed to create flow namespace (%d)\n", err); return err; } root->cmds->destroy_ns(root); root->cmds = cmds; root->mode = mode; return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1