Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Marek Vašut | 2649 | 55.82% | 15 | 24.59% |
Ben Dooks | 1488 | 31.35% | 4 | 6.56% |
Stephen Boyd | 112 | 2.36% | 5 | 8.20% |
Tristram Ha | 90 | 1.90% | 2 | 3.28% |
Dmitry Torokhov | 52 | 1.10% | 1 | 1.64% |
Abraham Arce | 51 | 1.07% | 2 | 3.28% |
Sebastien Jan | 50 | 1.05% | 2 | 3.28% |
Nishanth Menon | 46 | 0.97% | 1 | 1.64% |
Joe Perches | 45 | 0.95% | 1 | 1.64% |
Lukas Wunner | 40 | 0.84% | 4 | 6.56% |
Arnd Bergmann | 36 | 0.76% | 2 | 3.28% |
Jakub Kiciński | 17 | 0.36% | 3 | 4.92% |
Philippe Reynes | 12 | 0.25% | 1 | 1.64% |
Matt Renzelmann | 10 | 0.21% | 1 | 1.64% |
Michael Walle | 6 | 0.13% | 1 | 1.64% |
Lars-Peter Clausen | 5 | 0.11% | 1 | 1.64% |
Eric Dumazet | 4 | 0.08% | 1 | 1.64% |
Sergey Shcherbakov | 4 | 0.08% | 1 | 1.64% |
Felipe Balbi | 4 | 0.08% | 1 | 1.64% |
Wilfried Klaebe | 4 | 0.08% | 1 | 1.64% |
Alexey Dobriyan | 3 | 0.06% | 1 | 1.64% |
Wolfram Sang | 3 | 0.06% | 1 | 1.64% |
Anton Vorontsov | 3 | 0.06% | 1 | 1.64% |
Thomas Gleixner | 2 | 0.04% | 1 | 1.64% |
Jiri Pirko | 2 | 0.04% | 1 | 1.64% |
Javier Martinez Canillas | 2 | 0.04% | 1 | 1.64% |
Nathan Chancellor | 2 | 0.04% | 1 | 1.64% |
Max.Nekludov@us.elster.com | 1 | 0.02% | 1 | 1.64% |
Uwe Kleine-König | 1 | 0.02% | 1 | 1.64% |
Lucas De Marchi | 1 | 0.02% | 1 | 1.64% |
Zheng Yongjun | 1 | 0.02% | 1 | 1.64% |
Total | 4746 | 61 |
// SPDX-License-Identifier: GPL-2.0-only /* drivers/net/ethernet/micrel/ks8851.c * * Copyright 2009 Simtec Electronics * http://www.simtec.co.uk/ * Ben Dooks <ben@simtec.co.uk> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/interrupt.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/ethtool.h> #include <linux/cache.h> #include <linux/crc32.h> #include <linux/mii.h> #include <linux/gpio/consumer.h> #include <linux/regulator/consumer.h> #include <linux/of_mdio.h> #include <linux/of_net.h> #include "ks8851.h" /** * ks8851_lock - register access lock * @ks: The chip state * @flags: Spinlock flags * * Claim chip register access lock */ static void ks8851_lock(struct ks8851_net *ks, unsigned long *flags) { ks->lock(ks, flags); } /** * ks8851_unlock - register access unlock * @ks: The chip state * @flags: Spinlock flags * * Release chip register access lock */ static void ks8851_unlock(struct ks8851_net *ks, unsigned long *flags) { ks->unlock(ks, flags); } /** * ks8851_wrreg16 - write 16bit register value to chip * @ks: The chip state * @reg: The register address * @val: The value to write * * Issue a write to put the value @val into the register specified in @reg. */ static void ks8851_wrreg16(struct ks8851_net *ks, unsigned int reg, unsigned int val) { ks->wrreg16(ks, reg, val); } /** * ks8851_rdreg16 - read 16 bit register from device * @ks: The chip information * @reg: The register address * * Read a 16bit register from the chip, returning the result */ static unsigned int ks8851_rdreg16(struct ks8851_net *ks, unsigned int reg) { return ks->rdreg16(ks, reg); } /** * ks8851_soft_reset - issue one of the soft reset to the device * @ks: The device state. * @op: The bit(s) to set in the GRR * * Issue the relevant soft-reset command to the device's GRR register * specified by @op. * * Note, the delays are in there as a caution to ensure that the reset * has time to take effect and then complete. Since the datasheet does * not currently specify the exact sequence, we have chosen something * that seems to work with our device. */ static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op) { ks8851_wrreg16(ks, KS_GRR, op); mdelay(1); /* wait a short time to effect reset */ ks8851_wrreg16(ks, KS_GRR, 0); mdelay(1); /* wait for condition to clear */ } /** * ks8851_set_powermode - set power mode of the device * @ks: The device state * @pwrmode: The power mode value to write to KS_PMECR. * * Change the power mode of the chip. */ static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode) { unsigned pmecr; netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode); pmecr = ks8851_rdreg16(ks, KS_PMECR); pmecr &= ~PMECR_PM_MASK; pmecr |= pwrmode; ks8851_wrreg16(ks, KS_PMECR, pmecr); } /** * ks8851_write_mac_addr - write mac address to device registers * @dev: The network device * * Update the KS8851 MAC address registers from the address in @dev. * * This call assumes that the chip is not running, so there is no need to * shutdown the RXQ process whilst setting this. */ static int ks8851_write_mac_addr(struct net_device *dev) { struct ks8851_net *ks = netdev_priv(dev); unsigned long flags; u16 val; int i; ks8851_lock(ks, &flags); /* * Wake up chip in case it was powered off when stopped; otherwise, * the first write to the MAC address does not take effect. */ ks8851_set_powermode(ks, PMECR_PM_NORMAL); for (i = 0; i < ETH_ALEN; i += 2) { val = (dev->dev_addr[i] << 8) | dev->dev_addr[i + 1]; ks8851_wrreg16(ks, KS_MAR(i), val); } if (!netif_running(dev)) ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN); ks8851_unlock(ks, &flags); return 0; } /** * ks8851_read_mac_addr - read mac address from device registers * @dev: The network device * * Update our copy of the KS8851 MAC address from the registers of @dev. */ static void ks8851_read_mac_addr(struct net_device *dev) { struct ks8851_net *ks = netdev_priv(dev); unsigned long flags; u8 addr[ETH_ALEN]; u16 reg; int i; ks8851_lock(ks, &flags); for (i = 0; i < ETH_ALEN; i += 2) { reg = ks8851_rdreg16(ks, KS_MAR(i)); addr[i] = reg >> 8; addr[i + 1] = reg & 0xff; } eth_hw_addr_set(dev, addr); ks8851_unlock(ks, &flags); } /** * ks8851_init_mac - initialise the mac address * @ks: The device structure * @np: The device node pointer * * Get or create the initial mac address for the device and then set that * into the station address register. A mac address supplied in the device * tree takes precedence. Otherwise, if there is an EEPROM present, then * we try that. If no valid mac address is found we use eth_random_addr() * to create a new one. */ static void ks8851_init_mac(struct ks8851_net *ks, struct device_node *np) { struct net_device *dev = ks->netdev; int ret; ret = of_get_ethdev_address(np, dev); if (!ret) { ks8851_write_mac_addr(dev); return; } if (ks->rc_ccr & CCR_EEPROM) { ks8851_read_mac_addr(dev); if (is_valid_ether_addr(dev->dev_addr)) return; netdev_err(ks->netdev, "invalid mac address read %pM\n", dev->dev_addr); } eth_hw_addr_random(dev); ks8851_write_mac_addr(dev); } /** * ks8851_dbg_dumpkkt - dump initial packet contents to debug * @ks: The device state * @rxpkt: The data for the received packet * * Dump the initial data from the packet to dev_dbg(). */ static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt) { netdev_dbg(ks->netdev, "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n", rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7], rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11], rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]); } /** * ks8851_rx_skb - receive skbuff * @ks: The device state. * @skb: The skbuff */ static void ks8851_rx_skb(struct ks8851_net *ks, struct sk_buff *skb) { ks->rx_skb(ks, skb); } /** * ks8851_rx_pkts - receive packets from the host * @ks: The device information. * * This is called from the IRQ work queue when the system detects that there * are packets in the receive queue. Find out how many packets there are and * read them from the FIFO. */ static void ks8851_rx_pkts(struct ks8851_net *ks) { struct sk_buff *skb; unsigned rxfc; unsigned rxlen; unsigned rxstat; u8 *rxpkt; rxfc = (ks8851_rdreg16(ks, KS_RXFCTR) >> 8) & 0xff; netif_dbg(ks, rx_status, ks->netdev, "%s: %d packets\n", __func__, rxfc); /* Currently we're issuing a read per packet, but we could possibly * improve the code by issuing a single read, getting the receive * header, allocating the packet and then reading the packet data * out in one go. * * This form of operation would require us to hold the SPI bus' * chipselect low during the entie transaction to avoid any * reset to the data stream coming from the chip. */ for (; rxfc != 0; rxfc--) { rxstat = ks8851_rdreg16(ks, KS_RXFHSR); rxlen = ks8851_rdreg16(ks, KS_RXFHBCR) & RXFHBCR_CNT_MASK; netif_dbg(ks, rx_status, ks->netdev, "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen); /* the length of the packet includes the 32bit CRC */ /* set dma read address */ ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00); /* start DMA access */ ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA); if (rxlen > 4) { unsigned int rxalign; rxlen -= 4; rxalign = ALIGN(rxlen, 4); skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign); if (skb) { /* 4 bytes of status header + 4 bytes of * garbage: we put them before ethernet * header, so that they are copied, * but ignored. */ rxpkt = skb_put(skb, rxlen) - 8; ks->rdfifo(ks, rxpkt, rxalign + 8); if (netif_msg_pktdata(ks)) ks8851_dbg_dumpkkt(ks, rxpkt); skb->protocol = eth_type_trans(skb, ks->netdev); ks8851_rx_skb(ks, skb); ks->netdev->stats.rx_packets++; ks->netdev->stats.rx_bytes += rxlen; } } /* end DMA access and dequeue packet */ ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_RRXEF); } } /** * ks8851_irq - IRQ handler for dealing with interrupt requests * @irq: IRQ number * @_ks: cookie * * This handler is invoked when the IRQ line asserts to find out what happened. * As we cannot allow ourselves to sleep in HARDIRQ context, this handler runs * in thread context. * * Read the interrupt status, work out what needs to be done and then clear * any of the interrupts that are not needed. */ static irqreturn_t ks8851_irq(int irq, void *_ks) { struct ks8851_net *ks = _ks; unsigned handled = 0; unsigned long flags; unsigned int status; ks8851_lock(ks, &flags); status = ks8851_rdreg16(ks, KS_ISR); netif_dbg(ks, intr, ks->netdev, "%s: status 0x%04x\n", __func__, status); if (status & IRQ_LCI) handled |= IRQ_LCI; if (status & IRQ_LDI) { u16 pmecr = ks8851_rdreg16(ks, KS_PMECR); pmecr &= ~PMECR_WKEVT_MASK; ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK); handled |= IRQ_LDI; } if (status & IRQ_RXPSI) handled |= IRQ_RXPSI; if (status & IRQ_TXI) { handled |= IRQ_TXI; /* no lock here, tx queue should have been stopped */ /* update our idea of how much tx space is available to the * system */ ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR); netif_dbg(ks, intr, ks->netdev, "%s: txspace %d\n", __func__, ks->tx_space); } if (status & IRQ_RXI) handled |= IRQ_RXI; if (status & IRQ_SPIBEI) { netdev_err(ks->netdev, "%s: spi bus error\n", __func__); handled |= IRQ_SPIBEI; } ks8851_wrreg16(ks, KS_ISR, handled); if (status & IRQ_RXI) { /* the datasheet says to disable the rx interrupt during * packet read-out, however we're masking the interrupt * from the device so do not bother masking just the RX * from the device. */ ks8851_rx_pkts(ks); } /* if something stopped the rx process, probably due to wanting * to change the rx settings, then do something about restarting * it. */ if (status & IRQ_RXPSI) { struct ks8851_rxctrl *rxc = &ks->rxctrl; /* update the multicast hash table */ ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]); ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]); ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]); ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]); ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2); ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1); } ks8851_unlock(ks, &flags); if (status & IRQ_LCI) mii_check_link(&ks->mii); if (status & IRQ_TXI) netif_wake_queue(ks->netdev); return IRQ_HANDLED; } /** * ks8851_flush_tx_work - flush outstanding TX work * @ks: The device state */ static void ks8851_flush_tx_work(struct ks8851_net *ks) { if (ks->flush_tx_work) ks->flush_tx_work(ks); } /** * ks8851_net_open - open network device * @dev: The network device being opened. * * Called when the network device is marked active, such as a user executing * 'ifconfig up' on the device. */ static int ks8851_net_open(struct net_device *dev) { struct ks8851_net *ks = netdev_priv(dev); unsigned long flags; int ret; ret = request_threaded_irq(dev->irq, NULL, ks8851_irq, IRQF_TRIGGER_LOW | IRQF_ONESHOT, dev->name, ks); if (ret < 0) { netdev_err(dev, "failed to get irq\n"); return ret; } /* lock the card, even if we may not actually be doing anything * else at the moment */ ks8851_lock(ks, &flags); netif_dbg(ks, ifup, ks->netdev, "opening\n"); /* bring chip out of any power saving mode it was in */ ks8851_set_powermode(ks, PMECR_PM_NORMAL); /* issue a soft reset to the RX/TX QMU to put it into a known * state. */ ks8851_soft_reset(ks, GRR_QMU); /* setup transmission parameters */ ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */ TXCR_TXPE | /* pad to min length */ TXCR_TXCRC | /* add CRC */ TXCR_TXFCE)); /* enable flow control */ /* auto-increment tx data, reset tx pointer */ ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI); /* setup receiver control */ ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /* from mac filter */ RXCR1_RXFCE | /* enable flow control */ RXCR1_RXBE | /* broadcast enable */ RXCR1_RXUE | /* unicast enable */ RXCR1_RXE)); /* enable rx block */ /* transfer entire frames out in one go */ ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME); /* set receive counter timeouts */ ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */ ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */ ks8851_wrreg16(ks, KS_RXFCTR, 10); /* 10 frames to IRQ */ ks->rc_rxqcr = (RXQCR_RXFCTE | /* IRQ on frame count exceeded */ RXQCR_RXDBCTE | /* IRQ on byte count exceeded */ RXQCR_RXDTTE); /* IRQ on time exceeded */ ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr); /* clear then enable interrupts */ ks8851_wrreg16(ks, KS_ISR, ks->rc_ier); ks8851_wrreg16(ks, KS_IER, ks->rc_ier); netif_start_queue(ks->netdev); netif_dbg(ks, ifup, ks->netdev, "network device up\n"); ks8851_unlock(ks, &flags); mii_check_link(&ks->mii); return 0; } /** * ks8851_net_stop - close network device * @dev: The device being closed. * * Called to close down a network device which has been active. Cancell any * work, shutdown the RX and TX process and then place the chip into a low * power state whilst it is not being used. */ static int ks8851_net_stop(struct net_device *dev) { struct ks8851_net *ks = netdev_priv(dev); unsigned long flags; netif_info(ks, ifdown, dev, "shutting down\n"); netif_stop_queue(dev); ks8851_lock(ks, &flags); /* turn off the IRQs and ack any outstanding */ ks8851_wrreg16(ks, KS_IER, 0x0000); ks8851_wrreg16(ks, KS_ISR, 0xffff); ks8851_unlock(ks, &flags); /* stop any outstanding work */ ks8851_flush_tx_work(ks); flush_work(&ks->rxctrl_work); ks8851_lock(ks, &flags); /* shutdown RX process */ ks8851_wrreg16(ks, KS_RXCR1, 0x0000); /* shutdown TX process */ ks8851_wrreg16(ks, KS_TXCR, 0x0000); /* set powermode to soft power down to save power */ ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN); ks8851_unlock(ks, &flags); /* ensure any queued tx buffers are dumped */ while (!skb_queue_empty(&ks->txq)) { struct sk_buff *txb = skb_dequeue(&ks->txq); netif_dbg(ks, ifdown, ks->netdev, "%s: freeing txb %p\n", __func__, txb); dev_kfree_skb(txb); } free_irq(dev->irq, ks); return 0; } /** * ks8851_start_xmit - transmit packet * @skb: The buffer to transmit * @dev: The device used to transmit the packet. * * Called by the network layer to transmit the @skb. Queue the packet for * the device and schedule the necessary work to transmit the packet when * it is free. * * We do this to firstly avoid sleeping with the network device locked, * and secondly so we can round up more than one packet to transmit which * means we can try and avoid generating too many transmit done interrupts. */ static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct ks8851_net *ks = netdev_priv(dev); return ks->start_xmit(skb, dev); } /** * ks8851_rxctrl_work - work handler to change rx mode * @work: The work structure this belongs to. * * Lock the device and issue the necessary changes to the receive mode from * the network device layer. This is done so that we can do this without * having to sleep whilst holding the network device lock. * * Since the recommendation from Micrel is that the RXQ is shutdown whilst the * receive parameters are programmed, we issue a write to disable the RXQ and * then wait for the interrupt handler to be triggered once the RXQ shutdown is * complete. The interrupt handler then writes the new values into the chip. */ static void ks8851_rxctrl_work(struct work_struct *work) { struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work); unsigned long flags; ks8851_lock(ks, &flags); /* need to shutdown RXQ before modifying filter parameters */ ks8851_wrreg16(ks, KS_RXCR1, 0x00); ks8851_unlock(ks, &flags); } static void ks8851_set_rx_mode(struct net_device *dev) { struct ks8851_net *ks = netdev_priv(dev); struct ks8851_rxctrl rxctrl; memset(&rxctrl, 0, sizeof(rxctrl)); if (dev->flags & IFF_PROMISC) { /* interface to receive everything */ rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF; } else if (dev->flags & IFF_ALLMULTI) { /* accept all multicast packets */ rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE | RXCR1_RXPAFMA | RXCR1_RXMAFMA); } else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) { struct netdev_hw_addr *ha; u32 crc; /* accept some multicast */ netdev_for_each_mc_addr(ha, dev) { crc = ether_crc(ETH_ALEN, ha->addr); crc >>= (32 - 6); /* get top six bits */ rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf)); } rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA; } else { /* just accept broadcast / unicast */ rxctrl.rxcr1 = RXCR1_RXPAFMA; } rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */ RXCR1_RXBE | /* broadcast enable */ RXCR1_RXE | /* RX process enable */ RXCR1_RXFCE); /* enable flow control */ rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME; /* schedule work to do the actual set of the data if needed */ spin_lock(&ks->statelock); if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) { memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl)); schedule_work(&ks->rxctrl_work); } spin_unlock(&ks->statelock); } static int ks8851_set_mac_address(struct net_device *dev, void *addr) { struct sockaddr *sa = addr; if (netif_running(dev)) return -EBUSY; if (!is_valid_ether_addr(sa->sa_data)) return -EADDRNOTAVAIL; eth_hw_addr_set(dev, sa->sa_data); return ks8851_write_mac_addr(dev); } static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd) { struct ks8851_net *ks = netdev_priv(dev); if (!netif_running(dev)) return -EINVAL; return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL); } static const struct net_device_ops ks8851_netdev_ops = { .ndo_open = ks8851_net_open, .ndo_stop = ks8851_net_stop, .ndo_eth_ioctl = ks8851_net_ioctl, .ndo_start_xmit = ks8851_start_xmit, .ndo_set_mac_address = ks8851_set_mac_address, .ndo_set_rx_mode = ks8851_set_rx_mode, .ndo_validate_addr = eth_validate_addr, }; /* ethtool support */ static void ks8851_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *di) { strscpy(di->driver, "KS8851", sizeof(di->driver)); strscpy(di->version, "1.00", sizeof(di->version)); strscpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info)); } static u32 ks8851_get_msglevel(struct net_device *dev) { struct ks8851_net *ks = netdev_priv(dev); return ks->msg_enable; } static void ks8851_set_msglevel(struct net_device *dev, u32 to) { struct ks8851_net *ks = netdev_priv(dev); ks->msg_enable = to; } static int ks8851_get_link_ksettings(struct net_device *dev, struct ethtool_link_ksettings *cmd) { struct ks8851_net *ks = netdev_priv(dev); mii_ethtool_get_link_ksettings(&ks->mii, cmd); return 0; } static int ks8851_set_link_ksettings(struct net_device *dev, const struct ethtool_link_ksettings *cmd) { struct ks8851_net *ks = netdev_priv(dev); return mii_ethtool_set_link_ksettings(&ks->mii, cmd); } static u32 ks8851_get_link(struct net_device *dev) { struct ks8851_net *ks = netdev_priv(dev); return mii_link_ok(&ks->mii); } static int ks8851_nway_reset(struct net_device *dev) { struct ks8851_net *ks = netdev_priv(dev); return mii_nway_restart(&ks->mii); } /* EEPROM support */ static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee) { struct ks8851_net *ks = ee->data; unsigned val; val = ks8851_rdreg16(ks, KS_EEPCR); ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0; ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0; ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0; } static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee) { struct ks8851_net *ks = ee->data; unsigned val = EEPCR_EESA; /* default - eeprom access on */ if (ee->drive_data) val |= EEPCR_EESRWA; if (ee->reg_data_in) val |= EEPCR_EEDO; if (ee->reg_data_clock) val |= EEPCR_EESCK; if (ee->reg_chip_select) val |= EEPCR_EECS; ks8851_wrreg16(ks, KS_EEPCR, val); } /** * ks8851_eeprom_claim - claim device EEPROM and activate the interface * @ks: The network device state. * * Check for the presence of an EEPROM, and then activate software access * to the device. */ static int ks8851_eeprom_claim(struct ks8851_net *ks) { /* start with clock low, cs high */ ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS); return 0; } /** * ks8851_eeprom_release - release the EEPROM interface * @ks: The device state * * Release the software access to the device EEPROM */ static void ks8851_eeprom_release(struct ks8851_net *ks) { unsigned val = ks8851_rdreg16(ks, KS_EEPCR); ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA); } #define KS_EEPROM_MAGIC (0x00008851) static int ks8851_set_eeprom(struct net_device *dev, struct ethtool_eeprom *ee, u8 *data) { struct ks8851_net *ks = netdev_priv(dev); int offset = ee->offset; unsigned long flags; int len = ee->len; u16 tmp; /* currently only support byte writing */ if (len != 1) return -EINVAL; if (ee->magic != KS_EEPROM_MAGIC) return -EINVAL; if (!(ks->rc_ccr & CCR_EEPROM)) return -ENOENT; ks8851_lock(ks, &flags); ks8851_eeprom_claim(ks); eeprom_93cx6_wren(&ks->eeprom, true); /* ethtool currently only supports writing bytes, which means * we have to read/modify/write our 16bit EEPROMs */ eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp); if (offset & 1) { tmp &= 0xff; tmp |= *data << 8; } else { tmp &= 0xff00; tmp |= *data; } eeprom_93cx6_write(&ks->eeprom, offset/2, tmp); eeprom_93cx6_wren(&ks->eeprom, false); ks8851_eeprom_release(ks); ks8851_unlock(ks, &flags); return 0; } static int ks8851_get_eeprom(struct net_device *dev, struct ethtool_eeprom *ee, u8 *data) { struct ks8851_net *ks = netdev_priv(dev); int offset = ee->offset; unsigned long flags; int len = ee->len; /* must be 2 byte aligned */ if (len & 1 || offset & 1) return -EINVAL; if (!(ks->rc_ccr & CCR_EEPROM)) return -ENOENT; ks8851_lock(ks, &flags); ks8851_eeprom_claim(ks); ee->magic = KS_EEPROM_MAGIC; eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2); ks8851_eeprom_release(ks); ks8851_unlock(ks, &flags); return 0; } static int ks8851_get_eeprom_len(struct net_device *dev) { struct ks8851_net *ks = netdev_priv(dev); /* currently, we assume it is an 93C46 attached, so return 128 */ return ks->rc_ccr & CCR_EEPROM ? 128 : 0; } static const struct ethtool_ops ks8851_ethtool_ops = { .get_drvinfo = ks8851_get_drvinfo, .get_msglevel = ks8851_get_msglevel, .set_msglevel = ks8851_set_msglevel, .get_link = ks8851_get_link, .nway_reset = ks8851_nway_reset, .get_eeprom_len = ks8851_get_eeprom_len, .get_eeprom = ks8851_get_eeprom, .set_eeprom = ks8851_set_eeprom, .get_link_ksettings = ks8851_get_link_ksettings, .set_link_ksettings = ks8851_set_link_ksettings, }; /* MII interface controls */ /** * ks8851_phy_reg - convert MII register into a KS8851 register * @reg: MII register number. * * Return the KS8851 register number for the corresponding MII PHY register * if possible. Return zero if the MII register has no direct mapping to the * KS8851 register set. */ static int ks8851_phy_reg(int reg) { switch (reg) { case MII_BMCR: return KS_P1MBCR; case MII_BMSR: return KS_P1MBSR; case MII_PHYSID1: return KS_PHY1ILR; case MII_PHYSID2: return KS_PHY1IHR; case MII_ADVERTISE: return KS_P1ANAR; case MII_LPA: return KS_P1ANLPR; } return -EOPNOTSUPP; } static int ks8851_phy_read_common(struct net_device *dev, int phy_addr, int reg) { struct ks8851_net *ks = netdev_priv(dev); unsigned long flags; int result; int ksreg; ksreg = ks8851_phy_reg(reg); if (ksreg < 0) return ksreg; ks8851_lock(ks, &flags); result = ks8851_rdreg16(ks, ksreg); ks8851_unlock(ks, &flags); return result; } /** * ks8851_phy_read - MII interface PHY register read. * @dev: The network device the PHY is on. * @phy_addr: Address of PHY (ignored as we only have one) * @reg: The register to read. * * This call reads data from the PHY register specified in @reg. Since the * device does not support all the MII registers, the non-existent values * are always returned as zero. * * We return zero for unsupported registers as the MII code does not check * the value returned for any error status, and simply returns it to the * caller. The mii-tool that the driver was tested with takes any -ve error * as real PHY capabilities, thus displaying incorrect data to the user. */ static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg) { int ret; ret = ks8851_phy_read_common(dev, phy_addr, reg); if (ret < 0) return 0x0; /* no error return allowed, so use zero */ return ret; } static void ks8851_phy_write(struct net_device *dev, int phy, int reg, int value) { struct ks8851_net *ks = netdev_priv(dev); unsigned long flags; int ksreg; ksreg = ks8851_phy_reg(reg); if (ksreg >= 0) { ks8851_lock(ks, &flags); ks8851_wrreg16(ks, ksreg, value); ks8851_unlock(ks, &flags); } } static int ks8851_mdio_read(struct mii_bus *bus, int phy_id, int reg) { struct ks8851_net *ks = bus->priv; if (phy_id != 0) return -EOPNOTSUPP; /* KS8851 PHY ID registers are swapped in HW, swap them back. */ if (reg == MII_PHYSID1) reg = MII_PHYSID2; else if (reg == MII_PHYSID2) reg = MII_PHYSID1; return ks8851_phy_read_common(ks->netdev, phy_id, reg); } static int ks8851_mdio_write(struct mii_bus *bus, int phy_id, int reg, u16 val) { struct ks8851_net *ks = bus->priv; ks8851_phy_write(ks->netdev, phy_id, reg, val); return 0; } /** * ks8851_read_selftest - read the selftest memory info. * @ks: The device state * * Read and check the TX/RX memory selftest information. */ static void ks8851_read_selftest(struct ks8851_net *ks) { unsigned both_done = MBIR_TXMBF | MBIR_RXMBF; unsigned rd; rd = ks8851_rdreg16(ks, KS_MBIR); if ((rd & both_done) != both_done) { netdev_warn(ks->netdev, "Memory selftest not finished\n"); return; } if (rd & MBIR_TXMBFA) netdev_err(ks->netdev, "TX memory selftest fail\n"); if (rd & MBIR_RXMBFA) netdev_err(ks->netdev, "RX memory selftest fail\n"); } /* driver bus management functions */ #ifdef CONFIG_PM_SLEEP int ks8851_suspend(struct device *dev) { struct ks8851_net *ks = dev_get_drvdata(dev); struct net_device *netdev = ks->netdev; if (netif_running(netdev)) { netif_device_detach(netdev); ks8851_net_stop(netdev); } return 0; } EXPORT_SYMBOL_GPL(ks8851_suspend); int ks8851_resume(struct device *dev) { struct ks8851_net *ks = dev_get_drvdata(dev); struct net_device *netdev = ks->netdev; if (netif_running(netdev)) { ks8851_net_open(netdev); netif_device_attach(netdev); } return 0; } EXPORT_SYMBOL_GPL(ks8851_resume); #endif static int ks8851_register_mdiobus(struct ks8851_net *ks, struct device *dev) { struct mii_bus *mii_bus; int ret; mii_bus = mdiobus_alloc(); if (!mii_bus) return -ENOMEM; mii_bus->name = "ks8851_eth_mii"; mii_bus->read = ks8851_mdio_read; mii_bus->write = ks8851_mdio_write; mii_bus->priv = ks; mii_bus->parent = dev; mii_bus->phy_mask = ~((u32)BIT(0)); snprintf(mii_bus->id, MII_BUS_ID_SIZE, "%s", dev_name(dev)); ret = mdiobus_register(mii_bus); if (ret) goto err_mdiobus_register; ks->mii_bus = mii_bus; return 0; err_mdiobus_register: mdiobus_free(mii_bus); return ret; } static void ks8851_unregister_mdiobus(struct ks8851_net *ks) { mdiobus_unregister(ks->mii_bus); mdiobus_free(ks->mii_bus); } int ks8851_probe_common(struct net_device *netdev, struct device *dev, int msg_en) { struct ks8851_net *ks = netdev_priv(netdev); unsigned cider; int ret; ks->netdev = netdev; ks->tx_space = 6144; ks->gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH); ret = PTR_ERR_OR_ZERO(ks->gpio); if (ret) { if (ret != -EPROBE_DEFER) dev_err(dev, "reset gpio request failed: %d\n", ret); return ret; } ret = gpiod_set_consumer_name(ks->gpio, "ks8851_rst_n"); if (ret) { dev_err(dev, "failed to set reset gpio name: %d\n", ret); return ret; } ks->vdd_io = devm_regulator_get(dev, "vdd-io"); if (IS_ERR(ks->vdd_io)) { ret = PTR_ERR(ks->vdd_io); goto err_reg_io; } ret = regulator_enable(ks->vdd_io); if (ret) { dev_err(dev, "regulator vdd_io enable fail: %d\n", ret); goto err_reg_io; } ks->vdd_reg = devm_regulator_get(dev, "vdd"); if (IS_ERR(ks->vdd_reg)) { ret = PTR_ERR(ks->vdd_reg); goto err_reg; } ret = regulator_enable(ks->vdd_reg); if (ret) { dev_err(dev, "regulator vdd enable fail: %d\n", ret); goto err_reg; } if (ks->gpio) { usleep_range(10000, 11000); gpiod_set_value_cansleep(ks->gpio, 0); } spin_lock_init(&ks->statelock); INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work); SET_NETDEV_DEV(netdev, dev); /* setup EEPROM state */ ks->eeprom.data = ks; ks->eeprom.width = PCI_EEPROM_WIDTH_93C46; ks->eeprom.register_read = ks8851_eeprom_regread; ks->eeprom.register_write = ks8851_eeprom_regwrite; /* setup mii state */ ks->mii.dev = netdev; ks->mii.phy_id = 1; ks->mii.phy_id_mask = 1; ks->mii.reg_num_mask = 0xf; ks->mii.mdio_read = ks8851_phy_read; ks->mii.mdio_write = ks8851_phy_write; dev_info(dev, "message enable is %d\n", msg_en); ret = ks8851_register_mdiobus(ks, dev); if (ret) goto err_mdio; /* set the default message enable */ ks->msg_enable = netif_msg_init(msg_en, NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK); skb_queue_head_init(&ks->txq); netdev->ethtool_ops = &ks8851_ethtool_ops; dev_set_drvdata(dev, ks); netif_carrier_off(ks->netdev); netdev->if_port = IF_PORT_100BASET; netdev->netdev_ops = &ks8851_netdev_ops; /* issue a global soft reset to reset the device. */ ks8851_soft_reset(ks, GRR_GSR); /* simple check for a valid chip being connected to the bus */ cider = ks8851_rdreg16(ks, KS_CIDER); if ((cider & ~CIDER_REV_MASK) != CIDER_ID) { dev_err(dev, "failed to read device ID\n"); ret = -ENODEV; goto err_id; } /* cache the contents of the CCR register for EEPROM, etc. */ ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR); ks8851_read_selftest(ks); ks8851_init_mac(ks, dev->of_node); ret = register_netdev(netdev); if (ret) { dev_err(dev, "failed to register network device\n"); goto err_id; } netdev_info(netdev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n", CIDER_REV_GET(cider), netdev->dev_addr, netdev->irq, ks->rc_ccr & CCR_EEPROM ? "has" : "no"); return 0; err_id: ks8851_unregister_mdiobus(ks); err_mdio: if (ks->gpio) gpiod_set_value_cansleep(ks->gpio, 1); regulator_disable(ks->vdd_reg); err_reg: regulator_disable(ks->vdd_io); err_reg_io: return ret; } EXPORT_SYMBOL_GPL(ks8851_probe_common); void ks8851_remove_common(struct device *dev) { struct ks8851_net *priv = dev_get_drvdata(dev); ks8851_unregister_mdiobus(priv); if (netif_msg_drv(priv)) dev_info(dev, "remove\n"); unregister_netdev(priv->netdev); if (priv->gpio) gpiod_set_value_cansleep(priv->gpio, 1); regulator_disable(priv->vdd_reg); regulator_disable(priv->vdd_io); } EXPORT_SYMBOL_GPL(ks8851_remove_common); MODULE_DESCRIPTION("KS8851 Network driver"); MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1