Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Yuval Mintz | 9363 | 87.51% | 29 | 48.33% |
Sudarsana Reddy Kalluru | 360 | 3.36% | 2 | 3.33% |
Ariel Elior | 310 | 2.90% | 2 | 3.33% |
Denis Bolotin | 181 | 1.69% | 3 | 5.00% |
Alexander Lobakin | 147 | 1.37% | 5 | 8.33% |
Manish Chopra | 121 | 1.13% | 3 | 5.00% |
Igor Russkikh | 65 | 0.61% | 2 | 3.33% |
Tomer Tayar | 53 | 0.50% | 3 | 5.00% |
Shai Malin | 34 | 0.32% | 2 | 3.33% |
Alok Prasad | 28 | 0.26% | 1 | 1.67% |
Allen Pais | 14 | 0.13% | 1 | 1.67% |
zhangyue | 12 | 0.11% | 1 | 1.67% |
Michal Kalderon | 4 | 0.04% | 1 | 1.67% |
Laurence Oberman | 3 | 0.03% | 1 | 1.67% |
Colin Ian King | 1 | 0.01% | 1 | 1.67% |
Jilin Yuan | 1 | 0.01% | 1 | 1.67% |
Wolfram Sang | 1 | 0.01% | 1 | 1.67% |
Masanari Iida | 1 | 0.01% | 1 | 1.67% |
Total | 10699 | 60 |
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) /* QLogic qed NIC Driver * Copyright (c) 2015-2017 QLogic Corporation * Copyright (c) 2019-2020 Marvell International Ltd. */ #include <linux/types.h> #include <asm/byteorder.h> #include <linux/io.h> #include <linux/bitops.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/errno.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/string.h> #include "qed.h" #include "qed_hsi.h" #include "qed_hw.h" #include "qed_init_ops.h" #include "qed_int.h" #include "qed_mcp.h" #include "qed_reg_addr.h" #include "qed_sp.h" #include "qed_sriov.h" #include "qed_vf.h" struct qed_pi_info { qed_int_comp_cb_t comp_cb; void *cookie; }; struct qed_sb_sp_info { struct qed_sb_info sb_info; /* per protocol index data */ struct qed_pi_info pi_info_arr[PIS_PER_SB]; }; enum qed_attention_type { QED_ATTN_TYPE_ATTN, QED_ATTN_TYPE_PARITY, }; #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \ ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn) struct aeu_invert_reg_bit { char bit_name[30]; #define ATTENTION_PARITY (1 << 0) #define ATTENTION_LENGTH_MASK (0x00000ff0) #define ATTENTION_LENGTH_SHIFT (4) #define ATTENTION_LENGTH(flags) (((flags) & ATTENTION_LENGTH_MASK) >> \ ATTENTION_LENGTH_SHIFT) #define ATTENTION_SINGLE BIT(ATTENTION_LENGTH_SHIFT) #define ATTENTION_PAR (ATTENTION_SINGLE | ATTENTION_PARITY) #define ATTENTION_PAR_INT ((2 << ATTENTION_LENGTH_SHIFT) | \ ATTENTION_PARITY) /* Multiple bits start with this offset */ #define ATTENTION_OFFSET_MASK (0x000ff000) #define ATTENTION_OFFSET_SHIFT (12) #define ATTENTION_BB_MASK (0x00700000) #define ATTENTION_BB_SHIFT (20) #define ATTENTION_BB(value) (value << ATTENTION_BB_SHIFT) #define ATTENTION_BB_DIFFERENT BIT(23) #define ATTENTION_CLEAR_ENABLE BIT(28) unsigned int flags; /* Callback to call if attention will be triggered */ int (*cb)(struct qed_hwfn *p_hwfn); enum block_id block_index; }; struct aeu_invert_reg { struct aeu_invert_reg_bit bits[32]; }; #define MAX_ATTN_GRPS (8) #define NUM_ATTN_REGS (9) /* Specific HW attention callbacks */ static int qed_mcp_attn_cb(struct qed_hwfn *p_hwfn) { u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE); /* This might occur on certain instances; Log it once then mask it */ DP_INFO(p_hwfn->cdev, "MCP_REG_CPU_STATE: %08x - Masking...\n", tmp); qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK, 0xffffffff); return 0; } #define QED_PSWHST_ATTENTION_INCORRECT_ACCESS (0x1) #define ATTENTION_INCORRECT_ACCESS_WR_MASK (0x1) #define ATTENTION_INCORRECT_ACCESS_WR_SHIFT (0) #define ATTENTION_INCORRECT_ACCESS_CLIENT_MASK (0xf) #define ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT (1) #define ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK (0x1) #define ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT (5) #define ATTENTION_INCORRECT_ACCESS_VF_ID_MASK (0xff) #define ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT (6) #define ATTENTION_INCORRECT_ACCESS_PF_ID_MASK (0xf) #define ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT (14) #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK (0xff) #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT (18) static int qed_pswhst_attn_cb(struct qed_hwfn *p_hwfn) { u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, PSWHST_REG_INCORRECT_ACCESS_VALID); if (tmp & QED_PSWHST_ATTENTION_INCORRECT_ACCESS) { u32 addr, data, length; addr = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, PSWHST_REG_INCORRECT_ACCESS_ADDRESS); data = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, PSWHST_REG_INCORRECT_ACCESS_DATA); length = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, PSWHST_REG_INCORRECT_ACCESS_LENGTH); DP_INFO(p_hwfn->cdev, "Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n", addr, length, (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_PF_ID), (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_VF_ID), (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_VF_VALID), (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_CLIENT), (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_WR), (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_BYTE_EN), data); } return 0; } #define QED_GRC_ATTENTION_VALID_BIT (1 << 0) #define QED_GRC_ATTENTION_ADDRESS_MASK (0x7fffff) #define QED_GRC_ATTENTION_ADDRESS_SHIFT (0) #define QED_GRC_ATTENTION_RDWR_BIT (1 << 23) #define QED_GRC_ATTENTION_MASTER_MASK (0xf) #define QED_GRC_ATTENTION_MASTER_SHIFT (24) #define QED_GRC_ATTENTION_PF_MASK (0xf) #define QED_GRC_ATTENTION_PF_SHIFT (0) #define QED_GRC_ATTENTION_VF_MASK (0xff) #define QED_GRC_ATTENTION_VF_SHIFT (4) #define QED_GRC_ATTENTION_PRIV_MASK (0x3) #define QED_GRC_ATTENTION_PRIV_SHIFT (14) #define QED_GRC_ATTENTION_PRIV_VF (0) static const char *attn_master_to_str(u8 master) { switch (master) { case 1: return "PXP"; case 2: return "MCP"; case 3: return "MSDM"; case 4: return "PSDM"; case 5: return "YSDM"; case 6: return "USDM"; case 7: return "TSDM"; case 8: return "XSDM"; case 9: return "DBU"; case 10: return "DMAE"; default: return "Unknown"; } } static int qed_grc_attn_cb(struct qed_hwfn *p_hwfn) { u32 tmp, tmp2; /* We've already cleared the timeout interrupt register, so we learn * of interrupts via the validity register */ tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, GRC_REG_TIMEOUT_ATTN_ACCESS_VALID); if (!(tmp & QED_GRC_ATTENTION_VALID_BIT)) goto out; /* Read the GRC timeout information */ tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0); tmp2 = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1); DP_INFO(p_hwfn->cdev, "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n", tmp2, tmp, (tmp & QED_GRC_ATTENTION_RDWR_BIT) ? "Write to" : "Read from", GET_FIELD(tmp, QED_GRC_ATTENTION_ADDRESS) << 2, attn_master_to_str(GET_FIELD(tmp, QED_GRC_ATTENTION_MASTER)), GET_FIELD(tmp2, QED_GRC_ATTENTION_PF), (GET_FIELD(tmp2, QED_GRC_ATTENTION_PRIV) == QED_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant)", GET_FIELD(tmp2, QED_GRC_ATTENTION_VF)); out: /* Regardles of anything else, clean the validity bit */ qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0); return 0; } #define PGLUE_ATTENTION_VALID (1 << 29) #define PGLUE_ATTENTION_RD_VALID (1 << 26) #define PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf) #define PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20) #define PGLUE_ATTENTION_DETAILS_VF_VALID_MASK (0x1) #define PGLUE_ATTENTION_DETAILS_VF_VALID_SHIFT (19) #define PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff) #define PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24) #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_MASK (0x1) #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_SHIFT (21) #define PGLUE_ATTENTION_DETAILS2_BME_MASK (0x1) #define PGLUE_ATTENTION_DETAILS2_BME_SHIFT (22) #define PGLUE_ATTENTION_DETAILS2_FID_EN_MASK (0x1) #define PGLUE_ATTENTION_DETAILS2_FID_EN_SHIFT (23) #define PGLUE_ATTENTION_ICPL_VALID (1 << 23) #define PGLUE_ATTENTION_ZLR_VALID (1 << 25) #define PGLUE_ATTENTION_ILT_VALID (1 << 23) int qed_pglueb_rbc_attn_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, bool hw_init) { char msg[256]; u32 tmp; tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2); if (tmp & PGLUE_ATTENTION_VALID) { u32 addr_lo, addr_hi, details; addr_lo = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_ADD_31_0); addr_hi = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_ADD_63_32); details = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS); snprintf(msg, sizeof(msg), "Illegal write by chip to [%08x:%08x] blocked.\n" "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n" "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]", addr_hi, addr_lo, details, (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID), (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID), !!GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VF_VALID), tmp, !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_WAS_ERR), !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_BME), !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_FID_EN)); if (hw_init) DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "%s\n", msg); else DP_NOTICE(p_hwfn, "%s\n", msg); } tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2); if (tmp & PGLUE_ATTENTION_RD_VALID) { u32 addr_lo, addr_hi, details; addr_lo = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_ADD_31_0); addr_hi = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_ADD_63_32); details = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS); DP_NOTICE(p_hwfn, "Illegal read by chip from [%08x:%08x] blocked.\n" "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n" "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n", addr_hi, addr_lo, details, (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID), (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID), GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0, tmp, GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0, GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0, GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0); } tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL); if (tmp & PGLUE_ATTENTION_ICPL_VALID) { snprintf(msg, sizeof(msg), "ICPL error - %08x", tmp); if (hw_init) DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "%s\n", msg); else DP_NOTICE(p_hwfn, "%s\n", msg); } tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS); if (tmp & PGLUE_ATTENTION_ZLR_VALID) { u32 addr_hi, addr_lo; addr_lo = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0); addr_hi = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32); DP_NOTICE(p_hwfn, "ZLR error - %08x [Address %08x:%08x]\n", tmp, addr_hi, addr_lo); } tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2); if (tmp & PGLUE_ATTENTION_ILT_VALID) { u32 addr_hi, addr_lo, details; addr_lo = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_ADD_31_0); addr_hi = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_ADD_63_32); details = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS); DP_NOTICE(p_hwfn, "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n", details, tmp, addr_hi, addr_lo); } /* Clear the indications */ qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, BIT(2)); return 0; } static int qed_pglueb_rbc_attn_cb(struct qed_hwfn *p_hwfn) { return qed_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt, false); } static int qed_fw_assertion(struct qed_hwfn *p_hwfn) { qed_hw_err_notify(p_hwfn, p_hwfn->p_dpc_ptt, QED_HW_ERR_FW_ASSERT, "FW assertion!\n"); /* Clear assert indications */ qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MISC_REG_AEU_GENERAL_ATTN_32, 0); return -EINVAL; } static int qed_general_attention_35(struct qed_hwfn *p_hwfn) { DP_INFO(p_hwfn, "General attention 35!\n"); return 0; } #define QED_DORQ_ATTENTION_REASON_MASK (0xfffff) #define QED_DORQ_ATTENTION_OPAQUE_MASK (0xffff) #define QED_DORQ_ATTENTION_OPAQUE_SHIFT (0x0) #define QED_DORQ_ATTENTION_SIZE_MASK (0x7f) #define QED_DORQ_ATTENTION_SIZE_SHIFT (16) #define QED_DB_REC_COUNT 1000 #define QED_DB_REC_INTERVAL 100 static int qed_db_rec_flush_queue(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { u32 count = QED_DB_REC_COUNT; u32 usage = 1; /* Flush any pending (e)dpms as they may never arrive */ qed_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1); /* wait for usage to zero or count to run out. This is necessary since * EDPM doorbell transactions can take multiple 64b cycles, and as such * can "split" over the pci. Possibly, the doorbell drop can happen with * half an EDPM in the queue and other half dropped. Another EDPM * doorbell to the same address (from doorbell recovery mechanism or * from the doorbelling entity) could have first half dropped and second * half interpreted as continuation of the first. To prevent such * malformed doorbells from reaching the device, flush the queue before * releasing the overflow sticky indication. */ while (count-- && usage) { usage = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT); udelay(QED_DB_REC_INTERVAL); } /* should have been depleted by now */ if (usage) { DP_NOTICE(p_hwfn->cdev, "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n", QED_DB_REC_INTERVAL * QED_DB_REC_COUNT, usage); return -EBUSY; } return 0; } int qed_db_rec_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { u32 attn_ovfl, cur_ovfl; int rc; attn_ovfl = test_and_clear_bit(QED_OVERFLOW_BIT, &p_hwfn->db_recovery_info.overflow); cur_ovfl = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY); if (!cur_ovfl && !attn_ovfl) return 0; DP_NOTICE(p_hwfn, "PF Overflow sticky: attn %u current %u\n", attn_ovfl, cur_ovfl); if (cur_ovfl && !p_hwfn->db_bar_no_edpm) { rc = qed_db_rec_flush_queue(p_hwfn, p_ptt); if (rc) return rc; } /* Release overflow sticky indication (stop silently dropping everything) */ qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0); /* Repeat all last doorbells (doorbell drop recovery) */ qed_db_recovery_execute(p_hwfn); return 0; } static void qed_dorq_attn_overflow(struct qed_hwfn *p_hwfn) { struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt; u32 overflow; int rc; overflow = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY); if (!overflow) goto out; /* Run PF doorbell recovery in next periodic handler */ set_bit(QED_OVERFLOW_BIT, &p_hwfn->db_recovery_info.overflow); if (!p_hwfn->db_bar_no_edpm) { rc = qed_db_rec_flush_queue(p_hwfn, p_ptt); if (rc) goto out; } qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0); out: /* Schedule the handler even if overflow was not detected */ qed_periodic_db_rec_start(p_hwfn); } static int qed_dorq_attn_int_sts(struct qed_hwfn *p_hwfn) { u32 int_sts, first_drop_reason, details, address, all_drops_reason; struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt; int_sts = qed_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS); if (int_sts == 0xdeadbeaf) { DP_NOTICE(p_hwfn->cdev, "DORQ is being reset, skipping int_sts handler\n"); return 0; } /* int_sts may be zero since all PFs were interrupted for doorbell * overflow but another one already handled it. Can abort here. If * This PF also requires overflow recovery we will be interrupted again. * The masked almost full indication may also be set. Ignoring. */ if (!(int_sts & ~DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) return 0; DP_NOTICE(p_hwfn->cdev, "DORQ attention. int_sts was %x\n", int_sts); /* check if db_drop or overflow happened */ if (int_sts & (DORQ_REG_INT_STS_DB_DROP | DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) { /* Obtain data about db drop/overflow */ first_drop_reason = qed_rd(p_hwfn, p_ptt, DORQ_REG_DB_DROP_REASON) & QED_DORQ_ATTENTION_REASON_MASK; details = qed_rd(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS); address = qed_rd(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_ADDRESS); all_drops_reason = qed_rd(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REASON); /* Log info */ DP_NOTICE(p_hwfn->cdev, "Doorbell drop occurred\n" "Address\t\t0x%08x\t(second BAR address)\n" "FID\t\t0x%04x\t\t(Opaque FID)\n" "Size\t\t0x%04x\t\t(in bytes)\n" "1st drop reason\t0x%08x\t(details on first drop since last handling)\n" "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n", address, GET_FIELD(details, QED_DORQ_ATTENTION_OPAQUE), GET_FIELD(details, QED_DORQ_ATTENTION_SIZE) * 4, first_drop_reason, all_drops_reason); /* Clear the doorbell drop details and prepare for next drop */ qed_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0); /* Mark interrupt as handled (note: even if drop was due to a different * reason than overflow we mark as handled) */ qed_wr(p_hwfn, p_ptt, DORQ_REG_INT_STS_WR, DORQ_REG_INT_STS_DB_DROP | DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR); /* If there are no indications other than drop indications, success */ if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP | DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR | DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0) return 0; } /* Some other indication was present - non recoverable */ DP_INFO(p_hwfn, "DORQ fatal attention\n"); return -EINVAL; } static int qed_dorq_attn_cb(struct qed_hwfn *p_hwfn) { if (p_hwfn->cdev->recov_in_prog) return 0; p_hwfn->db_recovery_info.dorq_attn = true; qed_dorq_attn_overflow(p_hwfn); return qed_dorq_attn_int_sts(p_hwfn); } static void qed_dorq_attn_handler(struct qed_hwfn *p_hwfn) { if (p_hwfn->db_recovery_info.dorq_attn) goto out; /* Call DORQ callback if the attention was missed */ qed_dorq_attn_cb(p_hwfn); out: p_hwfn->db_recovery_info.dorq_attn = false; } /* Instead of major changes to the data-structure, we have a some 'special' * identifiers for sources that changed meaning between adapters. */ enum aeu_invert_reg_special_type { AEU_INVERT_REG_SPECIAL_CNIG_0, AEU_INVERT_REG_SPECIAL_CNIG_1, AEU_INVERT_REG_SPECIAL_CNIG_2, AEU_INVERT_REG_SPECIAL_CNIG_3, AEU_INVERT_REG_SPECIAL_MAX, }; static struct aeu_invert_reg_bit aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = { {"CNIG port 0", ATTENTION_SINGLE, NULL, BLOCK_CNIG}, {"CNIG port 1", ATTENTION_SINGLE, NULL, BLOCK_CNIG}, {"CNIG port 2", ATTENTION_SINGLE, NULL, BLOCK_CNIG}, {"CNIG port 3", ATTENTION_SINGLE, NULL, BLOCK_CNIG}, }; /* Notice aeu_invert_reg must be defined in the same order of bits as HW; */ static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = { { { /* After Invert 1 */ {"GPIO0 function%d", (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID}, } }, { { /* After Invert 2 */ {"PGLUE config_space", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, {"PGLUE misc_flr", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, {"PGLUE B RBC", ATTENTION_PAR_INT, qed_pglueb_rbc_attn_cb, BLOCK_PGLUE_B}, {"PGLUE misc_mctp", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, {"Flash event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, {"SMB event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, {"Main Power", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, {"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) | (1 << ATTENTION_OFFSET_SHIFT), NULL, MAX_BLOCK_ID}, {"PCIE glue/PXP VPD %d", (16 << ATTENTION_LENGTH_SHIFT), NULL, BLOCK_PGLCS}, } }, { { /* After Invert 3 */ {"General Attention %d", (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID}, } }, { { /* After Invert 4 */ {"General Attention 32", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE, qed_fw_assertion, MAX_BLOCK_ID}, {"General Attention %d", (2 << ATTENTION_LENGTH_SHIFT) | (33 << ATTENTION_OFFSET_SHIFT), NULL, MAX_BLOCK_ID}, {"General Attention 35", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE, qed_general_attention_35, MAX_BLOCK_ID}, {"NWS Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT | ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0), NULL, BLOCK_NWS}, {"NWS Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT | ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1), NULL, BLOCK_NWS}, {"NWM Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT | ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2), NULL, BLOCK_NWM}, {"NWM Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT | ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3), NULL, BLOCK_NWM}, {"MCP CPU", ATTENTION_SINGLE, qed_mcp_attn_cb, MAX_BLOCK_ID}, {"MCP Watchdog timer", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, {"MCP M2P", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, {"AVS stop status ready", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, {"MSTAT", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID}, {"MSTAT per-path", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID}, {"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID}, {"NIG", ATTENTION_PAR_INT, NULL, BLOCK_NIG}, {"BMB/OPTE/MCP", ATTENTION_PAR_INT, NULL, BLOCK_BMB}, {"BTB", ATTENTION_PAR_INT, NULL, BLOCK_BTB}, {"BRB", ATTENTION_PAR_INT, NULL, BLOCK_BRB}, {"PRS", ATTENTION_PAR_INT, NULL, BLOCK_PRS}, } }, { { /* After Invert 5 */ {"SRC", ATTENTION_PAR_INT, NULL, BLOCK_SRC}, {"PB Client1", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB1}, {"PB Client2", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB2}, {"RPB", ATTENTION_PAR_INT, NULL, BLOCK_RPB}, {"PBF", ATTENTION_PAR_INT, NULL, BLOCK_PBF}, {"QM", ATTENTION_PAR_INT, NULL, BLOCK_QM}, {"TM", ATTENTION_PAR_INT, NULL, BLOCK_TM}, {"MCM", ATTENTION_PAR_INT, NULL, BLOCK_MCM}, {"MSDM", ATTENTION_PAR_INT, NULL, BLOCK_MSDM}, {"MSEM", ATTENTION_PAR_INT, NULL, BLOCK_MSEM}, {"PCM", ATTENTION_PAR_INT, NULL, BLOCK_PCM}, {"PSDM", ATTENTION_PAR_INT, NULL, BLOCK_PSDM}, {"PSEM", ATTENTION_PAR_INT, NULL, BLOCK_PSEM}, {"TCM", ATTENTION_PAR_INT, NULL, BLOCK_TCM}, {"TSDM", ATTENTION_PAR_INT, NULL, BLOCK_TSDM}, {"TSEM", ATTENTION_PAR_INT, NULL, BLOCK_TSEM}, } }, { { /* After Invert 6 */ {"UCM", ATTENTION_PAR_INT, NULL, BLOCK_UCM}, {"USDM", ATTENTION_PAR_INT, NULL, BLOCK_USDM}, {"USEM", ATTENTION_PAR_INT, NULL, BLOCK_USEM}, {"XCM", ATTENTION_PAR_INT, NULL, BLOCK_XCM}, {"XSDM", ATTENTION_PAR_INT, NULL, BLOCK_XSDM}, {"XSEM", ATTENTION_PAR_INT, NULL, BLOCK_XSEM}, {"YCM", ATTENTION_PAR_INT, NULL, BLOCK_YCM}, {"YSDM", ATTENTION_PAR_INT, NULL, BLOCK_YSDM}, {"YSEM", ATTENTION_PAR_INT, NULL, BLOCK_YSEM}, {"XYLD", ATTENTION_PAR_INT, NULL, BLOCK_XYLD}, {"TMLD", ATTENTION_PAR_INT, NULL, BLOCK_TMLD}, {"MYLD", ATTENTION_PAR_INT, NULL, BLOCK_MULD}, {"YULD", ATTENTION_PAR_INT, NULL, BLOCK_YULD}, {"DORQ", ATTENTION_PAR_INT, qed_dorq_attn_cb, BLOCK_DORQ}, {"DBG", ATTENTION_PAR_INT, NULL, BLOCK_DBG}, {"IPC", ATTENTION_PAR_INT, NULL, BLOCK_IPC}, } }, { { /* After Invert 7 */ {"CCFC", ATTENTION_PAR_INT, NULL, BLOCK_CCFC}, {"CDU", ATTENTION_PAR_INT, NULL, BLOCK_CDU}, {"DMAE", ATTENTION_PAR_INT, NULL, BLOCK_DMAE}, {"IGU", ATTENTION_PAR_INT, NULL, BLOCK_IGU}, {"ATC", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID}, {"CAU", ATTENTION_PAR_INT, NULL, BLOCK_CAU}, {"PTU", ATTENTION_PAR_INT, NULL, BLOCK_PTU}, {"PRM", ATTENTION_PAR_INT, NULL, BLOCK_PRM}, {"TCFC", ATTENTION_PAR_INT, NULL, BLOCK_TCFC}, {"RDIF", ATTENTION_PAR_INT, NULL, BLOCK_RDIF}, {"TDIF", ATTENTION_PAR_INT, NULL, BLOCK_TDIF}, {"RSS", ATTENTION_PAR_INT, NULL, BLOCK_RSS}, {"MISC", ATTENTION_PAR_INT, NULL, BLOCK_MISC}, {"MISCS", ATTENTION_PAR_INT, NULL, BLOCK_MISCS}, {"PCIE", ATTENTION_PAR, NULL, BLOCK_PCIE}, {"Vaux PCI core", ATTENTION_SINGLE, NULL, BLOCK_PGLCS}, {"PSWRQ", ATTENTION_PAR_INT, NULL, BLOCK_PSWRQ}, } }, { { /* After Invert 8 */ {"PSWRQ (pci_clk)", ATTENTION_PAR_INT, NULL, BLOCK_PSWRQ2}, {"PSWWR", ATTENTION_PAR_INT, NULL, BLOCK_PSWWR}, {"PSWWR (pci_clk)", ATTENTION_PAR_INT, NULL, BLOCK_PSWWR2}, {"PSWRD", ATTENTION_PAR_INT, NULL, BLOCK_PSWRD}, {"PSWRD (pci_clk)", ATTENTION_PAR_INT, NULL, BLOCK_PSWRD2}, {"PSWHST", ATTENTION_PAR_INT, qed_pswhst_attn_cb, BLOCK_PSWHST}, {"PSWHST (pci_clk)", ATTENTION_PAR_INT, NULL, BLOCK_PSWHST2}, {"GRC", ATTENTION_PAR_INT, qed_grc_attn_cb, BLOCK_GRC}, {"CPMU", ATTENTION_PAR_INT, NULL, BLOCK_CPMU}, {"NCSI", ATTENTION_PAR_INT, NULL, BLOCK_NCSI}, {"MSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, {"PSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, {"TSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, {"USEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, {"XSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, {"YSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, {"pxp_misc_mps", ATTENTION_PAR, NULL, BLOCK_PGLCS}, {"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE, NULL, BLOCK_PGLCS}, {"PERST_B assertion", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, {"PERST_B deassertion", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, {"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID}, } }, { { /* After Invert 9 */ {"MCP Latched memory", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, {"MCP Latched scratchpad cache", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, {"MCP Latched ump_tx", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, {"MCP Latched scratchpad", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, {"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID}, } }, }; static struct aeu_invert_reg_bit * qed_int_aeu_translate(struct qed_hwfn *p_hwfn, struct aeu_invert_reg_bit *p_bit) { if (!QED_IS_BB(p_hwfn->cdev)) return p_bit; if (!(p_bit->flags & ATTENTION_BB_DIFFERENT)) return p_bit; return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >> ATTENTION_BB_SHIFT]; } static bool qed_int_is_parity_flag(struct qed_hwfn *p_hwfn, struct aeu_invert_reg_bit *p_bit) { return !!(qed_int_aeu_translate(p_hwfn, p_bit)->flags & ATTENTION_PARITY); } #define ATTN_STATE_BITS (0xfff) #define ATTN_BITS_MASKABLE (0x3ff) struct qed_sb_attn_info { /* Virtual & Physical address of the SB */ struct atten_status_block *sb_attn; dma_addr_t sb_phys; /* Last seen running index */ u16 index; /* A mask of the AEU bits resulting in a parity error */ u32 parity_mask[NUM_ATTN_REGS]; /* A pointer to the attention description structure */ struct aeu_invert_reg *p_aeu_desc; /* Previously asserted attentions, which are still unasserted */ u16 known_attn; /* Cleanup address for the link's general hw attention */ u32 mfw_attn_addr; }; static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn, struct qed_sb_attn_info *p_sb_desc) { u16 rc = 0, index; index = le16_to_cpu(p_sb_desc->sb_attn->sb_index); if (p_sb_desc->index != index) { p_sb_desc->index = index; rc = QED_SB_ATT_IDX; } return rc; } /** * qed_int_assertion() - Handle asserted attention bits. * * @p_hwfn: HW device data. * @asserted_bits: Newly asserted bits. * * Return: Zero value. */ static int qed_int_assertion(struct qed_hwfn *p_hwfn, u16 asserted_bits) { struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn; u32 igu_mask; /* Mask the source of the attention in the IGU */ igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE); DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n", igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE)); igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE); qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask); DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "inner known ATTN state: 0x%04x --> 0x%04x\n", sb_attn_sw->known_attn, sb_attn_sw->known_attn | asserted_bits); sb_attn_sw->known_attn |= asserted_bits; /* Handle MCP events */ if (asserted_bits & 0x100) { qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt); /* Clean the MCP attention */ qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, sb_attn_sw->mfw_attn_addr, 0); } DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview + GTT_BAR0_MAP_REG_IGU_CMD + ((IGU_CMD_ATTN_BIT_SET_UPPER - IGU_CMD_INT_ACK_BASE) << 3), (u32)asserted_bits); DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n", asserted_bits); return 0; } static void qed_int_attn_print(struct qed_hwfn *p_hwfn, enum block_id id, enum dbg_attn_type type, bool b_clear) { struct dbg_attn_block_result attn_results; enum dbg_status status; memset(&attn_results, 0, sizeof(attn_results)); status = qed_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type, b_clear, &attn_results); if (status != DBG_STATUS_OK) DP_NOTICE(p_hwfn, "Failed to parse attention information [status: %s]\n", qed_dbg_get_status_str(status)); else qed_dbg_parse_attn(p_hwfn, &attn_results); } /** * qed_int_deassertion_aeu_bit() - Handles the effects of a single * cause of the attention. * * @p_hwfn: HW device data. * @p_aeu: Descriptor of an AEU bit which caused the attention. * @aeu_en_reg: Register offset of the AEU enable reg. which configured * this bit to this group. * @p_bit_name: AEU bit description for logging purposes. * @bitmask: Index of this bit in the aeu_en_reg. * * Return: Zero on success, negative errno otherwise. */ static int qed_int_deassertion_aeu_bit(struct qed_hwfn *p_hwfn, struct aeu_invert_reg_bit *p_aeu, u32 aeu_en_reg, const char *p_bit_name, u32 bitmask) { bool b_fatal = false; int rc = -EINVAL; u32 val; DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n", p_bit_name, bitmask); /* Call callback before clearing the interrupt status */ if (p_aeu->cb) { DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n", p_bit_name); rc = p_aeu->cb(p_hwfn); } if (rc) b_fatal = true; /* Print HW block interrupt registers */ if (p_aeu->block_index != MAX_BLOCK_ID) qed_int_attn_print(p_hwfn, p_aeu->block_index, ATTN_TYPE_INTERRUPT, !b_fatal); /* Reach assertion if attention is fatal */ if (b_fatal) qed_hw_err_notify(p_hwfn, p_hwfn->p_dpc_ptt, QED_HW_ERR_HW_ATTN, "`%s': Fatal attention\n", p_bit_name); else /* If the attention is benign, no need to prevent it */ goto out; /* Prevent this Attention from being asserted in the future */ val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg); qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & ~bitmask)); DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n", p_bit_name); /* Re-enable FW aassertion (Gen 32) interrupts */ val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MISC_REG_AEU_ENABLE4_IGU_OUT_0); val |= MISC_REG_AEU_ENABLE4_IGU_OUT_0_GENERAL_ATTN32; qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MISC_REG_AEU_ENABLE4_IGU_OUT_0, val); out: return rc; } /** * qed_int_deassertion_parity() - Handle a single parity AEU source. * * @p_hwfn: HW device data. * @p_aeu: Descriptor of an AEU bit which caused the parity. * @aeu_en_reg: Address of the AEU enable register. * @bit_index: Index (0-31) of an AEU bit. */ static void qed_int_deassertion_parity(struct qed_hwfn *p_hwfn, struct aeu_invert_reg_bit *p_aeu, u32 aeu_en_reg, u8 bit_index) { u32 block_id = p_aeu->block_index, mask, val; DP_NOTICE(p_hwfn->cdev, "%s parity attention is set [address 0x%08x, bit %d]\n", p_aeu->bit_name, aeu_en_reg, bit_index); if (block_id != MAX_BLOCK_ID) { qed_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false); /* In BB, there's a single parity bit for several blocks */ if (block_id == BLOCK_BTB) { qed_int_attn_print(p_hwfn, BLOCK_OPTE, ATTN_TYPE_PARITY, false); qed_int_attn_print(p_hwfn, BLOCK_MCP, ATTN_TYPE_PARITY, false); } } /* Prevent this parity error from being re-asserted */ mask = ~BIT(bit_index); val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg); qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask); DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n", p_aeu->bit_name); } /** * qed_int_deassertion() - Handle deassertion of previously asserted * attentions. * * @p_hwfn: HW device data. * @deasserted_bits: newly deasserted bits. * * Return: Zero value. */ static int qed_int_deassertion(struct qed_hwfn *p_hwfn, u16 deasserted_bits) { struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn; u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en; u8 i, j, k, bit_idx; int rc = 0; /* Read the attention registers in the AEU */ for (i = 0; i < NUM_ATTN_REGS; i++) { aeu_inv_arr[i] = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MISC_REG_AEU_AFTER_INVERT_1_IGU + i * 0x4); DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "Deasserted bits [%d]: %08x\n", i, aeu_inv_arr[i]); } /* Find parity attentions first */ for (i = 0; i < NUM_ATTN_REGS; i++) { struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i]; u32 parities; aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32); en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en); /* Skip register in which no parity bit is currently set */ parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en; if (!parities) continue; for (j = 0, bit_idx = 0; bit_idx < 32 && j < 32; j++) { struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j]; if (qed_int_is_parity_flag(p_hwfn, p_bit) && !!(parities & BIT(bit_idx))) qed_int_deassertion_parity(p_hwfn, p_bit, aeu_en, bit_idx); bit_idx += ATTENTION_LENGTH(p_bit->flags); } } /* Find non-parity cause for attention and act */ for (k = 0; k < MAX_ATTN_GRPS; k++) { struct aeu_invert_reg_bit *p_aeu; /* Handle only groups whose attention is currently deasserted */ if (!(deasserted_bits & (1 << k))) continue; for (i = 0; i < NUM_ATTN_REGS; i++) { u32 bits; aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32) + k * sizeof(u32) * NUM_ATTN_REGS; en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en); bits = aeu_inv_arr[i] & en; /* Skip if no bit from this group is currently set */ if (!bits) continue; /* Find all set bits from current register which belong * to current group, making them responsible for the * previous assertion. */ for (j = 0, bit_idx = 0; bit_idx < 32 && j < 32; j++) { long unsigned int bitmask; u8 bit, bit_len; p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j]; p_aeu = qed_int_aeu_translate(p_hwfn, p_aeu); bit = bit_idx; bit_len = ATTENTION_LENGTH(p_aeu->flags); if (qed_int_is_parity_flag(p_hwfn, p_aeu)) { /* Skip Parity */ bit++; bit_len--; } bitmask = bits & (((1 << bit_len) - 1) << bit); bitmask >>= bit; if (bitmask) { u32 flags = p_aeu->flags; char bit_name[30]; u8 num; num = (u8)find_first_bit(&bitmask, bit_len); /* Some bits represent more than a * single interrupt. Correctly print * their name. */ if (ATTENTION_LENGTH(flags) > 2 || ((flags & ATTENTION_PAR_INT) && ATTENTION_LENGTH(flags) > 1)) snprintf(bit_name, 30, p_aeu->bit_name, num); else strscpy(bit_name, p_aeu->bit_name, 30); /* We now need to pass bitmask in its * correct position. */ bitmask <<= bit; /* Handle source of the attention */ qed_int_deassertion_aeu_bit(p_hwfn, p_aeu, aeu_en, bit_name, bitmask); } bit_idx += ATTENTION_LENGTH(p_aeu->flags); } } } /* Handle missed DORQ attention */ qed_dorq_attn_handler(p_hwfn); /* Clear IGU indication for the deasserted bits */ DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview + GTT_BAR0_MAP_REG_IGU_CMD + ((IGU_CMD_ATTN_BIT_CLR_UPPER - IGU_CMD_INT_ACK_BASE) << 3), ~((u32)deasserted_bits)); /* Unmask deasserted attentions in IGU */ aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE); aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE); qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask); /* Clear deassertion from inner state */ sb_attn_sw->known_attn &= ~deasserted_bits; return rc; } static int qed_int_attentions(struct qed_hwfn *p_hwfn) { struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn; struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn; u32 attn_bits = 0, attn_acks = 0; u16 asserted_bits, deasserted_bits; __le16 index; int rc = 0; /* Read current attention bits/acks - safeguard against attentions * by guaranting work on a synchronized timeframe */ do { index = p_sb_attn->sb_index; /* finish reading index before the loop condition */ dma_rmb(); attn_bits = le32_to_cpu(p_sb_attn->atten_bits); attn_acks = le32_to_cpu(p_sb_attn->atten_ack); } while (index != p_sb_attn->sb_index); p_sb_attn->sb_index = index; /* Attention / Deassertion are meaningful (and in correct state) * only when they differ and consistent with known state - deassertion * when previous attention & current ack, and assertion when current * attention with no previous attention */ asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) & ~p_sb_attn_sw->known_attn; deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) & p_sb_attn_sw->known_attn; if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) { DP_INFO(p_hwfn, "Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n", index, attn_bits, attn_acks, asserted_bits, deasserted_bits, p_sb_attn_sw->known_attn); } else if (asserted_bits == 0x100) { DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "MFW indication via attention\n"); } else { DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "MFW indication [deassertion]\n"); } if (asserted_bits) { rc = qed_int_assertion(p_hwfn, asserted_bits); if (rc) return rc; } if (deasserted_bits) rc = qed_int_deassertion(p_hwfn, deasserted_bits); return rc; } static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn, void __iomem *igu_addr, u32 ack_cons) { u32 igu_ack; igu_ack = ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) | (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) | (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) | (IGU_SEG_ACCESS_ATTN << IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT)); DIRECT_REG_WR(igu_addr, igu_ack); /* Both segments (interrupts & acks) are written to same place address; * Need to guarantee all commands will be received (in-order) by HW. */ barrier(); } void qed_int_sp_dpc(struct tasklet_struct *t) { struct qed_hwfn *p_hwfn = from_tasklet(p_hwfn, t, sp_dpc); struct qed_pi_info *pi_info = NULL; struct qed_sb_attn_info *sb_attn; struct qed_sb_info *sb_info; int arr_size; u16 rc = 0; if (!p_hwfn->p_sp_sb) { DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n"); return; } sb_info = &p_hwfn->p_sp_sb->sb_info; arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr); if (!sb_info) { DP_ERR(p_hwfn->cdev, "Status block is NULL - cannot ack interrupts\n"); return; } if (!p_hwfn->p_sb_attn) { DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn"); return; } sb_attn = p_hwfn->p_sb_attn; DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n", p_hwfn, p_hwfn->my_id); /* Disable ack for def status block. Required both for msix + * inta in non-mask mode, in inta does no harm. */ qed_sb_ack(sb_info, IGU_INT_DISABLE, 0); /* Gather Interrupts/Attentions information */ if (!sb_info->sb_virt) { DP_ERR(p_hwfn->cdev, "Interrupt Status block is NULL - cannot check for new interrupts!\n"); } else { u32 tmp_index = sb_info->sb_ack; rc = qed_sb_update_sb_idx(sb_info); DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR, "Interrupt indices: 0x%08x --> 0x%08x\n", tmp_index, sb_info->sb_ack); } if (!sb_attn || !sb_attn->sb_attn) { DP_ERR(p_hwfn->cdev, "Attentions Status block is NULL - cannot check for new attentions!\n"); } else { u16 tmp_index = sb_attn->index; rc |= qed_attn_update_idx(p_hwfn, sb_attn); DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR, "Attention indices: 0x%08x --> 0x%08x\n", tmp_index, sb_attn->index); } /* Check if we expect interrupts at this time. if not just ack them */ if (!(rc & QED_SB_EVENT_MASK)) { qed_sb_ack(sb_info, IGU_INT_ENABLE, 1); return; } /* Check the validity of the DPC ptt. If not ack interrupts and fail */ if (!p_hwfn->p_dpc_ptt) { DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n"); qed_sb_ack(sb_info, IGU_INT_ENABLE, 1); return; } if (rc & QED_SB_ATT_IDX) qed_int_attentions(p_hwfn); if (rc & QED_SB_IDX) { int pi; /* Look for a free index */ for (pi = 0; pi < arr_size; pi++) { pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi]; if (pi_info->comp_cb) pi_info->comp_cb(p_hwfn, pi_info->cookie); } } if (sb_attn && (rc & QED_SB_ATT_IDX)) /* This should be done before the interrupts are enabled, * since otherwise a new attention will be generated. */ qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index); qed_sb_ack(sb_info, IGU_INT_ENABLE, 1); } static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn) { struct qed_sb_attn_info *p_sb = p_hwfn->p_sb_attn; if (!p_sb) return; if (p_sb->sb_attn) dma_free_coherent(&p_hwfn->cdev->pdev->dev, SB_ATTN_ALIGNED_SIZE(p_hwfn), p_sb->sb_attn, p_sb->sb_phys); kfree(p_sb); p_hwfn->p_sb_attn = NULL; } static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn; memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn)); sb_info->index = 0; sb_info->known_attn = 0; /* Configure Attention Status Block in IGU */ qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L, lower_32_bits(p_hwfn->p_sb_attn->sb_phys)); qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H, upper_32_bits(p_hwfn->p_sb_attn->sb_phys)); } static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, void *sb_virt_addr, dma_addr_t sb_phy_addr) { struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn; int i, j, k; sb_info->sb_attn = sb_virt_addr; sb_info->sb_phys = sb_phy_addr; /* Set the pointer to the AEU descriptors */ sb_info->p_aeu_desc = aeu_descs; /* Calculate Parity Masks */ memset(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS); for (i = 0; i < NUM_ATTN_REGS; i++) { /* j is array index, k is bit index */ for (j = 0, k = 0; k < 32 && j < 32; j++) { struct aeu_invert_reg_bit *p_aeu; p_aeu = &aeu_descs[i].bits[j]; if (qed_int_is_parity_flag(p_hwfn, p_aeu)) sb_info->parity_mask[i] |= 1 << k; k += ATTENTION_LENGTH(p_aeu->flags); } DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "Attn Mask [Reg %d]: 0x%08x\n", i, sb_info->parity_mask[i]); } /* Set the address of cleanup for the mcp attention */ sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) + MISC_REG_AEU_GENERAL_ATTN_0; qed_int_sb_attn_setup(p_hwfn, p_ptt); } static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { struct qed_dev *cdev = p_hwfn->cdev; struct qed_sb_attn_info *p_sb; dma_addr_t p_phys = 0; void *p_virt; /* SB struct */ p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL); if (!p_sb) return -ENOMEM; /* SB ring */ p_virt = dma_alloc_coherent(&cdev->pdev->dev, SB_ATTN_ALIGNED_SIZE(p_hwfn), &p_phys, GFP_KERNEL); if (!p_virt) { kfree(p_sb); return -ENOMEM; } /* Attention setup */ p_hwfn->p_sb_attn = p_sb; qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys); return 0; } /* coalescing timeout = timeset << (timer_res + 1) */ #define QED_CAU_DEF_RX_USECS 24 #define QED_CAU_DEF_TX_USECS 48 void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn, struct cau_sb_entry *p_sb_entry, u8 pf_id, u16 vf_number, u8 vf_valid) { struct qed_dev *cdev = p_hwfn->cdev; u32 cau_state, params = 0, data = 0; u8 timer_res; memset(p_sb_entry, 0, sizeof(*p_sb_entry)); SET_FIELD(params, CAU_SB_ENTRY_PF_NUMBER, pf_id); SET_FIELD(params, CAU_SB_ENTRY_VF_NUMBER, vf_number); SET_FIELD(params, CAU_SB_ENTRY_VF_VALID, vf_valid); SET_FIELD(params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F); SET_FIELD(params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F); cau_state = CAU_HC_DISABLE_STATE; if (cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) { cau_state = CAU_HC_ENABLE_STATE; if (!cdev->rx_coalesce_usecs) cdev->rx_coalesce_usecs = QED_CAU_DEF_RX_USECS; if (!cdev->tx_coalesce_usecs) cdev->tx_coalesce_usecs = QED_CAU_DEF_TX_USECS; } /* Coalesce = (timeset << timer-res), timeset is 7bit wide */ if (cdev->rx_coalesce_usecs <= 0x7F) timer_res = 0; else if (cdev->rx_coalesce_usecs <= 0xFF) timer_res = 1; else timer_res = 2; SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES0, timer_res); if (cdev->tx_coalesce_usecs <= 0x7F) timer_res = 0; else if (cdev->tx_coalesce_usecs <= 0xFF) timer_res = 1; else timer_res = 2; SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES1, timer_res); p_sb_entry->params = cpu_to_le32(params); SET_FIELD(data, CAU_SB_ENTRY_STATE0, cau_state); SET_FIELD(data, CAU_SB_ENTRY_STATE1, cau_state); p_sb_entry->data = cpu_to_le32(data); } static void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 igu_sb_id, u32 pi_index, enum qed_coalescing_fsm coalescing_fsm, u8 timeset) { u32 sb_offset, pi_offset; u32 prod = 0; if (IS_VF(p_hwfn->cdev)) return; SET_FIELD(prod, CAU_PI_ENTRY_PI_TIMESET, timeset); if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE) SET_FIELD(prod, CAU_PI_ENTRY_FSM_SEL, 0); else SET_FIELD(prod, CAU_PI_ENTRY_FSM_SEL, 1); sb_offset = igu_sb_id * PIS_PER_SB; pi_offset = sb_offset + pi_index; if (p_hwfn->hw_init_done) qed_wr(p_hwfn, p_ptt, CAU_REG_PI_MEMORY + pi_offset * sizeof(u32), prod); else STORE_RT_REG(p_hwfn, CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset, prod); } void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, dma_addr_t sb_phys, u16 igu_sb_id, u16 vf_number, u8 vf_valid) { struct cau_sb_entry sb_entry; qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id, vf_number, vf_valid); if (p_hwfn->hw_init_done) { /* Wide-bus, initialize via DMAE */ u64 phys_addr = (u64)sb_phys; qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&phys_addr, CAU_REG_SB_ADDR_MEMORY + igu_sb_id * sizeof(u64), 2, NULL); qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry, CAU_REG_SB_VAR_MEMORY + igu_sb_id * sizeof(u64), 2, NULL); } else { /* Initialize Status Block Address */ STORE_RT_REG_AGG(p_hwfn, CAU_REG_SB_ADDR_MEMORY_RT_OFFSET + igu_sb_id * 2, sb_phys); STORE_RT_REG_AGG(p_hwfn, CAU_REG_SB_VAR_MEMORY_RT_OFFSET + igu_sb_id * 2, sb_entry); } /* Configure pi coalescing if set */ if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) { u8 num_tc = p_hwfn->hw_info.num_hw_tc; u8 timeset, timer_res; u8 i; /* timeset = (coalesce >> timer-res), timeset is 7bit wide */ if (p_hwfn->cdev->rx_coalesce_usecs <= 0x7F) timer_res = 0; else if (p_hwfn->cdev->rx_coalesce_usecs <= 0xFF) timer_res = 1; else timer_res = 2; timeset = (u8)(p_hwfn->cdev->rx_coalesce_usecs >> timer_res); qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI, QED_COAL_RX_STATE_MACHINE, timeset); if (p_hwfn->cdev->tx_coalesce_usecs <= 0x7F) timer_res = 0; else if (p_hwfn->cdev->tx_coalesce_usecs <= 0xFF) timer_res = 1; else timer_res = 2; timeset = (u8)(p_hwfn->cdev->tx_coalesce_usecs >> timer_res); for (i = 0; i < num_tc; i++) { qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, TX_PI(i), QED_COAL_TX_STATE_MACHINE, timeset); } } } void qed_int_sb_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_sb_info *sb_info) { /* zero status block and ack counter */ sb_info->sb_ack = 0; memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt)); if (IS_PF(p_hwfn->cdev)) qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys, sb_info->igu_sb_id, 0, 0); } struct qed_igu_block *qed_get_igu_free_sb(struct qed_hwfn *p_hwfn, bool b_is_pf) { struct qed_igu_block *p_block; u16 igu_id; for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_id++) { p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id]; if (!(p_block->status & QED_IGU_STATUS_VALID) || !(p_block->status & QED_IGU_STATUS_FREE)) continue; if (!!(p_block->status & QED_IGU_STATUS_PF) == b_is_pf) return p_block; } return NULL; } static u16 qed_get_pf_igu_sb_id(struct qed_hwfn *p_hwfn, u16 vector_id) { struct qed_igu_block *p_block; u16 igu_id; for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_id++) { p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id]; if (!(p_block->status & QED_IGU_STATUS_VALID) || !p_block->is_pf || p_block->vector_number != vector_id) continue; return igu_id; } return QED_SB_INVALID_IDX; } u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn, u16 sb_id) { u16 igu_sb_id; /* Assuming continuous set of IGU SBs dedicated for given PF */ if (sb_id == QED_SP_SB_ID) igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id; else if (IS_PF(p_hwfn->cdev)) igu_sb_id = qed_get_pf_igu_sb_id(p_hwfn, sb_id + 1); else igu_sb_id = qed_vf_get_igu_sb_id(p_hwfn, sb_id); if (sb_id == QED_SP_SB_ID) DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id); else DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id); return igu_sb_id; } int qed_int_sb_init(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_sb_info *sb_info, void *sb_virt_addr, dma_addr_t sb_phy_addr, u16 sb_id) { sb_info->sb_virt = sb_virt_addr; sb_info->sb_phys = sb_phy_addr; sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id); if (sb_id != QED_SP_SB_ID) { if (IS_PF(p_hwfn->cdev)) { struct qed_igu_info *p_info; struct qed_igu_block *p_block; p_info = p_hwfn->hw_info.p_igu_info; p_block = &p_info->entry[sb_info->igu_sb_id]; p_block->sb_info = sb_info; p_block->status &= ~QED_IGU_STATUS_FREE; p_info->usage.free_cnt--; } else { qed_vf_set_sb_info(p_hwfn, sb_id, sb_info); } } sb_info->cdev = p_hwfn->cdev; /* The igu address will hold the absolute address that needs to be * written to for a specific status block */ if (IS_PF(p_hwfn->cdev)) { sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview + GTT_BAR0_MAP_REG_IGU_CMD + (sb_info->igu_sb_id << 3); } else { sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview + PXP_VF_BAR0_START_IGU + ((IGU_CMD_INT_ACK_BASE + sb_info->igu_sb_id) << 3); } sb_info->flags |= QED_SB_INFO_INIT; qed_int_sb_setup(p_hwfn, p_ptt, sb_info); return 0; } int qed_int_sb_release(struct qed_hwfn *p_hwfn, struct qed_sb_info *sb_info, u16 sb_id) { struct qed_igu_block *p_block; struct qed_igu_info *p_info; if (!sb_info) return 0; /* zero status block and ack counter */ sb_info->sb_ack = 0; memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt)); if (IS_VF(p_hwfn->cdev)) { qed_vf_set_sb_info(p_hwfn, sb_id, NULL); return 0; } p_info = p_hwfn->hw_info.p_igu_info; p_block = &p_info->entry[sb_info->igu_sb_id]; /* Vector 0 is reserved to Default SB */ if (!p_block->vector_number) { DP_ERR(p_hwfn, "Do Not free sp sb using this function"); return -EINVAL; } /* Lose reference to client's SB info, and fix counters */ p_block->sb_info = NULL; p_block->status |= QED_IGU_STATUS_FREE; p_info->usage.free_cnt++; return 0; } static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn) { struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb; if (!p_sb) return; if (p_sb->sb_info.sb_virt) dma_free_coherent(&p_hwfn->cdev->pdev->dev, SB_ALIGNED_SIZE(p_hwfn), p_sb->sb_info.sb_virt, p_sb->sb_info.sb_phys); kfree(p_sb); p_hwfn->p_sp_sb = NULL; } static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { struct qed_sb_sp_info *p_sb; dma_addr_t p_phys = 0; void *p_virt; /* SB struct */ p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL); if (!p_sb) return -ENOMEM; /* SB ring */ p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, SB_ALIGNED_SIZE(p_hwfn), &p_phys, GFP_KERNEL); if (!p_virt) { kfree(p_sb); return -ENOMEM; } /* Status Block setup */ p_hwfn->p_sp_sb = p_sb; qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt, p_phys, QED_SP_SB_ID); memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr)); return 0; } int qed_int_register_cb(struct qed_hwfn *p_hwfn, qed_int_comp_cb_t comp_cb, void *cookie, u8 *sb_idx, __le16 **p_fw_cons) { struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb; int rc = -ENOMEM; u8 pi; /* Look for a free index */ for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) { if (p_sp_sb->pi_info_arr[pi].comp_cb) continue; p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb; p_sp_sb->pi_info_arr[pi].cookie = cookie; *sb_idx = pi; *p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi]; rc = 0; break; } return rc; } int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi) { struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb; if (p_sp_sb->pi_info_arr[pi].comp_cb == NULL) return -ENOMEM; p_sp_sb->pi_info_arr[pi].comp_cb = NULL; p_sp_sb->pi_info_arr[pi].cookie = NULL; return 0; } u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn) { return p_hwfn->p_sp_sb->sb_info.igu_sb_id; } void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, enum qed_int_mode int_mode) { u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN; p_hwfn->cdev->int_mode = int_mode; switch (p_hwfn->cdev->int_mode) { case QED_INT_MODE_INTA: igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN; igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; break; case QED_INT_MODE_MSI: igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN; igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; break; case QED_INT_MODE_MSIX: igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN; break; case QED_INT_MODE_POLL: break; } qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf); } static void qed_int_igu_enable_attn(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { /* Configure AEU signal change to produce attentions */ qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0); qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff); qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff); qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff); /* Unmask AEU signals toward IGU */ qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff); } int qed_int_igu_enable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, enum qed_int_mode int_mode) { int rc = 0; qed_int_igu_enable_attn(p_hwfn, p_ptt); if ((int_mode != QED_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) { rc = qed_slowpath_irq_req(p_hwfn); if (rc) { DP_NOTICE(p_hwfn, "Slowpath IRQ request failed\n"); return -EINVAL; } p_hwfn->b_int_requested = true; } /* Enable interrupt Generation */ qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode); p_hwfn->b_int_enabled = 1; return rc; } void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { p_hwfn->b_int_enabled = 0; if (IS_VF(p_hwfn->cdev)) return; qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0); } #define IGU_CLEANUP_SLEEP_LENGTH (1000) static void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 igu_sb_id, bool cleanup_set, u16 opaque_fid) { u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0; u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id; u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH; /* Set the data field */ SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0); SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0); SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET); /* Set the control register */ SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr); SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid); SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR); qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data); barrier(); qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl); /* calculate where to read the status bit from */ sb_bit = 1 << (igu_sb_id % 32); sb_bit_addr = igu_sb_id / 32 * sizeof(u32); sb_bit_addr += IGU_REG_CLEANUP_STATUS_0; /* Now wait for the command to complete */ do { val = qed_rd(p_hwfn, p_ptt, sb_bit_addr); if ((val & sb_bit) == (cleanup_set ? sb_bit : 0)) break; usleep_range(5000, 10000); } while (--sleep_cnt); if (!sleep_cnt) DP_NOTICE(p_hwfn, "Timeout waiting for clear status 0x%08x [for sb %d]\n", val, igu_sb_id); } void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 igu_sb_id, u16 opaque, bool b_set) { struct qed_igu_block *p_block; int pi, i; p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id]; DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n", igu_sb_id, p_block->function_id, p_block->is_pf, p_block->vector_number); /* Set */ if (b_set) qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque); /* Clear */ qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque); /* Wait for the IGU SB to cleanup */ for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) { u32 val; val = qed_rd(p_hwfn, p_ptt, IGU_REG_WRITE_DONE_PENDING + ((igu_sb_id / 32) * 4)); if (val & BIT((igu_sb_id % 32))) usleep_range(10, 20); else break; } if (i == IGU_CLEANUP_SLEEP_LENGTH) DP_NOTICE(p_hwfn, "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n", igu_sb_id); /* Clear the CAU for the SB */ for (pi = 0; pi < 12; pi++) qed_wr(p_hwfn, p_ptt, CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0); } void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, bool b_set, bool b_slowpath) { struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info; struct qed_igu_block *p_block; u16 igu_sb_id = 0; u32 val = 0; val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION); val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN; val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN; qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val); for (igu_sb_id = 0; igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) { p_block = &p_info->entry[igu_sb_id]; if (!(p_block->status & QED_IGU_STATUS_VALID) || !p_block->is_pf || (p_block->status & QED_IGU_STATUS_DSB)) continue; qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id, p_hwfn->hw_info.opaque_fid, b_set); } if (b_slowpath) qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, p_info->igu_dsb_id, p_hwfn->hw_info.opaque_fid, b_set); } int qed_int_igu_reset_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info; struct qed_igu_block *p_block; int pf_sbs, vf_sbs; u16 igu_sb_id; u32 val, rval; if (!RESC_NUM(p_hwfn, QED_SB)) { p_info->b_allow_pf_vf_change = false; } else { /* Use the numbers the MFW have provided - * don't forget MFW accounts for the default SB as well. */ p_info->b_allow_pf_vf_change = true; if (p_info->usage.cnt != RESC_NUM(p_hwfn, QED_SB) - 1) { DP_INFO(p_hwfn, "MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n", RESC_NUM(p_hwfn, QED_SB) - 1, p_info->usage.cnt); p_info->usage.cnt = RESC_NUM(p_hwfn, QED_SB) - 1; } if (IS_PF_SRIOV(p_hwfn)) { u16 vfs = p_hwfn->cdev->p_iov_info->total_vfs; if (vfs != p_info->usage.iov_cnt) DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n", p_info->usage.iov_cnt, vfs); /* At this point we know how many SBs we have totally * in IGU + number of PF SBs. So we can validate that * we'd have sufficient for VF. */ if (vfs > p_info->usage.free_cnt + p_info->usage.free_cnt_iov - p_info->usage.cnt) { DP_NOTICE(p_hwfn, "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n", p_info->usage.free_cnt + p_info->usage.free_cnt_iov, p_info->usage.cnt, vfs); return -EINVAL; } /* Currently cap the number of VFs SBs by the * number of VFs. */ p_info->usage.iov_cnt = vfs; } } /* Mark all SBs as free, now in the right PF/VFs division */ p_info->usage.free_cnt = p_info->usage.cnt; p_info->usage.free_cnt_iov = p_info->usage.iov_cnt; p_info->usage.orig = p_info->usage.cnt; p_info->usage.iov_orig = p_info->usage.iov_cnt; /* We now proceed to re-configure the IGU cam to reflect the initial * configuration. We can start with the Default SB. */ pf_sbs = p_info->usage.cnt; vf_sbs = p_info->usage.iov_cnt; for (igu_sb_id = p_info->igu_dsb_id; igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) { p_block = &p_info->entry[igu_sb_id]; val = 0; if (!(p_block->status & QED_IGU_STATUS_VALID)) continue; if (p_block->status & QED_IGU_STATUS_DSB) { p_block->function_id = p_hwfn->rel_pf_id; p_block->is_pf = 1; p_block->vector_number = 0; p_block->status = QED_IGU_STATUS_VALID | QED_IGU_STATUS_PF | QED_IGU_STATUS_DSB; } else if (pf_sbs) { pf_sbs--; p_block->function_id = p_hwfn->rel_pf_id; p_block->is_pf = 1; p_block->vector_number = p_info->usage.cnt - pf_sbs; p_block->status = QED_IGU_STATUS_VALID | QED_IGU_STATUS_PF | QED_IGU_STATUS_FREE; } else if (vf_sbs) { p_block->function_id = p_hwfn->cdev->p_iov_info->first_vf_in_pf + p_info->usage.iov_cnt - vf_sbs; p_block->is_pf = 0; p_block->vector_number = 0; p_block->status = QED_IGU_STATUS_VALID | QED_IGU_STATUS_FREE; vf_sbs--; } else { p_block->function_id = 0; p_block->is_pf = 0; p_block->vector_number = 0; } SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER, p_block->function_id); SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf); SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER, p_block->vector_number); /* VF entries would be enabled when VF is initializaed */ SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf); rval = qed_rd(p_hwfn, p_ptt, IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id); if (rval != val) { qed_wr(p_hwfn, p_ptt, IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id, val); DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n", igu_sb_id, p_block->function_id, p_block->is_pf, p_block->vector_number, rval, val); } } return 0; } static void qed_int_igu_read_cam_block(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 igu_sb_id) { u32 val = qed_rd(p_hwfn, p_ptt, IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id); struct qed_igu_block *p_block; p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id]; /* Fill the block information */ p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER); p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID); p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER); p_block->igu_sb_id = igu_sb_id; } int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { struct qed_igu_info *p_igu_info; struct qed_igu_block *p_block; u32 min_vf = 0, max_vf = 0; u16 igu_sb_id; p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_KERNEL); if (!p_hwfn->hw_info.p_igu_info) return -ENOMEM; p_igu_info = p_hwfn->hw_info.p_igu_info; /* Distinguish between existent and non-existent default SB */ p_igu_info->igu_dsb_id = QED_SB_INVALID_IDX; /* Find the range of VF ids whose SB belong to this PF */ if (p_hwfn->cdev->p_iov_info) { struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info; min_vf = p_iov->first_vf_in_pf; max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs; } for (igu_sb_id = 0; igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) { /* Read current entry; Notice it might not belong to this PF */ qed_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id); p_block = &p_igu_info->entry[igu_sb_id]; if ((p_block->is_pf) && (p_block->function_id == p_hwfn->rel_pf_id)) { p_block->status = QED_IGU_STATUS_PF | QED_IGU_STATUS_VALID | QED_IGU_STATUS_FREE; if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX) p_igu_info->usage.cnt++; } else if (!(p_block->is_pf) && (p_block->function_id >= min_vf) && (p_block->function_id < max_vf)) { /* Available for VFs of this PF */ p_block->status = QED_IGU_STATUS_VALID | QED_IGU_STATUS_FREE; if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX) p_igu_info->usage.iov_cnt++; } /* Mark the First entry belonging to the PF or its VFs * as the default SB [we'll reset IGU prior to first usage]. */ if ((p_block->status & QED_IGU_STATUS_VALID) && (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX)) { p_igu_info->igu_dsb_id = igu_sb_id; p_block->status |= QED_IGU_STATUS_DSB; } /* limit number of prints by having each PF print only its * entries with the exception of PF0 which would print * everything. */ if ((p_block->status & QED_IGU_STATUS_VALID) || (p_hwfn->abs_pf_id == 0)) { DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n", igu_sb_id, p_block->function_id, p_block->is_pf, p_block->vector_number); } } if (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX) { DP_NOTICE(p_hwfn, "IGU CAM returned invalid values igu_dsb_id=0x%x\n", p_igu_info->igu_dsb_id); return -EINVAL; } /* All non default SB are considered free at this point */ p_igu_info->usage.free_cnt = p_igu_info->usage.cnt; p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt; DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n", p_igu_info->igu_dsb_id, p_igu_info->usage.cnt, p_igu_info->usage.iov_cnt); return 0; } /** * qed_int_igu_init_rt() - Initialize IGU runtime registers. * * @p_hwfn: HW device data. */ void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn) { u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN; STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf); } u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn) { u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER - IGU_CMD_INT_ACK_BASE; u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER - IGU_CMD_INT_ACK_BASE; u32 intr_status_hi = 0, intr_status_lo = 0; u64 intr_status = 0; intr_status_lo = REG_RD(p_hwfn, GTT_BAR0_MAP_REG_IGU_CMD + lsb_igu_cmd_addr * 8); intr_status_hi = REG_RD(p_hwfn, GTT_BAR0_MAP_REG_IGU_CMD + msb_igu_cmd_addr * 8); intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo; return intr_status; } static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn) { tasklet_setup(&p_hwfn->sp_dpc, qed_int_sp_dpc); p_hwfn->b_sp_dpc_enabled = true; } int qed_int_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { int rc = 0; rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt); if (rc) return rc; rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt); return rc; } void qed_int_free(struct qed_hwfn *p_hwfn) { qed_int_sp_sb_free(p_hwfn); qed_int_sb_attn_free(p_hwfn); } void qed_int_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info); qed_int_sb_attn_setup(p_hwfn, p_ptt); qed_int_sp_dpc_setup(p_hwfn); } void qed_int_get_num_sbs(struct qed_hwfn *p_hwfn, struct qed_sb_cnt_info *p_sb_cnt_info) { struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info; if (!info || !p_sb_cnt_info) return; memcpy(p_sb_cnt_info, &info->usage, sizeof(*p_sb_cnt_info)); } void qed_int_disable_post_isr_release(struct qed_dev *cdev) { int i; for_each_hwfn(cdev, i) cdev->hwfns[i].b_int_requested = false; } void qed_int_attn_clr_enable(struct qed_dev *cdev, bool clr_enable) { cdev->attn_clr_en = clr_enable; } int qed_int_set_timer_res(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u8 timer_res, u16 sb_id, bool tx) { struct cau_sb_entry sb_entry; u32 params; int rc; if (!p_hwfn->hw_init_done) { DP_ERR(p_hwfn, "hardware not initialized yet\n"); return -EINVAL; } rc = qed_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY + sb_id * sizeof(u64), (u64)(uintptr_t)&sb_entry, 2, NULL); if (rc) { DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc); return rc; } params = le32_to_cpu(sb_entry.params); if (tx) SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES1, timer_res); else SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES0, timer_res); sb_entry.params = cpu_to_le32(params); rc = qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry, CAU_REG_SB_VAR_MEMORY + sb_id * sizeof(u64), 2, NULL); if (rc) { DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc); return rc; } return rc; } int qed_int_get_sb_dbg(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_sb_info *p_sb, struct qed_sb_info_dbg *p_info) { u16 sbid = p_sb->igu_sb_id; u32 i; if (IS_VF(p_hwfn->cdev)) return -EINVAL; if (sbid >= NUM_OF_SBS(p_hwfn->cdev)) return -EINVAL; p_info->igu_prod = qed_rd(p_hwfn, p_ptt, IGU_REG_PRODUCER_MEMORY + sbid * 4); p_info->igu_cons = qed_rd(p_hwfn, p_ptt, IGU_REG_CONSUMER_MEM + sbid * 4); for (i = 0; i < PIS_PER_SB; i++) p_info->pi[i] = (u16)qed_rd(p_hwfn, p_ptt, CAU_REG_PI_MEMORY + sbid * 4 * PIS_PER_SB + i * 4); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1