Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ron Mercer | 15439 | 87.40% | 22 | 23.91% |
Joe Perches | 913 | 5.17% | 3 | 3.26% |
Benjamin Li | 517 | 2.93% | 5 | 5.43% |
Christophe Jaillet | 181 | 1.02% | 3 | 3.26% |
Stephen Hemminger | 103 | 0.58% | 6 | 6.52% |
FUJITA Tomonori | 56 | 0.32% | 2 | 2.17% |
Philippe Reynes | 56 | 0.32% | 1 | 1.09% |
Eric Dumazet | 52 | 0.29% | 3 | 3.26% |
David Howells | 47 | 0.27% | 1 | 1.09% |
Al Viro | 43 | 0.24% | 3 | 3.26% |
Ben Hutchings | 37 | 0.21% | 3 | 3.26% |
Kangjie Lu | 22 | 0.12% | 1 | 1.09% |
Jakub Kiciński | 21 | 0.12% | 2 | 2.17% |
Dan Carpenter | 20 | 0.11% | 2 | 2.17% |
Jeff Garzik | 19 | 0.11% | 3 | 3.26% |
Rick Jones | 18 | 0.10% | 1 | 1.09% |
Joe Jin | 16 | 0.09% | 1 | 1.09% |
Kees Cook | 14 | 0.08% | 1 | 1.09% |
Andy Shevchenko | 12 | 0.07% | 1 | 1.09% |
Ian Campbell | 10 | 0.06% | 2 | 2.17% |
Letu Ren | 6 | 0.03% | 1 | 1.09% |
Benoit Taine | 6 | 0.03% | 1 | 1.09% |
Arnaldo Carvalho de Melo | 5 | 0.03% | 1 | 1.09% |
Navid Emamdoost | 5 | 0.03% | 1 | 1.09% |
Zhang Changzhong | 5 | 0.03% | 1 | 1.09% |
Michael S. Tsirkin | 4 | 0.02% | 1 | 1.09% |
Thomas Gleixner | 4 | 0.02% | 2 | 2.17% |
Allen Pais | 3 | 0.02% | 1 | 1.09% |
Wilfried Klaebe | 3 | 0.02% | 1 | 1.09% |
Paul Gortmaker | 3 | 0.02% | 1 | 1.09% |
Santosh Nayak | 3 | 0.02% | 2 | 2.17% |
Wolfram Sang | 3 | 0.02% | 1 | 1.09% |
Yang Hongyang | 3 | 0.02% | 1 | 1.09% |
Adrian Bunk | 3 | 0.02% | 2 | 2.17% |
Marcin Ślusarz | 2 | 0.01% | 1 | 1.09% |
Gustavo A. R. Silva | 2 | 0.01% | 1 | 1.09% |
Wei Yongjun | 2 | 0.01% | 1 | 1.09% |
Zheyu Ma | 2 | 0.01% | 1 | 1.09% |
Arjan van de Ven | 1 | 0.01% | 1 | 1.09% |
Sinan Kaya | 1 | 0.01% | 1 | 1.09% |
Gilles Espinasse | 1 | 0.01% | 1 | 1.09% |
Frans Pop | 1 | 0.01% | 1 | 1.09% |
root at susedev.(none) | 1 | 0.01% | 1 | 1.09% |
Total | 17665 | 92 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * QLogic QLA3xxx NIC HBA Driver * Copyright (c) 2003-2006 QLogic Corporation */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/types.h> #include <linux/module.h> #include <linux/list.h> #include <linux/pci.h> #include <linux/dma-mapping.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/dmapool.h> #include <linux/mempool.h> #include <linux/spinlock.h> #include <linux/kthread.h> #include <linux/interrupt.h> #include <linux/errno.h> #include <linux/ioport.h> #include <linux/ip.h> #include <linux/in.h> #include <linux/if_arp.h> #include <linux/if_ether.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/ethtool.h> #include <linux/skbuff.h> #include <linux/rtnetlink.h> #include <linux/if_vlan.h> #include <linux/delay.h> #include <linux/mm.h> #include <linux/prefetch.h> #include "qla3xxx.h" #define DRV_NAME "qla3xxx" #define DRV_STRING "QLogic ISP3XXX Network Driver" #define DRV_VERSION "v2.03.00-k5" static const char ql3xxx_driver_name[] = DRV_NAME; static const char ql3xxx_driver_version[] = DRV_VERSION; #define TIMED_OUT_MSG \ "Timed out waiting for management port to get free before issuing command\n" MODULE_AUTHOR("QLogic Corporation"); MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " "); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_VERSION); static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN; static int debug = -1; /* defaults above */ module_param(debug, int, 0); MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); static int msi; module_param(msi, int, 0); MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts."); static const struct pci_device_id ql3xxx_pci_tbl[] = { {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)}, {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)}, /* required last entry */ {0,} }; MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl); /* * These are the known PHY's which are used */ enum PHY_DEVICE_TYPE { PHY_TYPE_UNKNOWN = 0, PHY_VITESSE_VSC8211, PHY_AGERE_ET1011C, MAX_PHY_DEV_TYPES }; struct PHY_DEVICE_INFO { const enum PHY_DEVICE_TYPE phyDevice; const u32 phyIdOUI; const u16 phyIdModel; const char *name; }; static const struct PHY_DEVICE_INFO PHY_DEVICES[] = { {PHY_TYPE_UNKNOWN, 0x000000, 0x0, "PHY_TYPE_UNKNOWN"}, {PHY_VITESSE_VSC8211, 0x0003f1, 0xb, "PHY_VITESSE_VSC8211"}, {PHY_AGERE_ET1011C, 0x00a0bc, 0x1, "PHY_AGERE_ET1011C"}, }; /* * Caller must take hw_lock. */ static int ql_sem_spinlock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits) { struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; u32 value; unsigned int seconds = 3; do { writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg); value = readl(&port_regs->CommonRegs.semaphoreReg); if ((value & (sem_mask >> 16)) == sem_bits) return 0; mdelay(1000); } while (--seconds); return -1; } static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask) { struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; writel(sem_mask, &port_regs->CommonRegs.semaphoreReg); readl(&port_regs->CommonRegs.semaphoreReg); } static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits) { struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; u32 value; writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg); value = readl(&port_regs->CommonRegs.semaphoreReg); return ((value & (sem_mask >> 16)) == sem_bits); } /* * Caller holds hw_lock. */ static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev) { int i = 0; do { if (ql_sem_lock(qdev, QL_DRVR_SEM_MASK, (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) * 2) << 1)) { netdev_printk(KERN_DEBUG, qdev->ndev, "driver lock acquired\n"); return 1; } mdelay(1000); } while (++i < 10); netdev_err(qdev->ndev, "Timed out waiting for driver lock...\n"); return 0; } static void ql_set_register_page(struct ql3_adapter *qdev, u32 page) { struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; writel(((ISP_CONTROL_NP_MASK << 16) | page), &port_regs->CommonRegs.ispControlStatus); readl(&port_regs->CommonRegs.ispControlStatus); qdev->current_page = page; } static u32 ql_read_common_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg) { u32 value; unsigned long hw_flags; spin_lock_irqsave(&qdev->hw_lock, hw_flags); value = readl(reg); spin_unlock_irqrestore(&qdev->hw_lock, hw_flags); return value; } static u32 ql_read_common_reg(struct ql3_adapter *qdev, u32 __iomem *reg) { return readl(reg); } static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg) { u32 value; unsigned long hw_flags; spin_lock_irqsave(&qdev->hw_lock, hw_flags); if (qdev->current_page != 0) ql_set_register_page(qdev, 0); value = readl(reg); spin_unlock_irqrestore(&qdev->hw_lock, hw_flags); return value; } static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg) { if (qdev->current_page != 0) ql_set_register_page(qdev, 0); return readl(reg); } static void ql_write_common_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg, u32 value) { unsigned long hw_flags; spin_lock_irqsave(&qdev->hw_lock, hw_flags); writel(value, reg); readl(reg); spin_unlock_irqrestore(&qdev->hw_lock, hw_flags); } static void ql_write_common_reg(struct ql3_adapter *qdev, u32 __iomem *reg, u32 value) { writel(value, reg); readl(reg); } static void ql_write_nvram_reg(struct ql3_adapter *qdev, u32 __iomem *reg, u32 value) { writel(value, reg); readl(reg); udelay(1); } static void ql_write_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg, u32 value) { if (qdev->current_page != 0) ql_set_register_page(qdev, 0); writel(value, reg); readl(reg); } /* * Caller holds hw_lock. Only called during init. */ static void ql_write_page1_reg(struct ql3_adapter *qdev, u32 __iomem *reg, u32 value) { if (qdev->current_page != 1) ql_set_register_page(qdev, 1); writel(value, reg); readl(reg); } /* * Caller holds hw_lock. Only called during init. */ static void ql_write_page2_reg(struct ql3_adapter *qdev, u32 __iomem *reg, u32 value) { if (qdev->current_page != 2) ql_set_register_page(qdev, 2); writel(value, reg); readl(reg); } static void ql_disable_interrupts(struct ql3_adapter *qdev) { struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg, (ISP_IMR_ENABLE_INT << 16)); } static void ql_enable_interrupts(struct ql3_adapter *qdev) { struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg, ((0xff << 16) | ISP_IMR_ENABLE_INT)); } static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev, struct ql_rcv_buf_cb *lrg_buf_cb) { dma_addr_t map; int err; lrg_buf_cb->next = NULL; if (qdev->lrg_buf_free_tail == NULL) { /* The list is empty */ qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb; } else { qdev->lrg_buf_free_tail->next = lrg_buf_cb; qdev->lrg_buf_free_tail = lrg_buf_cb; } if (!lrg_buf_cb->skb) { lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev, qdev->lrg_buffer_len); if (unlikely(!lrg_buf_cb->skb)) { qdev->lrg_buf_skb_check++; } else { /* * We save some space to copy the ethhdr from first * buffer */ skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE); map = dma_map_single(&qdev->pdev->dev, lrg_buf_cb->skb->data, qdev->lrg_buffer_len - QL_HEADER_SPACE, DMA_FROM_DEVICE); err = dma_mapping_error(&qdev->pdev->dev, map); if (err) { netdev_err(qdev->ndev, "PCI mapping failed with error: %d\n", err); dev_kfree_skb(lrg_buf_cb->skb); lrg_buf_cb->skb = NULL; qdev->lrg_buf_skb_check++; return; } lrg_buf_cb->buf_phy_addr_low = cpu_to_le32(LS_64BITS(map)); lrg_buf_cb->buf_phy_addr_high = cpu_to_le32(MS_64BITS(map)); dma_unmap_addr_set(lrg_buf_cb, mapaddr, map); dma_unmap_len_set(lrg_buf_cb, maplen, qdev->lrg_buffer_len - QL_HEADER_SPACE); } } qdev->lrg_buf_free_count++; } static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter *qdev) { struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head; if (lrg_buf_cb != NULL) { qdev->lrg_buf_free_head = lrg_buf_cb->next; if (qdev->lrg_buf_free_head == NULL) qdev->lrg_buf_free_tail = NULL; qdev->lrg_buf_free_count--; } return lrg_buf_cb; } static u32 addrBits = EEPROM_NO_ADDR_BITS; static u32 dataBits = EEPROM_NO_DATA_BITS; static void fm93c56a_deselect(struct ql3_adapter *qdev); static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr, unsigned short *value); /* * Caller holds hw_lock. */ static void fm93c56a_select(struct ql3_adapter *qdev) { struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg; qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1; ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data); } /* * Caller holds hw_lock. */ static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr) { int i; u32 mask; u32 dataBit; u32 previousBit; struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg; /* Clock in a zero, then do the start bit */ ql_write_nvram_reg(qdev, spir, (ISP_NVRAM_MASK | qdev->eeprom_cmd_data | AUBURN_EEPROM_DO_1)); ql_write_nvram_reg(qdev, spir, (ISP_NVRAM_MASK | qdev->eeprom_cmd_data | AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_RISE)); ql_write_nvram_reg(qdev, spir, (ISP_NVRAM_MASK | qdev->eeprom_cmd_data | AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_FALL)); mask = 1 << (FM93C56A_CMD_BITS - 1); /* Force the previous data bit to be different */ previousBit = 0xffff; for (i = 0; i < FM93C56A_CMD_BITS; i++) { dataBit = (cmd & mask) ? AUBURN_EEPROM_DO_1 : AUBURN_EEPROM_DO_0; if (previousBit != dataBit) { /* If the bit changed, change the DO state to match */ ql_write_nvram_reg(qdev, spir, (ISP_NVRAM_MASK | qdev->eeprom_cmd_data | dataBit)); previousBit = dataBit; } ql_write_nvram_reg(qdev, spir, (ISP_NVRAM_MASK | qdev->eeprom_cmd_data | dataBit | AUBURN_EEPROM_CLK_RISE)); ql_write_nvram_reg(qdev, spir, (ISP_NVRAM_MASK | qdev->eeprom_cmd_data | dataBit | AUBURN_EEPROM_CLK_FALL)); cmd = cmd << 1; } mask = 1 << (addrBits - 1); /* Force the previous data bit to be different */ previousBit = 0xffff; for (i = 0; i < addrBits; i++) { dataBit = (eepromAddr & mask) ? AUBURN_EEPROM_DO_1 : AUBURN_EEPROM_DO_0; if (previousBit != dataBit) { /* * If the bit changed, then change the DO state to * match */ ql_write_nvram_reg(qdev, spir, (ISP_NVRAM_MASK | qdev->eeprom_cmd_data | dataBit)); previousBit = dataBit; } ql_write_nvram_reg(qdev, spir, (ISP_NVRAM_MASK | qdev->eeprom_cmd_data | dataBit | AUBURN_EEPROM_CLK_RISE)); ql_write_nvram_reg(qdev, spir, (ISP_NVRAM_MASK | qdev->eeprom_cmd_data | dataBit | AUBURN_EEPROM_CLK_FALL)); eepromAddr = eepromAddr << 1; } } /* * Caller holds hw_lock. */ static void fm93c56a_deselect(struct ql3_adapter *qdev) { struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg; qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0; ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data); } /* * Caller holds hw_lock. */ static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value) { int i; u32 data = 0; u32 dataBit; struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg; /* Read the data bits */ /* The first bit is a dummy. Clock right over it. */ for (i = 0; i < dataBits; i++) { ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data | AUBURN_EEPROM_CLK_RISE); ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data | AUBURN_EEPROM_CLK_FALL); dataBit = (ql_read_common_reg(qdev, spir) & AUBURN_EEPROM_DI_1) ? 1 : 0; data = (data << 1) | dataBit; } *value = (u16)data; } /* * Caller holds hw_lock. */ static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr, unsigned short *value) { fm93c56a_select(qdev); fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr); fm93c56a_datain(qdev, value); fm93c56a_deselect(qdev); } static void ql_set_mac_addr(struct net_device *ndev, u16 *addr) { __le16 buf[ETH_ALEN / 2]; buf[0] = cpu_to_le16(addr[0]); buf[1] = cpu_to_le16(addr[1]); buf[2] = cpu_to_le16(addr[2]); eth_hw_addr_set(ndev, (u8 *)buf); } static int ql_get_nvram_params(struct ql3_adapter *qdev) { u16 *pEEPROMData; u16 checksum = 0; u32 index; unsigned long hw_flags; spin_lock_irqsave(&qdev->hw_lock, hw_flags); pEEPROMData = (u16 *)&qdev->nvram_data; qdev->eeprom_cmd_data = 0; if (ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK, (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) * 2) << 10)) { pr_err("%s: Failed ql_sem_spinlock()\n", __func__); spin_unlock_irqrestore(&qdev->hw_lock, hw_flags); return -1; } for (index = 0; index < EEPROM_SIZE; index++) { eeprom_readword(qdev, index, pEEPROMData); checksum += *pEEPROMData; pEEPROMData++; } ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK); if (checksum != 0) { netdev_err(qdev->ndev, "checksum should be zero, is %x!!\n", checksum); spin_unlock_irqrestore(&qdev->hw_lock, hw_flags); return -1; } spin_unlock_irqrestore(&qdev->hw_lock, hw_flags); return checksum; } static const u32 PHYAddr[2] = { PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS }; static int ql_wait_for_mii_ready(struct ql3_adapter *qdev) { struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; u32 temp; int count = 1000; while (count) { temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg); if (!(temp & MAC_MII_STATUS_BSY)) return 0; udelay(10); count--; } return -1; } static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev) { struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; u32 scanControl; if (qdev->numPorts > 1) { /* Auto scan will cycle through multiple ports */ scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC; } else { scanControl = MAC_MII_CONTROL_SC; } /* * Scan register 1 of PHY/PETBI, * Set up to scan both devices * The autoscan starts from the first register, completes * the last one before rolling over to the first */ ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg, PHYAddr[0] | MII_SCAN_REGISTER); ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg, (scanControl) | ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16)); } static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev) { u8 ret; struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; /* See if scan mode is enabled before we turn it off */ if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) & (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) { /* Scan is enabled */ ret = 1; } else { /* Scan is disabled */ ret = 0; } /* * When disabling scan mode you must first change the MII register * address */ ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg, PHYAddr[0] | MII_SCAN_REGISTER); ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg, ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS | MAC_MII_CONTROL_RC) << 16)); return ret; } static int ql_mii_write_reg_ex(struct ql3_adapter *qdev, u16 regAddr, u16 value, u32 phyAddr) { struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; u8 scanWasEnabled; scanWasEnabled = ql_mii_disable_scan_mode(qdev); if (ql_wait_for_mii_ready(qdev)) { netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG); return -1; } ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg, phyAddr | regAddr); ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value); /* Wait for write to complete 9/10/04 SJP */ if (ql_wait_for_mii_ready(qdev)) { netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG); return -1; } if (scanWasEnabled) ql_mii_enable_scan_mode(qdev); return 0; } static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr, u16 *value, u32 phyAddr) { struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; u8 scanWasEnabled; u32 temp; scanWasEnabled = ql_mii_disable_scan_mode(qdev); if (ql_wait_for_mii_ready(qdev)) { netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG); return -1; } ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg, phyAddr | regAddr); ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg, (MAC_MII_CONTROL_RC << 16)); ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg, (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC); /* Wait for the read to complete */ if (ql_wait_for_mii_ready(qdev)) { netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG); return -1; } temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg); *value = (u16) temp; if (scanWasEnabled) ql_mii_enable_scan_mode(qdev); return 0; } static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value) { struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; ql_mii_disable_scan_mode(qdev); if (ql_wait_for_mii_ready(qdev)) { netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG); return -1; } ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg, qdev->PHYAddr | regAddr); ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value); /* Wait for write to complete. */ if (ql_wait_for_mii_ready(qdev)) { netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG); return -1; } ql_mii_enable_scan_mode(qdev); return 0; } static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value) { u32 temp; struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; ql_mii_disable_scan_mode(qdev); if (ql_wait_for_mii_ready(qdev)) { netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG); return -1; } ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg, qdev->PHYAddr | regAddr); ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg, (MAC_MII_CONTROL_RC << 16)); ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg, (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC); /* Wait for the read to complete */ if (ql_wait_for_mii_ready(qdev)) { netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG); return -1; } temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg); *value = (u16) temp; ql_mii_enable_scan_mode(qdev); return 0; } static void ql_petbi_reset(struct ql3_adapter *qdev) { ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET); } static void ql_petbi_start_neg(struct ql3_adapter *qdev) { u16 reg; /* Enable Auto-negotiation sense */ ql_mii_read_reg(qdev, PETBI_TBI_CTRL, ®); reg |= PETBI_TBI_AUTO_SENSE; ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg); ql_mii_write_reg(qdev, PETBI_NEG_ADVER, PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX); ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG | PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000); } static void ql_petbi_reset_ex(struct ql3_adapter *qdev) { ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET, PHYAddr[qdev->mac_index]); } static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev) { u16 reg; /* Enable Auto-negotiation sense */ ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, ®, PHYAddr[qdev->mac_index]); reg |= PETBI_TBI_AUTO_SENSE; ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg, PHYAddr[qdev->mac_index]); ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER, PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX, PHYAddr[qdev->mac_index]); ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG | PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000, PHYAddr[qdev->mac_index]); } static void ql_petbi_init(struct ql3_adapter *qdev) { ql_petbi_reset(qdev); ql_petbi_start_neg(qdev); } static void ql_petbi_init_ex(struct ql3_adapter *qdev) { ql_petbi_reset_ex(qdev); ql_petbi_start_neg_ex(qdev); } static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev) { u16 reg; if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, ®) < 0) return 0; return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE; } static void phyAgereSpecificInit(struct ql3_adapter *qdev, u32 miiAddr) { netdev_info(qdev->ndev, "enabling Agere specific PHY\n"); /* power down device bit 11 = 1 */ ql_mii_write_reg_ex(qdev, 0x00, 0x1940, miiAddr); /* enable diagnostic mode bit 2 = 1 */ ql_mii_write_reg_ex(qdev, 0x12, 0x840e, miiAddr); /* 1000MB amplitude adjust (see Agere errata) */ ql_mii_write_reg_ex(qdev, 0x10, 0x8805, miiAddr); /* 1000MB amplitude adjust (see Agere errata) */ ql_mii_write_reg_ex(qdev, 0x11, 0xf03e, miiAddr); /* 100MB amplitude adjust (see Agere errata) */ ql_mii_write_reg_ex(qdev, 0x10, 0x8806, miiAddr); /* 100MB amplitude adjust (see Agere errata) */ ql_mii_write_reg_ex(qdev, 0x11, 0x003e, miiAddr); /* 10MB amplitude adjust (see Agere errata) */ ql_mii_write_reg_ex(qdev, 0x10, 0x8807, miiAddr); /* 10MB amplitude adjust (see Agere errata) */ ql_mii_write_reg_ex(qdev, 0x11, 0x1f00, miiAddr); /* point to hidden reg 0x2806 */ ql_mii_write_reg_ex(qdev, 0x10, 0x2806, miiAddr); /* Write new PHYAD w/bit 5 set */ ql_mii_write_reg_ex(qdev, 0x11, 0x0020 | (PHYAddr[qdev->mac_index] >> 8), miiAddr); /* * Disable diagnostic mode bit 2 = 0 * Power up device bit 11 = 0 * Link up (on) and activity (blink) */ ql_mii_write_reg(qdev, 0x12, 0x840a); ql_mii_write_reg(qdev, 0x00, 0x1140); ql_mii_write_reg(qdev, 0x1c, 0xfaf0); } static enum PHY_DEVICE_TYPE getPhyType(struct ql3_adapter *qdev, u16 phyIdReg0, u16 phyIdReg1) { enum PHY_DEVICE_TYPE result = PHY_TYPE_UNKNOWN; u32 oui; u16 model; int i; if (phyIdReg0 == 0xffff) return result; if (phyIdReg1 == 0xffff) return result; /* oui is split between two registers */ oui = (phyIdReg0 << 6) | ((phyIdReg1 & PHY_OUI_1_MASK) >> 10); model = (phyIdReg1 & PHY_MODEL_MASK) >> 4; /* Scan table for this PHY */ for (i = 0; i < MAX_PHY_DEV_TYPES; i++) { if ((oui == PHY_DEVICES[i].phyIdOUI) && (model == PHY_DEVICES[i].phyIdModel)) { netdev_info(qdev->ndev, "Phy: %s\n", PHY_DEVICES[i].name); result = PHY_DEVICES[i].phyDevice; break; } } return result; } static int ql_phy_get_speed(struct ql3_adapter *qdev) { u16 reg; switch (qdev->phyType) { case PHY_AGERE_ET1011C: { if (ql_mii_read_reg(qdev, 0x1A, ®) < 0) return 0; reg = (reg >> 8) & 3; break; } default: if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, ®) < 0) return 0; reg = (((reg & 0x18) >> 3) & 3); } switch (reg) { case 2: return SPEED_1000; case 1: return SPEED_100; case 0: return SPEED_10; default: return -1; } } static int ql_is_full_dup(struct ql3_adapter *qdev) { u16 reg; switch (qdev->phyType) { case PHY_AGERE_ET1011C: { if (ql_mii_read_reg(qdev, 0x1A, ®)) return 0; return ((reg & 0x0080) && (reg & 0x1000)) != 0; } case PHY_VITESSE_VSC8211: default: { if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, ®) < 0) return 0; return (reg & PHY_AUX_DUPLEX_STAT) != 0; } } } static int ql_is_phy_neg_pause(struct ql3_adapter *qdev) { u16 reg; if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, ®) < 0) return 0; return (reg & PHY_NEG_PAUSE) != 0; } static int PHY_Setup(struct ql3_adapter *qdev) { u16 reg1; u16 reg2; bool agereAddrChangeNeeded = false; u32 miiAddr = 0; int err; /* Determine the PHY we are using by reading the ID's */ err = ql_mii_read_reg(qdev, PHY_ID_0_REG, ®1); if (err != 0) { netdev_err(qdev->ndev, "Could not read from reg PHY_ID_0_REG\n"); return err; } err = ql_mii_read_reg(qdev, PHY_ID_1_REG, ®2); if (err != 0) { netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG\n"); return err; } /* Check if we have a Agere PHY */ if ((reg1 == 0xffff) || (reg2 == 0xffff)) { /* Determine which MII address we should be using determined by the index of the card */ if (qdev->mac_index == 0) miiAddr = MII_AGERE_ADDR_1; else miiAddr = MII_AGERE_ADDR_2; err = ql_mii_read_reg_ex(qdev, PHY_ID_0_REG, ®1, miiAddr); if (err != 0) { netdev_err(qdev->ndev, "Could not read from reg PHY_ID_0_REG after Agere detected\n"); return err; } err = ql_mii_read_reg_ex(qdev, PHY_ID_1_REG, ®2, miiAddr); if (err != 0) { netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG after Agere detected\n"); return err; } /* We need to remember to initialize the Agere PHY */ agereAddrChangeNeeded = true; } /* Determine the particular PHY we have on board to apply PHY specific initializations */ qdev->phyType = getPhyType(qdev, reg1, reg2); if ((qdev->phyType == PHY_AGERE_ET1011C) && agereAddrChangeNeeded) { /* need this here so address gets changed */ phyAgereSpecificInit(qdev, miiAddr); } else if (qdev->phyType == PHY_TYPE_UNKNOWN) { netdev_err(qdev->ndev, "PHY is unknown\n"); return -EIO; } return 0; } /* * Caller holds hw_lock. */ static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable) { struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; u32 value; if (enable) value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16)); else value = (MAC_CONFIG_REG_PE << 16); if (qdev->mac_index) ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value); else ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value); } /* * Caller holds hw_lock. */ static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable) { struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; u32 value; if (enable) value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16)); else value = (MAC_CONFIG_REG_SR << 16); if (qdev->mac_index) ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value); else ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value); } /* * Caller holds hw_lock. */ static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable) { struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; u32 value; if (enable) value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16)); else value = (MAC_CONFIG_REG_GM << 16); if (qdev->mac_index) ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value); else ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value); } /* * Caller holds hw_lock. */ static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable) { struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; u32 value; if (enable) value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16)); else value = (MAC_CONFIG_REG_FD << 16); if (qdev->mac_index) ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value); else ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value); } /* * Caller holds hw_lock. */ static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable) { struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; u32 value; if (enable) value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) | ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16)); else value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16); if (qdev->mac_index) ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value); else ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value); } /* * Caller holds hw_lock. */ static int ql_is_fiber(struct ql3_adapter *qdev) { struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; u32 bitToCheck = 0; u32 temp; switch (qdev->mac_index) { case 0: bitToCheck = PORT_STATUS_SM0; break; case 1: bitToCheck = PORT_STATUS_SM1; break; } temp = ql_read_page0_reg(qdev, &port_regs->portStatus); return (temp & bitToCheck) != 0; } static int ql_is_auto_cfg(struct ql3_adapter *qdev) { u16 reg; ql_mii_read_reg(qdev, 0x00, ®); return (reg & 0x1000) != 0; } /* * Caller holds hw_lock. */ static int ql_is_auto_neg_complete(struct ql3_adapter *qdev) { struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; u32 bitToCheck = 0; u32 temp; switch (qdev->mac_index) { case 0: bitToCheck = PORT_STATUS_AC0; break; case 1: bitToCheck = PORT_STATUS_AC1; break; } temp = ql_read_page0_reg(qdev, &port_regs->portStatus); if (temp & bitToCheck) { netif_info(qdev, link, qdev->ndev, "Auto-Negotiate complete\n"); return 1; } netif_info(qdev, link, qdev->ndev, "Auto-Negotiate incomplete\n"); return 0; } /* * ql_is_neg_pause() returns 1 if pause was negotiated to be on */ static int ql_is_neg_pause(struct ql3_adapter *qdev) { if (ql_is_fiber(qdev)) return ql_is_petbi_neg_pause(qdev); else return ql_is_phy_neg_pause(qdev); } static int ql_auto_neg_error(struct ql3_adapter *qdev) { struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; u32 bitToCheck = 0; u32 temp; switch (qdev->mac_index) { case 0: bitToCheck = PORT_STATUS_AE0; break; case 1: bitToCheck = PORT_STATUS_AE1; break; } temp = ql_read_page0_reg(qdev, &port_regs->portStatus); return (temp & bitToCheck) != 0; } static u32 ql_get_link_speed(struct ql3_adapter *qdev) { if (ql_is_fiber(qdev)) return SPEED_1000; else return ql_phy_get_speed(qdev); } static int ql_is_link_full_dup(struct ql3_adapter *qdev) { if (ql_is_fiber(qdev)) return 1; else return ql_is_full_dup(qdev); } /* * Caller holds hw_lock. */ static int ql_link_down_detect(struct ql3_adapter *qdev) { struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; u32 bitToCheck = 0; u32 temp; switch (qdev->mac_index) { case 0: bitToCheck = ISP_CONTROL_LINK_DN_0; break; case 1: bitToCheck = ISP_CONTROL_LINK_DN_1; break; } temp = ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus); return (temp & bitToCheck) != 0; } /* * Caller holds hw_lock. */ static int ql_link_down_detect_clear(struct ql3_adapter *qdev) { struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; switch (qdev->mac_index) { case 0: ql_write_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus, (ISP_CONTROL_LINK_DN_0) | (ISP_CONTROL_LINK_DN_0 << 16)); break; case 1: ql_write_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus, (ISP_CONTROL_LINK_DN_1) | (ISP_CONTROL_LINK_DN_1 << 16)); break; default: return 1; } return 0; } /* * Caller holds hw_lock. */ static int ql_this_adapter_controls_port(struct ql3_adapter *qdev) { struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; u32 bitToCheck = 0; u32 temp; switch (qdev->mac_index) { case 0: bitToCheck = PORT_STATUS_F1_ENABLED; break; case 1: bitToCheck = PORT_STATUS_F3_ENABLED; break; default: break; } temp = ql_read_page0_reg(qdev, &port_regs->portStatus); if (temp & bitToCheck) { netif_printk(qdev, link, KERN_DEBUG, qdev->ndev, "not link master\n"); return 0; } netif_printk(qdev, link, KERN_DEBUG, qdev->ndev, "link master\n"); return 1; } static void ql_phy_reset_ex(struct ql3_adapter *qdev) { ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET, PHYAddr[qdev->mac_index]); } static void ql_phy_start_neg_ex(struct ql3_adapter *qdev) { u16 reg; u16 portConfiguration; if (qdev->phyType == PHY_AGERE_ET1011C) ql_mii_write_reg(qdev, 0x13, 0x0000); /* turn off external loopback */ if (qdev->mac_index == 0) portConfiguration = qdev->nvram_data.macCfg_port0.portConfiguration; else portConfiguration = qdev->nvram_data.macCfg_port1.portConfiguration; /* Some HBA's in the field are set to 0 and they need to be reinterpreted with a default value */ if (portConfiguration == 0) portConfiguration = PORT_CONFIG_DEFAULT; /* Set the 1000 advertisements */ ql_mii_read_reg_ex(qdev, PHY_GIG_CONTROL, ®, PHYAddr[qdev->mac_index]); reg &= ~PHY_GIG_ALL_PARAMS; if (portConfiguration & PORT_CONFIG_1000MB_SPEED) { if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED) reg |= PHY_GIG_ADV_1000F; else reg |= PHY_GIG_ADV_1000H; } ql_mii_write_reg_ex(qdev, PHY_GIG_CONTROL, reg, PHYAddr[qdev->mac_index]); /* Set the 10/100 & pause negotiation advertisements */ ql_mii_read_reg_ex(qdev, PHY_NEG_ADVER, ®, PHYAddr[qdev->mac_index]); reg &= ~PHY_NEG_ALL_PARAMS; if (portConfiguration & PORT_CONFIG_SYM_PAUSE_ENABLED) reg |= PHY_NEG_ASY_PAUSE | PHY_NEG_SYM_PAUSE; if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED) { if (portConfiguration & PORT_CONFIG_100MB_SPEED) reg |= PHY_NEG_ADV_100F; if (portConfiguration & PORT_CONFIG_10MB_SPEED) reg |= PHY_NEG_ADV_10F; } if (portConfiguration & PORT_CONFIG_HALF_DUPLEX_ENABLED) { if (portConfiguration & PORT_CONFIG_100MB_SPEED) reg |= PHY_NEG_ADV_100H; if (portConfiguration & PORT_CONFIG_10MB_SPEED) reg |= PHY_NEG_ADV_10H; } if (portConfiguration & PORT_CONFIG_1000MB_SPEED) reg |= 1; ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER, reg, PHYAddr[qdev->mac_index]); ql_mii_read_reg_ex(qdev, CONTROL_REG, ®, PHYAddr[qdev->mac_index]); ql_mii_write_reg_ex(qdev, CONTROL_REG, reg | PHY_CTRL_RESTART_NEG | PHY_CTRL_AUTO_NEG, PHYAddr[qdev->mac_index]); } static void ql_phy_init_ex(struct ql3_adapter *qdev) { ql_phy_reset_ex(qdev); PHY_Setup(qdev); ql_phy_start_neg_ex(qdev); } /* * Caller holds hw_lock. */ static u32 ql_get_link_state(struct ql3_adapter *qdev) { struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; u32 bitToCheck = 0; u32 temp, linkState; switch (qdev->mac_index) { case 0: bitToCheck = PORT_STATUS_UP0; break; case 1: bitToCheck = PORT_STATUS_UP1; break; } temp = ql_read_page0_reg(qdev, &port_regs->portStatus); if (temp & bitToCheck) linkState = LS_UP; else linkState = LS_DOWN; return linkState; } static int ql_port_start(struct ql3_adapter *qdev) { if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK, (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) * 2) << 7)) { netdev_err(qdev->ndev, "Could not get hw lock for GIO\n"); return -1; } if (ql_is_fiber(qdev)) { ql_petbi_init(qdev); } else { /* Copper port */ ql_phy_init_ex(qdev); } ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK); return 0; } static int ql_finish_auto_neg(struct ql3_adapter *qdev) { if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK, (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) * 2) << 7)) return -1; if (!ql_auto_neg_error(qdev)) { if (test_bit(QL_LINK_MASTER, &qdev->flags)) { /* configure the MAC */ netif_printk(qdev, link, KERN_DEBUG, qdev->ndev, "Configuring link\n"); ql_mac_cfg_soft_reset(qdev, 1); ql_mac_cfg_gig(qdev, (ql_get_link_speed (qdev) == SPEED_1000)); ql_mac_cfg_full_dup(qdev, ql_is_link_full_dup (qdev)); ql_mac_cfg_pause(qdev, ql_is_neg_pause (qdev)); ql_mac_cfg_soft_reset(qdev, 0); /* enable the MAC */ netif_printk(qdev, link, KERN_DEBUG, qdev->ndev, "Enabling mac\n"); ql_mac_enable(qdev, 1); } qdev->port_link_state = LS_UP; netif_start_queue(qdev->ndev); netif_carrier_on(qdev->ndev); netif_info(qdev, link, qdev->ndev, "Link is up at %d Mbps, %s duplex\n", ql_get_link_speed(qdev), ql_is_link_full_dup(qdev) ? "full" : "half"); } else { /* Remote error detected */ if (test_bit(QL_LINK_MASTER, &qdev->flags)) { netif_printk(qdev, link, KERN_DEBUG, qdev->ndev, "Remote error detected. Calling ql_port_start()\n"); /* * ql_port_start() is shared code and needs * to lock the PHY on it's own. */ ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK); if (ql_port_start(qdev)) /* Restart port */ return -1; return 0; } } ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK); return 0; } static void ql_link_state_machine_work(struct work_struct *work) { struct ql3_adapter *qdev = container_of(work, struct ql3_adapter, link_state_work.work); u32 curr_link_state; unsigned long hw_flags; spin_lock_irqsave(&qdev->hw_lock, hw_flags); curr_link_state = ql_get_link_state(qdev); if (test_bit(QL_RESET_ACTIVE, &qdev->flags)) { netif_info(qdev, link, qdev->ndev, "Reset in progress, skip processing link state\n"); spin_unlock_irqrestore(&qdev->hw_lock, hw_flags); /* Restart timer on 2 second interval. */ mod_timer(&qdev->adapter_timer, jiffies + HZ * 1); return; } switch (qdev->port_link_state) { default: if (test_bit(QL_LINK_MASTER, &qdev->flags)) ql_port_start(qdev); qdev->port_link_state = LS_DOWN; fallthrough; case LS_DOWN: if (curr_link_state == LS_UP) { netif_info(qdev, link, qdev->ndev, "Link is up\n"); if (ql_is_auto_neg_complete(qdev)) ql_finish_auto_neg(qdev); if (qdev->port_link_state == LS_UP) ql_link_down_detect_clear(qdev); qdev->port_link_state = LS_UP; } break; case LS_UP: /* * See if the link is currently down or went down and came * back up */ if (curr_link_state == LS_DOWN) { netif_info(qdev, link, qdev->ndev, "Link is down\n"); qdev->port_link_state = LS_DOWN; } if (ql_link_down_detect(qdev)) qdev->port_link_state = LS_DOWN; break; } spin_unlock_irqrestore(&qdev->hw_lock, hw_flags); /* Restart timer on 2 second interval. */ mod_timer(&qdev->adapter_timer, jiffies + HZ * 1); } /* * Caller must take hw_lock and QL_PHY_GIO_SEM. */ static void ql_get_phy_owner(struct ql3_adapter *qdev) { if (ql_this_adapter_controls_port(qdev)) set_bit(QL_LINK_MASTER, &qdev->flags); else clear_bit(QL_LINK_MASTER, &qdev->flags); } /* * Caller must take hw_lock and QL_PHY_GIO_SEM. */ static void ql_init_scan_mode(struct ql3_adapter *qdev) { ql_mii_enable_scan_mode(qdev); if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) { if (ql_this_adapter_controls_port(qdev)) ql_petbi_init_ex(qdev); } else { if (ql_this_adapter_controls_port(qdev)) ql_phy_init_ex(qdev); } } /* * MII_Setup needs to be called before taking the PHY out of reset * so that the management interface clock speed can be set properly. * It would be better if we had a way to disable MDC until after the * PHY is out of reset, but we don't have that capability. */ static int ql_mii_setup(struct ql3_adapter *qdev) { u32 reg; struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK, (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) * 2) << 7)) return -1; if (qdev->device_id == QL3032_DEVICE_ID) ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg, 0x0f00000); /* Divide 125MHz clock by 28 to meet PHY timing requirements */ reg = MAC_MII_CONTROL_CLK_SEL_DIV28; ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg, reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16)); ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK); return 0; } #define SUPPORTED_OPTICAL_MODES (SUPPORTED_1000baseT_Full | \ SUPPORTED_FIBRE | \ SUPPORTED_Autoneg) #define SUPPORTED_TP_MODES (SUPPORTED_10baseT_Half | \ SUPPORTED_10baseT_Full | \ SUPPORTED_100baseT_Half | \ SUPPORTED_100baseT_Full | \ SUPPORTED_1000baseT_Half | \ SUPPORTED_1000baseT_Full | \ SUPPORTED_Autoneg | \ SUPPORTED_TP) \ static u32 ql_supported_modes(struct ql3_adapter *qdev) { if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) return SUPPORTED_OPTICAL_MODES; return SUPPORTED_TP_MODES; } static int ql_get_auto_cfg_status(struct ql3_adapter *qdev) { int status; unsigned long hw_flags; spin_lock_irqsave(&qdev->hw_lock, hw_flags); if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK, (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) * 2) << 7)) { spin_unlock_irqrestore(&qdev->hw_lock, hw_flags); return 0; } status = ql_is_auto_cfg(qdev); ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK); spin_unlock_irqrestore(&qdev->hw_lock, hw_flags); return status; } static u32 ql_get_speed(struct ql3_adapter *qdev) { u32 status; unsigned long hw_flags; spin_lock_irqsave(&qdev->hw_lock, hw_flags); if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK, (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) * 2) << 7)) { spin_unlock_irqrestore(&qdev->hw_lock, hw_flags); return 0; } status = ql_get_link_speed(qdev); ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK); spin_unlock_irqrestore(&qdev->hw_lock, hw_flags); return status; } static int ql_get_full_dup(struct ql3_adapter *qdev) { int status; unsigned long hw_flags; spin_lock_irqsave(&qdev->hw_lock, hw_flags); if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK, (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) * 2) << 7)) { spin_unlock_irqrestore(&qdev->hw_lock, hw_flags); return 0; } status = ql_is_link_full_dup(qdev); ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK); spin_unlock_irqrestore(&qdev->hw_lock, hw_flags); return status; } static int ql_get_link_ksettings(struct net_device *ndev, struct ethtool_link_ksettings *cmd) { struct ql3_adapter *qdev = netdev_priv(ndev); u32 supported, advertising; supported = ql_supported_modes(qdev); if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) { cmd->base.port = PORT_FIBRE; } else { cmd->base.port = PORT_TP; cmd->base.phy_address = qdev->PHYAddr; } advertising = ql_supported_modes(qdev); cmd->base.autoneg = ql_get_auto_cfg_status(qdev); cmd->base.speed = ql_get_speed(qdev); cmd->base.duplex = ql_get_full_dup(qdev); ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, supported); ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, advertising); return 0; } static void ql_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *drvinfo) { struct ql3_adapter *qdev = netdev_priv(ndev); strscpy(drvinfo->driver, ql3xxx_driver_name, sizeof(drvinfo->driver)); strscpy(drvinfo->version, ql3xxx_driver_version, sizeof(drvinfo->version)); strscpy(drvinfo->bus_info, pci_name(qdev->pdev), sizeof(drvinfo->bus_info)); } static u32 ql_get_msglevel(struct net_device *ndev) { struct ql3_adapter *qdev = netdev_priv(ndev); return qdev->msg_enable; } static void ql_set_msglevel(struct net_device *ndev, u32 value) { struct ql3_adapter *qdev = netdev_priv(ndev); qdev->msg_enable = value; } static void ql_get_pauseparam(struct net_device *ndev, struct ethtool_pauseparam *pause) { struct ql3_adapter *qdev = netdev_priv(ndev); struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; u32 reg; if (qdev->mac_index == 0) reg = ql_read_page0_reg(qdev, &port_regs->mac0ConfigReg); else reg = ql_read_page0_reg(qdev, &port_regs->mac1ConfigReg); pause->autoneg = ql_get_auto_cfg_status(qdev); pause->rx_pause = (reg & MAC_CONFIG_REG_RF) >> 2; pause->tx_pause = (reg & MAC_CONFIG_REG_TF) >> 1; } static const struct ethtool_ops ql3xxx_ethtool_ops = { .get_drvinfo = ql_get_drvinfo, .get_link = ethtool_op_get_link, .get_msglevel = ql_get_msglevel, .set_msglevel = ql_set_msglevel, .get_pauseparam = ql_get_pauseparam, .get_link_ksettings = ql_get_link_ksettings, }; static int ql_populate_free_queue(struct ql3_adapter *qdev) { struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head; dma_addr_t map; int err; while (lrg_buf_cb) { if (!lrg_buf_cb->skb) { lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev, qdev->lrg_buffer_len); if (unlikely(!lrg_buf_cb->skb)) { netdev_printk(KERN_DEBUG, qdev->ndev, "Failed netdev_alloc_skb()\n"); break; } else { /* * We save some space to copy the ethhdr from * first buffer */ skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE); map = dma_map_single(&qdev->pdev->dev, lrg_buf_cb->skb->data, qdev->lrg_buffer_len - QL_HEADER_SPACE, DMA_FROM_DEVICE); err = dma_mapping_error(&qdev->pdev->dev, map); if (err) { netdev_err(qdev->ndev, "PCI mapping failed with error: %d\n", err); dev_kfree_skb(lrg_buf_cb->skb); lrg_buf_cb->skb = NULL; break; } lrg_buf_cb->buf_phy_addr_low = cpu_to_le32(LS_64BITS(map)); lrg_buf_cb->buf_phy_addr_high = cpu_to_le32(MS_64BITS(map)); dma_unmap_addr_set(lrg_buf_cb, mapaddr, map); dma_unmap_len_set(lrg_buf_cb, maplen, qdev->lrg_buffer_len - QL_HEADER_SPACE); --qdev->lrg_buf_skb_check; if (!qdev->lrg_buf_skb_check) return 1; } } lrg_buf_cb = lrg_buf_cb->next; } return 0; } /* * Caller holds hw_lock. */ static void ql_update_small_bufq_prod_index(struct ql3_adapter *qdev) { struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; if (qdev->small_buf_release_cnt >= 16) { while (qdev->small_buf_release_cnt >= 16) { qdev->small_buf_q_producer_index++; if (qdev->small_buf_q_producer_index == NUM_SBUFQ_ENTRIES) qdev->small_buf_q_producer_index = 0; qdev->small_buf_release_cnt -= 8; } wmb(); writel_relaxed(qdev->small_buf_q_producer_index, &port_regs->CommonRegs.rxSmallQProducerIndex); } } /* * Caller holds hw_lock. */ static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev) { struct bufq_addr_element *lrg_buf_q_ele; int i; struct ql_rcv_buf_cb *lrg_buf_cb; struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; if ((qdev->lrg_buf_free_count >= 8) && (qdev->lrg_buf_release_cnt >= 16)) { if (qdev->lrg_buf_skb_check) if (!ql_populate_free_queue(qdev)) return; lrg_buf_q_ele = qdev->lrg_buf_next_free; while ((qdev->lrg_buf_release_cnt >= 16) && (qdev->lrg_buf_free_count >= 8)) { for (i = 0; i < 8; i++) { lrg_buf_cb = ql_get_from_lrg_buf_free_list(qdev); lrg_buf_q_ele->addr_high = lrg_buf_cb->buf_phy_addr_high; lrg_buf_q_ele->addr_low = lrg_buf_cb->buf_phy_addr_low; lrg_buf_q_ele++; qdev->lrg_buf_release_cnt--; } qdev->lrg_buf_q_producer_index++; if (qdev->lrg_buf_q_producer_index == qdev->num_lbufq_entries) qdev->lrg_buf_q_producer_index = 0; if (qdev->lrg_buf_q_producer_index == (qdev->num_lbufq_entries - 1)) { lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr; } } wmb(); qdev->lrg_buf_next_free = lrg_buf_q_ele; writel(qdev->lrg_buf_q_producer_index, &port_regs->CommonRegs.rxLargeQProducerIndex); } } static void ql_process_mac_tx_intr(struct ql3_adapter *qdev, struct ob_mac_iocb_rsp *mac_rsp) { struct ql_tx_buf_cb *tx_cb; int i; if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) { netdev_warn(qdev->ndev, "Frame too short but it was padded and sent\n"); } tx_cb = &qdev->tx_buf[mac_rsp->transaction_id]; /* Check the transmit response flags for any errors */ if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) { netdev_err(qdev->ndev, "Frame too short to be legal, frame not sent\n"); qdev->ndev->stats.tx_errors++; goto frame_not_sent; } if (tx_cb->seg_count == 0) { netdev_err(qdev->ndev, "tx_cb->seg_count == 0: %d\n", mac_rsp->transaction_id); qdev->ndev->stats.tx_errors++; goto invalid_seg_count; } dma_unmap_single(&qdev->pdev->dev, dma_unmap_addr(&tx_cb->map[0], mapaddr), dma_unmap_len(&tx_cb->map[0], maplen), DMA_TO_DEVICE); tx_cb->seg_count--; if (tx_cb->seg_count) { for (i = 1; i < tx_cb->seg_count; i++) { dma_unmap_page(&qdev->pdev->dev, dma_unmap_addr(&tx_cb->map[i], mapaddr), dma_unmap_len(&tx_cb->map[i], maplen), DMA_TO_DEVICE); } } qdev->ndev->stats.tx_packets++; qdev->ndev->stats.tx_bytes += tx_cb->skb->len; frame_not_sent: dev_kfree_skb_irq(tx_cb->skb); tx_cb->skb = NULL; invalid_seg_count: atomic_inc(&qdev->tx_count); } static void ql_get_sbuf(struct ql3_adapter *qdev) { if (++qdev->small_buf_index == NUM_SMALL_BUFFERS) qdev->small_buf_index = 0; qdev->small_buf_release_cnt++; } static struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev) { struct ql_rcv_buf_cb *lrg_buf_cb = NULL; lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index]; qdev->lrg_buf_release_cnt++; if (++qdev->lrg_buf_index == qdev->num_large_buffers) qdev->lrg_buf_index = 0; return lrg_buf_cb; } /* * The difference between 3022 and 3032 for inbound completions: * 3022 uses two buffers per completion. The first buffer contains * (some) header info, the second the remainder of the headers plus * the data. For this chip we reserve some space at the top of the * receive buffer so that the header info in buffer one can be * prepended to the buffer two. Buffer two is the sent up while * buffer one is returned to the hardware to be reused. * 3032 receives all of it's data and headers in one buffer for a * simpler process. 3032 also supports checksum verification as * can be seen in ql_process_macip_rx_intr(). */ static void ql_process_mac_rx_intr(struct ql3_adapter *qdev, struct ib_mac_iocb_rsp *ib_mac_rsp_ptr) { struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL; struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL; struct sk_buff *skb; u16 length = le16_to_cpu(ib_mac_rsp_ptr->length); /* * Get the inbound address list (small buffer). */ ql_get_sbuf(qdev); if (qdev->device_id == QL3022_DEVICE_ID) lrg_buf_cb1 = ql_get_lbuf(qdev); /* start of second buffer */ lrg_buf_cb2 = ql_get_lbuf(qdev); skb = lrg_buf_cb2->skb; qdev->ndev->stats.rx_packets++; qdev->ndev->stats.rx_bytes += length; skb_put(skb, length); dma_unmap_single(&qdev->pdev->dev, dma_unmap_addr(lrg_buf_cb2, mapaddr), dma_unmap_len(lrg_buf_cb2, maplen), DMA_FROM_DEVICE); prefetch(skb->data); skb_checksum_none_assert(skb); skb->protocol = eth_type_trans(skb, qdev->ndev); napi_gro_receive(&qdev->napi, skb); lrg_buf_cb2->skb = NULL; if (qdev->device_id == QL3022_DEVICE_ID) ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1); ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2); } static void ql_process_macip_rx_intr(struct ql3_adapter *qdev, struct ib_ip_iocb_rsp *ib_ip_rsp_ptr) { struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL; struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL; struct sk_buff *skb1 = NULL, *skb2; struct net_device *ndev = qdev->ndev; u16 length = le16_to_cpu(ib_ip_rsp_ptr->length); u16 size = 0; /* * Get the inbound address list (small buffer). */ ql_get_sbuf(qdev); if (qdev->device_id == QL3022_DEVICE_ID) { /* start of first buffer on 3022 */ lrg_buf_cb1 = ql_get_lbuf(qdev); skb1 = lrg_buf_cb1->skb; size = ETH_HLEN; if (*((u16 *) skb1->data) != 0xFFFF) size += VLAN_ETH_HLEN - ETH_HLEN; } /* start of second buffer */ lrg_buf_cb2 = ql_get_lbuf(qdev); skb2 = lrg_buf_cb2->skb; skb_put(skb2, length); /* Just the second buffer length here. */ dma_unmap_single(&qdev->pdev->dev, dma_unmap_addr(lrg_buf_cb2, mapaddr), dma_unmap_len(lrg_buf_cb2, maplen), DMA_FROM_DEVICE); prefetch(skb2->data); skb_checksum_none_assert(skb2); if (qdev->device_id == QL3022_DEVICE_ID) { /* * Copy the ethhdr from first buffer to second. This * is necessary for 3022 IP completions. */ skb_copy_from_linear_data_offset(skb1, VLAN_ID_LEN, skb_push(skb2, size), size); } else { u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum); if (checksum & (IB_IP_IOCB_RSP_3032_ICE | IB_IP_IOCB_RSP_3032_CE)) { netdev_err(ndev, "%s: Bad checksum for this %s packet, checksum = %x\n", __func__, ((checksum & IB_IP_IOCB_RSP_3032_TCP) ? "TCP" : "UDP"), checksum); } else if ((checksum & IB_IP_IOCB_RSP_3032_TCP) || (checksum & IB_IP_IOCB_RSP_3032_UDP && !(checksum & IB_IP_IOCB_RSP_3032_NUC))) { skb2->ip_summed = CHECKSUM_UNNECESSARY; } } skb2->protocol = eth_type_trans(skb2, qdev->ndev); napi_gro_receive(&qdev->napi, skb2); ndev->stats.rx_packets++; ndev->stats.rx_bytes += length; lrg_buf_cb2->skb = NULL; if (qdev->device_id == QL3022_DEVICE_ID) ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1); ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2); } static int ql_tx_rx_clean(struct ql3_adapter *qdev, int budget) { struct net_rsp_iocb *net_rsp; struct net_device *ndev = qdev->ndev; int work_done = 0; /* While there are entries in the completion queue. */ while ((le32_to_cpu(*(qdev->prsp_producer_index)) != qdev->rsp_consumer_index) && (work_done < budget)) { net_rsp = qdev->rsp_current; rmb(); /* * Fix 4032 chip's undocumented "feature" where bit-8 is set * if the inbound completion is for a VLAN. */ if (qdev->device_id == QL3032_DEVICE_ID) net_rsp->opcode &= 0x7f; switch (net_rsp->opcode) { case OPCODE_OB_MAC_IOCB_FN0: case OPCODE_OB_MAC_IOCB_FN2: ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *) net_rsp); break; case OPCODE_IB_MAC_IOCB: case OPCODE_IB_3032_MAC_IOCB: ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *) net_rsp); work_done++; break; case OPCODE_IB_IP_IOCB: case OPCODE_IB_3032_IP_IOCB: ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *) net_rsp); work_done++; break; default: { u32 *tmp = (u32 *)net_rsp; netdev_err(ndev, "Hit default case, not handled!\n" " dropping the packet, opcode = %x\n" "0x%08lx 0x%08lx 0x%08lx 0x%08lx\n", net_rsp->opcode, (unsigned long int)tmp[0], (unsigned long int)tmp[1], (unsigned long int)tmp[2], (unsigned long int)tmp[3]); } } qdev->rsp_consumer_index++; if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) { qdev->rsp_consumer_index = 0; qdev->rsp_current = qdev->rsp_q_virt_addr; } else { qdev->rsp_current++; } } return work_done; } static int ql_poll(struct napi_struct *napi, int budget) { struct ql3_adapter *qdev = container_of(napi, struct ql3_adapter, napi); struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; int work_done; work_done = ql_tx_rx_clean(qdev, budget); if (work_done < budget && napi_complete_done(napi, work_done)) { unsigned long flags; spin_lock_irqsave(&qdev->hw_lock, flags); ql_update_small_bufq_prod_index(qdev); ql_update_lrg_bufq_prod_index(qdev); writel(qdev->rsp_consumer_index, &port_regs->CommonRegs.rspQConsumerIndex); spin_unlock_irqrestore(&qdev->hw_lock, flags); ql_enable_interrupts(qdev); } return work_done; } static irqreturn_t ql3xxx_isr(int irq, void *dev_id) { struct net_device *ndev = dev_id; struct ql3_adapter *qdev = netdev_priv(ndev); struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; u32 value; int handled = 1; u32 var; value = ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus); if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) { spin_lock(&qdev->adapter_lock); netif_stop_queue(qdev->ndev); netif_carrier_off(qdev->ndev); ql_disable_interrupts(qdev); qdev->port_link_state = LS_DOWN; set_bit(QL_RESET_ACTIVE, &qdev->flags) ; if (value & ISP_CONTROL_FE) { /* * Chip Fatal Error. */ var = ql_read_page0_reg_l(qdev, &port_regs->PortFatalErrStatus); netdev_warn(ndev, "Resetting chip. PortFatalErrStatus register = 0x%x\n", var); set_bit(QL_RESET_START, &qdev->flags) ; } else { /* * Soft Reset Requested. */ set_bit(QL_RESET_PER_SCSI, &qdev->flags) ; netdev_err(ndev, "Another function issued a reset to the chip. ISR value = %x\n", value); } queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0); spin_unlock(&qdev->adapter_lock); } else if (value & ISP_IMR_DISABLE_CMPL_INT) { ql_disable_interrupts(qdev); if (likely(napi_schedule_prep(&qdev->napi))) __napi_schedule(&qdev->napi); } else return IRQ_NONE; return IRQ_RETVAL(handled); } /* * Get the total number of segments needed for the given number of fragments. * This is necessary because outbound address lists (OAL) will be used when * more than two frags are given. Each address list has 5 addr/len pairs. * The 5th pair in each OAL is used to point to the next OAL if more frags * are coming. That is why the frags:segment count ratio is not linear. */ static int ql_get_seg_count(struct ql3_adapter *qdev, unsigned short frags) { if (qdev->device_id == QL3022_DEVICE_ID) return 1; if (frags <= 2) return frags + 1; else if (frags <= 6) return frags + 2; else if (frags <= 10) return frags + 3; else if (frags <= 14) return frags + 4; else if (frags <= 18) return frags + 5; return -1; } static void ql_hw_csum_setup(const struct sk_buff *skb, struct ob_mac_iocb_req *mac_iocb_ptr) { const struct iphdr *ip = ip_hdr(skb); mac_iocb_ptr->ip_hdr_off = skb_network_offset(skb); mac_iocb_ptr->ip_hdr_len = ip->ihl; if (ip->protocol == IPPROTO_TCP) { mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC | OB_3032MAC_IOCB_REQ_IC; } else { mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC | OB_3032MAC_IOCB_REQ_IC; } } /* * Map the buffers for this transmit. * This will return NETDEV_TX_BUSY or NETDEV_TX_OK based on success. */ static int ql_send_map(struct ql3_adapter *qdev, struct ob_mac_iocb_req *mac_iocb_ptr, struct ql_tx_buf_cb *tx_cb, struct sk_buff *skb) { struct oal *oal; struct oal_entry *oal_entry; int len = skb_headlen(skb); dma_addr_t map; int err; int completed_segs, i; int seg_cnt, seg = 0; int frag_cnt = (int)skb_shinfo(skb)->nr_frags; seg_cnt = tx_cb->seg_count; /* * Map the skb buffer first. */ map = dma_map_single(&qdev->pdev->dev, skb->data, len, DMA_TO_DEVICE); err = dma_mapping_error(&qdev->pdev->dev, map); if (err) { netdev_err(qdev->ndev, "PCI mapping failed with error: %d\n", err); return NETDEV_TX_BUSY; } oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low; oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map)); oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map)); oal_entry->len = cpu_to_le32(len); dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map); dma_unmap_len_set(&tx_cb->map[seg], maplen, len); seg++; if (seg_cnt == 1) { /* Terminate the last segment. */ oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY); return NETDEV_TX_OK; } oal = tx_cb->oal; for (completed_segs = 0; completed_segs < frag_cnt; completed_segs++, seg++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[completed_segs]; oal_entry++; /* * Check for continuation requirements. * It's strange but necessary. * Continuation entry points to outbound address list. */ if ((seg == 2 && seg_cnt > 3) || (seg == 7 && seg_cnt > 8) || (seg == 12 && seg_cnt > 13) || (seg == 17 && seg_cnt > 18)) { map = dma_map_single(&qdev->pdev->dev, oal, sizeof(struct oal), DMA_TO_DEVICE); err = dma_mapping_error(&qdev->pdev->dev, map); if (err) { netdev_err(qdev->ndev, "PCI mapping outbound address list with error: %d\n", err); goto map_error; } oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map)); oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map)); oal_entry->len = cpu_to_le32(sizeof(struct oal) | OAL_CONT_ENTRY); dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map); dma_unmap_len_set(&tx_cb->map[seg], maplen, sizeof(struct oal)); oal_entry = (struct oal_entry *)oal; oal++; seg++; } map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag), DMA_TO_DEVICE); err = dma_mapping_error(&qdev->pdev->dev, map); if (err) { netdev_err(qdev->ndev, "PCI mapping frags failed with error: %d\n", err); goto map_error; } oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map)); oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map)); oal_entry->len = cpu_to_le32(skb_frag_size(frag)); dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map); dma_unmap_len_set(&tx_cb->map[seg], maplen, skb_frag_size(frag)); } /* Terminate the last segment. */ oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY); return NETDEV_TX_OK; map_error: /* A PCI mapping failed and now we will need to back out * We need to traverse through the oal's and associated pages which * have been mapped and now we must unmap them to clean up properly */ seg = 1; oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low; oal = tx_cb->oal; for (i = 0; i < completed_segs; i++, seg++) { oal_entry++; /* * Check for continuation requirements. * It's strange but necessary. */ if ((seg == 2 && seg_cnt > 3) || (seg == 7 && seg_cnt > 8) || (seg == 12 && seg_cnt > 13) || (seg == 17 && seg_cnt > 18)) { dma_unmap_single(&qdev->pdev->dev, dma_unmap_addr(&tx_cb->map[seg], mapaddr), dma_unmap_len(&tx_cb->map[seg], maplen), DMA_TO_DEVICE); oal++; seg++; } dma_unmap_page(&qdev->pdev->dev, dma_unmap_addr(&tx_cb->map[seg], mapaddr), dma_unmap_len(&tx_cb->map[seg], maplen), DMA_TO_DEVICE); } dma_unmap_single(&qdev->pdev->dev, dma_unmap_addr(&tx_cb->map[0], mapaddr), dma_unmap_addr(&tx_cb->map[0], maplen), DMA_TO_DEVICE); return NETDEV_TX_BUSY; } /* * The difference between 3022 and 3032 sends: * 3022 only supports a simple single segment transmission. * 3032 supports checksumming and scatter/gather lists (fragments). * The 3032 supports sglists by using the 3 addr/len pairs (ALP) * in the IOCB plus a chain of outbound address lists (OAL) that * each contain 5 ALPs. The last ALP of the IOCB (3rd) or OAL (5th) * will be used to point to an OAL when more ALP entries are required. * The IOCB is always the top of the chain followed by one or more * OALs (when necessary). */ static netdev_tx_t ql3xxx_send(struct sk_buff *skb, struct net_device *ndev) { struct ql3_adapter *qdev = netdev_priv(ndev); struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; struct ql_tx_buf_cb *tx_cb; u32 tot_len = skb->len; struct ob_mac_iocb_req *mac_iocb_ptr; if (unlikely(atomic_read(&qdev->tx_count) < 2)) return NETDEV_TX_BUSY; tx_cb = &qdev->tx_buf[qdev->req_producer_index]; tx_cb->seg_count = ql_get_seg_count(qdev, skb_shinfo(skb)->nr_frags); if (tx_cb->seg_count == -1) { netdev_err(ndev, "%s: invalid segment count!\n", __func__); dev_kfree_skb_any(skb); return NETDEV_TX_OK; } mac_iocb_ptr = tx_cb->queue_entry; memset((void *)mac_iocb_ptr, 0, sizeof(struct ob_mac_iocb_req)); mac_iocb_ptr->opcode = qdev->mac_ob_opcode; mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X; mac_iocb_ptr->flags |= qdev->mb_bit_mask; mac_iocb_ptr->transaction_id = qdev->req_producer_index; mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len); tx_cb->skb = skb; if (qdev->device_id == QL3032_DEVICE_ID && skb->ip_summed == CHECKSUM_PARTIAL) ql_hw_csum_setup(skb, mac_iocb_ptr); if (ql_send_map(qdev, mac_iocb_ptr, tx_cb, skb) != NETDEV_TX_OK) { netdev_err(ndev, "%s: Could not map the segments!\n", __func__); return NETDEV_TX_BUSY; } wmb(); qdev->req_producer_index++; if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES) qdev->req_producer_index = 0; wmb(); ql_write_common_reg_l(qdev, &port_regs->CommonRegs.reqQProducerIndex, qdev->req_producer_index); netif_printk(qdev, tx_queued, KERN_DEBUG, ndev, "tx queued, slot %d, len %d\n", qdev->req_producer_index, skb->len); atomic_dec(&qdev->tx_count); return NETDEV_TX_OK; } static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev) { qdev->req_q_size = (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req)); qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb); /* The barrier is required to ensure request and response queue * addr writes to the registers. */ wmb(); qdev->req_q_virt_addr = dma_alloc_coherent(&qdev->pdev->dev, (size_t)qdev->req_q_size, &qdev->req_q_phy_addr, GFP_KERNEL); if ((qdev->req_q_virt_addr == NULL) || LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) { netdev_err(qdev->ndev, "reqQ failed\n"); return -ENOMEM; } qdev->rsp_q_virt_addr = dma_alloc_coherent(&qdev->pdev->dev, (size_t)qdev->rsp_q_size, &qdev->rsp_q_phy_addr, GFP_KERNEL); if ((qdev->rsp_q_virt_addr == NULL) || LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) { netdev_err(qdev->ndev, "rspQ allocation failed\n"); dma_free_coherent(&qdev->pdev->dev, (size_t)qdev->req_q_size, qdev->req_q_virt_addr, qdev->req_q_phy_addr); return -ENOMEM; } set_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags); return 0; } static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev) { if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags)) { netdev_info(qdev->ndev, "Already done\n"); return; } dma_free_coherent(&qdev->pdev->dev, qdev->req_q_size, qdev->req_q_virt_addr, qdev->req_q_phy_addr); qdev->req_q_virt_addr = NULL; dma_free_coherent(&qdev->pdev->dev, qdev->rsp_q_size, qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr); qdev->rsp_q_virt_addr = NULL; clear_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags); } static int ql_alloc_buffer_queues(struct ql3_adapter *qdev) { /* Create Large Buffer Queue */ qdev->lrg_buf_q_size = qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry); if (qdev->lrg_buf_q_size < PAGE_SIZE) qdev->lrg_buf_q_alloc_size = PAGE_SIZE; else qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2; qdev->lrg_buf = kmalloc_array(qdev->num_large_buffers, sizeof(struct ql_rcv_buf_cb), GFP_KERNEL); if (qdev->lrg_buf == NULL) return -ENOMEM; qdev->lrg_buf_q_alloc_virt_addr = dma_alloc_coherent(&qdev->pdev->dev, qdev->lrg_buf_q_alloc_size, &qdev->lrg_buf_q_alloc_phy_addr, GFP_KERNEL); if (qdev->lrg_buf_q_alloc_virt_addr == NULL) { netdev_err(qdev->ndev, "lBufQ failed\n"); return -ENOMEM; } qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr; qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr; /* Create Small Buffer Queue */ qdev->small_buf_q_size = NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry); if (qdev->small_buf_q_size < PAGE_SIZE) qdev->small_buf_q_alloc_size = PAGE_SIZE; else qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2; qdev->small_buf_q_alloc_virt_addr = dma_alloc_coherent(&qdev->pdev->dev, qdev->small_buf_q_alloc_size, &qdev->small_buf_q_alloc_phy_addr, GFP_KERNEL); if (qdev->small_buf_q_alloc_virt_addr == NULL) { netdev_err(qdev->ndev, "Small Buffer Queue allocation failed\n"); dma_free_coherent(&qdev->pdev->dev, qdev->lrg_buf_q_alloc_size, qdev->lrg_buf_q_alloc_virt_addr, qdev->lrg_buf_q_alloc_phy_addr); return -ENOMEM; } qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr; qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr; set_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags); return 0; } static void ql_free_buffer_queues(struct ql3_adapter *qdev) { if (!test_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags)) { netdev_info(qdev->ndev, "Already done\n"); return; } kfree(qdev->lrg_buf); dma_free_coherent(&qdev->pdev->dev, qdev->lrg_buf_q_alloc_size, qdev->lrg_buf_q_alloc_virt_addr, qdev->lrg_buf_q_alloc_phy_addr); qdev->lrg_buf_q_virt_addr = NULL; dma_free_coherent(&qdev->pdev->dev, qdev->small_buf_q_alloc_size, qdev->small_buf_q_alloc_virt_addr, qdev->small_buf_q_alloc_phy_addr); qdev->small_buf_q_virt_addr = NULL; clear_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags); } static int ql_alloc_small_buffers(struct ql3_adapter *qdev) { int i; struct bufq_addr_element *small_buf_q_entry; /* Currently we allocate on one of memory and use it for smallbuffers */ qdev->small_buf_total_size = (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES * QL_SMALL_BUFFER_SIZE); qdev->small_buf_virt_addr = dma_alloc_coherent(&qdev->pdev->dev, qdev->small_buf_total_size, &qdev->small_buf_phy_addr, GFP_KERNEL); if (qdev->small_buf_virt_addr == NULL) { netdev_err(qdev->ndev, "Failed to get small buffer memory\n"); return -ENOMEM; } qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr); qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr); small_buf_q_entry = qdev->small_buf_q_virt_addr; /* Initialize the small buffer queue. */ for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) { small_buf_q_entry->addr_high = cpu_to_le32(qdev->small_buf_phy_addr_high); small_buf_q_entry->addr_low = cpu_to_le32(qdev->small_buf_phy_addr_low + (i * QL_SMALL_BUFFER_SIZE)); small_buf_q_entry++; } qdev->small_buf_index = 0; set_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags); return 0; } static void ql_free_small_buffers(struct ql3_adapter *qdev) { if (!test_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags)) { netdev_info(qdev->ndev, "Already done\n"); return; } if (qdev->small_buf_virt_addr != NULL) { dma_free_coherent(&qdev->pdev->dev, qdev->small_buf_total_size, qdev->small_buf_virt_addr, qdev->small_buf_phy_addr); qdev->small_buf_virt_addr = NULL; } } static void ql_free_large_buffers(struct ql3_adapter *qdev) { int i = 0; struct ql_rcv_buf_cb *lrg_buf_cb; for (i = 0; i < qdev->num_large_buffers; i++) { lrg_buf_cb = &qdev->lrg_buf[i]; if (lrg_buf_cb->skb) { dev_kfree_skb(lrg_buf_cb->skb); dma_unmap_single(&qdev->pdev->dev, dma_unmap_addr(lrg_buf_cb, mapaddr), dma_unmap_len(lrg_buf_cb, maplen), DMA_FROM_DEVICE); memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb)); } else { break; } } } static void ql_init_large_buffers(struct ql3_adapter *qdev) { int i; struct ql_rcv_buf_cb *lrg_buf_cb; struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr; for (i = 0; i < qdev->num_large_buffers; i++) { lrg_buf_cb = &qdev->lrg_buf[i]; buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high; buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low; buf_addr_ele++; } qdev->lrg_buf_index = 0; qdev->lrg_buf_skb_check = 0; } static int ql_alloc_large_buffers(struct ql3_adapter *qdev) { int i; struct ql_rcv_buf_cb *lrg_buf_cb; struct sk_buff *skb; dma_addr_t map; int err; for (i = 0; i < qdev->num_large_buffers; i++) { lrg_buf_cb = &qdev->lrg_buf[i]; memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb)); skb = netdev_alloc_skb(qdev->ndev, qdev->lrg_buffer_len); if (unlikely(!skb)) { /* Better luck next round */ netdev_err(qdev->ndev, "large buff alloc failed for %d bytes at index %d\n", qdev->lrg_buffer_len * 2, i); ql_free_large_buffers(qdev); return -ENOMEM; } else { lrg_buf_cb->index = i; /* * We save some space to copy the ethhdr from first * buffer */ skb_reserve(skb, QL_HEADER_SPACE); map = dma_map_single(&qdev->pdev->dev, skb->data, qdev->lrg_buffer_len - QL_HEADER_SPACE, DMA_FROM_DEVICE); err = dma_mapping_error(&qdev->pdev->dev, map); if (err) { netdev_err(qdev->ndev, "PCI mapping failed with error: %d\n", err); dev_kfree_skb_irq(skb); ql_free_large_buffers(qdev); return -ENOMEM; } lrg_buf_cb->skb = skb; dma_unmap_addr_set(lrg_buf_cb, mapaddr, map); dma_unmap_len_set(lrg_buf_cb, maplen, qdev->lrg_buffer_len - QL_HEADER_SPACE); lrg_buf_cb->buf_phy_addr_low = cpu_to_le32(LS_64BITS(map)); lrg_buf_cb->buf_phy_addr_high = cpu_to_le32(MS_64BITS(map)); } } return 0; } static void ql_free_send_free_list(struct ql3_adapter *qdev) { struct ql_tx_buf_cb *tx_cb; int i; tx_cb = &qdev->tx_buf[0]; for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) { kfree(tx_cb->oal); tx_cb->oal = NULL; tx_cb++; } } static int ql_create_send_free_list(struct ql3_adapter *qdev) { struct ql_tx_buf_cb *tx_cb; int i; struct ob_mac_iocb_req *req_q_curr = qdev->req_q_virt_addr; /* Create free list of transmit buffers */ for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) { tx_cb = &qdev->tx_buf[i]; tx_cb->skb = NULL; tx_cb->queue_entry = req_q_curr; req_q_curr++; tx_cb->oal = kmalloc(512, GFP_KERNEL); if (tx_cb->oal == NULL) return -ENOMEM; } return 0; } static int ql_alloc_mem_resources(struct ql3_adapter *qdev) { if (qdev->ndev->mtu == NORMAL_MTU_SIZE) { qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES; qdev->lrg_buffer_len = NORMAL_MTU_SIZE; } else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) { /* * Bigger buffers, so less of them. */ qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES; qdev->lrg_buffer_len = JUMBO_MTU_SIZE; } else { netdev_err(qdev->ndev, "Invalid mtu size: %d. Only %d and %d are accepted.\n", qdev->ndev->mtu, NORMAL_MTU_SIZE, JUMBO_MTU_SIZE); return -ENOMEM; } qdev->num_large_buffers = qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY; qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE; qdev->max_frame_size = (qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE; /* * First allocate a page of shared memory and use it for shadow * locations of Network Request Queue Consumer Address Register and * Network Completion Queue Producer Index Register */ qdev->shadow_reg_virt_addr = dma_alloc_coherent(&qdev->pdev->dev, PAGE_SIZE, &qdev->shadow_reg_phy_addr, GFP_KERNEL); if (qdev->shadow_reg_virt_addr != NULL) { qdev->preq_consumer_index = qdev->shadow_reg_virt_addr; qdev->req_consumer_index_phy_addr_high = MS_64BITS(qdev->shadow_reg_phy_addr); qdev->req_consumer_index_phy_addr_low = LS_64BITS(qdev->shadow_reg_phy_addr); qdev->prsp_producer_index = (__le32 *) (((u8 *) qdev->preq_consumer_index) + 8); qdev->rsp_producer_index_phy_addr_high = qdev->req_consumer_index_phy_addr_high; qdev->rsp_producer_index_phy_addr_low = qdev->req_consumer_index_phy_addr_low + 8; } else { netdev_err(qdev->ndev, "shadowReg Alloc failed\n"); return -ENOMEM; } if (ql_alloc_net_req_rsp_queues(qdev) != 0) { netdev_err(qdev->ndev, "ql_alloc_net_req_rsp_queues failed\n"); goto err_req_rsp; } if (ql_alloc_buffer_queues(qdev) != 0) { netdev_err(qdev->ndev, "ql_alloc_buffer_queues failed\n"); goto err_buffer_queues; } if (ql_alloc_small_buffers(qdev) != 0) { netdev_err(qdev->ndev, "ql_alloc_small_buffers failed\n"); goto err_small_buffers; } if (ql_alloc_large_buffers(qdev) != 0) { netdev_err(qdev->ndev, "ql_alloc_large_buffers failed\n"); goto err_small_buffers; } /* Initialize the large buffer queue. */ ql_init_large_buffers(qdev); if (ql_create_send_free_list(qdev)) goto err_free_list; qdev->rsp_current = qdev->rsp_q_virt_addr; return 0; err_free_list: ql_free_send_free_list(qdev); err_small_buffers: ql_free_buffer_queues(qdev); err_buffer_queues: ql_free_net_req_rsp_queues(qdev); err_req_rsp: dma_free_coherent(&qdev->pdev->dev, PAGE_SIZE, qdev->shadow_reg_virt_addr, qdev->shadow_reg_phy_addr); return -ENOMEM; } static void ql_free_mem_resources(struct ql3_adapter *qdev) { ql_free_send_free_list(qdev); ql_free_large_buffers(qdev); ql_free_small_buffers(qdev); ql_free_buffer_queues(qdev); ql_free_net_req_rsp_queues(qdev); if (qdev->shadow_reg_virt_addr != NULL) { dma_free_coherent(&qdev->pdev->dev, PAGE_SIZE, qdev->shadow_reg_virt_addr, qdev->shadow_reg_phy_addr); qdev->shadow_reg_virt_addr = NULL; } } static int ql_init_misc_registers(struct ql3_adapter *qdev) { struct ql3xxx_local_ram_registers __iomem *local_ram = (void __iomem *)qdev->mem_map_registers; if (ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK, (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) * 2) << 4)) return -1; ql_write_page2_reg(qdev, &local_ram->bufletSize, qdev->nvram_data.bufletSize); ql_write_page2_reg(qdev, &local_ram->maxBufletCount, qdev->nvram_data.bufletCount); ql_write_page2_reg(qdev, &local_ram->freeBufletThresholdLow, (qdev->nvram_data.tcpWindowThreshold25 << 16) | (qdev->nvram_data.tcpWindowThreshold0)); ql_write_page2_reg(qdev, &local_ram->freeBufletThresholdHigh, qdev->nvram_data.tcpWindowThreshold50); ql_write_page2_reg(qdev, &local_ram->ipHashTableBase, (qdev->nvram_data.ipHashTableBaseHi << 16) | qdev->nvram_data.ipHashTableBaseLo); ql_write_page2_reg(qdev, &local_ram->ipHashTableCount, qdev->nvram_data.ipHashTableSize); ql_write_page2_reg(qdev, &local_ram->tcpHashTableBase, (qdev->nvram_data.tcpHashTableBaseHi << 16) | qdev->nvram_data.tcpHashTableBaseLo); ql_write_page2_reg(qdev, &local_ram->tcpHashTableCount, qdev->nvram_data.tcpHashTableSize); ql_write_page2_reg(qdev, &local_ram->ncbBase, (qdev->nvram_data.ncbTableBaseHi << 16) | qdev->nvram_data.ncbTableBaseLo); ql_write_page2_reg(qdev, &local_ram->maxNcbCount, qdev->nvram_data.ncbTableSize); ql_write_page2_reg(qdev, &local_ram->drbBase, (qdev->nvram_data.drbTableBaseHi << 16) | qdev->nvram_data.drbTableBaseLo); ql_write_page2_reg(qdev, &local_ram->maxDrbCount, qdev->nvram_data.drbTableSize); ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK); return 0; } static int ql_adapter_initialize(struct ql3_adapter *qdev) { u32 value; struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg; struct ql3xxx_host_memory_registers __iomem *hmem_regs = (void __iomem *)port_regs; u32 delay = 10; int status = 0; if (ql_mii_setup(qdev)) return -1; /* Bring out PHY out of reset */ ql_write_common_reg(qdev, spir, (ISP_SERIAL_PORT_IF_WE | (ISP_SERIAL_PORT_IF_WE << 16))); /* Give the PHY time to come out of reset. */ mdelay(100); qdev->port_link_state = LS_DOWN; netif_carrier_off(qdev->ndev); /* V2 chip fix for ARS-39168. */ ql_write_common_reg(qdev, spir, (ISP_SERIAL_PORT_IF_SDE | (ISP_SERIAL_PORT_IF_SDE << 16))); /* Request Queue Registers */ *((u32 *)(qdev->preq_consumer_index)) = 0; atomic_set(&qdev->tx_count, NUM_REQ_Q_ENTRIES); qdev->req_producer_index = 0; ql_write_page1_reg(qdev, &hmem_regs->reqConsumerIndexAddrHigh, qdev->req_consumer_index_phy_addr_high); ql_write_page1_reg(qdev, &hmem_regs->reqConsumerIndexAddrLow, qdev->req_consumer_index_phy_addr_low); ql_write_page1_reg(qdev, &hmem_regs->reqBaseAddrHigh, MS_64BITS(qdev->req_q_phy_addr)); ql_write_page1_reg(qdev, &hmem_regs->reqBaseAddrLow, LS_64BITS(qdev->req_q_phy_addr)); ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES); /* Response Queue Registers */ *((__le16 *) (qdev->prsp_producer_index)) = 0; qdev->rsp_consumer_index = 0; qdev->rsp_current = qdev->rsp_q_virt_addr; ql_write_page1_reg(qdev, &hmem_regs->rspProducerIndexAddrHigh, qdev->rsp_producer_index_phy_addr_high); ql_write_page1_reg(qdev, &hmem_regs->rspProducerIndexAddrLow, qdev->rsp_producer_index_phy_addr_low); ql_write_page1_reg(qdev, &hmem_regs->rspBaseAddrHigh, MS_64BITS(qdev->rsp_q_phy_addr)); ql_write_page1_reg(qdev, &hmem_regs->rspBaseAddrLow, LS_64BITS(qdev->rsp_q_phy_addr)); ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES); /* Large Buffer Queue */ ql_write_page1_reg(qdev, &hmem_regs->rxLargeQBaseAddrHigh, MS_64BITS(qdev->lrg_buf_q_phy_addr)); ql_write_page1_reg(qdev, &hmem_regs->rxLargeQBaseAddrLow, LS_64BITS(qdev->lrg_buf_q_phy_addr)); ql_write_page1_reg(qdev, &hmem_regs->rxLargeQLength, qdev->num_lbufq_entries); ql_write_page1_reg(qdev, &hmem_regs->rxLargeBufferLength, qdev->lrg_buffer_len); /* Small Buffer Queue */ ql_write_page1_reg(qdev, &hmem_regs->rxSmallQBaseAddrHigh, MS_64BITS(qdev->small_buf_q_phy_addr)); ql_write_page1_reg(qdev, &hmem_regs->rxSmallQBaseAddrLow, LS_64BITS(qdev->small_buf_q_phy_addr)); ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES); ql_write_page1_reg(qdev, &hmem_regs->rxSmallBufferLength, QL_SMALL_BUFFER_SIZE); qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1; qdev->small_buf_release_cnt = 8; qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1; qdev->lrg_buf_release_cnt = 8; qdev->lrg_buf_next_free = qdev->lrg_buf_q_virt_addr; qdev->small_buf_index = 0; qdev->lrg_buf_index = 0; qdev->lrg_buf_free_count = 0; qdev->lrg_buf_free_head = NULL; qdev->lrg_buf_free_tail = NULL; ql_write_common_reg(qdev, &port_regs->CommonRegs. rxSmallQProducerIndex, qdev->small_buf_q_producer_index); ql_write_common_reg(qdev, &port_regs->CommonRegs. rxLargeQProducerIndex, qdev->lrg_buf_q_producer_index); /* * Find out if the chip has already been initialized. If it has, then * we skip some of the initialization. */ clear_bit(QL_LINK_MASTER, &qdev->flags); value = ql_read_page0_reg(qdev, &port_regs->portStatus); if ((value & PORT_STATUS_IC) == 0) { /* Chip has not been configured yet, so let it rip. */ if (ql_init_misc_registers(qdev)) { status = -1; goto out; } value = qdev->nvram_data.tcpMaxWindowSize; ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value); value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig; if (ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK, (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) * 2) << 13)) { status = -1; goto out; } ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value); ql_write_page0_reg(qdev, &port_regs->InternalChipConfig, (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) << 16) | (INTERNAL_CHIP_SD | INTERNAL_CHIP_WE))); ql_sem_unlock(qdev, QL_FLASH_SEM_MASK); } if (qdev->mac_index) ql_write_page0_reg(qdev, &port_regs->mac1MaxFrameLengthReg, qdev->max_frame_size); else ql_write_page0_reg(qdev, &port_regs->mac0MaxFrameLengthReg, qdev->max_frame_size); if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK, (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) * 2) << 7)) { status = -1; goto out; } PHY_Setup(qdev); ql_init_scan_mode(qdev); ql_get_phy_owner(qdev); /* Load the MAC Configuration */ /* Program lower 32 bits of the MAC address */ ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg, (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16)); ql_write_page0_reg(qdev, &port_regs->macAddrDataReg, ((qdev->ndev->dev_addr[2] << 24) | (qdev->ndev->dev_addr[3] << 16) | (qdev->ndev->dev_addr[4] << 8) | qdev->ndev->dev_addr[5])); /* Program top 16 bits of the MAC address */ ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg, ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1)); ql_write_page0_reg(qdev, &port_regs->macAddrDataReg, ((qdev->ndev->dev_addr[0] << 8) | qdev->ndev->dev_addr[1])); /* Enable Primary MAC */ ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg, ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) | MAC_ADDR_INDIRECT_PTR_REG_PE)); /* Clear Primary and Secondary IP addresses */ ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg, ((IP_ADDR_INDEX_REG_MASK << 16) | (qdev->mac_index << 2))); ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0); ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg, ((IP_ADDR_INDEX_REG_MASK << 16) | ((qdev->mac_index << 2) + 1))); ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0); ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK); /* Indicate Configuration Complete */ ql_write_page0_reg(qdev, &port_regs->portControl, ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC)); do { value = ql_read_page0_reg(qdev, &port_regs->portStatus); if (value & PORT_STATUS_IC) break; spin_unlock_irq(&qdev->hw_lock); msleep(500); spin_lock_irq(&qdev->hw_lock); } while (--delay); if (delay == 0) { netdev_err(qdev->ndev, "Hw Initialization timeout\n"); status = -1; goto out; } /* Enable Ethernet Function */ if (qdev->device_id == QL3032_DEVICE_ID) { value = (QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE | QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4 | QL3032_PORT_CONTROL_ET); ql_write_page0_reg(qdev, &port_regs->functionControl, ((value << 16) | value)); } else { value = (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI | PORT_CONTROL_HH); ql_write_page0_reg(qdev, &port_regs->portControl, ((value << 16) | value)); } out: return status; } /* * Caller holds hw_lock. */ static int ql_adapter_reset(struct ql3_adapter *qdev) { struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; int status = 0; u16 value; int max_wait_time; set_bit(QL_RESET_ACTIVE, &qdev->flags); clear_bit(QL_RESET_DONE, &qdev->flags); /* * Issue soft reset to chip. */ netdev_printk(KERN_DEBUG, qdev->ndev, "Issue soft reset to chip\n"); ql_write_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus, ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR)); /* Wait 3 seconds for reset to complete. */ netdev_printk(KERN_DEBUG, qdev->ndev, "Wait 10 milliseconds for reset to complete\n"); /* Wait until the firmware tells us the Soft Reset is done */ max_wait_time = 5; do { value = ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus); if ((value & ISP_CONTROL_SR) == 0) break; mdelay(1000); } while ((--max_wait_time)); /* * Also, make sure that the Network Reset Interrupt bit has been * cleared after the soft reset has taken place. */ value = ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus); if (value & ISP_CONTROL_RI) { netdev_printk(KERN_DEBUG, qdev->ndev, "clearing RI after reset\n"); ql_write_common_reg(qdev, &port_regs->CommonRegs. ispControlStatus, ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI)); } if (max_wait_time == 0) { /* Issue Force Soft Reset */ ql_write_common_reg(qdev, &port_regs->CommonRegs. ispControlStatus, ((ISP_CONTROL_FSR << 16) | ISP_CONTROL_FSR)); /* * Wait until the firmware tells us the Force Soft Reset is * done */ max_wait_time = 5; do { value = ql_read_common_reg(qdev, &port_regs->CommonRegs. ispControlStatus); if ((value & ISP_CONTROL_FSR) == 0) break; mdelay(1000); } while ((--max_wait_time)); } if (max_wait_time == 0) status = 1; clear_bit(QL_RESET_ACTIVE, &qdev->flags); set_bit(QL_RESET_DONE, &qdev->flags); return status; } static void ql_set_mac_info(struct ql3_adapter *qdev) { struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; u32 value, port_status; u8 func_number; /* Get the function number */ value = ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus); func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK); port_status = ql_read_page0_reg(qdev, &port_regs->portStatus); switch (value & ISP_CONTROL_FN_MASK) { case ISP_CONTROL_FN0_NET: qdev->mac_index = 0; qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number; qdev->mb_bit_mask = FN0_MA_BITS_MASK; qdev->PHYAddr = PORT0_PHY_ADDRESS; if (port_status & PORT_STATUS_SM0) set_bit(QL_LINK_OPTICAL, &qdev->flags); else clear_bit(QL_LINK_OPTICAL, &qdev->flags); break; case ISP_CONTROL_FN1_NET: qdev->mac_index = 1; qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number; qdev->mb_bit_mask = FN1_MA_BITS_MASK; qdev->PHYAddr = PORT1_PHY_ADDRESS; if (port_status & PORT_STATUS_SM1) set_bit(QL_LINK_OPTICAL, &qdev->flags); else clear_bit(QL_LINK_OPTICAL, &qdev->flags); break; case ISP_CONTROL_FN0_SCSI: case ISP_CONTROL_FN1_SCSI: default: netdev_printk(KERN_DEBUG, qdev->ndev, "Invalid function number, ispControlStatus = 0x%x\n", value); break; } qdev->numPorts = qdev->nvram_data.version_and_numPorts >> 8; } static void ql_display_dev_info(struct net_device *ndev) { struct ql3_adapter *qdev = netdev_priv(ndev); struct pci_dev *pdev = qdev->pdev; netdev_info(ndev, "%s Adapter %d RevisionID %d found %s on PCI slot %d\n", DRV_NAME, qdev->index, qdev->chip_rev_id, qdev->device_id == QL3032_DEVICE_ID ? "QLA3032" : "QLA3022", qdev->pci_slot); netdev_info(ndev, "%s Interface\n", test_bit(QL_LINK_OPTICAL, &qdev->flags) ? "OPTICAL" : "COPPER"); /* * Print PCI bus width/type. */ netdev_info(ndev, "Bus interface is %s %s\n", ((qdev->pci_width == 64) ? "64-bit" : "32-bit"), ((qdev->pci_x) ? "PCI-X" : "PCI")); netdev_info(ndev, "mem IO base address adjusted = 0x%p\n", qdev->mem_map_registers); netdev_info(ndev, "Interrupt number = %d\n", pdev->irq); netif_info(qdev, probe, ndev, "MAC address %pM\n", ndev->dev_addr); } static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset) { struct net_device *ndev = qdev->ndev; int retval = 0; netif_stop_queue(ndev); netif_carrier_off(ndev); clear_bit(QL_ADAPTER_UP, &qdev->flags); clear_bit(QL_LINK_MASTER, &qdev->flags); ql_disable_interrupts(qdev); free_irq(qdev->pdev->irq, ndev); if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) { netdev_info(qdev->ndev, "calling pci_disable_msi()\n"); clear_bit(QL_MSI_ENABLED, &qdev->flags); pci_disable_msi(qdev->pdev); } del_timer_sync(&qdev->adapter_timer); napi_disable(&qdev->napi); if (do_reset) { int soft_reset; unsigned long hw_flags; spin_lock_irqsave(&qdev->hw_lock, hw_flags); if (ql_wait_for_drvr_lock(qdev)) { soft_reset = ql_adapter_reset(qdev); if (soft_reset) { netdev_err(ndev, "ql_adapter_reset(%d) FAILED!\n", qdev->index); } netdev_err(ndev, "Releasing driver lock via chip reset\n"); } else { netdev_err(ndev, "Could not acquire driver lock to do reset!\n"); retval = -1; } spin_unlock_irqrestore(&qdev->hw_lock, hw_flags); } ql_free_mem_resources(qdev); return retval; } static int ql_adapter_up(struct ql3_adapter *qdev) { struct net_device *ndev = qdev->ndev; int err; unsigned long irq_flags = IRQF_SHARED; unsigned long hw_flags; if (ql_alloc_mem_resources(qdev)) { netdev_err(ndev, "Unable to allocate buffers\n"); return -ENOMEM; } if (qdev->msi) { if (pci_enable_msi(qdev->pdev)) { netdev_err(ndev, "User requested MSI, but MSI failed to initialize. Continuing without MSI.\n"); qdev->msi = 0; } else { netdev_info(ndev, "MSI Enabled...\n"); set_bit(QL_MSI_ENABLED, &qdev->flags); irq_flags &= ~IRQF_SHARED; } } err = request_irq(qdev->pdev->irq, ql3xxx_isr, irq_flags, ndev->name, ndev); if (err) { netdev_err(ndev, "Failed to reserve interrupt %d - already in use\n", qdev->pdev->irq); goto err_irq; } spin_lock_irqsave(&qdev->hw_lock, hw_flags); if (!ql_wait_for_drvr_lock(qdev)) { netdev_err(ndev, "Could not acquire driver lock\n"); err = -ENODEV; goto err_lock; } err = ql_adapter_initialize(qdev); if (err) { netdev_err(ndev, "Unable to initialize adapter\n"); goto err_init; } ql_sem_unlock(qdev, QL_DRVR_SEM_MASK); spin_unlock_irqrestore(&qdev->hw_lock, hw_flags); set_bit(QL_ADAPTER_UP, &qdev->flags); mod_timer(&qdev->adapter_timer, jiffies + HZ * 1); napi_enable(&qdev->napi); ql_enable_interrupts(qdev); return 0; err_init: ql_sem_unlock(qdev, QL_DRVR_SEM_MASK); err_lock: spin_unlock_irqrestore(&qdev->hw_lock, hw_flags); free_irq(qdev->pdev->irq, ndev); err_irq: if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) { netdev_info(ndev, "calling pci_disable_msi()\n"); clear_bit(QL_MSI_ENABLED, &qdev->flags); pci_disable_msi(qdev->pdev); } return err; } static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset) { if (ql_adapter_down(qdev, reset) || ql_adapter_up(qdev)) { netdev_err(qdev->ndev, "Driver up/down cycle failed, closing device\n"); rtnl_lock(); dev_close(qdev->ndev); rtnl_unlock(); return -1; } return 0; } static int ql3xxx_close(struct net_device *ndev) { struct ql3_adapter *qdev = netdev_priv(ndev); /* * Wait for device to recover from a reset. * (Rarely happens, but possible.) */ while (!test_bit(QL_ADAPTER_UP, &qdev->flags)) msleep(50); ql_adapter_down(qdev, QL_DO_RESET); return 0; } static int ql3xxx_open(struct net_device *ndev) { struct ql3_adapter *qdev = netdev_priv(ndev); return ql_adapter_up(qdev); } static int ql3xxx_set_mac_address(struct net_device *ndev, void *p) { struct ql3_adapter *qdev = netdev_priv(ndev); struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; struct sockaddr *addr = p; unsigned long hw_flags; if (netif_running(ndev)) return -EBUSY; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; eth_hw_addr_set(ndev, addr->sa_data); spin_lock_irqsave(&qdev->hw_lock, hw_flags); /* Program lower 32 bits of the MAC address */ ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg, (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16)); ql_write_page0_reg(qdev, &port_regs->macAddrDataReg, ((ndev->dev_addr[2] << 24) | (ndev-> dev_addr[3] << 16) | (ndev->dev_addr[4] << 8) | ndev->dev_addr[5])); /* Program top 16 bits of the MAC address */ ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg, ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1)); ql_write_page0_reg(qdev, &port_regs->macAddrDataReg, ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1])); spin_unlock_irqrestore(&qdev->hw_lock, hw_flags); return 0; } static void ql3xxx_tx_timeout(struct net_device *ndev, unsigned int txqueue) { struct ql3_adapter *qdev = netdev_priv(ndev); netdev_err(ndev, "Resetting...\n"); /* * Stop the queues, we've got a problem. */ netif_stop_queue(ndev); /* * Wake up the worker to process this event. */ queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0); } static void ql_reset_work(struct work_struct *work) { struct ql3_adapter *qdev = container_of(work, struct ql3_adapter, reset_work.work); struct net_device *ndev = qdev->ndev; u32 value; struct ql_tx_buf_cb *tx_cb; int max_wait_time, i; struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; unsigned long hw_flags; if (test_bit(QL_RESET_PER_SCSI, &qdev->flags) || test_bit(QL_RESET_START, &qdev->flags)) { clear_bit(QL_LINK_MASTER, &qdev->flags); /* * Loop through the active list and return the skb. */ for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) { int j; tx_cb = &qdev->tx_buf[i]; if (tx_cb->skb) { netdev_printk(KERN_DEBUG, ndev, "Freeing lost SKB\n"); dma_unmap_single(&qdev->pdev->dev, dma_unmap_addr(&tx_cb->map[0], mapaddr), dma_unmap_len(&tx_cb->map[0], maplen), DMA_TO_DEVICE); for (j = 1; j < tx_cb->seg_count; j++) { dma_unmap_page(&qdev->pdev->dev, dma_unmap_addr(&tx_cb->map[j], mapaddr), dma_unmap_len(&tx_cb->map[j], maplen), DMA_TO_DEVICE); } dev_kfree_skb(tx_cb->skb); tx_cb->skb = NULL; } } netdev_err(ndev, "Clearing NRI after reset\n"); spin_lock_irqsave(&qdev->hw_lock, hw_flags); ql_write_common_reg(qdev, &port_regs->CommonRegs. ispControlStatus, ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI)); /* * Wait the for Soft Reset to Complete. */ max_wait_time = 10; do { value = ql_read_common_reg(qdev, &port_regs->CommonRegs. ispControlStatus); if ((value & ISP_CONTROL_SR) == 0) { netdev_printk(KERN_DEBUG, ndev, "reset completed\n"); break; } if (value & ISP_CONTROL_RI) { netdev_printk(KERN_DEBUG, ndev, "clearing NRI after reset\n"); ql_write_common_reg(qdev, &port_regs-> CommonRegs. ispControlStatus, ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI)); } spin_unlock_irqrestore(&qdev->hw_lock, hw_flags); ssleep(1); spin_lock_irqsave(&qdev->hw_lock, hw_flags); } while (--max_wait_time); spin_unlock_irqrestore(&qdev->hw_lock, hw_flags); if (value & ISP_CONTROL_SR) { /* * Set the reset flags and clear the board again. * Nothing else to do... */ netdev_err(ndev, "Timed out waiting for reset to complete\n"); netdev_err(ndev, "Do a reset\n"); clear_bit(QL_RESET_PER_SCSI, &qdev->flags); clear_bit(QL_RESET_START, &qdev->flags); ql_cycle_adapter(qdev, QL_DO_RESET); return; } clear_bit(QL_RESET_ACTIVE, &qdev->flags); clear_bit(QL_RESET_PER_SCSI, &qdev->flags); clear_bit(QL_RESET_START, &qdev->flags); ql_cycle_adapter(qdev, QL_NO_RESET); } } static void ql_tx_timeout_work(struct work_struct *work) { struct ql3_adapter *qdev = container_of(work, struct ql3_adapter, tx_timeout_work.work); ql_cycle_adapter(qdev, QL_DO_RESET); } static void ql_get_board_info(struct ql3_adapter *qdev) { struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers; u32 value; value = ql_read_page0_reg_l(qdev, &port_regs->portStatus); qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12); if (value & PORT_STATUS_64) qdev->pci_width = 64; else qdev->pci_width = 32; if (value & PORT_STATUS_X) qdev->pci_x = 1; else qdev->pci_x = 0; qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn); } static void ql3xxx_timer(struct timer_list *t) { struct ql3_adapter *qdev = from_timer(qdev, t, adapter_timer); queue_delayed_work(qdev->workqueue, &qdev->link_state_work, 0); } static const struct net_device_ops ql3xxx_netdev_ops = { .ndo_open = ql3xxx_open, .ndo_start_xmit = ql3xxx_send, .ndo_stop = ql3xxx_close, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = ql3xxx_set_mac_address, .ndo_tx_timeout = ql3xxx_tx_timeout, }; static int ql3xxx_probe(struct pci_dev *pdev, const struct pci_device_id *pci_entry) { struct net_device *ndev = NULL; struct ql3_adapter *qdev = NULL; static int cards_found; int err; err = pci_enable_device(pdev); if (err) { pr_err("%s cannot enable PCI device\n", pci_name(pdev)); goto err_out; } err = pci_request_regions(pdev, DRV_NAME); if (err) { pr_err("%s cannot obtain PCI resources\n", pci_name(pdev)); goto err_out_disable_pdev; } pci_set_master(pdev); err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); if (err) { pr_err("%s no usable DMA configuration\n", pci_name(pdev)); goto err_out_free_regions; } ndev = alloc_etherdev(sizeof(struct ql3_adapter)); if (!ndev) { err = -ENOMEM; goto err_out_free_regions; } SET_NETDEV_DEV(ndev, &pdev->dev); pci_set_drvdata(pdev, ndev); qdev = netdev_priv(ndev); qdev->index = cards_found; qdev->ndev = ndev; qdev->pdev = pdev; qdev->device_id = pci_entry->device; qdev->port_link_state = LS_DOWN; if (msi) qdev->msi = 1; qdev->msg_enable = netif_msg_init(debug, default_msg); ndev->features |= NETIF_F_HIGHDMA; if (qdev->device_id == QL3032_DEVICE_ID) ndev->features |= NETIF_F_IP_CSUM | NETIF_F_SG; qdev->mem_map_registers = pci_ioremap_bar(pdev, 1); if (!qdev->mem_map_registers) { pr_err("%s: cannot map device registers\n", pci_name(pdev)); err = -EIO; goto err_out_free_ndev; } spin_lock_init(&qdev->adapter_lock); spin_lock_init(&qdev->hw_lock); /* Set driver entry points */ ndev->netdev_ops = &ql3xxx_netdev_ops; ndev->ethtool_ops = &ql3xxx_ethtool_ops; ndev->watchdog_timeo = 5 * HZ; netif_napi_add(ndev, &qdev->napi, ql_poll); ndev->irq = pdev->irq; /* make sure the EEPROM is good */ if (ql_get_nvram_params(qdev)) { pr_alert("%s: Adapter #%d, Invalid NVRAM parameters\n", __func__, qdev->index); err = -EIO; goto err_out_iounmap; } ql_set_mac_info(qdev); /* Validate and set parameters */ if (qdev->mac_index) { ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ; ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn2.macAddress); } else { ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ; ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn0.macAddress); } ndev->tx_queue_len = NUM_REQ_Q_ENTRIES; /* Record PCI bus information. */ ql_get_board_info(qdev); /* * Set the Maximum Memory Read Byte Count value. We do this to handle * jumbo frames. */ if (qdev->pci_x) pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036); err = register_netdev(ndev); if (err) { pr_err("%s: cannot register net device\n", pci_name(pdev)); goto err_out_iounmap; } /* we're going to reset, so assume we have no link for now */ netif_carrier_off(ndev); netif_stop_queue(ndev); qdev->workqueue = create_singlethread_workqueue(ndev->name); if (!qdev->workqueue) { unregister_netdev(ndev); err = -ENOMEM; goto err_out_iounmap; } INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work); INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work); INIT_DELAYED_WORK(&qdev->link_state_work, ql_link_state_machine_work); timer_setup(&qdev->adapter_timer, ql3xxx_timer, 0); qdev->adapter_timer.expires = jiffies + HZ * 2; /* two second delay */ if (!cards_found) { pr_alert("%s\n", DRV_STRING); pr_alert("Driver name: %s, Version: %s\n", DRV_NAME, DRV_VERSION); } ql_display_dev_info(ndev); cards_found++; return 0; err_out_iounmap: iounmap(qdev->mem_map_registers); err_out_free_ndev: free_netdev(ndev); err_out_free_regions: pci_release_regions(pdev); err_out_disable_pdev: pci_disable_device(pdev); err_out: return err; } static void ql3xxx_remove(struct pci_dev *pdev) { struct net_device *ndev = pci_get_drvdata(pdev); struct ql3_adapter *qdev = netdev_priv(ndev); unregister_netdev(ndev); ql_disable_interrupts(qdev); if (qdev->workqueue) { cancel_delayed_work(&qdev->reset_work); cancel_delayed_work(&qdev->tx_timeout_work); destroy_workqueue(qdev->workqueue); qdev->workqueue = NULL; } iounmap(qdev->mem_map_registers); pci_release_regions(pdev); free_netdev(ndev); } static struct pci_driver ql3xxx_driver = { .name = DRV_NAME, .id_table = ql3xxx_pci_tbl, .probe = ql3xxx_probe, .remove = ql3xxx_remove, }; module_pci_driver(ql3xxx_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1