Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sergei Shtylyov | 8147 | 52.54% | 15 | 10.07% |
Biju Das | 3228 | 20.82% | 47 | 31.54% |
Kazuya Mizuguchi | 1749 | 11.28% | 12 | 8.05% |
Niklas Söderlund | 513 | 3.31% | 6 | 4.03% |
Geert Uytterhoeven | 479 | 3.09% | 11 | 7.38% |
Phil Edworthy | 452 | 2.92% | 4 | 2.68% |
Simon Horman | 353 | 2.28% | 7 | 4.70% |
Yoshihiro Shimoda | 76 | 0.49% | 4 | 2.68% |
Adam Ford | 69 | 0.45% | 2 | 1.34% |
Eugeniu Rosca | 63 | 0.41% | 1 | 0.67% |
Johan Hovold | 48 | 0.31% | 1 | 0.67% |
Vladimir Zapolskiy | 46 | 0.30% | 4 | 2.68% |
Andrew Lunn | 46 | 0.30% | 4 | 2.68% |
Tho Vu | 24 | 0.15% | 1 | 0.67% |
Masaru Nagai | 24 | 0.15% | 4 | 2.68% |
Jakub Kiciński | 20 | 0.13% | 2 | 1.34% |
Michael Walle | 18 | 0.12% | 1 | 0.67% |
Magnus Damm | 15 | 0.10% | 1 | 0.67% |
Ulrich Hecht | 15 | 0.10% | 1 | 0.67% |
Philippe Reynes | 14 | 0.09% | 2 | 1.34% |
Yang Yingliang | 13 | 0.08% | 1 | 0.67% |
Dan Carpenter | 12 | 0.08% | 1 | 0.67% |
Andrew Gabbasov | 12 | 0.08% | 1 | 0.67% |
Hao Chen | 10 | 0.06% | 1 | 0.67% |
Florian Fainelli | 10 | 0.06% | 1 | 0.67% |
Wolfram Sang | 10 | 0.06% | 2 | 1.34% |
Arnd Bergmann | 6 | 0.04% | 2 | 1.34% |
Peter Chen | 5 | 0.03% | 1 | 0.67% |
Sergey Shtylyov | 5 | 0.03% | 1 | 0.67% |
Lino Sanfilippo | 5 | 0.03% | 1 | 0.67% |
Michael S. Tsirkin | 4 | 0.03% | 1 | 0.67% |
Li Yang | 3 | 0.02% | 1 | 0.67% |
Yoshihiro Kaneko | 3 | 0.02% | 1 | 0.67% |
Christophe Jaillet | 3 | 0.02% | 1 | 0.67% |
Alexander Duyck | 3 | 0.02% | 1 | 0.67% |
Rikard Falkeborn | 1 | 0.01% | 1 | 0.67% |
Yue haibing | 1 | 0.01% | 1 | 0.67% |
Total | 15505 | 149 |
// SPDX-License-Identifier: GPL-2.0 /* Renesas Ethernet AVB device driver * * Copyright (C) 2014-2019 Renesas Electronics Corporation * Copyright (C) 2015 Renesas Solutions Corp. * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com> * * Based on the SuperH Ethernet driver */ #include <linux/cache.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/err.h> #include <linux/etherdevice.h> #include <linux/ethtool.h> #include <linux/if_vlan.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/module.h> #include <linux/net_tstamp.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/of_irq.h> #include <linux/of_mdio.h> #include <linux/of_net.h> #include <linux/pm_runtime.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/sys_soc.h> #include <linux/reset.h> #include <linux/math64.h> #include "ravb.h" #define RAVB_DEF_MSG_ENABLE \ (NETIF_MSG_LINK | \ NETIF_MSG_TIMER | \ NETIF_MSG_RX_ERR | \ NETIF_MSG_TX_ERR) static const char *ravb_rx_irqs[NUM_RX_QUEUE] = { "ch0", /* RAVB_BE */ "ch1", /* RAVB_NC */ }; static const char *ravb_tx_irqs[NUM_TX_QUEUE] = { "ch18", /* RAVB_BE */ "ch19", /* RAVB_NC */ }; void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear, u32 set) { ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg); } int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value) { int i; for (i = 0; i < 10000; i++) { if ((ravb_read(ndev, reg) & mask) == value) return 0; udelay(10); } return -ETIMEDOUT; } static int ravb_config(struct net_device *ndev) { int error; /* Set config mode */ ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG); /* Check if the operating mode is changed to the config mode */ error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG); if (error) netdev_err(ndev, "failed to switch device to config mode\n"); return error; } static void ravb_set_rate_gbeth(struct net_device *ndev) { struct ravb_private *priv = netdev_priv(ndev); switch (priv->speed) { case 10: /* 10BASE */ ravb_write(ndev, GBETH_GECMR_SPEED_10, GECMR); break; case 100: /* 100BASE */ ravb_write(ndev, GBETH_GECMR_SPEED_100, GECMR); break; case 1000: /* 1000BASE */ ravb_write(ndev, GBETH_GECMR_SPEED_1000, GECMR); break; } } static void ravb_set_rate_rcar(struct net_device *ndev) { struct ravb_private *priv = netdev_priv(ndev); switch (priv->speed) { case 100: /* 100BASE */ ravb_write(ndev, GECMR_SPEED_100, GECMR); break; case 1000: /* 1000BASE */ ravb_write(ndev, GECMR_SPEED_1000, GECMR); break; } } static void ravb_set_buffer_align(struct sk_buff *skb) { u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1); if (reserve) skb_reserve(skb, RAVB_ALIGN - reserve); } /* Get MAC address from the MAC address registers * * Ethernet AVB device doesn't have ROM for MAC address. * This function gets the MAC address that was used by a bootloader. */ static void ravb_read_mac_address(struct device_node *np, struct net_device *ndev) { int ret; ret = of_get_ethdev_address(np, ndev); if (ret) { u32 mahr = ravb_read(ndev, MAHR); u32 malr = ravb_read(ndev, MALR); u8 addr[ETH_ALEN]; addr[0] = (mahr >> 24) & 0xFF; addr[1] = (mahr >> 16) & 0xFF; addr[2] = (mahr >> 8) & 0xFF; addr[3] = (mahr >> 0) & 0xFF; addr[4] = (malr >> 8) & 0xFF; addr[5] = (malr >> 0) & 0xFF; eth_hw_addr_set(ndev, addr); } } static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set) { struct ravb_private *priv = container_of(ctrl, struct ravb_private, mdiobb); ravb_modify(priv->ndev, PIR, mask, set ? mask : 0); } /* MDC pin control */ static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level) { ravb_mdio_ctrl(ctrl, PIR_MDC, level); } /* Data I/O pin control */ static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output) { ravb_mdio_ctrl(ctrl, PIR_MMD, output); } /* Set data bit */ static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value) { ravb_mdio_ctrl(ctrl, PIR_MDO, value); } /* Get data bit */ static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl) { struct ravb_private *priv = container_of(ctrl, struct ravb_private, mdiobb); return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0; } /* MDIO bus control struct */ static const struct mdiobb_ops bb_ops = { .owner = THIS_MODULE, .set_mdc = ravb_set_mdc, .set_mdio_dir = ravb_set_mdio_dir, .set_mdio_data = ravb_set_mdio_data, .get_mdio_data = ravb_get_mdio_data, }; /* Free TX skb function for AVB-IP */ static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only) { struct ravb_private *priv = netdev_priv(ndev); struct net_device_stats *stats = &priv->stats[q]; unsigned int num_tx_desc = priv->num_tx_desc; struct ravb_tx_desc *desc; unsigned int entry; int free_num = 0; u32 size; for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) { bool txed; entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] * num_tx_desc); desc = &priv->tx_ring[q][entry]; txed = desc->die_dt == DT_FEMPTY; if (free_txed_only && !txed) break; /* Descriptor type must be checked before all other reads */ dma_rmb(); size = le16_to_cpu(desc->ds_tagl) & TX_DS; /* Free the original skb. */ if (priv->tx_skb[q][entry / num_tx_desc]) { dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr), size, DMA_TO_DEVICE); /* Last packet descriptor? */ if (entry % num_tx_desc == num_tx_desc - 1) { entry /= num_tx_desc; dev_kfree_skb_any(priv->tx_skb[q][entry]); priv->tx_skb[q][entry] = NULL; if (txed) stats->tx_packets++; } free_num++; } if (txed) stats->tx_bytes += size; desc->die_dt = DT_EEMPTY; } return free_num; } static void ravb_rx_ring_free_gbeth(struct net_device *ndev, int q) { struct ravb_private *priv = netdev_priv(ndev); unsigned int ring_size; unsigned int i; if (!priv->gbeth_rx_ring) return; for (i = 0; i < priv->num_rx_ring[q]; i++) { struct ravb_rx_desc *desc = &priv->gbeth_rx_ring[i]; if (!dma_mapping_error(ndev->dev.parent, le32_to_cpu(desc->dptr))) dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr), GBETH_RX_BUFF_MAX, DMA_FROM_DEVICE); } ring_size = sizeof(struct ravb_rx_desc) * (priv->num_rx_ring[q] + 1); dma_free_coherent(ndev->dev.parent, ring_size, priv->gbeth_rx_ring, priv->rx_desc_dma[q]); priv->gbeth_rx_ring = NULL; } static void ravb_rx_ring_free_rcar(struct net_device *ndev, int q) { struct ravb_private *priv = netdev_priv(ndev); unsigned int ring_size; unsigned int i; if (!priv->rx_ring[q]) return; for (i = 0; i < priv->num_rx_ring[q]; i++) { struct ravb_ex_rx_desc *desc = &priv->rx_ring[q][i]; if (!dma_mapping_error(ndev->dev.parent, le32_to_cpu(desc->dptr))) dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr), RX_BUF_SZ, DMA_FROM_DEVICE); } ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1); dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q], priv->rx_desc_dma[q]); priv->rx_ring[q] = NULL; } /* Free skb's and DMA buffers for Ethernet AVB */ static void ravb_ring_free(struct net_device *ndev, int q) { struct ravb_private *priv = netdev_priv(ndev); const struct ravb_hw_info *info = priv->info; unsigned int num_tx_desc = priv->num_tx_desc; unsigned int ring_size; unsigned int i; info->rx_ring_free(ndev, q); if (priv->tx_ring[q]) { ravb_tx_free(ndev, q, false); ring_size = sizeof(struct ravb_tx_desc) * (priv->num_tx_ring[q] * num_tx_desc + 1); dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q], priv->tx_desc_dma[q]); priv->tx_ring[q] = NULL; } /* Free RX skb ringbuffer */ if (priv->rx_skb[q]) { for (i = 0; i < priv->num_rx_ring[q]; i++) dev_kfree_skb(priv->rx_skb[q][i]); } kfree(priv->rx_skb[q]); priv->rx_skb[q] = NULL; /* Free aligned TX buffers */ kfree(priv->tx_align[q]); priv->tx_align[q] = NULL; /* Free TX skb ringbuffer. * SKBs are freed by ravb_tx_free() call above. */ kfree(priv->tx_skb[q]); priv->tx_skb[q] = NULL; } static void ravb_rx_ring_format_gbeth(struct net_device *ndev, int q) { struct ravb_private *priv = netdev_priv(ndev); struct ravb_rx_desc *rx_desc; unsigned int rx_ring_size; dma_addr_t dma_addr; unsigned int i; rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q]; memset(priv->gbeth_rx_ring, 0, rx_ring_size); /* Build RX ring buffer */ for (i = 0; i < priv->num_rx_ring[q]; i++) { /* RX descriptor */ rx_desc = &priv->gbeth_rx_ring[i]; rx_desc->ds_cc = cpu_to_le16(GBETH_RX_DESC_DATA_SIZE); dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data, GBETH_RX_BUFF_MAX, DMA_FROM_DEVICE); /* We just set the data size to 0 for a failed mapping which * should prevent DMA from happening... */ if (dma_mapping_error(ndev->dev.parent, dma_addr)) rx_desc->ds_cc = cpu_to_le16(0); rx_desc->dptr = cpu_to_le32(dma_addr); rx_desc->die_dt = DT_FEMPTY; } rx_desc = &priv->gbeth_rx_ring[i]; rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]); rx_desc->die_dt = DT_LINKFIX; /* type */ } static void ravb_rx_ring_format_rcar(struct net_device *ndev, int q) { struct ravb_private *priv = netdev_priv(ndev); struct ravb_ex_rx_desc *rx_desc; unsigned int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q]; dma_addr_t dma_addr; unsigned int i; memset(priv->rx_ring[q], 0, rx_ring_size); /* Build RX ring buffer */ for (i = 0; i < priv->num_rx_ring[q]; i++) { /* RX descriptor */ rx_desc = &priv->rx_ring[q][i]; rx_desc->ds_cc = cpu_to_le16(RX_BUF_SZ); dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data, RX_BUF_SZ, DMA_FROM_DEVICE); /* We just set the data size to 0 for a failed mapping which * should prevent DMA from happening... */ if (dma_mapping_error(ndev->dev.parent, dma_addr)) rx_desc->ds_cc = cpu_to_le16(0); rx_desc->dptr = cpu_to_le32(dma_addr); rx_desc->die_dt = DT_FEMPTY; } rx_desc = &priv->rx_ring[q][i]; rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]); rx_desc->die_dt = DT_LINKFIX; /* type */ } /* Format skb and descriptor buffer for Ethernet AVB */ static void ravb_ring_format(struct net_device *ndev, int q) { struct ravb_private *priv = netdev_priv(ndev); const struct ravb_hw_info *info = priv->info; unsigned int num_tx_desc = priv->num_tx_desc; struct ravb_tx_desc *tx_desc; struct ravb_desc *desc; unsigned int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] * num_tx_desc; unsigned int i; priv->cur_rx[q] = 0; priv->cur_tx[q] = 0; priv->dirty_rx[q] = 0; priv->dirty_tx[q] = 0; info->rx_ring_format(ndev, q); memset(priv->tx_ring[q], 0, tx_ring_size); /* Build TX ring buffer */ for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q]; i++, tx_desc++) { tx_desc->die_dt = DT_EEMPTY; if (num_tx_desc > 1) { tx_desc++; tx_desc->die_dt = DT_EEMPTY; } } tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]); tx_desc->die_dt = DT_LINKFIX; /* type */ /* RX descriptor base address for best effort */ desc = &priv->desc_bat[RX_QUEUE_OFFSET + q]; desc->die_dt = DT_LINKFIX; /* type */ desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]); /* TX descriptor base address for best effort */ desc = &priv->desc_bat[q]; desc->die_dt = DT_LINKFIX; /* type */ desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]); } static void *ravb_alloc_rx_desc_gbeth(struct net_device *ndev, int q) { struct ravb_private *priv = netdev_priv(ndev); unsigned int ring_size; ring_size = sizeof(struct ravb_rx_desc) * (priv->num_rx_ring[q] + 1); priv->gbeth_rx_ring = dma_alloc_coherent(ndev->dev.parent, ring_size, &priv->rx_desc_dma[q], GFP_KERNEL); return priv->gbeth_rx_ring; } static void *ravb_alloc_rx_desc_rcar(struct net_device *ndev, int q) { struct ravb_private *priv = netdev_priv(ndev); unsigned int ring_size; ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1); priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size, &priv->rx_desc_dma[q], GFP_KERNEL); return priv->rx_ring[q]; } /* Init skb and descriptor buffer for Ethernet AVB */ static int ravb_ring_init(struct net_device *ndev, int q) { struct ravb_private *priv = netdev_priv(ndev); const struct ravb_hw_info *info = priv->info; unsigned int num_tx_desc = priv->num_tx_desc; unsigned int ring_size; struct sk_buff *skb; unsigned int i; /* Allocate RX and TX skb rings */ priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q], sizeof(*priv->rx_skb[q]), GFP_KERNEL); priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q], sizeof(*priv->tx_skb[q]), GFP_KERNEL); if (!priv->rx_skb[q] || !priv->tx_skb[q]) goto error; for (i = 0; i < priv->num_rx_ring[q]; i++) { skb = __netdev_alloc_skb(ndev, info->max_rx_len, GFP_KERNEL); if (!skb) goto error; ravb_set_buffer_align(skb); priv->rx_skb[q][i] = skb; } if (num_tx_desc > 1) { /* Allocate rings for the aligned buffers */ priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] + DPTR_ALIGN - 1, GFP_KERNEL); if (!priv->tx_align[q]) goto error; } /* Allocate all RX descriptors. */ if (!info->alloc_rx_desc(ndev, q)) goto error; priv->dirty_rx[q] = 0; /* Allocate all TX descriptors. */ ring_size = sizeof(struct ravb_tx_desc) * (priv->num_tx_ring[q] * num_tx_desc + 1); priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size, &priv->tx_desc_dma[q], GFP_KERNEL); if (!priv->tx_ring[q]) goto error; return 0; error: ravb_ring_free(ndev, q); return -ENOMEM; } static void ravb_emac_init_gbeth(struct net_device *ndev) { struct ravb_private *priv = netdev_priv(ndev); /* Receive frame limit set register */ ravb_write(ndev, GBETH_RX_BUFF_MAX + ETH_FCS_LEN, RFLR); /* EMAC Mode: PAUSE prohibition; Duplex; TX; RX; CRC Pass Through */ ravb_write(ndev, ECMR_ZPF | ((priv->duplex > 0) ? ECMR_DM : 0) | ECMR_TE | ECMR_RE | ECMR_RCPT | ECMR_TXF | ECMR_RXF, ECMR); ravb_set_rate_gbeth(ndev); /* Set MAC address */ ravb_write(ndev, (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) | (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR); ravb_write(ndev, (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR); /* E-MAC status register clear */ ravb_write(ndev, ECSR_ICD | ECSR_LCHNG | ECSR_PFRI, ECSR); ravb_write(ndev, CSR0_TPE | CSR0_RPE, CSR0); /* E-MAC interrupt enable register */ ravb_write(ndev, ECSIPR_ICDIP, ECSIPR); if (priv->phy_interface == PHY_INTERFACE_MODE_MII) { ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1, 0); ravb_write(ndev, (1000 << 16) | CXR35_SEL_XMII_MII, CXR35); } else { ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1, CXR31_SEL_LINK0); } } static void ravb_emac_init_rcar(struct net_device *ndev) { /* Receive frame limit set register */ ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR); /* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */ ravb_write(ndev, ECMR_ZPF | ECMR_DM | (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) | ECMR_TE | ECMR_RE, ECMR); ravb_set_rate_rcar(ndev); /* Set MAC address */ ravb_write(ndev, (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) | (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR); ravb_write(ndev, (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR); /* E-MAC status register clear */ ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR); /* E-MAC interrupt enable register */ ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR); } /* E-MAC init function */ static void ravb_emac_init(struct net_device *ndev) { struct ravb_private *priv = netdev_priv(ndev); const struct ravb_hw_info *info = priv->info; info->emac_init(ndev); } static int ravb_dmac_init_gbeth(struct net_device *ndev) { int error; error = ravb_ring_init(ndev, RAVB_BE); if (error) return error; /* Descriptor format */ ravb_ring_format(ndev, RAVB_BE); /* Set DMAC RX */ ravb_write(ndev, 0x60000000, RCR); /* Set Max Frame Length (RTC) */ ravb_write(ndev, 0x7ffc0000 | GBETH_RX_BUFF_MAX, RTC); /* Set FIFO size */ ravb_write(ndev, 0x00222200, TGC); ravb_write(ndev, 0, TCCR); /* Frame receive */ ravb_write(ndev, RIC0_FRE0, RIC0); /* Disable FIFO full warning */ ravb_write(ndev, 0x0, RIC1); /* Receive FIFO full error, descriptor empty */ ravb_write(ndev, RIC2_QFE0 | RIC2_RFFE, RIC2); ravb_write(ndev, TIC_FTE0, TIC); return 0; } static int ravb_dmac_init_rcar(struct net_device *ndev) { struct ravb_private *priv = netdev_priv(ndev); const struct ravb_hw_info *info = priv->info; int error; error = ravb_ring_init(ndev, RAVB_BE); if (error) return error; error = ravb_ring_init(ndev, RAVB_NC); if (error) { ravb_ring_free(ndev, RAVB_BE); return error; } /* Descriptor format */ ravb_ring_format(ndev, RAVB_BE); ravb_ring_format(ndev, RAVB_NC); /* Set AVB RX */ ravb_write(ndev, RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR); /* Set FIFO size */ ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC); /* Timestamp enable */ ravb_write(ndev, TCCR_TFEN, TCCR); /* Interrupt init: */ if (info->multi_irqs) { /* Clear DIL.DPLx */ ravb_write(ndev, 0, DIL); /* Set queue specific interrupt */ ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE); } /* Frame receive */ ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0); /* Disable FIFO full warning */ ravb_write(ndev, 0, RIC1); /* Receive FIFO full error, descriptor empty */ ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2); /* Frame transmitted, timestamp FIFO updated */ ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC); return 0; } /* Device init function for Ethernet AVB */ static int ravb_dmac_init(struct net_device *ndev) { struct ravb_private *priv = netdev_priv(ndev); const struct ravb_hw_info *info = priv->info; int error; /* Set CONFIG mode */ error = ravb_config(ndev); if (error) return error; error = info->dmac_init(ndev); if (error) return error; /* Setting the control will start the AVB-DMAC process. */ ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION); return 0; } static void ravb_get_tx_tstamp(struct net_device *ndev) { struct ravb_private *priv = netdev_priv(ndev); struct ravb_tstamp_skb *ts_skb, *ts_skb2; struct skb_shared_hwtstamps shhwtstamps; struct sk_buff *skb; struct timespec64 ts; u16 tag, tfa_tag; int count; u32 tfa2; count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8; while (count--) { tfa2 = ravb_read(ndev, TFA2); tfa_tag = (tfa2 & TFA2_TST) >> 16; ts.tv_nsec = (u64)ravb_read(ndev, TFA0); ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) | ravb_read(ndev, TFA1); memset(&shhwtstamps, 0, sizeof(shhwtstamps)); shhwtstamps.hwtstamp = timespec64_to_ktime(ts); list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) { skb = ts_skb->skb; tag = ts_skb->tag; list_del(&ts_skb->list); kfree(ts_skb); if (tag == tfa_tag) { skb_tstamp_tx(skb, &shhwtstamps); dev_consume_skb_any(skb); break; } else { dev_kfree_skb_any(skb); } } ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR); } } static void ravb_rx_csum(struct sk_buff *skb) { u8 *hw_csum; /* The hardware checksum is contained in sizeof(__sum16) (2) bytes * appended to packet data */ if (unlikely(skb->len < sizeof(__sum16))) return; hw_csum = skb_tail_pointer(skb) - sizeof(__sum16); skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum)); skb->ip_summed = CHECKSUM_COMPLETE; skb_trim(skb, skb->len - sizeof(__sum16)); } static struct sk_buff *ravb_get_skb_gbeth(struct net_device *ndev, int entry, struct ravb_rx_desc *desc) { struct ravb_private *priv = netdev_priv(ndev); struct sk_buff *skb; skb = priv->rx_skb[RAVB_BE][entry]; priv->rx_skb[RAVB_BE][entry] = NULL; dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr), ALIGN(GBETH_RX_BUFF_MAX, 16), DMA_FROM_DEVICE); return skb; } /* Packet receive function for Gigabit Ethernet */ static bool ravb_rx_gbeth(struct net_device *ndev, int *quota, int q) { struct ravb_private *priv = netdev_priv(ndev); const struct ravb_hw_info *info = priv->info; struct net_device_stats *stats; struct ravb_rx_desc *desc; struct sk_buff *skb; dma_addr_t dma_addr; u8 desc_status; int boguscnt; u16 pkt_len; u8 die_dt; int entry; int limit; entry = priv->cur_rx[q] % priv->num_rx_ring[q]; boguscnt = priv->dirty_rx[q] + priv->num_rx_ring[q] - priv->cur_rx[q]; stats = &priv->stats[q]; boguscnt = min(boguscnt, *quota); limit = boguscnt; desc = &priv->gbeth_rx_ring[entry]; while (desc->die_dt != DT_FEMPTY) { /* Descriptor type must be checked before all other reads */ dma_rmb(); desc_status = desc->msc; pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS; if (--boguscnt < 0) break; /* We use 0-byte descriptors to mark the DMA mapping errors */ if (!pkt_len) continue; if (desc_status & MSC_MC) stats->multicast++; if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF | MSC_CEEF)) { stats->rx_errors++; if (desc_status & MSC_CRC) stats->rx_crc_errors++; if (desc_status & MSC_RFE) stats->rx_frame_errors++; if (desc_status & (MSC_RTLF | MSC_RTSF)) stats->rx_length_errors++; if (desc_status & MSC_CEEF) stats->rx_missed_errors++; } else { die_dt = desc->die_dt & 0xF0; switch (die_dt) { case DT_FSINGLE: skb = ravb_get_skb_gbeth(ndev, entry, desc); skb_put(skb, pkt_len); skb->protocol = eth_type_trans(skb, ndev); napi_gro_receive(&priv->napi[q], skb); stats->rx_packets++; stats->rx_bytes += pkt_len; break; case DT_FSTART: priv->rx_1st_skb = ravb_get_skb_gbeth(ndev, entry, desc); skb_put(priv->rx_1st_skb, pkt_len); break; case DT_FMID: skb = ravb_get_skb_gbeth(ndev, entry, desc); skb_copy_to_linear_data_offset(priv->rx_1st_skb, priv->rx_1st_skb->len, skb->data, pkt_len); skb_put(priv->rx_1st_skb, pkt_len); dev_kfree_skb(skb); break; case DT_FEND: skb = ravb_get_skb_gbeth(ndev, entry, desc); skb_copy_to_linear_data_offset(priv->rx_1st_skb, priv->rx_1st_skb->len, skb->data, pkt_len); skb_put(priv->rx_1st_skb, pkt_len); dev_kfree_skb(skb); priv->rx_1st_skb->protocol = eth_type_trans(priv->rx_1st_skb, ndev); napi_gro_receive(&priv->napi[q], priv->rx_1st_skb); stats->rx_packets++; stats->rx_bytes += pkt_len; break; } } entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q]; desc = &priv->gbeth_rx_ring[entry]; } /* Refill the RX ring buffers. */ for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) { entry = priv->dirty_rx[q] % priv->num_rx_ring[q]; desc = &priv->gbeth_rx_ring[entry]; desc->ds_cc = cpu_to_le16(GBETH_RX_DESC_DATA_SIZE); if (!priv->rx_skb[q][entry]) { skb = netdev_alloc_skb(ndev, info->max_rx_len); if (!skb) break; ravb_set_buffer_align(skb); dma_addr = dma_map_single(ndev->dev.parent, skb->data, GBETH_RX_BUFF_MAX, DMA_FROM_DEVICE); skb_checksum_none_assert(skb); /* We just set the data size to 0 for a failed mapping * which should prevent DMA from happening... */ if (dma_mapping_error(ndev->dev.parent, dma_addr)) desc->ds_cc = cpu_to_le16(0); desc->dptr = cpu_to_le32(dma_addr); priv->rx_skb[q][entry] = skb; } /* Descriptor type must be set after all the above writes */ dma_wmb(); desc->die_dt = DT_FEMPTY; } *quota -= limit - (++boguscnt); return boguscnt <= 0; } /* Packet receive function for Ethernet AVB */ static bool ravb_rx_rcar(struct net_device *ndev, int *quota, int q) { struct ravb_private *priv = netdev_priv(ndev); const struct ravb_hw_info *info = priv->info; int entry = priv->cur_rx[q] % priv->num_rx_ring[q]; int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) - priv->cur_rx[q]; struct net_device_stats *stats = &priv->stats[q]; struct ravb_ex_rx_desc *desc; struct sk_buff *skb; dma_addr_t dma_addr; struct timespec64 ts; u8 desc_status; u16 pkt_len; int limit; boguscnt = min(boguscnt, *quota); limit = boguscnt; desc = &priv->rx_ring[q][entry]; while (desc->die_dt != DT_FEMPTY) { /* Descriptor type must be checked before all other reads */ dma_rmb(); desc_status = desc->msc; pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS; if (--boguscnt < 0) break; /* We use 0-byte descriptors to mark the DMA mapping errors */ if (!pkt_len) continue; if (desc_status & MSC_MC) stats->multicast++; if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF | MSC_CEEF)) { stats->rx_errors++; if (desc_status & MSC_CRC) stats->rx_crc_errors++; if (desc_status & MSC_RFE) stats->rx_frame_errors++; if (desc_status & (MSC_RTLF | MSC_RTSF)) stats->rx_length_errors++; if (desc_status & MSC_CEEF) stats->rx_missed_errors++; } else { u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE; skb = priv->rx_skb[q][entry]; priv->rx_skb[q][entry] = NULL; dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr), RX_BUF_SZ, DMA_FROM_DEVICE); get_ts &= (q == RAVB_NC) ? RAVB_RXTSTAMP_TYPE_V2_L2_EVENT : ~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT; if (get_ts) { struct skb_shared_hwtstamps *shhwtstamps; shhwtstamps = skb_hwtstamps(skb); memset(shhwtstamps, 0, sizeof(*shhwtstamps)); ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) << 32) | le32_to_cpu(desc->ts_sl); ts.tv_nsec = le32_to_cpu(desc->ts_n); shhwtstamps->hwtstamp = timespec64_to_ktime(ts); } skb_put(skb, pkt_len); skb->protocol = eth_type_trans(skb, ndev); if (ndev->features & NETIF_F_RXCSUM) ravb_rx_csum(skb); napi_gro_receive(&priv->napi[q], skb); stats->rx_packets++; stats->rx_bytes += pkt_len; } entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q]; desc = &priv->rx_ring[q][entry]; } /* Refill the RX ring buffers. */ for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) { entry = priv->dirty_rx[q] % priv->num_rx_ring[q]; desc = &priv->rx_ring[q][entry]; desc->ds_cc = cpu_to_le16(RX_BUF_SZ); if (!priv->rx_skb[q][entry]) { skb = netdev_alloc_skb(ndev, info->max_rx_len); if (!skb) break; /* Better luck next round. */ ravb_set_buffer_align(skb); dma_addr = dma_map_single(ndev->dev.parent, skb->data, le16_to_cpu(desc->ds_cc), DMA_FROM_DEVICE); skb_checksum_none_assert(skb); /* We just set the data size to 0 for a failed mapping * which should prevent DMA from happening... */ if (dma_mapping_error(ndev->dev.parent, dma_addr)) desc->ds_cc = cpu_to_le16(0); desc->dptr = cpu_to_le32(dma_addr); priv->rx_skb[q][entry] = skb; } /* Descriptor type must be set after all the above writes */ dma_wmb(); desc->die_dt = DT_FEMPTY; } *quota -= limit - (++boguscnt); return boguscnt <= 0; } /* Packet receive function for Ethernet AVB */ static bool ravb_rx(struct net_device *ndev, int *quota, int q) { struct ravb_private *priv = netdev_priv(ndev); const struct ravb_hw_info *info = priv->info; return info->receive(ndev, quota, q); } static void ravb_rcv_snd_disable(struct net_device *ndev) { /* Disable TX and RX */ ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0); } static void ravb_rcv_snd_enable(struct net_device *ndev) { /* Enable TX and RX */ ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE); } /* function for waiting dma process finished */ static int ravb_stop_dma(struct net_device *ndev) { struct ravb_private *priv = netdev_priv(ndev); const struct ravb_hw_info *info = priv->info; int error; /* Wait for stopping the hardware TX process */ error = ravb_wait(ndev, TCCR, info->tccr_mask, 0); if (error) return error; error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3, 0); if (error) return error; /* Stop the E-MAC's RX/TX processes. */ ravb_rcv_snd_disable(ndev); /* Wait for stopping the RX DMA process */ error = ravb_wait(ndev, CSR, CSR_RPO, 0); if (error) return error; /* Stop AVB-DMAC process */ return ravb_config(ndev); } /* E-MAC interrupt handler */ static void ravb_emac_interrupt_unlocked(struct net_device *ndev) { struct ravb_private *priv = netdev_priv(ndev); u32 ecsr, psr; ecsr = ravb_read(ndev, ECSR); ravb_write(ndev, ecsr, ECSR); /* clear interrupt */ if (ecsr & ECSR_MPD) pm_wakeup_event(&priv->pdev->dev, 0); if (ecsr & ECSR_ICD) ndev->stats.tx_carrier_errors++; if (ecsr & ECSR_LCHNG) { /* Link changed */ if (priv->no_avb_link) return; psr = ravb_read(ndev, PSR); if (priv->avb_link_active_low) psr ^= PSR_LMON; if (!(psr & PSR_LMON)) { /* DIsable RX and TX */ ravb_rcv_snd_disable(ndev); } else { /* Enable RX and TX */ ravb_rcv_snd_enable(ndev); } } } static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id) { struct net_device *ndev = dev_id; struct ravb_private *priv = netdev_priv(ndev); spin_lock(&priv->lock); ravb_emac_interrupt_unlocked(ndev); spin_unlock(&priv->lock); return IRQ_HANDLED; } /* Error interrupt handler */ static void ravb_error_interrupt(struct net_device *ndev) { struct ravb_private *priv = netdev_priv(ndev); u32 eis, ris2; eis = ravb_read(ndev, EIS); ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS); if (eis & EIS_QFS) { ris2 = ravb_read(ndev, RIS2); ravb_write(ndev, ~(RIS2_QFF0 | RIS2_QFF1 | RIS2_RFFF | RIS2_RESERVED), RIS2); /* Receive Descriptor Empty int */ if (ris2 & RIS2_QFF0) priv->stats[RAVB_BE].rx_over_errors++; /* Receive Descriptor Empty int */ if (ris2 & RIS2_QFF1) priv->stats[RAVB_NC].rx_over_errors++; /* Receive FIFO Overflow int */ if (ris2 & RIS2_RFFF) priv->rx_fifo_errors++; } } static bool ravb_queue_interrupt(struct net_device *ndev, int q) { struct ravb_private *priv = netdev_priv(ndev); const struct ravb_hw_info *info = priv->info; u32 ris0 = ravb_read(ndev, RIS0); u32 ric0 = ravb_read(ndev, RIC0); u32 tis = ravb_read(ndev, TIS); u32 tic = ravb_read(ndev, TIC); if (((ris0 & ric0) & BIT(q)) || ((tis & tic) & BIT(q))) { if (napi_schedule_prep(&priv->napi[q])) { /* Mask RX and TX interrupts */ if (!info->irq_en_dis) { ravb_write(ndev, ric0 & ~BIT(q), RIC0); ravb_write(ndev, tic & ~BIT(q), TIC); } else { ravb_write(ndev, BIT(q), RID0); ravb_write(ndev, BIT(q), TID); } __napi_schedule(&priv->napi[q]); } else { netdev_warn(ndev, "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n", ris0, ric0); netdev_warn(ndev, " tx status 0x%08x, tx mask 0x%08x.\n", tis, tic); } return true; } return false; } static bool ravb_timestamp_interrupt(struct net_device *ndev) { u32 tis = ravb_read(ndev, TIS); if (tis & TIS_TFUF) { ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS); ravb_get_tx_tstamp(ndev); return true; } return false; } static irqreturn_t ravb_interrupt(int irq, void *dev_id) { struct net_device *ndev = dev_id; struct ravb_private *priv = netdev_priv(ndev); const struct ravb_hw_info *info = priv->info; irqreturn_t result = IRQ_NONE; u32 iss; spin_lock(&priv->lock); /* Get interrupt status */ iss = ravb_read(ndev, ISS); /* Received and transmitted interrupts */ if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) { int q; /* Timestamp updated */ if (ravb_timestamp_interrupt(ndev)) result = IRQ_HANDLED; /* Network control and best effort queue RX/TX */ if (info->nc_queues) { for (q = RAVB_NC; q >= RAVB_BE; q--) { if (ravb_queue_interrupt(ndev, q)) result = IRQ_HANDLED; } } else { if (ravb_queue_interrupt(ndev, RAVB_BE)) result = IRQ_HANDLED; } } /* E-MAC status summary */ if (iss & ISS_MS) { ravb_emac_interrupt_unlocked(ndev); result = IRQ_HANDLED; } /* Error status summary */ if (iss & ISS_ES) { ravb_error_interrupt(ndev); result = IRQ_HANDLED; } /* gPTP interrupt status summary */ if (iss & ISS_CGIS) { ravb_ptp_interrupt(ndev); result = IRQ_HANDLED; } spin_unlock(&priv->lock); return result; } /* Timestamp/Error/gPTP interrupt handler */ static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id) { struct net_device *ndev = dev_id; struct ravb_private *priv = netdev_priv(ndev); irqreturn_t result = IRQ_NONE; u32 iss; spin_lock(&priv->lock); /* Get interrupt status */ iss = ravb_read(ndev, ISS); /* Timestamp updated */ if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev)) result = IRQ_HANDLED; /* Error status summary */ if (iss & ISS_ES) { ravb_error_interrupt(ndev); result = IRQ_HANDLED; } /* gPTP interrupt status summary */ if (iss & ISS_CGIS) { ravb_ptp_interrupt(ndev); result = IRQ_HANDLED; } spin_unlock(&priv->lock); return result; } static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q) { struct net_device *ndev = dev_id; struct ravb_private *priv = netdev_priv(ndev); irqreturn_t result = IRQ_NONE; spin_lock(&priv->lock); /* Network control/Best effort queue RX/TX */ if (ravb_queue_interrupt(ndev, q)) result = IRQ_HANDLED; spin_unlock(&priv->lock); return result; } static irqreturn_t ravb_be_interrupt(int irq, void *dev_id) { return ravb_dma_interrupt(irq, dev_id, RAVB_BE); } static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id) { return ravb_dma_interrupt(irq, dev_id, RAVB_NC); } static int ravb_poll(struct napi_struct *napi, int budget) { struct net_device *ndev = napi->dev; struct ravb_private *priv = netdev_priv(ndev); const struct ravb_hw_info *info = priv->info; bool gptp = info->gptp || info->ccc_gac; struct ravb_rx_desc *desc; unsigned long flags; int q = napi - priv->napi; int mask = BIT(q); int quota = budget; unsigned int entry; if (!gptp) { entry = priv->cur_rx[q] % priv->num_rx_ring[q]; desc = &priv->gbeth_rx_ring[entry]; } /* Processing RX Descriptor Ring */ /* Clear RX interrupt */ ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0); if (gptp || desc->die_dt != DT_FEMPTY) { if (ravb_rx(ndev, "a, q)) goto out; } /* Processing TX Descriptor Ring */ spin_lock_irqsave(&priv->lock, flags); /* Clear TX interrupt */ ravb_write(ndev, ~(mask | TIS_RESERVED), TIS); ravb_tx_free(ndev, q, true); netif_wake_subqueue(ndev, q); spin_unlock_irqrestore(&priv->lock, flags); napi_complete(napi); /* Re-enable RX/TX interrupts */ spin_lock_irqsave(&priv->lock, flags); if (!info->irq_en_dis) { ravb_modify(ndev, RIC0, mask, mask); ravb_modify(ndev, TIC, mask, mask); } else { ravb_write(ndev, mask, RIE0); ravb_write(ndev, mask, TIE); } spin_unlock_irqrestore(&priv->lock, flags); /* Receive error message handling */ priv->rx_over_errors = priv->stats[RAVB_BE].rx_over_errors; if (info->nc_queues) priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors; if (priv->rx_over_errors != ndev->stats.rx_over_errors) ndev->stats.rx_over_errors = priv->rx_over_errors; if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors) ndev->stats.rx_fifo_errors = priv->rx_fifo_errors; out: return budget - quota; } static void ravb_set_duplex_gbeth(struct net_device *ndev) { struct ravb_private *priv = netdev_priv(ndev); ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex > 0 ? ECMR_DM : 0); } /* PHY state control function */ static void ravb_adjust_link(struct net_device *ndev) { struct ravb_private *priv = netdev_priv(ndev); const struct ravb_hw_info *info = priv->info; struct phy_device *phydev = ndev->phydev; bool new_state = false; unsigned long flags; spin_lock_irqsave(&priv->lock, flags); /* Disable TX and RX right over here, if E-MAC change is ignored */ if (priv->no_avb_link) ravb_rcv_snd_disable(ndev); if (phydev->link) { if (info->half_duplex && phydev->duplex != priv->duplex) { new_state = true; priv->duplex = phydev->duplex; ravb_set_duplex_gbeth(ndev); } if (phydev->speed != priv->speed) { new_state = true; priv->speed = phydev->speed; info->set_rate(ndev); } if (!priv->link) { ravb_modify(ndev, ECMR, ECMR_TXF, 0); new_state = true; priv->link = phydev->link; } } else if (priv->link) { new_state = true; priv->link = 0; priv->speed = 0; if (info->half_duplex) priv->duplex = -1; } /* Enable TX and RX right over here, if E-MAC change is ignored */ if (priv->no_avb_link && phydev->link) ravb_rcv_snd_enable(ndev); spin_unlock_irqrestore(&priv->lock, flags); if (new_state && netif_msg_link(priv)) phy_print_status(phydev); } static const struct soc_device_attribute r8a7795es10[] = { { .soc_id = "r8a7795", .revision = "ES1.0", }, { /* sentinel */ } }; /* PHY init function */ static int ravb_phy_init(struct net_device *ndev) { struct device_node *np = ndev->dev.parent->of_node; struct ravb_private *priv = netdev_priv(ndev); const struct ravb_hw_info *info = priv->info; struct phy_device *phydev; struct device_node *pn; phy_interface_t iface; int err; priv->link = 0; priv->speed = 0; priv->duplex = -1; /* Try connecting to PHY */ pn = of_parse_phandle(np, "phy-handle", 0); if (!pn) { /* In the case of a fixed PHY, the DT node associated * to the PHY is the Ethernet MAC DT node. */ if (of_phy_is_fixed_link(np)) { err = of_phy_register_fixed_link(np); if (err) return err; } pn = of_node_get(np); } iface = priv->rgmii_override ? PHY_INTERFACE_MODE_RGMII : priv->phy_interface; phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0, iface); of_node_put(pn); if (!phydev) { netdev_err(ndev, "failed to connect PHY\n"); err = -ENOENT; goto err_deregister_fixed_link; } /* This driver only support 10/100Mbit speeds on R-Car H3 ES1.0 * at this time. */ if (soc_device_match(r8a7795es10)) { phy_set_max_speed(phydev, SPEED_100); netdev_info(ndev, "limited PHY to 100Mbit/s\n"); } if (!info->half_duplex) { /* 10BASE, Pause and Asym Pause is not supported */ phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT); phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT); phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT); phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT); /* Half Duplex is not supported */ phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT); phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT); } /* Indicate that the MAC is responsible for managing PHY PM */ phydev->mac_managed_pm = true; phy_attached_info(phydev); return 0; err_deregister_fixed_link: if (of_phy_is_fixed_link(np)) of_phy_deregister_fixed_link(np); return err; } /* PHY control start function */ static int ravb_phy_start(struct net_device *ndev) { int error; error = ravb_phy_init(ndev); if (error) return error; phy_start(ndev->phydev); return 0; } static u32 ravb_get_msglevel(struct net_device *ndev) { struct ravb_private *priv = netdev_priv(ndev); return priv->msg_enable; } static void ravb_set_msglevel(struct net_device *ndev, u32 value) { struct ravb_private *priv = netdev_priv(ndev); priv->msg_enable = value; } static const char ravb_gstrings_stats_gbeth[][ETH_GSTRING_LEN] = { "rx_queue_0_current", "tx_queue_0_current", "rx_queue_0_dirty", "tx_queue_0_dirty", "rx_queue_0_packets", "tx_queue_0_packets", "rx_queue_0_bytes", "tx_queue_0_bytes", "rx_queue_0_mcast_packets", "rx_queue_0_errors", "rx_queue_0_crc_errors", "rx_queue_0_frame_errors", "rx_queue_0_length_errors", "rx_queue_0_csum_offload_errors", "rx_queue_0_over_errors", }; static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = { "rx_queue_0_current", "tx_queue_0_current", "rx_queue_0_dirty", "tx_queue_0_dirty", "rx_queue_0_packets", "tx_queue_0_packets", "rx_queue_0_bytes", "tx_queue_0_bytes", "rx_queue_0_mcast_packets", "rx_queue_0_errors", "rx_queue_0_crc_errors", "rx_queue_0_frame_errors", "rx_queue_0_length_errors", "rx_queue_0_missed_errors", "rx_queue_0_over_errors", "rx_queue_1_current", "tx_queue_1_current", "rx_queue_1_dirty", "tx_queue_1_dirty", "rx_queue_1_packets", "tx_queue_1_packets", "rx_queue_1_bytes", "tx_queue_1_bytes", "rx_queue_1_mcast_packets", "rx_queue_1_errors", "rx_queue_1_crc_errors", "rx_queue_1_frame_errors", "rx_queue_1_length_errors", "rx_queue_1_missed_errors", "rx_queue_1_over_errors", }; static int ravb_get_sset_count(struct net_device *netdev, int sset) { struct ravb_private *priv = netdev_priv(netdev); const struct ravb_hw_info *info = priv->info; switch (sset) { case ETH_SS_STATS: return info->stats_len; default: return -EOPNOTSUPP; } } static void ravb_get_ethtool_stats(struct net_device *ndev, struct ethtool_stats *estats, u64 *data) { struct ravb_private *priv = netdev_priv(ndev); const struct ravb_hw_info *info = priv->info; int num_rx_q; int i = 0; int q; num_rx_q = info->nc_queues ? NUM_RX_QUEUE : 1; /* Device-specific stats */ for (q = RAVB_BE; q < num_rx_q; q++) { struct net_device_stats *stats = &priv->stats[q]; data[i++] = priv->cur_rx[q]; data[i++] = priv->cur_tx[q]; data[i++] = priv->dirty_rx[q]; data[i++] = priv->dirty_tx[q]; data[i++] = stats->rx_packets; data[i++] = stats->tx_packets; data[i++] = stats->rx_bytes; data[i++] = stats->tx_bytes; data[i++] = stats->multicast; data[i++] = stats->rx_errors; data[i++] = stats->rx_crc_errors; data[i++] = stats->rx_frame_errors; data[i++] = stats->rx_length_errors; data[i++] = stats->rx_missed_errors; data[i++] = stats->rx_over_errors; } } static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data) { struct ravb_private *priv = netdev_priv(ndev); const struct ravb_hw_info *info = priv->info; switch (stringset) { case ETH_SS_STATS: memcpy(data, info->gstrings_stats, info->gstrings_size); break; } } static void ravb_get_ringparam(struct net_device *ndev, struct ethtool_ringparam *ring, struct kernel_ethtool_ringparam *kernel_ring, struct netlink_ext_ack *extack) { struct ravb_private *priv = netdev_priv(ndev); ring->rx_max_pending = BE_RX_RING_MAX; ring->tx_max_pending = BE_TX_RING_MAX; ring->rx_pending = priv->num_rx_ring[RAVB_BE]; ring->tx_pending = priv->num_tx_ring[RAVB_BE]; } static int ravb_set_ringparam(struct net_device *ndev, struct ethtool_ringparam *ring, struct kernel_ethtool_ringparam *kernel_ring, struct netlink_ext_ack *extack) { struct ravb_private *priv = netdev_priv(ndev); const struct ravb_hw_info *info = priv->info; int error; if (ring->tx_pending > BE_TX_RING_MAX || ring->rx_pending > BE_RX_RING_MAX || ring->tx_pending < BE_TX_RING_MIN || ring->rx_pending < BE_RX_RING_MIN) return -EINVAL; if (ring->rx_mini_pending || ring->rx_jumbo_pending) return -EINVAL; if (netif_running(ndev)) { netif_device_detach(ndev); /* Stop PTP Clock driver */ if (info->gptp) ravb_ptp_stop(ndev); /* Wait for DMA stopping */ error = ravb_stop_dma(ndev); if (error) { netdev_err(ndev, "cannot set ringparam! Any AVB processes are still running?\n"); return error; } synchronize_irq(ndev->irq); /* Free all the skb's in the RX queue and the DMA buffers. */ ravb_ring_free(ndev, RAVB_BE); if (info->nc_queues) ravb_ring_free(ndev, RAVB_NC); } /* Set new parameters */ priv->num_rx_ring[RAVB_BE] = ring->rx_pending; priv->num_tx_ring[RAVB_BE] = ring->tx_pending; if (netif_running(ndev)) { error = ravb_dmac_init(ndev); if (error) { netdev_err(ndev, "%s: ravb_dmac_init() failed, error %d\n", __func__, error); return error; } ravb_emac_init(ndev); /* Initialise PTP Clock driver */ if (info->gptp) ravb_ptp_init(ndev, priv->pdev); netif_device_attach(ndev); } return 0; } static int ravb_get_ts_info(struct net_device *ndev, struct ethtool_ts_info *info) { struct ravb_private *priv = netdev_priv(ndev); const struct ravb_hw_info *hw_info = priv->info; info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | SOF_TIMESTAMPING_RX_SOFTWARE | SOF_TIMESTAMPING_SOFTWARE | SOF_TIMESTAMPING_TX_HARDWARE | SOF_TIMESTAMPING_RX_HARDWARE | SOF_TIMESTAMPING_RAW_HARDWARE; info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON); info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | (1 << HWTSTAMP_FILTER_ALL); if (hw_info->gptp || hw_info->ccc_gac) info->phc_index = ptp_clock_index(priv->ptp.clock); return 0; } static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) { struct ravb_private *priv = netdev_priv(ndev); wol->supported = WAKE_MAGIC; wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0; } static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) { struct ravb_private *priv = netdev_priv(ndev); const struct ravb_hw_info *info = priv->info; if (!info->magic_pkt || (wol->wolopts & ~WAKE_MAGIC)) return -EOPNOTSUPP; priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC); device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled); return 0; } static const struct ethtool_ops ravb_ethtool_ops = { .nway_reset = phy_ethtool_nway_reset, .get_msglevel = ravb_get_msglevel, .set_msglevel = ravb_set_msglevel, .get_link = ethtool_op_get_link, .get_strings = ravb_get_strings, .get_ethtool_stats = ravb_get_ethtool_stats, .get_sset_count = ravb_get_sset_count, .get_ringparam = ravb_get_ringparam, .set_ringparam = ravb_set_ringparam, .get_ts_info = ravb_get_ts_info, .get_link_ksettings = phy_ethtool_get_link_ksettings, .set_link_ksettings = phy_ethtool_set_link_ksettings, .get_wol = ravb_get_wol, .set_wol = ravb_set_wol, }; static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler, struct net_device *ndev, struct device *dev, const char *ch) { char *name; int error; name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch); if (!name) return -ENOMEM; error = request_irq(irq, handler, 0, name, ndev); if (error) netdev_err(ndev, "cannot request IRQ %s\n", name); return error; } /* Network device open function for Ethernet AVB */ static int ravb_open(struct net_device *ndev) { struct ravb_private *priv = netdev_priv(ndev); const struct ravb_hw_info *info = priv->info; struct platform_device *pdev = priv->pdev; struct device *dev = &pdev->dev; int error; napi_enable(&priv->napi[RAVB_BE]); if (info->nc_queues) napi_enable(&priv->napi[RAVB_NC]); if (!info->multi_irqs) { error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED, ndev->name, ndev); if (error) { netdev_err(ndev, "cannot request IRQ\n"); goto out_napi_off; } } else { error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev, dev, "ch22:multi"); if (error) goto out_napi_off; error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev, dev, "ch24:emac"); if (error) goto out_free_irq; error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt, ndev, dev, "ch0:rx_be"); if (error) goto out_free_irq_emac; error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt, ndev, dev, "ch18:tx_be"); if (error) goto out_free_irq_be_rx; error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt, ndev, dev, "ch1:rx_nc"); if (error) goto out_free_irq_be_tx; error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt, ndev, dev, "ch19:tx_nc"); if (error) goto out_free_irq_nc_rx; if (info->err_mgmt_irqs) { error = ravb_hook_irq(priv->erra_irq, ravb_multi_interrupt, ndev, dev, "err_a"); if (error) goto out_free_irq_nc_tx; error = ravb_hook_irq(priv->mgmta_irq, ravb_multi_interrupt, ndev, dev, "mgmt_a"); if (error) goto out_free_irq_erra; } } /* Device init */ error = ravb_dmac_init(ndev); if (error) goto out_free_irq_mgmta; ravb_emac_init(ndev); /* Initialise PTP Clock driver */ if (info->gptp) ravb_ptp_init(ndev, priv->pdev); netif_tx_start_all_queues(ndev); /* PHY control start */ error = ravb_phy_start(ndev); if (error) goto out_ptp_stop; return 0; out_ptp_stop: /* Stop PTP Clock driver */ if (info->gptp) ravb_ptp_stop(ndev); out_free_irq_mgmta: if (!info->multi_irqs) goto out_free_irq; if (info->err_mgmt_irqs) free_irq(priv->mgmta_irq, ndev); out_free_irq_erra: if (info->err_mgmt_irqs) free_irq(priv->erra_irq, ndev); out_free_irq_nc_tx: free_irq(priv->tx_irqs[RAVB_NC], ndev); out_free_irq_nc_rx: free_irq(priv->rx_irqs[RAVB_NC], ndev); out_free_irq_be_tx: free_irq(priv->tx_irqs[RAVB_BE], ndev); out_free_irq_be_rx: free_irq(priv->rx_irqs[RAVB_BE], ndev); out_free_irq_emac: free_irq(priv->emac_irq, ndev); out_free_irq: free_irq(ndev->irq, ndev); out_napi_off: if (info->nc_queues) napi_disable(&priv->napi[RAVB_NC]); napi_disable(&priv->napi[RAVB_BE]); return error; } /* Timeout function for Ethernet AVB */ static void ravb_tx_timeout(struct net_device *ndev, unsigned int txqueue) { struct ravb_private *priv = netdev_priv(ndev); netif_err(priv, tx_err, ndev, "transmit timed out, status %08x, resetting...\n", ravb_read(ndev, ISS)); /* tx_errors count up */ ndev->stats.tx_errors++; schedule_work(&priv->work); } static void ravb_tx_timeout_work(struct work_struct *work) { struct ravb_private *priv = container_of(work, struct ravb_private, work); const struct ravb_hw_info *info = priv->info; struct net_device *ndev = priv->ndev; int error; netif_tx_stop_all_queues(ndev); /* Stop PTP Clock driver */ if (info->gptp) ravb_ptp_stop(ndev); /* Wait for DMA stopping */ if (ravb_stop_dma(ndev)) { /* If ravb_stop_dma() fails, the hardware is still operating * for TX and/or RX. So, this should not call the following * functions because ravb_dmac_init() is possible to fail too. * Also, this should not retry ravb_stop_dma() again and again * here because it's possible to wait forever. So, this just * re-enables the TX and RX and skip the following * re-initialization procedure. */ ravb_rcv_snd_enable(ndev); goto out; } ravb_ring_free(ndev, RAVB_BE); if (info->nc_queues) ravb_ring_free(ndev, RAVB_NC); /* Device init */ error = ravb_dmac_init(ndev); if (error) { /* If ravb_dmac_init() fails, descriptors are freed. So, this * should return here to avoid re-enabling the TX and RX in * ravb_emac_init(). */ netdev_err(ndev, "%s: ravb_dmac_init() failed, error %d\n", __func__, error); return; } ravb_emac_init(ndev); out: /* Initialise PTP Clock driver */ if (info->gptp) ravb_ptp_init(ndev, priv->pdev); netif_tx_start_all_queues(ndev); } /* Packet transmit function for Ethernet AVB */ static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev) { struct ravb_private *priv = netdev_priv(ndev); const struct ravb_hw_info *info = priv->info; unsigned int num_tx_desc = priv->num_tx_desc; u16 q = skb_get_queue_mapping(skb); struct ravb_tstamp_skb *ts_skb; struct ravb_tx_desc *desc; unsigned long flags; u32 dma_addr; void *buffer; u32 entry; u32 len; spin_lock_irqsave(&priv->lock, flags); if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) * num_tx_desc) { netif_err(priv, tx_queued, ndev, "still transmitting with the full ring!\n"); netif_stop_subqueue(ndev, q); spin_unlock_irqrestore(&priv->lock, flags); return NETDEV_TX_BUSY; } if (skb_put_padto(skb, ETH_ZLEN)) goto exit; entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc); priv->tx_skb[q][entry / num_tx_desc] = skb; if (num_tx_desc > 1) { buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) + entry / num_tx_desc * DPTR_ALIGN; len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data; /* Zero length DMA descriptors are problematic as they seem * to terminate DMA transfers. Avoid them by simply using a * length of DPTR_ALIGN (4) when skb data is aligned to * DPTR_ALIGN. * * As skb is guaranteed to have at least ETH_ZLEN (60) * bytes of data by the call to skb_put_padto() above this * is safe with respect to both the length of the first DMA * descriptor (len) overflowing the available data and the * length of the second DMA descriptor (skb->len - len) * being negative. */ if (len == 0) len = DPTR_ALIGN; memcpy(buffer, skb->data, len); dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE); if (dma_mapping_error(ndev->dev.parent, dma_addr)) goto drop; desc = &priv->tx_ring[q][entry]; desc->ds_tagl = cpu_to_le16(len); desc->dptr = cpu_to_le32(dma_addr); buffer = skb->data + len; len = skb->len - len; dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE); if (dma_mapping_error(ndev->dev.parent, dma_addr)) goto unmap; desc++; } else { desc = &priv->tx_ring[q][entry]; len = skb->len; dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len, DMA_TO_DEVICE); if (dma_mapping_error(ndev->dev.parent, dma_addr)) goto drop; } desc->ds_tagl = cpu_to_le16(len); desc->dptr = cpu_to_le32(dma_addr); /* TX timestamp required */ if (info->gptp || info->ccc_gac) { if (q == RAVB_NC) { ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC); if (!ts_skb) { if (num_tx_desc > 1) { desc--; dma_unmap_single(ndev->dev.parent, dma_addr, len, DMA_TO_DEVICE); } goto unmap; } ts_skb->skb = skb_get(skb); ts_skb->tag = priv->ts_skb_tag++; priv->ts_skb_tag &= 0x3ff; list_add_tail(&ts_skb->list, &priv->ts_skb_list); /* TAG and timestamp required flag */ skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR; desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12); } skb_tx_timestamp(skb); } /* Descriptor type must be set after all the above writes */ dma_wmb(); if (num_tx_desc > 1) { desc->die_dt = DT_FEND; desc--; desc->die_dt = DT_FSTART; } else { desc->die_dt = DT_FSINGLE; } ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q); priv->cur_tx[q] += num_tx_desc; if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) * num_tx_desc && !ravb_tx_free(ndev, q, true)) netif_stop_subqueue(ndev, q); exit: spin_unlock_irqrestore(&priv->lock, flags); return NETDEV_TX_OK; unmap: dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr), le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE); drop: dev_kfree_skb_any(skb); priv->tx_skb[q][entry / num_tx_desc] = NULL; goto exit; } static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb, struct net_device *sb_dev) { /* If skb needs TX timestamp, it is handled in network control queue */ return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC : RAVB_BE; } static struct net_device_stats *ravb_get_stats(struct net_device *ndev) { struct ravb_private *priv = netdev_priv(ndev); const struct ravb_hw_info *info = priv->info; struct net_device_stats *nstats, *stats0, *stats1; nstats = &ndev->stats; stats0 = &priv->stats[RAVB_BE]; if (info->tx_counters) { nstats->tx_dropped += ravb_read(ndev, TROCR); ravb_write(ndev, 0, TROCR); /* (write clear) */ } if (info->carrier_counters) { nstats->collisions += ravb_read(ndev, CXR41); ravb_write(ndev, 0, CXR41); /* (write clear) */ nstats->tx_carrier_errors += ravb_read(ndev, CXR42); ravb_write(ndev, 0, CXR42); /* (write clear) */ } nstats->rx_packets = stats0->rx_packets; nstats->tx_packets = stats0->tx_packets; nstats->rx_bytes = stats0->rx_bytes; nstats->tx_bytes = stats0->tx_bytes; nstats->multicast = stats0->multicast; nstats->rx_errors = stats0->rx_errors; nstats->rx_crc_errors = stats0->rx_crc_errors; nstats->rx_frame_errors = stats0->rx_frame_errors; nstats->rx_length_errors = stats0->rx_length_errors; nstats->rx_missed_errors = stats0->rx_missed_errors; nstats->rx_over_errors = stats0->rx_over_errors; if (info->nc_queues) { stats1 = &priv->stats[RAVB_NC]; nstats->rx_packets += stats1->rx_packets; nstats->tx_packets += stats1->tx_packets; nstats->rx_bytes += stats1->rx_bytes; nstats->tx_bytes += stats1->tx_bytes; nstats->multicast += stats1->multicast; nstats->rx_errors += stats1->rx_errors; nstats->rx_crc_errors += stats1->rx_crc_errors; nstats->rx_frame_errors += stats1->rx_frame_errors; nstats->rx_length_errors += stats1->rx_length_errors; nstats->rx_missed_errors += stats1->rx_missed_errors; nstats->rx_over_errors += stats1->rx_over_errors; } return nstats; } /* Update promiscuous bit */ static void ravb_set_rx_mode(struct net_device *ndev) { struct ravb_private *priv = netdev_priv(ndev); unsigned long flags; spin_lock_irqsave(&priv->lock, flags); ravb_modify(ndev, ECMR, ECMR_PRM, ndev->flags & IFF_PROMISC ? ECMR_PRM : 0); spin_unlock_irqrestore(&priv->lock, flags); } /* Device close function for Ethernet AVB */ static int ravb_close(struct net_device *ndev) { struct device_node *np = ndev->dev.parent->of_node; struct ravb_private *priv = netdev_priv(ndev); const struct ravb_hw_info *info = priv->info; struct ravb_tstamp_skb *ts_skb, *ts_skb2; netif_tx_stop_all_queues(ndev); /* Disable interrupts by clearing the interrupt masks. */ ravb_write(ndev, 0, RIC0); ravb_write(ndev, 0, RIC2); ravb_write(ndev, 0, TIC); /* Stop PTP Clock driver */ if (info->gptp) ravb_ptp_stop(ndev); /* Set the config mode to stop the AVB-DMAC's processes */ if (ravb_stop_dma(ndev) < 0) netdev_err(ndev, "device will be stopped after h/w processes are done.\n"); /* Clear the timestamp list */ if (info->gptp || info->ccc_gac) { list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) { list_del(&ts_skb->list); kfree_skb(ts_skb->skb); kfree(ts_skb); } } /* PHY disconnect */ if (ndev->phydev) { phy_stop(ndev->phydev); phy_disconnect(ndev->phydev); if (of_phy_is_fixed_link(np)) of_phy_deregister_fixed_link(np); } if (info->multi_irqs) { free_irq(priv->tx_irqs[RAVB_NC], ndev); free_irq(priv->rx_irqs[RAVB_NC], ndev); free_irq(priv->tx_irqs[RAVB_BE], ndev); free_irq(priv->rx_irqs[RAVB_BE], ndev); free_irq(priv->emac_irq, ndev); if (info->err_mgmt_irqs) { free_irq(priv->erra_irq, ndev); free_irq(priv->mgmta_irq, ndev); } } free_irq(ndev->irq, ndev); if (info->nc_queues) napi_disable(&priv->napi[RAVB_NC]); napi_disable(&priv->napi[RAVB_BE]); /* Free all the skb's in the RX queue and the DMA buffers. */ ravb_ring_free(ndev, RAVB_BE); if (info->nc_queues) ravb_ring_free(ndev, RAVB_NC); return 0; } static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req) { struct ravb_private *priv = netdev_priv(ndev); struct hwtstamp_config config; config.flags = 0; config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; switch (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE) { case RAVB_RXTSTAMP_TYPE_V2_L2_EVENT: config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT; break; case RAVB_RXTSTAMP_TYPE_ALL: config.rx_filter = HWTSTAMP_FILTER_ALL; break; default: config.rx_filter = HWTSTAMP_FILTER_NONE; } return copy_to_user(req->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; } /* Control hardware time stamping */ static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req) { struct ravb_private *priv = netdev_priv(ndev); struct hwtstamp_config config; u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED; u32 tstamp_tx_ctrl; if (copy_from_user(&config, req->ifr_data, sizeof(config))) return -EFAULT; switch (config.tx_type) { case HWTSTAMP_TX_OFF: tstamp_tx_ctrl = 0; break; case HWTSTAMP_TX_ON: tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED; break; default: return -ERANGE; } switch (config.rx_filter) { case HWTSTAMP_FILTER_NONE: tstamp_rx_ctrl = 0; break; case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT; break; default: config.rx_filter = HWTSTAMP_FILTER_ALL; tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL; } priv->tstamp_tx_ctrl = tstamp_tx_ctrl; priv->tstamp_rx_ctrl = tstamp_rx_ctrl; return copy_to_user(req->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; } /* ioctl to device function */ static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd) { struct phy_device *phydev = ndev->phydev; if (!netif_running(ndev)) return -EINVAL; if (!phydev) return -ENODEV; switch (cmd) { case SIOCGHWTSTAMP: return ravb_hwtstamp_get(ndev, req); case SIOCSHWTSTAMP: return ravb_hwtstamp_set(ndev, req); } return phy_mii_ioctl(phydev, req, cmd); } static int ravb_change_mtu(struct net_device *ndev, int new_mtu) { struct ravb_private *priv = netdev_priv(ndev); ndev->mtu = new_mtu; if (netif_running(ndev)) { synchronize_irq(priv->emac_irq); ravb_emac_init(ndev); } netdev_update_features(ndev); return 0; } static void ravb_set_rx_csum(struct net_device *ndev, bool enable) { struct ravb_private *priv = netdev_priv(ndev); unsigned long flags; spin_lock_irqsave(&priv->lock, flags); /* Disable TX and RX */ ravb_rcv_snd_disable(ndev); /* Modify RX Checksum setting */ ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0); /* Enable TX and RX */ ravb_rcv_snd_enable(ndev); spin_unlock_irqrestore(&priv->lock, flags); } static int ravb_set_features_gbeth(struct net_device *ndev, netdev_features_t features) { /* Place holder */ return 0; } static int ravb_set_features_rcar(struct net_device *ndev, netdev_features_t features) { netdev_features_t changed = ndev->features ^ features; if (changed & NETIF_F_RXCSUM) ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM); ndev->features = features; return 0; } static int ravb_set_features(struct net_device *ndev, netdev_features_t features) { struct ravb_private *priv = netdev_priv(ndev); const struct ravb_hw_info *info = priv->info; return info->set_feature(ndev, features); } static const struct net_device_ops ravb_netdev_ops = { .ndo_open = ravb_open, .ndo_stop = ravb_close, .ndo_start_xmit = ravb_start_xmit, .ndo_select_queue = ravb_select_queue, .ndo_get_stats = ravb_get_stats, .ndo_set_rx_mode = ravb_set_rx_mode, .ndo_tx_timeout = ravb_tx_timeout, .ndo_eth_ioctl = ravb_do_ioctl, .ndo_change_mtu = ravb_change_mtu, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = eth_mac_addr, .ndo_set_features = ravb_set_features, }; /* MDIO bus init function */ static int ravb_mdio_init(struct ravb_private *priv) { struct platform_device *pdev = priv->pdev; struct device *dev = &pdev->dev; int error; /* Bitbang init */ priv->mdiobb.ops = &bb_ops; /* MII controller setting */ priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb); if (!priv->mii_bus) return -ENOMEM; /* Hook up MII support for ethtool */ priv->mii_bus->name = "ravb_mii"; priv->mii_bus->parent = dev; snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", pdev->name, pdev->id); /* Register MDIO bus */ error = of_mdiobus_register(priv->mii_bus, dev->of_node); if (error) goto out_free_bus; return 0; out_free_bus: free_mdio_bitbang(priv->mii_bus); return error; } /* MDIO bus release function */ static int ravb_mdio_release(struct ravb_private *priv) { /* Unregister mdio bus */ mdiobus_unregister(priv->mii_bus); /* Free bitbang info */ free_mdio_bitbang(priv->mii_bus); return 0; } static const struct ravb_hw_info ravb_gen3_hw_info = { .rx_ring_free = ravb_rx_ring_free_rcar, .rx_ring_format = ravb_rx_ring_format_rcar, .alloc_rx_desc = ravb_alloc_rx_desc_rcar, .receive = ravb_rx_rcar, .set_rate = ravb_set_rate_rcar, .set_feature = ravb_set_features_rcar, .dmac_init = ravb_dmac_init_rcar, .emac_init = ravb_emac_init_rcar, .gstrings_stats = ravb_gstrings_stats, .gstrings_size = sizeof(ravb_gstrings_stats), .net_hw_features = NETIF_F_RXCSUM, .net_features = NETIF_F_RXCSUM, .stats_len = ARRAY_SIZE(ravb_gstrings_stats), .max_rx_len = RX_BUF_SZ + RAVB_ALIGN - 1, .tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, .rx_max_buf_size = SZ_2K, .internal_delay = 1, .tx_counters = 1, .multi_irqs = 1, .irq_en_dis = 1, .ccc_gac = 1, .nc_queues = 1, .magic_pkt = 1, }; static const struct ravb_hw_info ravb_gen2_hw_info = { .rx_ring_free = ravb_rx_ring_free_rcar, .rx_ring_format = ravb_rx_ring_format_rcar, .alloc_rx_desc = ravb_alloc_rx_desc_rcar, .receive = ravb_rx_rcar, .set_rate = ravb_set_rate_rcar, .set_feature = ravb_set_features_rcar, .dmac_init = ravb_dmac_init_rcar, .emac_init = ravb_emac_init_rcar, .gstrings_stats = ravb_gstrings_stats, .gstrings_size = sizeof(ravb_gstrings_stats), .net_hw_features = NETIF_F_RXCSUM, .net_features = NETIF_F_RXCSUM, .stats_len = ARRAY_SIZE(ravb_gstrings_stats), .max_rx_len = RX_BUF_SZ + RAVB_ALIGN - 1, .tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, .rx_max_buf_size = SZ_2K, .aligned_tx = 1, .gptp = 1, .nc_queues = 1, .magic_pkt = 1, }; static const struct ravb_hw_info ravb_rzv2m_hw_info = { .rx_ring_free = ravb_rx_ring_free_rcar, .rx_ring_format = ravb_rx_ring_format_rcar, .alloc_rx_desc = ravb_alloc_rx_desc_rcar, .receive = ravb_rx_rcar, .set_rate = ravb_set_rate_rcar, .set_feature = ravb_set_features_rcar, .dmac_init = ravb_dmac_init_rcar, .emac_init = ravb_emac_init_rcar, .gstrings_stats = ravb_gstrings_stats, .gstrings_size = sizeof(ravb_gstrings_stats), .net_hw_features = NETIF_F_RXCSUM, .net_features = NETIF_F_RXCSUM, .stats_len = ARRAY_SIZE(ravb_gstrings_stats), .max_rx_len = RX_BUF_SZ + RAVB_ALIGN - 1, .tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, .rx_max_buf_size = SZ_2K, .multi_irqs = 1, .err_mgmt_irqs = 1, .gptp = 1, .gptp_ref_clk = 1, .nc_queues = 1, .magic_pkt = 1, }; static const struct ravb_hw_info gbeth_hw_info = { .rx_ring_free = ravb_rx_ring_free_gbeth, .rx_ring_format = ravb_rx_ring_format_gbeth, .alloc_rx_desc = ravb_alloc_rx_desc_gbeth, .receive = ravb_rx_gbeth, .set_rate = ravb_set_rate_gbeth, .set_feature = ravb_set_features_gbeth, .dmac_init = ravb_dmac_init_gbeth, .emac_init = ravb_emac_init_gbeth, .gstrings_stats = ravb_gstrings_stats_gbeth, .gstrings_size = sizeof(ravb_gstrings_stats_gbeth), .stats_len = ARRAY_SIZE(ravb_gstrings_stats_gbeth), .max_rx_len = ALIGN(GBETH_RX_BUFF_MAX, RAVB_ALIGN), .tccr_mask = TCCR_TSRQ0, .rx_max_buf_size = SZ_8K, .aligned_tx = 1, .tx_counters = 1, .carrier_counters = 1, .half_duplex = 1, }; static const struct of_device_id ravb_match_table[] = { { .compatible = "renesas,etheravb-r8a7790", .data = &ravb_gen2_hw_info }, { .compatible = "renesas,etheravb-r8a7794", .data = &ravb_gen2_hw_info }, { .compatible = "renesas,etheravb-rcar-gen2", .data = &ravb_gen2_hw_info }, { .compatible = "renesas,etheravb-r8a7795", .data = &ravb_gen3_hw_info }, { .compatible = "renesas,etheravb-rcar-gen3", .data = &ravb_gen3_hw_info }, { .compatible = "renesas,etheravb-rcar-gen4", .data = &ravb_gen3_hw_info }, { .compatible = "renesas,etheravb-rzv2m", .data = &ravb_rzv2m_hw_info }, { .compatible = "renesas,rzg2l-gbeth", .data = &gbeth_hw_info }, { } }; MODULE_DEVICE_TABLE(of, ravb_match_table); static int ravb_set_gti(struct net_device *ndev) { struct ravb_private *priv = netdev_priv(ndev); const struct ravb_hw_info *info = priv->info; struct device *dev = ndev->dev.parent; unsigned long rate; uint64_t inc; if (info->gptp_ref_clk) rate = clk_get_rate(priv->gptp_clk); else rate = clk_get_rate(priv->clk); if (!rate) return -EINVAL; inc = div64_ul(1000000000ULL << 20, rate); if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) { dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n", inc, GTI_TIV_MIN, GTI_TIV_MAX); return -EINVAL; } ravb_write(ndev, inc, GTI); return 0; } static void ravb_set_config_mode(struct net_device *ndev) { struct ravb_private *priv = netdev_priv(ndev); const struct ravb_hw_info *info = priv->info; if (info->gptp) { ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG); /* Set CSEL value */ ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB); } else if (info->ccc_gac) { ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG | CCC_GAC | CCC_CSEL_HPB); } else { ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG); } } /* Set tx and rx clock internal delay modes */ static void ravb_parse_delay_mode(struct device_node *np, struct net_device *ndev) { struct ravb_private *priv = netdev_priv(ndev); bool explicit_delay = false; u32 delay; if (!of_property_read_u32(np, "rx-internal-delay-ps", &delay)) { /* Valid values are 0 and 1800, according to DT bindings */ priv->rxcidm = !!delay; explicit_delay = true; } if (!of_property_read_u32(np, "tx-internal-delay-ps", &delay)) { /* Valid values are 0 and 2000, according to DT bindings */ priv->txcidm = !!delay; explicit_delay = true; } if (explicit_delay) return; /* Fall back to legacy rgmii-*id behavior */ if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) { priv->rxcidm = 1; priv->rgmii_override = 1; } if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) { priv->txcidm = 1; priv->rgmii_override = 1; } } static void ravb_set_delay_mode(struct net_device *ndev) { struct ravb_private *priv = netdev_priv(ndev); u32 set = 0; if (priv->rxcidm) set |= APSR_RDM; if (priv->txcidm) set |= APSR_TDM; ravb_modify(ndev, APSR, APSR_RDM | APSR_TDM, set); } static int ravb_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; const struct ravb_hw_info *info; struct reset_control *rstc; struct ravb_private *priv; struct net_device *ndev; int error, irq, q; struct resource *res; int i; if (!np) { dev_err(&pdev->dev, "this driver is required to be instantiated from device tree\n"); return -EINVAL; } rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL); if (IS_ERR(rstc)) return dev_err_probe(&pdev->dev, PTR_ERR(rstc), "failed to get cpg reset\n"); ndev = alloc_etherdev_mqs(sizeof(struct ravb_private), NUM_TX_QUEUE, NUM_RX_QUEUE); if (!ndev) return -ENOMEM; info = of_device_get_match_data(&pdev->dev); ndev->features = info->net_features; ndev->hw_features = info->net_hw_features; reset_control_deassert(rstc); pm_runtime_enable(&pdev->dev); pm_runtime_get_sync(&pdev->dev); if (info->multi_irqs) { if (info->err_mgmt_irqs) irq = platform_get_irq_byname(pdev, "dia"); else irq = platform_get_irq_byname(pdev, "ch22"); } else { irq = platform_get_irq(pdev, 0); } if (irq < 0) { error = irq; goto out_release; } ndev->irq = irq; SET_NETDEV_DEV(ndev, &pdev->dev); priv = netdev_priv(ndev); priv->info = info; priv->rstc = rstc; priv->ndev = ndev; priv->pdev = pdev; priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE; priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE; if (info->nc_queues) { priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE; priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE; } priv->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(priv->addr)) { error = PTR_ERR(priv->addr); goto out_release; } /* The Ether-specific entries in the device structure. */ ndev->base_addr = res->start; spin_lock_init(&priv->lock); INIT_WORK(&priv->work, ravb_tx_timeout_work); error = of_get_phy_mode(np, &priv->phy_interface); if (error && error != -ENODEV) goto out_release; priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link"); priv->avb_link_active_low = of_property_read_bool(np, "renesas,ether-link-active-low"); if (info->multi_irqs) { if (info->err_mgmt_irqs) irq = platform_get_irq_byname(pdev, "line3"); else irq = platform_get_irq_byname(pdev, "ch24"); if (irq < 0) { error = irq; goto out_release; } priv->emac_irq = irq; for (i = 0; i < NUM_RX_QUEUE; i++) { irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]); if (irq < 0) { error = irq; goto out_release; } priv->rx_irqs[i] = irq; } for (i = 0; i < NUM_TX_QUEUE; i++) { irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]); if (irq < 0) { error = irq; goto out_release; } priv->tx_irqs[i] = irq; } if (info->err_mgmt_irqs) { irq = platform_get_irq_byname(pdev, "err_a"); if (irq < 0) { error = irq; goto out_release; } priv->erra_irq = irq; irq = platform_get_irq_byname(pdev, "mgmt_a"); if (irq < 0) { error = irq; goto out_release; } priv->mgmta_irq = irq; } } priv->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(priv->clk)) { error = PTR_ERR(priv->clk); goto out_release; } priv->refclk = devm_clk_get_optional(&pdev->dev, "refclk"); if (IS_ERR(priv->refclk)) { error = PTR_ERR(priv->refclk); goto out_release; } clk_prepare_enable(priv->refclk); if (info->gptp_ref_clk) { priv->gptp_clk = devm_clk_get(&pdev->dev, "gptp"); if (IS_ERR(priv->gptp_clk)) { error = PTR_ERR(priv->gptp_clk); goto out_disable_refclk; } clk_prepare_enable(priv->gptp_clk); } ndev->max_mtu = info->rx_max_buf_size - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN); ndev->min_mtu = ETH_MIN_MTU; /* FIXME: R-Car Gen2 has 4byte alignment restriction for tx buffer * Use two descriptor to handle such situation. First descriptor to * handle aligned data buffer and second descriptor to handle the * overflow data because of alignment. */ priv->num_tx_desc = info->aligned_tx ? 2 : 1; /* Set function */ ndev->netdev_ops = &ravb_netdev_ops; ndev->ethtool_ops = &ravb_ethtool_ops; /* Set AVB config mode */ ravb_set_config_mode(ndev); if (info->gptp || info->ccc_gac) { /* Set GTI value */ error = ravb_set_gti(ndev); if (error) goto out_disable_gptp_clk; /* Request GTI loading */ ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI); } if (info->internal_delay) { ravb_parse_delay_mode(np, ndev); ravb_set_delay_mode(ndev); } /* Allocate descriptor base address table */ priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM; priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size, &priv->desc_bat_dma, GFP_KERNEL); if (!priv->desc_bat) { dev_err(&pdev->dev, "Cannot allocate desc base address table (size %d bytes)\n", priv->desc_bat_size); error = -ENOMEM; goto out_disable_gptp_clk; } for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++) priv->desc_bat[q].die_dt = DT_EOS; ravb_write(ndev, priv->desc_bat_dma, DBAT); /* Initialise HW timestamp list */ INIT_LIST_HEAD(&priv->ts_skb_list); /* Initialise PTP Clock driver */ if (info->ccc_gac) ravb_ptp_init(ndev, pdev); /* Debug message level */ priv->msg_enable = RAVB_DEF_MSG_ENABLE; /* Read and set MAC address */ ravb_read_mac_address(np, ndev); if (!is_valid_ether_addr(ndev->dev_addr)) { dev_warn(&pdev->dev, "no valid MAC address supplied, using a random one\n"); eth_hw_addr_random(ndev); } /* MDIO bus init */ error = ravb_mdio_init(priv); if (error) { dev_err(&pdev->dev, "failed to initialize MDIO\n"); goto out_dma_free; } netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll); if (info->nc_queues) netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll); /* Network device register */ error = register_netdev(ndev); if (error) goto out_napi_del; device_set_wakeup_capable(&pdev->dev, 1); /* Print device information */ netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n", (u32)ndev->base_addr, ndev->dev_addr, ndev->irq); platform_set_drvdata(pdev, ndev); return 0; out_napi_del: if (info->nc_queues) netif_napi_del(&priv->napi[RAVB_NC]); netif_napi_del(&priv->napi[RAVB_BE]); ravb_mdio_release(priv); out_dma_free: dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat, priv->desc_bat_dma); /* Stop PTP Clock driver */ if (info->ccc_gac) ravb_ptp_stop(ndev); out_disable_gptp_clk: clk_disable_unprepare(priv->gptp_clk); out_disable_refclk: clk_disable_unprepare(priv->refclk); out_release: free_netdev(ndev); pm_runtime_put(&pdev->dev); pm_runtime_disable(&pdev->dev); reset_control_assert(rstc); return error; } static int ravb_remove(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct ravb_private *priv = netdev_priv(ndev); const struct ravb_hw_info *info = priv->info; /* Stop PTP Clock driver */ if (info->ccc_gac) ravb_ptp_stop(ndev); clk_disable_unprepare(priv->gptp_clk); clk_disable_unprepare(priv->refclk); dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat, priv->desc_bat_dma); /* Set reset mode */ ravb_write(ndev, CCC_OPC_RESET, CCC); unregister_netdev(ndev); if (info->nc_queues) netif_napi_del(&priv->napi[RAVB_NC]); netif_napi_del(&priv->napi[RAVB_BE]); ravb_mdio_release(priv); pm_runtime_put_sync(&pdev->dev); pm_runtime_disable(&pdev->dev); reset_control_assert(priv->rstc); free_netdev(ndev); platform_set_drvdata(pdev, NULL); return 0; } static int ravb_wol_setup(struct net_device *ndev) { struct ravb_private *priv = netdev_priv(ndev); const struct ravb_hw_info *info = priv->info; /* Disable interrupts by clearing the interrupt masks. */ ravb_write(ndev, 0, RIC0); ravb_write(ndev, 0, RIC2); ravb_write(ndev, 0, TIC); /* Only allow ECI interrupts */ synchronize_irq(priv->emac_irq); if (info->nc_queues) napi_disable(&priv->napi[RAVB_NC]); napi_disable(&priv->napi[RAVB_BE]); ravb_write(ndev, ECSIPR_MPDIP, ECSIPR); /* Enable MagicPacket */ ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE); return enable_irq_wake(priv->emac_irq); } static int ravb_wol_restore(struct net_device *ndev) { struct ravb_private *priv = netdev_priv(ndev); const struct ravb_hw_info *info = priv->info; if (info->nc_queues) napi_enable(&priv->napi[RAVB_NC]); napi_enable(&priv->napi[RAVB_BE]); /* Disable MagicPacket */ ravb_modify(ndev, ECMR, ECMR_MPDE, 0); ravb_close(ndev); return disable_irq_wake(priv->emac_irq); } static int __maybe_unused ravb_suspend(struct device *dev) { struct net_device *ndev = dev_get_drvdata(dev); struct ravb_private *priv = netdev_priv(ndev); int ret; if (!netif_running(ndev)) return 0; netif_device_detach(ndev); if (priv->wol_enabled) ret = ravb_wol_setup(ndev); else ret = ravb_close(ndev); if (priv->info->ccc_gac) ravb_ptp_stop(ndev); return ret; } static int __maybe_unused ravb_resume(struct device *dev) { struct net_device *ndev = dev_get_drvdata(dev); struct ravb_private *priv = netdev_priv(ndev); const struct ravb_hw_info *info = priv->info; int ret = 0; /* If WoL is enabled set reset mode to rearm the WoL logic */ if (priv->wol_enabled) ravb_write(ndev, CCC_OPC_RESET, CCC); /* All register have been reset to default values. * Restore all registers which where setup at probe time and * reopen device if it was running before system suspended. */ /* Set AVB config mode */ ravb_set_config_mode(ndev); if (info->gptp || info->ccc_gac) { /* Set GTI value */ ret = ravb_set_gti(ndev); if (ret) return ret; /* Request GTI loading */ ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI); } if (info->internal_delay) ravb_set_delay_mode(ndev); /* Restore descriptor base address table */ ravb_write(ndev, priv->desc_bat_dma, DBAT); if (priv->info->ccc_gac) ravb_ptp_init(ndev, priv->pdev); if (netif_running(ndev)) { if (priv->wol_enabled) { ret = ravb_wol_restore(ndev); if (ret) return ret; } ret = ravb_open(ndev); if (ret < 0) return ret; ravb_set_rx_mode(ndev); netif_device_attach(ndev); } return ret; } static int __maybe_unused ravb_runtime_nop(struct device *dev) { /* Runtime PM callback shared between ->runtime_suspend() * and ->runtime_resume(). Simply returns success. * * This driver re-initializes all registers after * pm_runtime_get_sync() anyway so there is no need * to save and restore registers here. */ return 0; } static const struct dev_pm_ops ravb_dev_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume) SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL) }; static struct platform_driver ravb_driver = { .probe = ravb_probe, .remove = ravb_remove, .driver = { .name = "ravb", .pm = &ravb_dev_pm_ops, .of_match_table = ravb_match_table, }, }; module_platform_driver(ravb_driver); MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai"); MODULE_DESCRIPTION("Renesas Ethernet AVB driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1