Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Grygorii Strashko | 4661 | 85.92% | 2 | 18.18% |
Roger Quadros | 502 | 9.25% | 1 | 9.09% |
Ivan Khoronzhuk | 210 | 3.87% | 1 | 9.09% |
Kurt Kanzenbach | 25 | 0.46% | 1 | 9.09% |
Jacob E Keller | 13 | 0.24% | 1 | 9.09% |
Yang Yingliang | 8 | 0.15% | 2 | 18.18% |
Wang Qing | 4 | 0.07% | 1 | 9.09% |
Zou Wei | 1 | 0.02% | 1 | 9.09% |
Lee Jones | 1 | 0.02% | 1 | 9.09% |
Total | 5425 | 11 |
// SPDX-License-Identifier: GPL-2.0 /* TI K3 AM65x Common Platform Time Sync * * Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com * */ #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/if_vlan.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/netdevice.h> #include <linux/net_tstamp.h> #include <linux/of.h> #include <linux/of_irq.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/ptp_classify.h> #include <linux/ptp_clock_kernel.h> #include "am65-cpts.h" struct am65_genf_regs { u32 comp_lo; /* Comparison Low Value 0:31 */ u32 comp_hi; /* Comparison High Value 32:63 */ u32 control; /* control */ u32 length; /* Length */ u32 ppm_low; /* PPM Load Low Value 0:31 */ u32 ppm_hi; /* PPM Load High Value 32:63 */ u32 ts_nudge; /* Nudge value */ } __aligned(32) __packed; #define AM65_CPTS_GENF_MAX_NUM 9 #define AM65_CPTS_ESTF_MAX_NUM 8 struct am65_cpts_regs { u32 idver; /* Identification and version */ u32 control; /* Time sync control */ u32 rftclk_sel; /* Reference Clock Select Register */ u32 ts_push; /* Time stamp event push */ u32 ts_load_val_lo; /* Time Stamp Load Low Value 0:31 */ u32 ts_load_en; /* Time stamp load enable */ u32 ts_comp_lo; /* Time Stamp Comparison Low Value 0:31 */ u32 ts_comp_length; /* Time Stamp Comparison Length */ u32 intstat_raw; /* Time sync interrupt status raw */ u32 intstat_masked; /* Time sync interrupt status masked */ u32 int_enable; /* Time sync interrupt enable */ u32 ts_comp_nudge; /* Time Stamp Comparison Nudge Value */ u32 event_pop; /* Event interrupt pop */ u32 event_0; /* Event Time Stamp lo 0:31 */ u32 event_1; /* Event Type Fields */ u32 event_2; /* Event Type Fields domain */ u32 event_3; /* Event Time Stamp hi 32:63 */ u32 ts_load_val_hi; /* Time Stamp Load High Value 32:63 */ u32 ts_comp_hi; /* Time Stamp Comparison High Value 32:63 */ u32 ts_add_val; /* Time Stamp Add value */ u32 ts_ppm_low; /* Time Stamp PPM Load Low Value 0:31 */ u32 ts_ppm_hi; /* Time Stamp PPM Load High Value 32:63 */ u32 ts_nudge; /* Time Stamp Nudge value */ u32 reserv[33]; struct am65_genf_regs genf[AM65_CPTS_GENF_MAX_NUM]; struct am65_genf_regs estf[AM65_CPTS_ESTF_MAX_NUM]; }; /* CONTROL_REG */ #define AM65_CPTS_CONTROL_EN BIT(0) #define AM65_CPTS_CONTROL_INT_TEST BIT(1) #define AM65_CPTS_CONTROL_TS_COMP_POLARITY BIT(2) #define AM65_CPTS_CONTROL_TSTAMP_EN BIT(3) #define AM65_CPTS_CONTROL_SEQUENCE_EN BIT(4) #define AM65_CPTS_CONTROL_64MODE BIT(5) #define AM65_CPTS_CONTROL_TS_COMP_TOG BIT(6) #define AM65_CPTS_CONTROL_TS_PPM_DIR BIT(7) #define AM65_CPTS_CONTROL_HW1_TS_PUSH_EN BIT(8) #define AM65_CPTS_CONTROL_HW2_TS_PUSH_EN BIT(9) #define AM65_CPTS_CONTROL_HW3_TS_PUSH_EN BIT(10) #define AM65_CPTS_CONTROL_HW4_TS_PUSH_EN BIT(11) #define AM65_CPTS_CONTROL_HW5_TS_PUSH_EN BIT(12) #define AM65_CPTS_CONTROL_HW6_TS_PUSH_EN BIT(13) #define AM65_CPTS_CONTROL_HW7_TS_PUSH_EN BIT(14) #define AM65_CPTS_CONTROL_HW8_TS_PUSH_EN BIT(15) #define AM65_CPTS_CONTROL_HW1_TS_PUSH_OFFSET (8) #define AM65_CPTS_CONTROL_TX_GENF_CLR_EN BIT(17) #define AM65_CPTS_CONTROL_TS_SYNC_SEL_MASK (0xF) #define AM65_CPTS_CONTROL_TS_SYNC_SEL_SHIFT (28) /* RFTCLK_SEL_REG */ #define AM65_CPTS_RFTCLK_SEL_MASK (0x1F) /* TS_PUSH_REG */ #define AM65_CPTS_TS_PUSH BIT(0) /* TS_LOAD_EN_REG */ #define AM65_CPTS_TS_LOAD_EN BIT(0) /* INTSTAT_RAW_REG */ #define AM65_CPTS_INTSTAT_RAW_TS_PEND BIT(0) /* INTSTAT_MASKED_REG */ #define AM65_CPTS_INTSTAT_MASKED_TS_PEND BIT(0) /* INT_ENABLE_REG */ #define AM65_CPTS_INT_ENABLE_TS_PEND_EN BIT(0) /* TS_COMP_NUDGE_REG */ #define AM65_CPTS_TS_COMP_NUDGE_MASK (0xFF) /* EVENT_POP_REG */ #define AM65_CPTS_EVENT_POP BIT(0) /* EVENT_1_REG */ #define AM65_CPTS_EVENT_1_SEQUENCE_ID_MASK GENMASK(15, 0) #define AM65_CPTS_EVENT_1_MESSAGE_TYPE_MASK GENMASK(19, 16) #define AM65_CPTS_EVENT_1_MESSAGE_TYPE_SHIFT (16) #define AM65_CPTS_EVENT_1_EVENT_TYPE_MASK GENMASK(23, 20) #define AM65_CPTS_EVENT_1_EVENT_TYPE_SHIFT (20) #define AM65_CPTS_EVENT_1_PORT_NUMBER_MASK GENMASK(28, 24) #define AM65_CPTS_EVENT_1_PORT_NUMBER_SHIFT (24) /* EVENT_2_REG */ #define AM65_CPTS_EVENT_2_REG_DOMAIN_MASK (0xFF) #define AM65_CPTS_EVENT_2_REG_DOMAIN_SHIFT (0) enum { AM65_CPTS_EV_PUSH, /* Time Stamp Push Event */ AM65_CPTS_EV_ROLL, /* Time Stamp Rollover Event */ AM65_CPTS_EV_HALF, /* Time Stamp Half Rollover Event */ AM65_CPTS_EV_HW, /* Hardware Time Stamp Push Event */ AM65_CPTS_EV_RX, /* Ethernet Receive Event */ AM65_CPTS_EV_TX, /* Ethernet Transmit Event */ AM65_CPTS_EV_TS_COMP, /* Time Stamp Compare Event */ AM65_CPTS_EV_HOST, /* Host Transmit Event */ }; struct am65_cpts_event { struct list_head list; unsigned long tmo; u32 event1; u32 event2; u64 timestamp; }; #define AM65_CPTS_FIFO_DEPTH (16) #define AM65_CPTS_MAX_EVENTS (32) #define AM65_CPTS_EVENT_RX_TX_TIMEOUT (20) /* ms */ #define AM65_CPTS_SKB_TX_WORK_TIMEOUT 1 /* jiffies */ #define AM65_CPTS_MIN_PPM 0x400 struct am65_cpts { struct device *dev; struct am65_cpts_regs __iomem *reg; struct ptp_clock_info ptp_info; struct ptp_clock *ptp_clock; int phc_index; struct clk_hw *clk_mux_hw; struct device_node *clk_mux_np; struct clk *refclk; u32 refclk_freq; struct list_head events; struct list_head pool; struct am65_cpts_event pool_data[AM65_CPTS_MAX_EVENTS]; spinlock_t lock; /* protects events lists*/ u32 ext_ts_inputs; u32 genf_num; u32 ts_add_val; int irq; struct mutex ptp_clk_lock; /* PHC access sync */ u64 timestamp; u32 genf_enable; u32 hw_ts_enable; struct sk_buff_head txq; /* context save/restore */ u64 sr_cpts_ns; u64 sr_ktime_ns; u32 sr_control; u32 sr_int_enable; u32 sr_rftclk_sel; u32 sr_ts_ppm_hi; u32 sr_ts_ppm_low; struct am65_genf_regs sr_genf[AM65_CPTS_GENF_MAX_NUM]; struct am65_genf_regs sr_estf[AM65_CPTS_ESTF_MAX_NUM]; }; struct am65_cpts_skb_cb_data { unsigned long tmo; u32 skb_mtype_seqid; }; #define am65_cpts_write32(c, v, r) writel(v, &(c)->reg->r) #define am65_cpts_read32(c, r) readl(&(c)->reg->r) static void am65_cpts_settime(struct am65_cpts *cpts, u64 start_tstamp) { u32 val; val = upper_32_bits(start_tstamp); am65_cpts_write32(cpts, val, ts_load_val_hi); val = lower_32_bits(start_tstamp); am65_cpts_write32(cpts, val, ts_load_val_lo); am65_cpts_write32(cpts, AM65_CPTS_TS_LOAD_EN, ts_load_en); } static void am65_cpts_set_add_val(struct am65_cpts *cpts) { /* select coefficient according to the rate */ cpts->ts_add_val = (NSEC_PER_SEC / cpts->refclk_freq - 1) & 0x7; am65_cpts_write32(cpts, cpts->ts_add_val, ts_add_val); } static void am65_cpts_disable(struct am65_cpts *cpts) { am65_cpts_write32(cpts, 0, control); am65_cpts_write32(cpts, 0, int_enable); } static int am65_cpts_event_get_port(struct am65_cpts_event *event) { return (event->event1 & AM65_CPTS_EVENT_1_PORT_NUMBER_MASK) >> AM65_CPTS_EVENT_1_PORT_NUMBER_SHIFT; } static int am65_cpts_event_get_type(struct am65_cpts_event *event) { return (event->event1 & AM65_CPTS_EVENT_1_EVENT_TYPE_MASK) >> AM65_CPTS_EVENT_1_EVENT_TYPE_SHIFT; } static int am65_cpts_cpts_purge_events(struct am65_cpts *cpts) { struct list_head *this, *next; struct am65_cpts_event *event; int removed = 0; list_for_each_safe(this, next, &cpts->events) { event = list_entry(this, struct am65_cpts_event, list); if (time_after(jiffies, event->tmo)) { list_del_init(&event->list); list_add(&event->list, &cpts->pool); ++removed; } } if (removed) dev_dbg(cpts->dev, "event pool cleaned up %d\n", removed); return removed ? 0 : -1; } static bool am65_cpts_fifo_pop_event(struct am65_cpts *cpts, struct am65_cpts_event *event) { u32 r = am65_cpts_read32(cpts, intstat_raw); if (r & AM65_CPTS_INTSTAT_RAW_TS_PEND) { event->timestamp = am65_cpts_read32(cpts, event_0); event->event1 = am65_cpts_read32(cpts, event_1); event->event2 = am65_cpts_read32(cpts, event_2); event->timestamp |= (u64)am65_cpts_read32(cpts, event_3) << 32; am65_cpts_write32(cpts, AM65_CPTS_EVENT_POP, event_pop); return false; } return true; } static int am65_cpts_fifo_read(struct am65_cpts *cpts) { struct ptp_clock_event pevent; struct am65_cpts_event *event; bool schedule = false; int i, type, ret = 0; unsigned long flags; spin_lock_irqsave(&cpts->lock, flags); for (i = 0; i < AM65_CPTS_FIFO_DEPTH; i++) { event = list_first_entry_or_null(&cpts->pool, struct am65_cpts_event, list); if (!event) { if (am65_cpts_cpts_purge_events(cpts)) { dev_err(cpts->dev, "cpts: event pool empty\n"); ret = -1; goto out; } continue; } if (am65_cpts_fifo_pop_event(cpts, event)) break; type = am65_cpts_event_get_type(event); switch (type) { case AM65_CPTS_EV_PUSH: cpts->timestamp = event->timestamp; dev_dbg(cpts->dev, "AM65_CPTS_EV_PUSH t:%llu\n", cpts->timestamp); break; case AM65_CPTS_EV_RX: case AM65_CPTS_EV_TX: event->tmo = jiffies + msecs_to_jiffies(AM65_CPTS_EVENT_RX_TX_TIMEOUT); list_del_init(&event->list); list_add_tail(&event->list, &cpts->events); dev_dbg(cpts->dev, "AM65_CPTS_EV_TX e1:%08x e2:%08x t:%lld\n", event->event1, event->event2, event->timestamp); schedule = true; break; case AM65_CPTS_EV_HW: pevent.index = am65_cpts_event_get_port(event) - 1; pevent.timestamp = event->timestamp; pevent.type = PTP_CLOCK_EXTTS; dev_dbg(cpts->dev, "AM65_CPTS_EV_HW p:%d t:%llu\n", pevent.index, event->timestamp); ptp_clock_event(cpts->ptp_clock, &pevent); break; case AM65_CPTS_EV_HOST: break; case AM65_CPTS_EV_ROLL: case AM65_CPTS_EV_HALF: case AM65_CPTS_EV_TS_COMP: dev_dbg(cpts->dev, "AM65_CPTS_EVT: %d e1:%08x e2:%08x t:%lld\n", type, event->event1, event->event2, event->timestamp); break; default: dev_err(cpts->dev, "cpts: unknown event type\n"); ret = -1; goto out; } } out: spin_unlock_irqrestore(&cpts->lock, flags); if (schedule) ptp_schedule_worker(cpts->ptp_clock, 0); return ret; } static u64 am65_cpts_gettime(struct am65_cpts *cpts, struct ptp_system_timestamp *sts) { unsigned long flags; u64 val = 0; /* temporarily disable cpts interrupt to avoid intentional * doubled read. Interrupt can be in-flight - it's Ok. */ am65_cpts_write32(cpts, 0, int_enable); /* use spin_lock_irqsave() here as it has to run very fast */ spin_lock_irqsave(&cpts->lock, flags); ptp_read_system_prets(sts); am65_cpts_write32(cpts, AM65_CPTS_TS_PUSH, ts_push); am65_cpts_read32(cpts, ts_push); ptp_read_system_postts(sts); spin_unlock_irqrestore(&cpts->lock, flags); am65_cpts_fifo_read(cpts); am65_cpts_write32(cpts, AM65_CPTS_INT_ENABLE_TS_PEND_EN, int_enable); val = cpts->timestamp; return val; } static irqreturn_t am65_cpts_interrupt(int irq, void *dev_id) { struct am65_cpts *cpts = dev_id; if (am65_cpts_fifo_read(cpts)) dev_dbg(cpts->dev, "cpts: unable to obtain a time stamp\n"); return IRQ_HANDLED; } /* PTP clock operations */ static int am65_cpts_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) { struct am65_cpts *cpts = container_of(ptp, struct am65_cpts, ptp_info); s32 ppb = scaled_ppm_to_ppb(scaled_ppm); int neg_adj = 0; u64 adj_period; u32 val; if (ppb < 0) { neg_adj = 1; ppb = -ppb; } /* base freq = 1GHz = 1 000 000 000 * ppb_norm = ppb * base_freq / clock_freq; * ppm_norm = ppb_norm / 1000 * adj_period = 1 000 000 / ppm_norm * adj_period = 1 000 000 000 / ppb_norm * adj_period = 1 000 000 000 / (ppb * base_freq / clock_freq) * adj_period = (1 000 000 000 * clock_freq) / (ppb * base_freq) * adj_period = clock_freq / ppb */ adj_period = div_u64(cpts->refclk_freq, ppb); mutex_lock(&cpts->ptp_clk_lock); val = am65_cpts_read32(cpts, control); if (neg_adj) val |= AM65_CPTS_CONTROL_TS_PPM_DIR; else val &= ~AM65_CPTS_CONTROL_TS_PPM_DIR; am65_cpts_write32(cpts, val, control); val = upper_32_bits(adj_period) & 0x3FF; am65_cpts_write32(cpts, val, ts_ppm_hi); val = lower_32_bits(adj_period); am65_cpts_write32(cpts, val, ts_ppm_low); mutex_unlock(&cpts->ptp_clk_lock); return 0; } static int am65_cpts_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) { struct am65_cpts *cpts = container_of(ptp, struct am65_cpts, ptp_info); s64 ns; mutex_lock(&cpts->ptp_clk_lock); ns = am65_cpts_gettime(cpts, NULL); ns += delta; am65_cpts_settime(cpts, ns); mutex_unlock(&cpts->ptp_clk_lock); return 0; } static int am65_cpts_ptp_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts, struct ptp_system_timestamp *sts) { struct am65_cpts *cpts = container_of(ptp, struct am65_cpts, ptp_info); u64 ns; mutex_lock(&cpts->ptp_clk_lock); ns = am65_cpts_gettime(cpts, sts); mutex_unlock(&cpts->ptp_clk_lock); *ts = ns_to_timespec64(ns); return 0; } u64 am65_cpts_ns_gettime(struct am65_cpts *cpts) { u64 ns; /* reuse ptp_clk_lock as it serialize ts push */ mutex_lock(&cpts->ptp_clk_lock); ns = am65_cpts_gettime(cpts, NULL); mutex_unlock(&cpts->ptp_clk_lock); return ns; } EXPORT_SYMBOL_GPL(am65_cpts_ns_gettime); static int am65_cpts_ptp_settime(struct ptp_clock_info *ptp, const struct timespec64 *ts) { struct am65_cpts *cpts = container_of(ptp, struct am65_cpts, ptp_info); u64 ns; ns = timespec64_to_ns(ts); mutex_lock(&cpts->ptp_clk_lock); am65_cpts_settime(cpts, ns); mutex_unlock(&cpts->ptp_clk_lock); return 0; } static void am65_cpts_extts_enable_hw(struct am65_cpts *cpts, u32 index, int on) { u32 v; v = am65_cpts_read32(cpts, control); if (on) { v |= BIT(AM65_CPTS_CONTROL_HW1_TS_PUSH_OFFSET + index); cpts->hw_ts_enable |= BIT(index); } else { v &= ~BIT(AM65_CPTS_CONTROL_HW1_TS_PUSH_OFFSET + index); cpts->hw_ts_enable &= ~BIT(index); } am65_cpts_write32(cpts, v, control); } static int am65_cpts_extts_enable(struct am65_cpts *cpts, u32 index, int on) { if (!!(cpts->hw_ts_enable & BIT(index)) == !!on) return 0; mutex_lock(&cpts->ptp_clk_lock); am65_cpts_extts_enable_hw(cpts, index, on); mutex_unlock(&cpts->ptp_clk_lock); dev_dbg(cpts->dev, "%s: ExtTS:%u %s\n", __func__, index, on ? "enabled" : "disabled"); return 0; } int am65_cpts_estf_enable(struct am65_cpts *cpts, int idx, struct am65_cpts_estf_cfg *cfg) { u64 cycles; u32 val; cycles = cfg->ns_period * cpts->refclk_freq; cycles = DIV_ROUND_UP(cycles, NSEC_PER_SEC); if (cycles > U32_MAX) return -EINVAL; /* according to TRM should be zeroed */ am65_cpts_write32(cpts, 0, estf[idx].length); val = upper_32_bits(cfg->ns_start); am65_cpts_write32(cpts, val, estf[idx].comp_hi); val = lower_32_bits(cfg->ns_start); am65_cpts_write32(cpts, val, estf[idx].comp_lo); val = lower_32_bits(cycles); am65_cpts_write32(cpts, val, estf[idx].length); dev_dbg(cpts->dev, "%s: ESTF:%u enabled\n", __func__, idx); return 0; } EXPORT_SYMBOL_GPL(am65_cpts_estf_enable); void am65_cpts_estf_disable(struct am65_cpts *cpts, int idx) { am65_cpts_write32(cpts, 0, estf[idx].length); dev_dbg(cpts->dev, "%s: ESTF:%u disabled\n", __func__, idx); } EXPORT_SYMBOL_GPL(am65_cpts_estf_disable); static void am65_cpts_perout_enable_hw(struct am65_cpts *cpts, struct ptp_perout_request *req, int on) { u64 ns_period, ns_start, cycles; struct timespec64 ts; u32 val; if (on) { ts.tv_sec = req->period.sec; ts.tv_nsec = req->period.nsec; ns_period = timespec64_to_ns(&ts); cycles = (ns_period * cpts->refclk_freq) / NSEC_PER_SEC; ts.tv_sec = req->start.sec; ts.tv_nsec = req->start.nsec; ns_start = timespec64_to_ns(&ts); val = upper_32_bits(ns_start); am65_cpts_write32(cpts, val, genf[req->index].comp_hi); val = lower_32_bits(ns_start); am65_cpts_write32(cpts, val, genf[req->index].comp_lo); val = lower_32_bits(cycles); am65_cpts_write32(cpts, val, genf[req->index].length); cpts->genf_enable |= BIT(req->index); } else { am65_cpts_write32(cpts, 0, genf[req->index].length); cpts->genf_enable &= ~BIT(req->index); } } static int am65_cpts_perout_enable(struct am65_cpts *cpts, struct ptp_perout_request *req, int on) { if (!!(cpts->genf_enable & BIT(req->index)) == !!on) return 0; mutex_lock(&cpts->ptp_clk_lock); am65_cpts_perout_enable_hw(cpts, req, on); mutex_unlock(&cpts->ptp_clk_lock); dev_dbg(cpts->dev, "%s: GenF:%u %s\n", __func__, req->index, on ? "enabled" : "disabled"); return 0; } static int am65_cpts_ptp_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *rq, int on) { struct am65_cpts *cpts = container_of(ptp, struct am65_cpts, ptp_info); switch (rq->type) { case PTP_CLK_REQ_EXTTS: return am65_cpts_extts_enable(cpts, rq->extts.index, on); case PTP_CLK_REQ_PEROUT: return am65_cpts_perout_enable(cpts, &rq->perout, on); default: break; } return -EOPNOTSUPP; } static long am65_cpts_ts_work(struct ptp_clock_info *ptp); static struct ptp_clock_info am65_ptp_info = { .owner = THIS_MODULE, .name = "CTPS timer", .adjfine = am65_cpts_ptp_adjfine, .adjtime = am65_cpts_ptp_adjtime, .gettimex64 = am65_cpts_ptp_gettimex, .settime64 = am65_cpts_ptp_settime, .enable = am65_cpts_ptp_enable, .do_aux_work = am65_cpts_ts_work, }; static bool am65_cpts_match_tx_ts(struct am65_cpts *cpts, struct am65_cpts_event *event) { struct sk_buff_head txq_list; struct sk_buff *skb, *tmp; unsigned long flags; bool found = false; u32 mtype_seqid; mtype_seqid = event->event1 & (AM65_CPTS_EVENT_1_MESSAGE_TYPE_MASK | AM65_CPTS_EVENT_1_EVENT_TYPE_MASK | AM65_CPTS_EVENT_1_SEQUENCE_ID_MASK); __skb_queue_head_init(&txq_list); spin_lock_irqsave(&cpts->txq.lock, flags); skb_queue_splice_init(&cpts->txq, &txq_list); spin_unlock_irqrestore(&cpts->txq.lock, flags); /* no need to grab txq.lock as access is always done under cpts->lock */ skb_queue_walk_safe(&txq_list, skb, tmp) { struct skb_shared_hwtstamps ssh; struct am65_cpts_skb_cb_data *skb_cb = (struct am65_cpts_skb_cb_data *)skb->cb; if (mtype_seqid == skb_cb->skb_mtype_seqid) { u64 ns = event->timestamp; memset(&ssh, 0, sizeof(ssh)); ssh.hwtstamp = ns_to_ktime(ns); skb_tstamp_tx(skb, &ssh); found = true; __skb_unlink(skb, &txq_list); dev_consume_skb_any(skb); dev_dbg(cpts->dev, "match tx timestamp mtype_seqid %08x\n", mtype_seqid); break; } if (time_after(jiffies, skb_cb->tmo)) { /* timeout any expired skbs over 100 ms */ dev_dbg(cpts->dev, "expiring tx timestamp mtype_seqid %08x\n", mtype_seqid); __skb_unlink(skb, &txq_list); dev_consume_skb_any(skb); } } spin_lock_irqsave(&cpts->txq.lock, flags); skb_queue_splice(&txq_list, &cpts->txq); spin_unlock_irqrestore(&cpts->txq.lock, flags); return found; } static void am65_cpts_find_ts(struct am65_cpts *cpts) { struct am65_cpts_event *event; struct list_head *this, *next; LIST_HEAD(events_free); unsigned long flags; LIST_HEAD(events); spin_lock_irqsave(&cpts->lock, flags); list_splice_init(&cpts->events, &events); spin_unlock_irqrestore(&cpts->lock, flags); list_for_each_safe(this, next, &events) { event = list_entry(this, struct am65_cpts_event, list); if (am65_cpts_match_tx_ts(cpts, event) || time_after(jiffies, event->tmo)) { list_del_init(&event->list); list_add(&event->list, &events_free); } } spin_lock_irqsave(&cpts->lock, flags); list_splice_tail(&events, &cpts->events); list_splice_tail(&events_free, &cpts->pool); spin_unlock_irqrestore(&cpts->lock, flags); } static long am65_cpts_ts_work(struct ptp_clock_info *ptp) { struct am65_cpts *cpts = container_of(ptp, struct am65_cpts, ptp_info); unsigned long flags; long delay = -1; am65_cpts_find_ts(cpts); spin_lock_irqsave(&cpts->txq.lock, flags); if (!skb_queue_empty(&cpts->txq)) delay = AM65_CPTS_SKB_TX_WORK_TIMEOUT; spin_unlock_irqrestore(&cpts->txq.lock, flags); return delay; } /** * am65_cpts_rx_enable - enable rx timestamping * @cpts: cpts handle * @en: enable * * This functions enables rx packets timestamping. The CPTS can timestamp all * rx packets. */ void am65_cpts_rx_enable(struct am65_cpts *cpts, bool en) { u32 val; mutex_lock(&cpts->ptp_clk_lock); val = am65_cpts_read32(cpts, control); if (en) val |= AM65_CPTS_CONTROL_TSTAMP_EN; else val &= ~AM65_CPTS_CONTROL_TSTAMP_EN; am65_cpts_write32(cpts, val, control); mutex_unlock(&cpts->ptp_clk_lock); } EXPORT_SYMBOL_GPL(am65_cpts_rx_enable); static int am65_skb_get_mtype_seqid(struct sk_buff *skb, u32 *mtype_seqid) { unsigned int ptp_class = ptp_classify_raw(skb); struct ptp_header *hdr; u8 msgtype; u16 seqid; if (ptp_class == PTP_CLASS_NONE) return 0; hdr = ptp_parse_header(skb, ptp_class); if (!hdr) return 0; msgtype = ptp_get_msgtype(hdr, ptp_class); seqid = ntohs(hdr->sequence_id); *mtype_seqid = (msgtype << AM65_CPTS_EVENT_1_MESSAGE_TYPE_SHIFT) & AM65_CPTS_EVENT_1_MESSAGE_TYPE_MASK; *mtype_seqid |= (seqid & AM65_CPTS_EVENT_1_SEQUENCE_ID_MASK); return 1; } /** * am65_cpts_tx_timestamp - save tx packet for timestamping * @cpts: cpts handle * @skb: packet * * This functions saves tx packet for timestamping if packet can be timestamped. * The future processing is done in from PTP auxiliary worker. */ void am65_cpts_tx_timestamp(struct am65_cpts *cpts, struct sk_buff *skb) { struct am65_cpts_skb_cb_data *skb_cb = (void *)skb->cb; if (!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) return; /* add frame to queue for processing later. * The periodic FIFO check will handle this. */ skb_get(skb); /* get the timestamp for timeouts */ skb_cb->tmo = jiffies + msecs_to_jiffies(100); skb_queue_tail(&cpts->txq, skb); ptp_schedule_worker(cpts->ptp_clock, 0); } EXPORT_SYMBOL_GPL(am65_cpts_tx_timestamp); /** * am65_cpts_prep_tx_timestamp - check and prepare tx packet for timestamping * @cpts: cpts handle * @skb: packet * * This functions should be called from .xmit(). * It checks if packet can be timestamped, fills internal cpts data * in skb-cb and marks packet as SKBTX_IN_PROGRESS. */ void am65_cpts_prep_tx_timestamp(struct am65_cpts *cpts, struct sk_buff *skb) { struct am65_cpts_skb_cb_data *skb_cb = (void *)skb->cb; int ret; if (!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) return; ret = am65_skb_get_mtype_seqid(skb, &skb_cb->skb_mtype_seqid); if (!ret) return; skb_cb->skb_mtype_seqid |= (AM65_CPTS_EV_TX << AM65_CPTS_EVENT_1_EVENT_TYPE_SHIFT); skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; } EXPORT_SYMBOL_GPL(am65_cpts_prep_tx_timestamp); int am65_cpts_phc_index(struct am65_cpts *cpts) { return cpts->phc_index; } EXPORT_SYMBOL_GPL(am65_cpts_phc_index); static void cpts_free_clk_mux(void *data) { struct am65_cpts *cpts = data; of_clk_del_provider(cpts->clk_mux_np); clk_hw_unregister_mux(cpts->clk_mux_hw); of_node_put(cpts->clk_mux_np); } static int cpts_of_mux_clk_setup(struct am65_cpts *cpts, struct device_node *node) { unsigned int num_parents; const char **parent_names; char *clk_mux_name; void __iomem *reg; int ret = -EINVAL; cpts->clk_mux_np = of_get_child_by_name(node, "refclk-mux"); if (!cpts->clk_mux_np) return 0; num_parents = of_clk_get_parent_count(cpts->clk_mux_np); if (num_parents < 1) { dev_err(cpts->dev, "mux-clock %pOF must have parents\n", cpts->clk_mux_np); goto mux_fail; } parent_names = devm_kcalloc(cpts->dev, sizeof(char *), num_parents, GFP_KERNEL); if (!parent_names) { ret = -ENOMEM; goto mux_fail; } of_clk_parent_fill(cpts->clk_mux_np, parent_names, num_parents); clk_mux_name = devm_kasprintf(cpts->dev, GFP_KERNEL, "%s.%pOFn", dev_name(cpts->dev), cpts->clk_mux_np); if (!clk_mux_name) { ret = -ENOMEM; goto mux_fail; } reg = &cpts->reg->rftclk_sel; /* dev must be NULL to avoid recursive incrementing * of module refcnt */ cpts->clk_mux_hw = clk_hw_register_mux(NULL, clk_mux_name, parent_names, num_parents, 0, reg, 0, 5, 0, NULL); if (IS_ERR(cpts->clk_mux_hw)) { ret = PTR_ERR(cpts->clk_mux_hw); goto mux_fail; } ret = of_clk_add_hw_provider(cpts->clk_mux_np, of_clk_hw_simple_get, cpts->clk_mux_hw); if (ret) goto clk_hw_register; ret = devm_add_action_or_reset(cpts->dev, cpts_free_clk_mux, cpts); if (ret) dev_err(cpts->dev, "failed to add clkmux reset action %d", ret); return ret; clk_hw_register: clk_hw_unregister_mux(cpts->clk_mux_hw); mux_fail: of_node_put(cpts->clk_mux_np); return ret; } static int am65_cpts_of_parse(struct am65_cpts *cpts, struct device_node *node) { u32 prop[2]; if (!of_property_read_u32(node, "ti,cpts-ext-ts-inputs", &prop[0])) cpts->ext_ts_inputs = prop[0]; if (!of_property_read_u32(node, "ti,cpts-periodic-outputs", &prop[0])) cpts->genf_num = prop[0]; return cpts_of_mux_clk_setup(cpts, node); } static void am65_cpts_release(void *data) { struct am65_cpts *cpts = data; ptp_clock_unregister(cpts->ptp_clock); am65_cpts_disable(cpts); clk_disable_unprepare(cpts->refclk); } struct am65_cpts *am65_cpts_create(struct device *dev, void __iomem *regs, struct device_node *node) { struct am65_cpts *cpts; int ret, i; cpts = devm_kzalloc(dev, sizeof(*cpts), GFP_KERNEL); if (!cpts) return ERR_PTR(-ENOMEM); cpts->dev = dev; cpts->reg = (struct am65_cpts_regs __iomem *)regs; cpts->irq = of_irq_get_byname(node, "cpts"); if (cpts->irq <= 0) { ret = cpts->irq ?: -ENXIO; dev_err_probe(dev, ret, "Failed to get IRQ number\n"); return ERR_PTR(ret); } ret = am65_cpts_of_parse(cpts, node); if (ret) return ERR_PTR(ret); mutex_init(&cpts->ptp_clk_lock); INIT_LIST_HEAD(&cpts->events); INIT_LIST_HEAD(&cpts->pool); spin_lock_init(&cpts->lock); skb_queue_head_init(&cpts->txq); for (i = 0; i < AM65_CPTS_MAX_EVENTS; i++) list_add(&cpts->pool_data[i].list, &cpts->pool); cpts->refclk = devm_get_clk_from_child(dev, node, "cpts"); if (IS_ERR(cpts->refclk)) { ret = PTR_ERR(cpts->refclk); dev_err_probe(dev, ret, "Failed to get refclk\n"); return ERR_PTR(ret); } ret = clk_prepare_enable(cpts->refclk); if (ret) { dev_err(dev, "Failed to enable refclk %d\n", ret); return ERR_PTR(ret); } cpts->refclk_freq = clk_get_rate(cpts->refclk); am65_ptp_info.max_adj = cpts->refclk_freq / AM65_CPTS_MIN_PPM; cpts->ptp_info = am65_ptp_info; if (cpts->ext_ts_inputs) cpts->ptp_info.n_ext_ts = cpts->ext_ts_inputs; if (cpts->genf_num) cpts->ptp_info.n_per_out = cpts->genf_num; am65_cpts_set_add_val(cpts); am65_cpts_write32(cpts, AM65_CPTS_CONTROL_EN | AM65_CPTS_CONTROL_64MODE | AM65_CPTS_CONTROL_TX_GENF_CLR_EN, control); am65_cpts_write32(cpts, AM65_CPTS_INT_ENABLE_TS_PEND_EN, int_enable); /* set time to the current system time */ am65_cpts_settime(cpts, ktime_to_ns(ktime_get_real())); cpts->ptp_clock = ptp_clock_register(&cpts->ptp_info, cpts->dev); if (IS_ERR_OR_NULL(cpts->ptp_clock)) { dev_err(dev, "Failed to register ptp clk %ld\n", PTR_ERR(cpts->ptp_clock)); ret = cpts->ptp_clock ? PTR_ERR(cpts->ptp_clock) : -ENODEV; goto refclk_disable; } cpts->phc_index = ptp_clock_index(cpts->ptp_clock); ret = devm_add_action_or_reset(dev, am65_cpts_release, cpts); if (ret) { dev_err(dev, "failed to add ptpclk reset action %d", ret); return ERR_PTR(ret); } ret = devm_request_threaded_irq(dev, cpts->irq, NULL, am65_cpts_interrupt, IRQF_ONESHOT, dev_name(dev), cpts); if (ret < 0) { dev_err(cpts->dev, "error attaching irq %d\n", ret); return ERR_PTR(ret); } dev_info(dev, "CPTS ver 0x%08x, freq:%u, add_val:%u\n", am65_cpts_read32(cpts, idver), cpts->refclk_freq, cpts->ts_add_val); return cpts; refclk_disable: clk_disable_unprepare(cpts->refclk); return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(am65_cpts_create); void am65_cpts_suspend(struct am65_cpts *cpts) { /* save state and disable CPTS */ cpts->sr_control = am65_cpts_read32(cpts, control); cpts->sr_int_enable = am65_cpts_read32(cpts, int_enable); cpts->sr_rftclk_sel = am65_cpts_read32(cpts, rftclk_sel); cpts->sr_ts_ppm_hi = am65_cpts_read32(cpts, ts_ppm_hi); cpts->sr_ts_ppm_low = am65_cpts_read32(cpts, ts_ppm_low); cpts->sr_cpts_ns = am65_cpts_gettime(cpts, NULL); cpts->sr_ktime_ns = ktime_to_ns(ktime_get_real()); am65_cpts_disable(cpts); clk_disable(cpts->refclk); /* Save GENF state */ memcpy_fromio(&cpts->sr_genf, &cpts->reg->genf, sizeof(cpts->sr_genf)); /* Save ESTF state */ memcpy_fromio(&cpts->sr_estf, &cpts->reg->estf, sizeof(cpts->sr_estf)); } EXPORT_SYMBOL_GPL(am65_cpts_suspend); void am65_cpts_resume(struct am65_cpts *cpts) { int i; s64 ktime_ns; /* restore state and enable CPTS */ clk_enable(cpts->refclk); am65_cpts_write32(cpts, cpts->sr_rftclk_sel, rftclk_sel); am65_cpts_set_add_val(cpts); am65_cpts_write32(cpts, cpts->sr_control, control); am65_cpts_write32(cpts, cpts->sr_int_enable, int_enable); /* Restore time to saved CPTS time + time in suspend/resume */ ktime_ns = ktime_to_ns(ktime_get_real()); ktime_ns -= cpts->sr_ktime_ns; am65_cpts_settime(cpts, cpts->sr_cpts_ns + ktime_ns); /* Restore compensation (PPM) */ am65_cpts_write32(cpts, cpts->sr_ts_ppm_hi, ts_ppm_hi); am65_cpts_write32(cpts, cpts->sr_ts_ppm_low, ts_ppm_low); /* Restore GENF state */ for (i = 0; i < AM65_CPTS_GENF_MAX_NUM; i++) { am65_cpts_write32(cpts, 0, genf[i].length); /* TRM sequence */ am65_cpts_write32(cpts, cpts->sr_genf[i].comp_hi, genf[i].comp_hi); am65_cpts_write32(cpts, cpts->sr_genf[i].comp_lo, genf[i].comp_lo); am65_cpts_write32(cpts, cpts->sr_genf[i].length, genf[i].length); am65_cpts_write32(cpts, cpts->sr_genf[i].control, genf[i].control); am65_cpts_write32(cpts, cpts->sr_genf[i].ppm_hi, genf[i].ppm_hi); am65_cpts_write32(cpts, cpts->sr_genf[i].ppm_low, genf[i].ppm_low); } /* Restore ESTTF state */ for (i = 0; i < AM65_CPTS_ESTF_MAX_NUM; i++) { am65_cpts_write32(cpts, 0, estf[i].length); /* TRM sequence */ am65_cpts_write32(cpts, cpts->sr_estf[i].comp_hi, estf[i].comp_hi); am65_cpts_write32(cpts, cpts->sr_estf[i].comp_lo, estf[i].comp_lo); am65_cpts_write32(cpts, cpts->sr_estf[i].length, estf[i].length); am65_cpts_write32(cpts, cpts->sr_estf[i].control, estf[i].control); am65_cpts_write32(cpts, cpts->sr_estf[i].ppm_hi, estf[i].ppm_hi); am65_cpts_write32(cpts, cpts->sr_estf[i].ppm_low, estf[i].ppm_low); } } EXPORT_SYMBOL_GPL(am65_cpts_resume); static int am65_cpts_probe(struct platform_device *pdev) { struct device_node *node = pdev->dev.of_node; struct device *dev = &pdev->dev; struct am65_cpts *cpts; void __iomem *base; base = devm_platform_ioremap_resource_byname(pdev, "cpts"); if (IS_ERR(base)) return PTR_ERR(base); cpts = am65_cpts_create(dev, base, node); return PTR_ERR_OR_ZERO(cpts); } static const struct of_device_id am65_cpts_of_match[] = { { .compatible = "ti,am65-cpts", }, { .compatible = "ti,j721e-cpts", }, {}, }; MODULE_DEVICE_TABLE(of, am65_cpts_of_match); static struct platform_driver am65_cpts_driver = { .probe = am65_cpts_probe, .driver = { .name = "am65-cpts", .of_match_table = am65_cpts_of_match, }, }; module_platform_driver(am65_cpts_driver); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Grygorii Strashko <grygorii.strashko@ti.com>"); MODULE_DESCRIPTION("TI K3 AM65 CPTS driver");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1