Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Harry Morris | 10513 | 98.25% | 2 | 7.69% |
Miquel Raynal | 79 | 0.74% | 4 | 15.38% |
Colin Ian King | 30 | 0.28% | 1 | 3.85% |
Stefan Schmidt | 18 | 0.17% | 2 | 7.69% |
Sergiu Cuciurean | 13 | 0.12% | 1 | 3.85% |
Gustavo A. R. Silva | 7 | 0.07% | 1 | 3.85% |
Lee Jones | 7 | 0.07% | 2 | 7.69% |
LiuJian | 7 | 0.07% | 1 | 3.85% |
Yue haibing | 6 | 0.06% | 2 | 7.69% |
Florian Westphal | 3 | 0.03% | 1 | 3.85% |
Christophe Jaillet | 3 | 0.03% | 1 | 3.85% |
Michael Turquette | 3 | 0.03% | 1 | 3.85% |
Linus Torvalds | 3 | 0.03% | 1 | 3.85% |
Al Viro | 2 | 0.02% | 1 | 3.85% |
Uwe Kleine-König | 2 | 0.02% | 1 | 3.85% |
Arnd Bergmann | 1 | 0.01% | 1 | 3.85% |
Jilin Yuan | 1 | 0.01% | 1 | 3.85% |
Johannes Berg | 1 | 0.01% | 1 | 3.85% |
Hauke Mehrtens | 1 | 0.01% | 1 | 3.85% |
Total | 10700 | 26 |
/* * http://www.cascoda.com/products/ca-821x/ * Copyright (c) 2016, Cascoda, Ltd. * All rights reserved. * * This code is dual-licensed under both GPLv2 and 3-clause BSD. What follows is * the license notice for both respectively. * ******************************************************************************* * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * ******************************************************************************* * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its contributors * may be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include <linux/cdev.h> #include <linux/clk-provider.h> #include <linux/debugfs.h> #include <linux/delay.h> #include <linux/gpio.h> #include <linux/ieee802154.h> #include <linux/io.h> #include <linux/kfifo.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/of_gpio.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/poll.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <linux/spi/spi.h> #include <linux/spinlock.h> #include <linux/string.h> #include <linux/workqueue.h> #include <linux/interrupt.h> #include <net/ieee802154_netdev.h> #include <net/mac802154.h> #define DRIVER_NAME "ca8210" /* external clock frequencies */ #define ONE_MHZ 1000000 #define TWO_MHZ (2 * ONE_MHZ) #define FOUR_MHZ (4 * ONE_MHZ) #define EIGHT_MHZ (8 * ONE_MHZ) #define SIXTEEN_MHZ (16 * ONE_MHZ) /* spi constants */ #define CA8210_SPI_BUF_SIZE 256 #define CA8210_SYNC_TIMEOUT 1000 /* Timeout for synchronous commands [ms] */ /* test interface constants */ #define CA8210_TEST_INT_FILE_NAME "ca8210_test" #define CA8210_TEST_INT_FIFO_SIZE 256 /* HWME attribute IDs */ #define HWME_EDTHRESHOLD (0x04) #define HWME_EDVALUE (0x06) #define HWME_SYSCLKOUT (0x0F) #define HWME_LQILIMIT (0x11) /* TDME attribute IDs */ #define TDME_CHANNEL (0x00) #define TDME_ATM_CONFIG (0x06) #define MAX_HWME_ATTRIBUTE_SIZE 16 #define MAX_TDME_ATTRIBUTE_SIZE 2 /* PHY/MAC PIB Attribute Enumerations */ #define PHY_CURRENT_CHANNEL (0x00) #define PHY_TRANSMIT_POWER (0x02) #define PHY_CCA_MODE (0x03) #define MAC_ASSOCIATION_PERMIT (0x41) #define MAC_AUTO_REQUEST (0x42) #define MAC_BATT_LIFE_EXT (0x43) #define MAC_BATT_LIFE_EXT_PERIODS (0x44) #define MAC_BEACON_PAYLOAD (0x45) #define MAC_BEACON_PAYLOAD_LENGTH (0x46) #define MAC_BEACON_ORDER (0x47) #define MAC_GTS_PERMIT (0x4d) #define MAC_MAX_CSMA_BACKOFFS (0x4e) #define MAC_MIN_BE (0x4f) #define MAC_PAN_ID (0x50) #define MAC_PROMISCUOUS_MODE (0x51) #define MAC_RX_ON_WHEN_IDLE (0x52) #define MAC_SHORT_ADDRESS (0x53) #define MAC_SUPERFRAME_ORDER (0x54) #define MAC_ASSOCIATED_PAN_COORD (0x56) #define MAC_MAX_BE (0x57) #define MAC_MAX_FRAME_RETRIES (0x59) #define MAC_RESPONSE_WAIT_TIME (0x5A) #define MAC_SECURITY_ENABLED (0x5D) #define MAC_AUTO_REQUEST_SECURITY_LEVEL (0x78) #define MAC_AUTO_REQUEST_KEY_ID_MODE (0x79) #define NS_IEEE_ADDRESS (0xFF) /* Non-standard IEEE address */ /* MAC Address Mode Definitions */ #define MAC_MODE_NO_ADDR (0x00) #define MAC_MODE_SHORT_ADDR (0x02) #define MAC_MODE_LONG_ADDR (0x03) /* MAC constants */ #define MAX_BEACON_OVERHEAD (75) #define MAX_BEACON_PAYLOAD_LENGTH (IEEE802154_MTU - MAX_BEACON_OVERHEAD) #define MAX_ATTRIBUTE_SIZE (122) #define MAX_DATA_SIZE (114) #define CA8210_VALID_CHANNELS (0x07FFF800) /* MAC workarounds for V1.1 and MPW silicon (V0.x) */ #define CA8210_MAC_WORKAROUNDS (0) #define CA8210_MAC_MPW (0) /* memory manipulation macros */ #define LS_BYTE(x) ((u8)((x) & 0xFF)) #define MS_BYTE(x) ((u8)(((x) >> 8) & 0xFF)) /* message ID codes in SPI commands */ /* downstream */ #define MCPS_DATA_REQUEST (0x00) #define MLME_ASSOCIATE_REQUEST (0x02) #define MLME_ASSOCIATE_RESPONSE (0x03) #define MLME_DISASSOCIATE_REQUEST (0x04) #define MLME_GET_REQUEST (0x05) #define MLME_ORPHAN_RESPONSE (0x06) #define MLME_RESET_REQUEST (0x07) #define MLME_RX_ENABLE_REQUEST (0x08) #define MLME_SCAN_REQUEST (0x09) #define MLME_SET_REQUEST (0x0A) #define MLME_START_REQUEST (0x0B) #define MLME_POLL_REQUEST (0x0D) #define HWME_SET_REQUEST (0x0E) #define HWME_GET_REQUEST (0x0F) #define TDME_SETSFR_REQUEST (0x11) #define TDME_GETSFR_REQUEST (0x12) #define TDME_SET_REQUEST (0x14) /* upstream */ #define MCPS_DATA_INDICATION (0x00) #define MCPS_DATA_CONFIRM (0x01) #define MLME_RESET_CONFIRM (0x0A) #define MLME_SET_CONFIRM (0x0E) #define MLME_START_CONFIRM (0x0F) #define HWME_SET_CONFIRM (0x12) #define HWME_GET_CONFIRM (0x13) #define HWME_WAKEUP_INDICATION (0x15) #define TDME_SETSFR_CONFIRM (0x17) /* SPI command IDs */ /* bit indicating a confirm or indication from slave to master */ #define SPI_S2M (0x20) /* bit indicating a synchronous message */ #define SPI_SYN (0x40) /* SPI command definitions */ #define SPI_IDLE (0xFF) #define SPI_NACK (0xF0) #define SPI_MCPS_DATA_REQUEST (MCPS_DATA_REQUEST) #define SPI_MCPS_DATA_INDICATION (MCPS_DATA_INDICATION + SPI_S2M) #define SPI_MCPS_DATA_CONFIRM (MCPS_DATA_CONFIRM + SPI_S2M) #define SPI_MLME_ASSOCIATE_REQUEST (MLME_ASSOCIATE_REQUEST) #define SPI_MLME_RESET_REQUEST (MLME_RESET_REQUEST + SPI_SYN) #define SPI_MLME_SET_REQUEST (MLME_SET_REQUEST + SPI_SYN) #define SPI_MLME_START_REQUEST (MLME_START_REQUEST + SPI_SYN) #define SPI_MLME_RESET_CONFIRM (MLME_RESET_CONFIRM + SPI_S2M + SPI_SYN) #define SPI_MLME_SET_CONFIRM (MLME_SET_CONFIRM + SPI_S2M + SPI_SYN) #define SPI_MLME_START_CONFIRM (MLME_START_CONFIRM + SPI_S2M + SPI_SYN) #define SPI_HWME_SET_REQUEST (HWME_SET_REQUEST + SPI_SYN) #define SPI_HWME_GET_REQUEST (HWME_GET_REQUEST + SPI_SYN) #define SPI_HWME_SET_CONFIRM (HWME_SET_CONFIRM + SPI_S2M + SPI_SYN) #define SPI_HWME_GET_CONFIRM (HWME_GET_CONFIRM + SPI_S2M + SPI_SYN) #define SPI_HWME_WAKEUP_INDICATION (HWME_WAKEUP_INDICATION + SPI_S2M) #define SPI_TDME_SETSFR_REQUEST (TDME_SETSFR_REQUEST + SPI_SYN) #define SPI_TDME_SET_REQUEST (TDME_SET_REQUEST + SPI_SYN) #define SPI_TDME_SETSFR_CONFIRM (TDME_SETSFR_CONFIRM + SPI_S2M + SPI_SYN) /* TDME SFR addresses */ /* Page 0 */ #define CA8210_SFR_PACFG (0xB1) #define CA8210_SFR_MACCON (0xD8) #define CA8210_SFR_PACFGIB (0xFE) /* Page 1 */ #define CA8210_SFR_LOTXCAL (0xBF) #define CA8210_SFR_PTHRH (0xD1) #define CA8210_SFR_PRECFG (0xD3) #define CA8210_SFR_LNAGX40 (0xE1) #define CA8210_SFR_LNAGX41 (0xE2) #define CA8210_SFR_LNAGX42 (0xE3) #define CA8210_SFR_LNAGX43 (0xE4) #define CA8210_SFR_LNAGX44 (0xE5) #define CA8210_SFR_LNAGX45 (0xE6) #define CA8210_SFR_LNAGX46 (0xE7) #define CA8210_SFR_LNAGX47 (0xE9) #define PACFGIB_DEFAULT_CURRENT (0x3F) #define PTHRH_DEFAULT_THRESHOLD (0x5A) #define LNAGX40_DEFAULT_GAIN (0x29) /* 10dB */ #define LNAGX41_DEFAULT_GAIN (0x54) /* 21dB */ #define LNAGX42_DEFAULT_GAIN (0x6C) /* 27dB */ #define LNAGX43_DEFAULT_GAIN (0x7A) /* 30dB */ #define LNAGX44_DEFAULT_GAIN (0x84) /* 33dB */ #define LNAGX45_DEFAULT_GAIN (0x8B) /* 34dB */ #define LNAGX46_DEFAULT_GAIN (0x92) /* 36dB */ #define LNAGX47_DEFAULT_GAIN (0x96) /* 37dB */ #define CA8210_IOCTL_HARD_RESET (0x00) /* Structs/Enums */ /** * struct cas_control - spi transfer structure * @msg: spi_message for each exchange * @transfer: spi_transfer for each exchange * @tx_buf: source array for transmission * @tx_in_buf: array storing bytes received during transmission * @priv: pointer to private data * * This structure stores all the necessary data passed around during a single * spi exchange. */ struct cas_control { struct spi_message msg; struct spi_transfer transfer; u8 tx_buf[CA8210_SPI_BUF_SIZE]; u8 tx_in_buf[CA8210_SPI_BUF_SIZE]; struct ca8210_priv *priv; }; /** * struct ca8210_test - ca8210 test interface structure * @ca8210_dfs_spi_int: pointer to the entry in the debug fs for this device * @up_fifo: fifo for upstream messages * @readq: read wait queue * * This structure stores all the data pertaining to the debug interface */ struct ca8210_test { struct dentry *ca8210_dfs_spi_int; struct kfifo up_fifo; wait_queue_head_t readq; }; /** * struct ca8210_priv - ca8210 private data structure * @spi: pointer to the ca8210 spi device object * @hw: pointer to the ca8210 ieee802154_hw object * @hw_registered: true if hw has been registered with ieee802154 * @lock: spinlock protecting the private data area * @mlme_workqueue: workqueue for triggering MLME Reset * @irq_workqueue: workqueue for irq processing * @tx_skb: current socket buffer to transmit * @nextmsduhandle: msdu handle to pass to the 15.4 MAC layer for the * next transmission * @clk: external clock provided by the ca8210 * @last_dsn: sequence number of last data packet received, for * resend detection * @test: test interface data section for this instance * @async_tx_pending: true if an asynchronous transmission was started and * is not complete * @sync_command_response: pointer to buffer to fill with sync response * @ca8210_is_awake: nonzero if ca8210 is initialised, ready for comms * @sync_down: counts number of downstream synchronous commands * @sync_up: counts number of upstream synchronous commands * @spi_transfer_complete: completion object for a single spi_transfer * @sync_exchange_complete: completion object for a complete synchronous API * exchange * @promiscuous: whether the ca8210 is in promiscuous mode or not * @retries: records how many times the current pending spi * transfer has been retried */ struct ca8210_priv { struct spi_device *spi; struct ieee802154_hw *hw; bool hw_registered; spinlock_t lock; struct workqueue_struct *mlme_workqueue; struct workqueue_struct *irq_workqueue; struct sk_buff *tx_skb; u8 nextmsduhandle; struct clk *clk; int last_dsn; struct ca8210_test test; bool async_tx_pending; u8 *sync_command_response; struct completion ca8210_is_awake; int sync_down, sync_up; struct completion spi_transfer_complete, sync_exchange_complete; bool promiscuous; int retries; }; /** * struct work_priv_container - link between a work object and the relevant * device's private data * @work: work object being executed * @priv: device's private data section * */ struct work_priv_container { struct work_struct work; struct ca8210_priv *priv; }; /** * struct ca8210_platform_data - ca8210 platform data structure * @extclockenable: true if the external clock is to be enabled * @extclockfreq: frequency of the external clock * @extclockgpio: ca8210 output gpio of the external clock * @gpio_reset: gpio number of ca8210 reset line * @gpio_irq: gpio number of ca8210 interrupt line * @irq_id: identifier for the ca8210 irq * */ struct ca8210_platform_data { bool extclockenable; unsigned int extclockfreq; unsigned int extclockgpio; int gpio_reset; int gpio_irq; int irq_id; }; /** * struct fulladdr - full MAC addressing information structure * @mode: address mode (none, short, extended) * @pan_id: 16-bit LE pan id * @address: LE address, variable length as specified by mode * */ struct fulladdr { u8 mode; u8 pan_id[2]; u8 address[8]; }; /** * union macaddr: generic MAC address container * @short_address: 16-bit short address * @ieee_address: 64-bit extended address as LE byte array * */ union macaddr { u16 short_address; u8 ieee_address[8]; }; /** * struct secspec: security specification for SAP commands * @security_level: 0-7, controls level of authentication & encryption * @key_id_mode: 0-3, specifies how to obtain key * @key_source: extended key retrieval data * @key_index: single-byte key identifier * */ struct secspec { u8 security_level; u8 key_id_mode; u8 key_source[8]; u8 key_index; }; /* downlink functions parameter set definitions */ struct mcps_data_request_pset { u8 src_addr_mode; struct fulladdr dst; u8 msdu_length; u8 msdu_handle; u8 tx_options; u8 msdu[MAX_DATA_SIZE]; }; struct mlme_set_request_pset { u8 pib_attribute; u8 pib_attribute_index; u8 pib_attribute_length; u8 pib_attribute_value[MAX_ATTRIBUTE_SIZE]; }; struct hwme_set_request_pset { u8 hw_attribute; u8 hw_attribute_length; u8 hw_attribute_value[MAX_HWME_ATTRIBUTE_SIZE]; }; struct hwme_get_request_pset { u8 hw_attribute; }; struct tdme_setsfr_request_pset { u8 sfr_page; u8 sfr_address; u8 sfr_value; }; /* uplink functions parameter set definitions */ struct hwme_set_confirm_pset { u8 status; u8 hw_attribute; }; struct hwme_get_confirm_pset { u8 status; u8 hw_attribute; u8 hw_attribute_length; u8 hw_attribute_value[MAX_HWME_ATTRIBUTE_SIZE]; }; struct tdme_setsfr_confirm_pset { u8 status; u8 sfr_page; u8 sfr_address; }; struct mac_message { u8 command_id; u8 length; union { struct mcps_data_request_pset data_req; struct mlme_set_request_pset set_req; struct hwme_set_request_pset hwme_set_req; struct hwme_get_request_pset hwme_get_req; struct tdme_setsfr_request_pset tdme_set_sfr_req; struct hwme_set_confirm_pset hwme_set_cnf; struct hwme_get_confirm_pset hwme_get_cnf; struct tdme_setsfr_confirm_pset tdme_set_sfr_cnf; u8 u8param; u8 status; u8 payload[148]; } pdata; }; union pa_cfg_sfr { struct { u8 bias_current_trim : 3; u8 /* reserved */ : 1; u8 buffer_capacitor_trim : 3; u8 boost : 1; }; u8 paib; }; struct preamble_cfg_sfr { u8 timeout_symbols : 3; u8 acquisition_symbols : 3; u8 search_symbols : 2; }; static int (*cascoda_api_upstream)( const u8 *buf, size_t len, void *device_ref ); /** * link_to_linux_err() - Translates an 802.15.4 return code into the closest * linux error * @link_status: 802.15.4 status code * * Return: 0 or Linux error code */ static int link_to_linux_err(int link_status) { if (link_status < 0) { /* status is already a Linux code */ return link_status; } switch (link_status) { case IEEE802154_SUCCESS: case IEEE802154_REALIGNMENT: return 0; case IEEE802154_IMPROPER_KEY_TYPE: return -EKEYREJECTED; case IEEE802154_IMPROPER_SECURITY_LEVEL: case IEEE802154_UNSUPPORTED_LEGACY: case IEEE802154_DENIED: return -EACCES; case IEEE802154_BEACON_LOST: case IEEE802154_NO_ACK: case IEEE802154_NO_BEACON: return -ENETUNREACH; case IEEE802154_CHANNEL_ACCESS_FAILURE: case IEEE802154_TX_ACTIVE: case IEEE802154_SCAN_IN_PROGRESS: return -EBUSY; case IEEE802154_DISABLE_TRX_FAILURE: case IEEE802154_OUT_OF_CAP: return -EAGAIN; case IEEE802154_FRAME_TOO_LONG: return -EMSGSIZE; case IEEE802154_INVALID_GTS: case IEEE802154_PAST_TIME: return -EBADSLT; case IEEE802154_INVALID_HANDLE: return -EBADMSG; case IEEE802154_INVALID_PARAMETER: case IEEE802154_UNSUPPORTED_ATTRIBUTE: case IEEE802154_ON_TIME_TOO_LONG: case IEEE802154_INVALID_INDEX: return -EINVAL; case IEEE802154_NO_DATA: return -ENODATA; case IEEE802154_NO_SHORT_ADDRESS: return -EFAULT; case IEEE802154_PAN_ID_CONFLICT: return -EADDRINUSE; case IEEE802154_TRANSACTION_EXPIRED: return -ETIME; case IEEE802154_TRANSACTION_OVERFLOW: return -ENOBUFS; case IEEE802154_UNAVAILABLE_KEY: return -ENOKEY; case IEEE802154_INVALID_ADDRESS: return -ENXIO; case IEEE802154_TRACKING_OFF: case IEEE802154_SUPERFRAME_OVERLAP: return -EREMOTEIO; case IEEE802154_LIMIT_REACHED: return -EDQUOT; case IEEE802154_READ_ONLY: return -EROFS; default: return -EPROTO; } } /** * ca8210_test_int_driver_write() - Writes a message to the test interface to be * read by the userspace * @buf: Buffer containing upstream message * @len: length of message to write * @spi: SPI device of message originator * * Return: 0 or linux error code */ static int ca8210_test_int_driver_write( const u8 *buf, size_t len, void *spi ) { struct ca8210_priv *priv = spi_get_drvdata(spi); struct ca8210_test *test = &priv->test; char *fifo_buffer; int i; dev_dbg( &priv->spi->dev, "test_interface: Buffering upstream message:\n" ); for (i = 0; i < len; i++) dev_dbg(&priv->spi->dev, "%#03x\n", buf[i]); fifo_buffer = kmemdup(buf, len, GFP_KERNEL); if (!fifo_buffer) return -ENOMEM; kfifo_in(&test->up_fifo, &fifo_buffer, 4); wake_up_interruptible(&priv->test.readq); return 0; } /* SPI Operation */ static int ca8210_net_rx( struct ieee802154_hw *hw, u8 *command, size_t len ); static u8 mlme_reset_request_sync( u8 set_default_pib, void *device_ref ); static int ca8210_spi_transfer( struct spi_device *spi, const u8 *buf, size_t len ); /** * ca8210_reset_send() - Hard resets the ca8210 for a given time * @spi: Pointer to target ca8210 spi device * @ms: Milliseconds to hold the reset line low for */ static void ca8210_reset_send(struct spi_device *spi, unsigned int ms) { struct ca8210_platform_data *pdata = spi->dev.platform_data; struct ca8210_priv *priv = spi_get_drvdata(spi); long status; gpio_set_value(pdata->gpio_reset, 0); reinit_completion(&priv->ca8210_is_awake); msleep(ms); gpio_set_value(pdata->gpio_reset, 1); priv->promiscuous = false; /* Wait until wakeup indication seen */ status = wait_for_completion_interruptible_timeout( &priv->ca8210_is_awake, msecs_to_jiffies(CA8210_SYNC_TIMEOUT) ); if (status == 0) { dev_crit( &spi->dev, "Fatal: No wakeup from ca8210 after reset!\n" ); } dev_dbg(&spi->dev, "Reset the device\n"); } /** * ca8210_mlme_reset_worker() - Resets the MLME, Called when the MAC OVERFLOW * condition happens. * @work: Pointer to work being executed */ static void ca8210_mlme_reset_worker(struct work_struct *work) { struct work_priv_container *wpc = container_of( work, struct work_priv_container, work ); struct ca8210_priv *priv = wpc->priv; mlme_reset_request_sync(0, priv->spi); kfree(wpc); } /** * ca8210_rx_done() - Calls various message dispatches responding to a received * command * @cas_ctl: Pointer to the cas_control object for the relevant spi transfer * * Presents a received SAP command from the ca8210 to the Cascoda EVBME, test * interface and network driver. */ static void ca8210_rx_done(struct cas_control *cas_ctl) { u8 *buf; unsigned int len; struct work_priv_container *mlme_reset_wpc; struct ca8210_priv *priv = cas_ctl->priv; buf = cas_ctl->tx_in_buf; len = buf[1] + 2; if (len > CA8210_SPI_BUF_SIZE) { dev_crit( &priv->spi->dev, "Received packet len (%u) erroneously long\n", len ); goto finish; } if (buf[0] & SPI_SYN) { if (priv->sync_command_response) { memcpy(priv->sync_command_response, buf, len); complete(&priv->sync_exchange_complete); } else { if (cascoda_api_upstream) cascoda_api_upstream(buf, len, priv->spi); priv->sync_up++; } } else { if (cascoda_api_upstream) cascoda_api_upstream(buf, len, priv->spi); } ca8210_net_rx(priv->hw, buf, len); if (buf[0] == SPI_MCPS_DATA_CONFIRM) { if (buf[3] == IEEE802154_TRANSACTION_OVERFLOW) { dev_info( &priv->spi->dev, "Waiting for transaction overflow to stabilise...\n"); msleep(2000); dev_info( &priv->spi->dev, "Resetting MAC...\n"); mlme_reset_wpc = kmalloc(sizeof(*mlme_reset_wpc), GFP_KERNEL); if (!mlme_reset_wpc) goto finish; INIT_WORK( &mlme_reset_wpc->work, ca8210_mlme_reset_worker ); mlme_reset_wpc->priv = priv; queue_work(priv->mlme_workqueue, &mlme_reset_wpc->work); } } else if (buf[0] == SPI_HWME_WAKEUP_INDICATION) { dev_notice( &priv->spi->dev, "Wakeup indication received, reason:\n" ); switch (buf[2]) { case 0: dev_notice( &priv->spi->dev, "Transceiver woken up from Power Up / System Reset\n" ); break; case 1: dev_notice( &priv->spi->dev, "Watchdog Timer Time-Out\n" ); break; case 2: dev_notice( &priv->spi->dev, "Transceiver woken up from Power-Off by Sleep Timer Time-Out\n"); break; case 3: dev_notice( &priv->spi->dev, "Transceiver woken up from Power-Off by GPIO Activity\n" ); break; case 4: dev_notice( &priv->spi->dev, "Transceiver woken up from Standby by Sleep Timer Time-Out\n" ); break; case 5: dev_notice( &priv->spi->dev, "Transceiver woken up from Standby by GPIO Activity\n" ); break; case 6: dev_notice( &priv->spi->dev, "Sleep-Timer Time-Out in Active Mode\n" ); break; default: dev_warn(&priv->spi->dev, "Wakeup reason unknown\n"); break; } complete(&priv->ca8210_is_awake); } finish:; } static void ca8210_remove(struct spi_device *spi_device); /** * ca8210_spi_transfer_complete() - Called when a single spi transfer has * completed * @context: Pointer to the cas_control object for the finished transfer */ static void ca8210_spi_transfer_complete(void *context) { struct cas_control *cas_ctl = context; struct ca8210_priv *priv = cas_ctl->priv; bool duplex_rx = false; int i; u8 retry_buffer[CA8210_SPI_BUF_SIZE]; if ( cas_ctl->tx_in_buf[0] == SPI_NACK || (cas_ctl->tx_in_buf[0] == SPI_IDLE && cas_ctl->tx_in_buf[1] == SPI_NACK) ) { /* ca8210 is busy */ dev_info(&priv->spi->dev, "ca8210 was busy during attempted write\n"); if (cas_ctl->tx_buf[0] == SPI_IDLE) { dev_warn( &priv->spi->dev, "IRQ servicing NACKd, dropping transfer\n" ); kfree(cas_ctl); return; } if (priv->retries > 3) { dev_err(&priv->spi->dev, "too many retries!\n"); kfree(cas_ctl); ca8210_remove(priv->spi); return; } memcpy(retry_buffer, cas_ctl->tx_buf, CA8210_SPI_BUF_SIZE); kfree(cas_ctl); ca8210_spi_transfer( priv->spi, retry_buffer, CA8210_SPI_BUF_SIZE ); priv->retries++; dev_info(&priv->spi->dev, "retried spi write\n"); return; } else if ( cas_ctl->tx_in_buf[0] != SPI_IDLE && cas_ctl->tx_in_buf[0] != SPI_NACK ) { duplex_rx = true; } if (duplex_rx) { dev_dbg(&priv->spi->dev, "READ CMD DURING TX\n"); for (i = 0; i < cas_ctl->tx_in_buf[1] + 2; i++) dev_dbg( &priv->spi->dev, "%#03x\n", cas_ctl->tx_in_buf[i] ); ca8210_rx_done(cas_ctl); } complete(&priv->spi_transfer_complete); kfree(cas_ctl); priv->retries = 0; } /** * ca8210_spi_transfer() - Initiate duplex spi transfer with ca8210 * @spi: Pointer to spi device for transfer * @buf: Octet array to send * @len: length of the buffer being sent * * Return: 0 or linux error code */ static int ca8210_spi_transfer( struct spi_device *spi, const u8 *buf, size_t len ) { int i, status = 0; struct ca8210_priv *priv; struct cas_control *cas_ctl; if (!spi) { pr_crit("NULL spi device passed to %s\n", __func__); return -ENODEV; } priv = spi_get_drvdata(spi); reinit_completion(&priv->spi_transfer_complete); dev_dbg(&spi->dev, "%s called\n", __func__); cas_ctl = kzalloc(sizeof(*cas_ctl), GFP_ATOMIC); if (!cas_ctl) return -ENOMEM; cas_ctl->priv = priv; memset(cas_ctl->tx_buf, SPI_IDLE, CA8210_SPI_BUF_SIZE); memset(cas_ctl->tx_in_buf, SPI_IDLE, CA8210_SPI_BUF_SIZE); memcpy(cas_ctl->tx_buf, buf, len); for (i = 0; i < len; i++) dev_dbg(&spi->dev, "%#03x\n", cas_ctl->tx_buf[i]); spi_message_init(&cas_ctl->msg); cas_ctl->transfer.tx_nbits = 1; /* 1 MOSI line */ cas_ctl->transfer.rx_nbits = 1; /* 1 MISO line */ cas_ctl->transfer.speed_hz = 0; /* Use device setting */ cas_ctl->transfer.bits_per_word = 0; /* Use device setting */ cas_ctl->transfer.tx_buf = cas_ctl->tx_buf; cas_ctl->transfer.rx_buf = cas_ctl->tx_in_buf; cas_ctl->transfer.delay.value = 0; cas_ctl->transfer.delay.unit = SPI_DELAY_UNIT_USECS; cas_ctl->transfer.cs_change = 0; cas_ctl->transfer.len = sizeof(struct mac_message); cas_ctl->msg.complete = ca8210_spi_transfer_complete; cas_ctl->msg.context = cas_ctl; spi_message_add_tail( &cas_ctl->transfer, &cas_ctl->msg ); status = spi_async(spi, &cas_ctl->msg); if (status < 0) { dev_crit( &spi->dev, "status %d from spi_sync in write\n", status ); } return status; } /** * ca8210_spi_exchange() - Exchange API/SAP commands with the radio * @buf: Octet array of command being sent downstream * @len: length of buf * @response: buffer for storing synchronous response * @device_ref: spi_device pointer for ca8210 * * Effectively calls ca8210_spi_transfer to write buf[] to the spi, then for * synchronous commands waits for the corresponding response to be read from * the spi before returning. The response is written to the response parameter. * * Return: 0 or linux error code */ static int ca8210_spi_exchange( const u8 *buf, size_t len, u8 *response, void *device_ref ) { int status = 0; struct spi_device *spi = device_ref; struct ca8210_priv *priv = spi->dev.driver_data; long wait_remaining; if ((buf[0] & SPI_SYN) && response) { /* if sync wait for confirm */ reinit_completion(&priv->sync_exchange_complete); priv->sync_command_response = response; } do { reinit_completion(&priv->spi_transfer_complete); status = ca8210_spi_transfer(priv->spi, buf, len); if (status) { dev_warn( &spi->dev, "spi write failed, returned %d\n", status ); if (status == -EBUSY) continue; if (((buf[0] & SPI_SYN) && response)) complete(&priv->sync_exchange_complete); goto cleanup; } wait_remaining = wait_for_completion_interruptible_timeout( &priv->spi_transfer_complete, msecs_to_jiffies(1000) ); if (wait_remaining == -ERESTARTSYS) { status = -ERESTARTSYS; } else if (wait_remaining == 0) { dev_err( &spi->dev, "SPI downstream transfer timed out!\n" ); status = -ETIME; goto cleanup; } } while (status < 0); if (!((buf[0] & SPI_SYN) && response)) goto cleanup; wait_remaining = wait_for_completion_interruptible_timeout( &priv->sync_exchange_complete, msecs_to_jiffies(CA8210_SYNC_TIMEOUT) ); if (wait_remaining == -ERESTARTSYS) { status = -ERESTARTSYS; } else if (wait_remaining == 0) { dev_err( &spi->dev, "Synchronous confirm timeout\n" ); status = -ETIME; } cleanup: priv->sync_command_response = NULL; return status; } /** * ca8210_interrupt_handler() - Called when an irq is received from the ca8210 * @irq: Id of the irq being handled * @dev_id: Pointer passed by the system, pointing to the ca8210's private data * * This function is called when the irq line from the ca8210 is asserted, * signifying that the ca8210 has a message to send upstream to us. Starts the * asynchronous spi read. * * Return: irq return code */ static irqreturn_t ca8210_interrupt_handler(int irq, void *dev_id) { struct ca8210_priv *priv = dev_id; int status; dev_dbg(&priv->spi->dev, "irq: Interrupt occurred\n"); do { status = ca8210_spi_transfer(priv->spi, NULL, 0); if (status && (status != -EBUSY)) { dev_warn( &priv->spi->dev, "spi read failed, returned %d\n", status ); } } while (status == -EBUSY); return IRQ_HANDLED; } static int (*cascoda_api_downstream)( const u8 *buf, size_t len, u8 *response, void *device_ref ) = ca8210_spi_exchange; /* Cascoda API / 15.4 SAP Primitives */ /** * tdme_setsfr_request_sync() - TDME_SETSFR_request/confirm according to API * @sfr_page: SFR Page * @sfr_address: SFR Address * @sfr_value: SFR Value * @device_ref: Nondescript pointer to target device * * Return: 802.15.4 status code of TDME-SETSFR.confirm */ static u8 tdme_setsfr_request_sync( u8 sfr_page, u8 sfr_address, u8 sfr_value, void *device_ref ) { int ret; struct mac_message command, response; struct spi_device *spi = device_ref; command.command_id = SPI_TDME_SETSFR_REQUEST; command.length = 3; command.pdata.tdme_set_sfr_req.sfr_page = sfr_page; command.pdata.tdme_set_sfr_req.sfr_address = sfr_address; command.pdata.tdme_set_sfr_req.sfr_value = sfr_value; response.command_id = SPI_IDLE; ret = cascoda_api_downstream( &command.command_id, command.length + 2, &response.command_id, device_ref ); if (ret) { dev_crit(&spi->dev, "cascoda_api_downstream returned %d", ret); return IEEE802154_SYSTEM_ERROR; } if (response.command_id != SPI_TDME_SETSFR_CONFIRM) { dev_crit( &spi->dev, "sync response to SPI_TDME_SETSFR_REQUEST was not SPI_TDME_SETSFR_CONFIRM, it was %d\n", response.command_id ); return IEEE802154_SYSTEM_ERROR; } return response.pdata.tdme_set_sfr_cnf.status; } /** * tdme_chipinit() - TDME Chip Register Default Initialisation Macro * @device_ref: Nondescript pointer to target device * * Return: 802.15.4 status code of API calls */ static u8 tdme_chipinit(void *device_ref) { u8 status = IEEE802154_SUCCESS; u8 sfr_address; struct spi_device *spi = device_ref; struct preamble_cfg_sfr pre_cfg_value = { .timeout_symbols = 3, .acquisition_symbols = 3, .search_symbols = 1, }; /* LNA Gain Settings */ status = tdme_setsfr_request_sync( 1, (sfr_address = CA8210_SFR_LNAGX40), LNAGX40_DEFAULT_GAIN, device_ref); if (status) goto finish; status = tdme_setsfr_request_sync( 1, (sfr_address = CA8210_SFR_LNAGX41), LNAGX41_DEFAULT_GAIN, device_ref); if (status) goto finish; status = tdme_setsfr_request_sync( 1, (sfr_address = CA8210_SFR_LNAGX42), LNAGX42_DEFAULT_GAIN, device_ref); if (status) goto finish; status = tdme_setsfr_request_sync( 1, (sfr_address = CA8210_SFR_LNAGX43), LNAGX43_DEFAULT_GAIN, device_ref); if (status) goto finish; status = tdme_setsfr_request_sync( 1, (sfr_address = CA8210_SFR_LNAGX44), LNAGX44_DEFAULT_GAIN, device_ref); if (status) goto finish; status = tdme_setsfr_request_sync( 1, (sfr_address = CA8210_SFR_LNAGX45), LNAGX45_DEFAULT_GAIN, device_ref); if (status) goto finish; status = tdme_setsfr_request_sync( 1, (sfr_address = CA8210_SFR_LNAGX46), LNAGX46_DEFAULT_GAIN, device_ref); if (status) goto finish; status = tdme_setsfr_request_sync( 1, (sfr_address = CA8210_SFR_LNAGX47), LNAGX47_DEFAULT_GAIN, device_ref); if (status) goto finish; /* Preamble Timing Config */ status = tdme_setsfr_request_sync( 1, (sfr_address = CA8210_SFR_PRECFG), *((u8 *)&pre_cfg_value), device_ref); if (status) goto finish; /* Preamble Threshold High */ status = tdme_setsfr_request_sync( 1, (sfr_address = CA8210_SFR_PTHRH), PTHRH_DEFAULT_THRESHOLD, device_ref); if (status) goto finish; /* Tx Output Power 8 dBm */ status = tdme_setsfr_request_sync( 0, (sfr_address = CA8210_SFR_PACFGIB), PACFGIB_DEFAULT_CURRENT, device_ref); if (status) goto finish; finish: if (status != IEEE802154_SUCCESS) { dev_err( &spi->dev, "failed to set sfr at %#03x, status = %#03x\n", sfr_address, status ); } return status; } /** * tdme_channelinit() - TDME Channel Register Default Initialisation Macro (Tx) * @channel: 802.15.4 channel to initialise chip for * @device_ref: Nondescript pointer to target device * * Return: 802.15.4 status code of API calls */ static u8 tdme_channelinit(u8 channel, void *device_ref) { /* Transceiver front-end local oscillator tx two-point calibration * value. Tuned for the hardware. */ u8 txcalval; if (channel >= 25) txcalval = 0xA7; else if (channel >= 23) txcalval = 0xA8; else if (channel >= 22) txcalval = 0xA9; else if (channel >= 20) txcalval = 0xAA; else if (channel >= 17) txcalval = 0xAB; else if (channel >= 16) txcalval = 0xAC; else if (channel >= 14) txcalval = 0xAD; else if (channel >= 12) txcalval = 0xAE; else txcalval = 0xAF; return tdme_setsfr_request_sync( 1, CA8210_SFR_LOTXCAL, txcalval, device_ref ); /* LO Tx Cal */ } /** * tdme_checkpibattribute() - Checks Attribute Values that are not checked in * MAC * @pib_attribute: Attribute Number * @pib_attribute_length: Attribute length * @pib_attribute_value: Pointer to Attribute Value * * Return: 802.15.4 status code of checks */ static u8 tdme_checkpibattribute( u8 pib_attribute, u8 pib_attribute_length, const void *pib_attribute_value ) { u8 status = IEEE802154_SUCCESS; u8 value; value = *((u8 *)pib_attribute_value); switch (pib_attribute) { /* PHY */ case PHY_TRANSMIT_POWER: if (value > 0x3F) status = IEEE802154_INVALID_PARAMETER; break; case PHY_CCA_MODE: if (value > 0x03) status = IEEE802154_INVALID_PARAMETER; break; /* MAC */ case MAC_BATT_LIFE_EXT_PERIODS: if (value < 6 || value > 41) status = IEEE802154_INVALID_PARAMETER; break; case MAC_BEACON_PAYLOAD: if (pib_attribute_length > MAX_BEACON_PAYLOAD_LENGTH) status = IEEE802154_INVALID_PARAMETER; break; case MAC_BEACON_PAYLOAD_LENGTH: if (value > MAX_BEACON_PAYLOAD_LENGTH) status = IEEE802154_INVALID_PARAMETER; break; case MAC_BEACON_ORDER: if (value > 15) status = IEEE802154_INVALID_PARAMETER; break; case MAC_MAX_BE: if (value < 3 || value > 8) status = IEEE802154_INVALID_PARAMETER; break; case MAC_MAX_CSMA_BACKOFFS: if (value > 5) status = IEEE802154_INVALID_PARAMETER; break; case MAC_MAX_FRAME_RETRIES: if (value > 7) status = IEEE802154_INVALID_PARAMETER; break; case MAC_MIN_BE: if (value > 8) status = IEEE802154_INVALID_PARAMETER; break; case MAC_RESPONSE_WAIT_TIME: if (value < 2 || value > 64) status = IEEE802154_INVALID_PARAMETER; break; case MAC_SUPERFRAME_ORDER: if (value > 15) status = IEEE802154_INVALID_PARAMETER; break; /* boolean */ case MAC_ASSOCIATED_PAN_COORD: case MAC_ASSOCIATION_PERMIT: case MAC_AUTO_REQUEST: case MAC_BATT_LIFE_EXT: case MAC_GTS_PERMIT: case MAC_PROMISCUOUS_MODE: case MAC_RX_ON_WHEN_IDLE: case MAC_SECURITY_ENABLED: if (value > 1) status = IEEE802154_INVALID_PARAMETER; break; /* MAC SEC */ case MAC_AUTO_REQUEST_SECURITY_LEVEL: if (value > 7) status = IEEE802154_INVALID_PARAMETER; break; case MAC_AUTO_REQUEST_KEY_ID_MODE: if (value > 3) status = IEEE802154_INVALID_PARAMETER; break; default: break; } return status; } /** * tdme_settxpower() - Sets the tx power for MLME_SET phyTransmitPower * @txp: Transmit Power * @device_ref: Nondescript pointer to target device * * Normalised to 802.15.4 Definition (6-bit, signed): * Bit 7-6: not used * Bit 5-0: tx power (-32 - +31 dB) * * Return: 802.15.4 status code of api calls */ static u8 tdme_settxpower(u8 txp, void *device_ref) { u8 status; s8 txp_val; u8 txp_ext; union pa_cfg_sfr pa_cfg_val; /* extend from 6 to 8 bit */ txp_ext = 0x3F & txp; if (txp_ext & 0x20) txp_ext += 0xC0; txp_val = (s8)txp_ext; if (CA8210_MAC_MPW) { if (txp_val > 0) { /* 8 dBm: ptrim = 5, itrim = +3 => +4 dBm */ pa_cfg_val.bias_current_trim = 3; pa_cfg_val.buffer_capacitor_trim = 5; pa_cfg_val.boost = 1; } else { /* 0 dBm: ptrim = 7, itrim = +3 => -6 dBm */ pa_cfg_val.bias_current_trim = 3; pa_cfg_val.buffer_capacitor_trim = 7; pa_cfg_val.boost = 0; } /* write PACFG */ status = tdme_setsfr_request_sync( 0, CA8210_SFR_PACFG, pa_cfg_val.paib, device_ref ); } else { /* Look-Up Table for Setting Current and Frequency Trim values * for desired Output Power */ if (txp_val > 8) { pa_cfg_val.paib = 0x3F; } else if (txp_val == 8) { pa_cfg_val.paib = 0x32; } else if (txp_val == 7) { pa_cfg_val.paib = 0x22; } else if (txp_val == 6) { pa_cfg_val.paib = 0x18; } else if (txp_val == 5) { pa_cfg_val.paib = 0x10; } else if (txp_val == 4) { pa_cfg_val.paib = 0x0C; } else if (txp_val == 3) { pa_cfg_val.paib = 0x08; } else if (txp_val == 2) { pa_cfg_val.paib = 0x05; } else if (txp_val == 1) { pa_cfg_val.paib = 0x03; } else if (txp_val == 0) { pa_cfg_val.paib = 0x01; } else { /* < 0 */ pa_cfg_val.paib = 0x00; } /* write PACFGIB */ status = tdme_setsfr_request_sync( 0, CA8210_SFR_PACFGIB, pa_cfg_val.paib, device_ref ); } return status; } /** * mcps_data_request() - mcps_data_request (Send Data) according to API Spec * @src_addr_mode: Source Addressing Mode * @dst_address_mode: Destination Addressing Mode * @dst_pan_id: Destination PAN ID * @dst_addr: Pointer to Destination Address * @msdu_length: length of Data * @msdu: Pointer to Data * @msdu_handle: Handle of Data * @tx_options: Tx Options Bit Field * @security: Pointer to Security Structure or NULL * @device_ref: Nondescript pointer to target device * * Return: 802.15.4 status code of action */ static u8 mcps_data_request( u8 src_addr_mode, u8 dst_address_mode, u16 dst_pan_id, union macaddr *dst_addr, u8 msdu_length, u8 *msdu, u8 msdu_handle, u8 tx_options, struct secspec *security, void *device_ref ) { struct secspec *psec; struct mac_message command; command.command_id = SPI_MCPS_DATA_REQUEST; command.pdata.data_req.src_addr_mode = src_addr_mode; command.pdata.data_req.dst.mode = dst_address_mode; if (dst_address_mode != MAC_MODE_NO_ADDR) { command.pdata.data_req.dst.pan_id[0] = LS_BYTE(dst_pan_id); command.pdata.data_req.dst.pan_id[1] = MS_BYTE(dst_pan_id); if (dst_address_mode == MAC_MODE_SHORT_ADDR) { command.pdata.data_req.dst.address[0] = LS_BYTE( dst_addr->short_address ); command.pdata.data_req.dst.address[1] = MS_BYTE( dst_addr->short_address ); } else { /* MAC_MODE_LONG_ADDR*/ memcpy( command.pdata.data_req.dst.address, dst_addr->ieee_address, 8 ); } } command.pdata.data_req.msdu_length = msdu_length; command.pdata.data_req.msdu_handle = msdu_handle; command.pdata.data_req.tx_options = tx_options; memcpy(command.pdata.data_req.msdu, msdu, msdu_length); psec = (struct secspec *)(command.pdata.data_req.msdu + msdu_length); command.length = sizeof(struct mcps_data_request_pset) - MAX_DATA_SIZE + msdu_length; if (!security || security->security_level == 0) { psec->security_level = 0; command.length += 1; } else { *psec = *security; command.length += sizeof(struct secspec); } if (ca8210_spi_transfer(device_ref, &command.command_id, command.length + 2)) return IEEE802154_SYSTEM_ERROR; return IEEE802154_SUCCESS; } /** * mlme_reset_request_sync() - MLME_RESET_request/confirm according to API Spec * @set_default_pib: Set defaults in PIB * @device_ref: Nondescript pointer to target device * * Return: 802.15.4 status code of MLME-RESET.confirm */ static u8 mlme_reset_request_sync( u8 set_default_pib, void *device_ref ) { u8 status; struct mac_message command, response; struct spi_device *spi = device_ref; command.command_id = SPI_MLME_RESET_REQUEST; command.length = 1; command.pdata.u8param = set_default_pib; if (cascoda_api_downstream( &command.command_id, command.length + 2, &response.command_id, device_ref)) { dev_err(&spi->dev, "cascoda_api_downstream failed\n"); return IEEE802154_SYSTEM_ERROR; } if (response.command_id != SPI_MLME_RESET_CONFIRM) return IEEE802154_SYSTEM_ERROR; status = response.pdata.status; /* reset COORD Bit for Channel Filtering as Coordinator */ if (CA8210_MAC_WORKAROUNDS && set_default_pib && !status) { status = tdme_setsfr_request_sync( 0, CA8210_SFR_MACCON, 0, device_ref ); } return status; } /** * mlme_set_request_sync() - MLME_SET_request/confirm according to API Spec * @pib_attribute: Attribute Number * @pib_attribute_index: Index within Attribute if an Array * @pib_attribute_length: Attribute length * @pib_attribute_value: Pointer to Attribute Value * @device_ref: Nondescript pointer to target device * * Return: 802.15.4 status code of MLME-SET.confirm */ static u8 mlme_set_request_sync( u8 pib_attribute, u8 pib_attribute_index, u8 pib_attribute_length, const void *pib_attribute_value, void *device_ref ) { u8 status; struct mac_message command, response; /* pre-check the validity of pib_attribute values that are not checked * in MAC */ if (tdme_checkpibattribute( pib_attribute, pib_attribute_length, pib_attribute_value)) { return IEEE802154_INVALID_PARAMETER; } if (pib_attribute == PHY_CURRENT_CHANNEL) { status = tdme_channelinit( *((u8 *)pib_attribute_value), device_ref ); if (status) return status; } if (pib_attribute == PHY_TRANSMIT_POWER) { return tdme_settxpower( *((u8 *)pib_attribute_value), device_ref ); } command.command_id = SPI_MLME_SET_REQUEST; command.length = sizeof(struct mlme_set_request_pset) - MAX_ATTRIBUTE_SIZE + pib_attribute_length; command.pdata.set_req.pib_attribute = pib_attribute; command.pdata.set_req.pib_attribute_index = pib_attribute_index; command.pdata.set_req.pib_attribute_length = pib_attribute_length; memcpy( command.pdata.set_req.pib_attribute_value, pib_attribute_value, pib_attribute_length ); if (cascoda_api_downstream( &command.command_id, command.length + 2, &response.command_id, device_ref)) { return IEEE802154_SYSTEM_ERROR; } if (response.command_id != SPI_MLME_SET_CONFIRM) return IEEE802154_SYSTEM_ERROR; return response.pdata.status; } /** * hwme_set_request_sync() - HWME_SET_request/confirm according to API Spec * @hw_attribute: Attribute Number * @hw_attribute_length: Attribute length * @hw_attribute_value: Pointer to Attribute Value * @device_ref: Nondescript pointer to target device * * Return: 802.15.4 status code of HWME-SET.confirm */ static u8 hwme_set_request_sync( u8 hw_attribute, u8 hw_attribute_length, u8 *hw_attribute_value, void *device_ref ) { struct mac_message command, response; command.command_id = SPI_HWME_SET_REQUEST; command.length = 2 + hw_attribute_length; command.pdata.hwme_set_req.hw_attribute = hw_attribute; command.pdata.hwme_set_req.hw_attribute_length = hw_attribute_length; memcpy( command.pdata.hwme_set_req.hw_attribute_value, hw_attribute_value, hw_attribute_length ); if (cascoda_api_downstream( &command.command_id, command.length + 2, &response.command_id, device_ref)) { return IEEE802154_SYSTEM_ERROR; } if (response.command_id != SPI_HWME_SET_CONFIRM) return IEEE802154_SYSTEM_ERROR; return response.pdata.hwme_set_cnf.status; } /** * hwme_get_request_sync() - HWME_GET_request/confirm according to API Spec * @hw_attribute: Attribute Number * @hw_attribute_length: Attribute length * @hw_attribute_value: Pointer to Attribute Value * @device_ref: Nondescript pointer to target device * * Return: 802.15.4 status code of HWME-GET.confirm */ static u8 hwme_get_request_sync( u8 hw_attribute, u8 *hw_attribute_length, u8 *hw_attribute_value, void *device_ref ) { struct mac_message command, response; command.command_id = SPI_HWME_GET_REQUEST; command.length = 1; command.pdata.hwme_get_req.hw_attribute = hw_attribute; if (cascoda_api_downstream( &command.command_id, command.length + 2, &response.command_id, device_ref)) { return IEEE802154_SYSTEM_ERROR; } if (response.command_id != SPI_HWME_GET_CONFIRM) return IEEE802154_SYSTEM_ERROR; if (response.pdata.hwme_get_cnf.status == IEEE802154_SUCCESS) { *hw_attribute_length = response.pdata.hwme_get_cnf.hw_attribute_length; memcpy( hw_attribute_value, response.pdata.hwme_get_cnf.hw_attribute_value, *hw_attribute_length ); } return response.pdata.hwme_get_cnf.status; } /* Network driver operation */ /** * ca8210_async_xmit_complete() - Called to announce that an asynchronous * transmission has finished * @hw: ieee802154_hw of ca8210 that has finished exchange * @msduhandle: Identifier of transmission that has completed * @status: Returned 802.15.4 status code of the transmission * * Return: 0 or linux error code */ static int ca8210_async_xmit_complete( struct ieee802154_hw *hw, u8 msduhandle, u8 status) { struct ca8210_priv *priv = hw->priv; if (priv->nextmsduhandle != msduhandle) { dev_err( &priv->spi->dev, "Unexpected msdu_handle on data confirm, Expected %d, got %d\n", priv->nextmsduhandle, msduhandle ); return -EIO; } priv->async_tx_pending = false; priv->nextmsduhandle++; if (status) { dev_err( &priv->spi->dev, "Link transmission unsuccessful, status = %d\n", status ); if (status != IEEE802154_TRANSACTION_OVERFLOW) { ieee802154_xmit_error(priv->hw, priv->tx_skb, status); return 0; } } ieee802154_xmit_complete(priv->hw, priv->tx_skb, true); return 0; } /** * ca8210_skb_rx() - Contructs a properly framed socket buffer from a received * MCPS_DATA_indication * @hw: ieee802154_hw that MCPS_DATA_indication was received by * @len: length of MCPS_DATA_indication * @data_ind: Octet array of MCPS_DATA_indication * * Called by the spi driver whenever a SAP command is received, this function * will ascertain whether the command is of interest to the network driver and * take necessary action. * * Return: 0 or linux error code */ static int ca8210_skb_rx( struct ieee802154_hw *hw, size_t len, u8 *data_ind ) { struct ieee802154_hdr hdr; int msdulen; int hlen; u8 mpdulinkquality = data_ind[23]; struct sk_buff *skb; struct ca8210_priv *priv = hw->priv; /* Allocate mtu size buffer for every rx packet */ skb = dev_alloc_skb(IEEE802154_MTU + sizeof(hdr)); if (!skb) return -ENOMEM; skb_reserve(skb, sizeof(hdr)); msdulen = data_ind[22]; /* msdu_length */ if (msdulen > IEEE802154_MTU) { dev_err( &priv->spi->dev, "received erroneously large msdu length!\n" ); kfree_skb(skb); return -EMSGSIZE; } dev_dbg(&priv->spi->dev, "skb buffer length = %d\n", msdulen); if (priv->promiscuous) goto copy_payload; /* Populate hdr */ hdr.sec.level = data_ind[29 + msdulen]; dev_dbg(&priv->spi->dev, "security level: %#03x\n", hdr.sec.level); if (hdr.sec.level > 0) { hdr.sec.key_id_mode = data_ind[30 + msdulen]; memcpy(&hdr.sec.extended_src, &data_ind[31 + msdulen], 8); hdr.sec.key_id = data_ind[39 + msdulen]; } hdr.source.mode = data_ind[0]; dev_dbg(&priv->spi->dev, "srcAddrMode: %#03x\n", hdr.source.mode); hdr.source.pan_id = *(u16 *)&data_ind[1]; dev_dbg(&priv->spi->dev, "srcPanId: %#06x\n", hdr.source.pan_id); memcpy(&hdr.source.extended_addr, &data_ind[3], 8); hdr.dest.mode = data_ind[11]; dev_dbg(&priv->spi->dev, "dstAddrMode: %#03x\n", hdr.dest.mode); hdr.dest.pan_id = *(u16 *)&data_ind[12]; dev_dbg(&priv->spi->dev, "dstPanId: %#06x\n", hdr.dest.pan_id); memcpy(&hdr.dest.extended_addr, &data_ind[14], 8); /* Fill in FC implicitly */ hdr.fc.type = 1; /* Data frame */ if (hdr.sec.level) hdr.fc.security_enabled = 1; else hdr.fc.security_enabled = 0; if (data_ind[1] != data_ind[12] || data_ind[2] != data_ind[13]) hdr.fc.intra_pan = 1; else hdr.fc.intra_pan = 0; hdr.fc.dest_addr_mode = hdr.dest.mode; hdr.fc.source_addr_mode = hdr.source.mode; /* Add hdr to front of buffer */ hlen = ieee802154_hdr_push(skb, &hdr); if (hlen < 0) { dev_crit(&priv->spi->dev, "failed to push mac hdr onto skb!\n"); kfree_skb(skb); return hlen; } skb_reset_mac_header(skb); skb->mac_len = hlen; copy_payload: /* Add <msdulen> bytes of space to the back of the buffer */ /* Copy msdu to skb */ skb_put_data(skb, &data_ind[29], msdulen); ieee802154_rx_irqsafe(hw, skb, mpdulinkquality); return 0; } /** * ca8210_net_rx() - Acts upon received SAP commands relevant to the network * driver * @hw: ieee802154_hw that command was received by * @command: Octet array of received command * @len: length of the received command * * Called by the spi driver whenever a SAP command is received, this function * will ascertain whether the command is of interest to the network driver and * take necessary action. * * Return: 0 or linux error code */ static int ca8210_net_rx(struct ieee802154_hw *hw, u8 *command, size_t len) { struct ca8210_priv *priv = hw->priv; unsigned long flags; u8 status; dev_dbg(&priv->spi->dev, "%s: CmdID = %d\n", __func__, command[0]); if (command[0] == SPI_MCPS_DATA_INDICATION) { /* Received data */ spin_lock_irqsave(&priv->lock, flags); if (command[26] == priv->last_dsn) { dev_dbg( &priv->spi->dev, "DSN %d resend received, ignoring...\n", command[26] ); spin_unlock_irqrestore(&priv->lock, flags); return 0; } priv->last_dsn = command[26]; spin_unlock_irqrestore(&priv->lock, flags); return ca8210_skb_rx(hw, len - 2, command + 2); } else if (command[0] == SPI_MCPS_DATA_CONFIRM) { status = command[3]; if (priv->async_tx_pending) { return ca8210_async_xmit_complete( hw, command[2], status ); } } return 0; } /** * ca8210_skb_tx() - Transmits a given socket buffer using the ca8210 * @skb: Socket buffer to transmit * @msduhandle: Data identifier to pass to the 802.15.4 MAC * @priv: Pointer to private data section of target ca8210 * * Return: 0 or linux error code */ static int ca8210_skb_tx( struct sk_buff *skb, u8 msduhandle, struct ca8210_priv *priv ) { int status; struct ieee802154_hdr header = { }; struct secspec secspec; unsigned int mac_len; dev_dbg(&priv->spi->dev, "%s called\n", __func__); /* Get addressing info from skb - ieee802154 layer creates a full * packet */ mac_len = ieee802154_hdr_peek_addrs(skb, &header); secspec.security_level = header.sec.level; secspec.key_id_mode = header.sec.key_id_mode; if (secspec.key_id_mode == 2) memcpy(secspec.key_source, &header.sec.short_src, 4); else if (secspec.key_id_mode == 3) memcpy(secspec.key_source, &header.sec.extended_src, 8); secspec.key_index = header.sec.key_id; /* Pass to Cascoda API */ status = mcps_data_request( header.source.mode, header.dest.mode, header.dest.pan_id, (union macaddr *)&header.dest.extended_addr, skb->len - mac_len, &skb->data[mac_len], msduhandle, header.fc.ack_request, &secspec, priv->spi ); return link_to_linux_err(status); } /** * ca8210_start() - Starts the network driver * @hw: ieee802154_hw of ca8210 being started * * Return: 0 or linux error code */ static int ca8210_start(struct ieee802154_hw *hw) { int status; u8 rx_on_when_idle; u8 lqi_threshold = 0; struct ca8210_priv *priv = hw->priv; priv->last_dsn = -1; /* Turn receiver on when idle for now just to test rx */ rx_on_when_idle = 1; status = mlme_set_request_sync( MAC_RX_ON_WHEN_IDLE, 0, 1, &rx_on_when_idle, priv->spi ); if (status) { dev_crit( &priv->spi->dev, "Setting rx_on_when_idle failed, status = %d\n", status ); return link_to_linux_err(status); } status = hwme_set_request_sync( HWME_LQILIMIT, 1, &lqi_threshold, priv->spi ); if (status) { dev_crit( &priv->spi->dev, "Setting lqilimit failed, status = %d\n", status ); return link_to_linux_err(status); } return 0; } /** * ca8210_stop() - Stops the network driver * @hw: ieee802154_hw of ca8210 being stopped * * Return: 0 or linux error code */ static void ca8210_stop(struct ieee802154_hw *hw) { } /** * ca8210_xmit_async() - Asynchronously transmits a given socket buffer using * the ca8210 * @hw: ieee802154_hw of ca8210 to transmit from * @skb: Socket buffer to transmit * * Return: 0 or linux error code */ static int ca8210_xmit_async(struct ieee802154_hw *hw, struct sk_buff *skb) { struct ca8210_priv *priv = hw->priv; int status; dev_dbg(&priv->spi->dev, "calling %s\n", __func__); priv->tx_skb = skb; priv->async_tx_pending = true; status = ca8210_skb_tx(skb, priv->nextmsduhandle, priv); return status; } /** * ca8210_get_ed() - Returns the measured energy on the current channel at this * instant in time * @hw: ieee802154_hw of target ca8210 * @level: Measured Energy Detect level * * Return: 0 or linux error code */ static int ca8210_get_ed(struct ieee802154_hw *hw, u8 *level) { u8 lenvar; struct ca8210_priv *priv = hw->priv; return link_to_linux_err( hwme_get_request_sync(HWME_EDVALUE, &lenvar, level, priv->spi) ); } /** * ca8210_set_channel() - Sets the current operating 802.15.4 channel of the * ca8210 * @hw: ieee802154_hw of target ca8210 * @page: Channel page to set * @channel: Channel number to set * * Return: 0 or linux error code */ static int ca8210_set_channel( struct ieee802154_hw *hw, u8 page, u8 channel ) { u8 status; struct ca8210_priv *priv = hw->priv; status = mlme_set_request_sync( PHY_CURRENT_CHANNEL, 0, 1, &channel, priv->spi ); if (status) { dev_err( &priv->spi->dev, "error setting channel, MLME-SET.confirm status = %d\n", status ); } return link_to_linux_err(status); } /** * ca8210_set_hw_addr_filt() - Sets the address filtering parameters of the * ca8210 * @hw: ieee802154_hw of target ca8210 * @filt: Filtering parameters * @changed: Bitmap representing which parameters to change * * Effectively just sets the actual addressing information identifying this node * as all filtering is performed by the ca8210 as detailed in the IEEE 802.15.4 * 2006 specification. * * Return: 0 or linux error code */ static int ca8210_set_hw_addr_filt( struct ieee802154_hw *hw, struct ieee802154_hw_addr_filt *filt, unsigned long changed ) { u8 status = 0; struct ca8210_priv *priv = hw->priv; if (changed & IEEE802154_AFILT_PANID_CHANGED) { status = mlme_set_request_sync( MAC_PAN_ID, 0, 2, &filt->pan_id, priv->spi ); if (status) { dev_err( &priv->spi->dev, "error setting pan id, MLME-SET.confirm status = %d", status ); return link_to_linux_err(status); } } if (changed & IEEE802154_AFILT_SADDR_CHANGED) { status = mlme_set_request_sync( MAC_SHORT_ADDRESS, 0, 2, &filt->short_addr, priv->spi ); if (status) { dev_err( &priv->spi->dev, "error setting short address, MLME-SET.confirm status = %d", status ); return link_to_linux_err(status); } } if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) { status = mlme_set_request_sync( NS_IEEE_ADDRESS, 0, 8, &filt->ieee_addr, priv->spi ); if (status) { dev_err( &priv->spi->dev, "error setting ieee address, MLME-SET.confirm status = %d", status ); return link_to_linux_err(status); } } /* TODO: Should use MLME_START to set coord bit? */ return 0; } /** * ca8210_set_tx_power() - Sets the transmit power of the ca8210 * @hw: ieee802154_hw of target ca8210 * @mbm: Transmit power in mBm (dBm*100) * * Return: 0 or linux error code */ static int ca8210_set_tx_power(struct ieee802154_hw *hw, s32 mbm) { struct ca8210_priv *priv = hw->priv; mbm /= 100; return link_to_linux_err( mlme_set_request_sync(PHY_TRANSMIT_POWER, 0, 1, &mbm, priv->spi) ); } /** * ca8210_set_cca_mode() - Sets the clear channel assessment mode of the ca8210 * @hw: ieee802154_hw of target ca8210 * @cca: CCA mode to set * * Return: 0 or linux error code */ static int ca8210_set_cca_mode( struct ieee802154_hw *hw, const struct wpan_phy_cca *cca ) { u8 status; u8 cca_mode; struct ca8210_priv *priv = hw->priv; cca_mode = cca->mode & 3; if (cca_mode == 3 && cca->opt == NL802154_CCA_OPT_ENERGY_CARRIER_OR) { /* cca_mode 0 == CS OR ED, 3 == CS AND ED */ cca_mode = 0; } status = mlme_set_request_sync( PHY_CCA_MODE, 0, 1, &cca_mode, priv->spi ); if (status) { dev_err( &priv->spi->dev, "error setting cca mode, MLME-SET.confirm status = %d", status ); } return link_to_linux_err(status); } /** * ca8210_set_cca_ed_level() - Sets the CCA ED level of the ca8210 * @hw: ieee802154_hw of target ca8210 * @level: ED level to set (in mbm) * * Sets the minimum threshold of measured energy above which the ca8210 will * back off and retry a transmission. * * Return: 0 or linux error code */ static int ca8210_set_cca_ed_level(struct ieee802154_hw *hw, s32 level) { u8 status; u8 ed_threshold = (level / 100) * 2 + 256; struct ca8210_priv *priv = hw->priv; status = hwme_set_request_sync( HWME_EDTHRESHOLD, 1, &ed_threshold, priv->spi ); if (status) { dev_err( &priv->spi->dev, "error setting ed threshold, HWME-SET.confirm status = %d", status ); } return link_to_linux_err(status); } /** * ca8210_set_csma_params() - Sets the CSMA parameters of the ca8210 * @hw: ieee802154_hw of target ca8210 * @min_be: Minimum backoff exponent when backing off a transmission * @max_be: Maximum backoff exponent when backing off a transmission * @retries: Number of times to retry after backing off * * Return: 0 or linux error code */ static int ca8210_set_csma_params( struct ieee802154_hw *hw, u8 min_be, u8 max_be, u8 retries ) { u8 status; struct ca8210_priv *priv = hw->priv; status = mlme_set_request_sync(MAC_MIN_BE, 0, 1, &min_be, priv->spi); if (status) { dev_err( &priv->spi->dev, "error setting min be, MLME-SET.confirm status = %d", status ); return link_to_linux_err(status); } status = mlme_set_request_sync(MAC_MAX_BE, 0, 1, &max_be, priv->spi); if (status) { dev_err( &priv->spi->dev, "error setting max be, MLME-SET.confirm status = %d", status ); return link_to_linux_err(status); } status = mlme_set_request_sync( MAC_MAX_CSMA_BACKOFFS, 0, 1, &retries, priv->spi ); if (status) { dev_err( &priv->spi->dev, "error setting max csma backoffs, MLME-SET.confirm status = %d", status ); } return link_to_linux_err(status); } /** * ca8210_set_frame_retries() - Sets the maximum frame retries of the ca8210 * @hw: ieee802154_hw of target ca8210 * @retries: Number of retries * * Sets the number of times to retry a transmission if no acknowledgment was * received from the other end when one was requested. * * Return: 0 or linux error code */ static int ca8210_set_frame_retries(struct ieee802154_hw *hw, s8 retries) { u8 status; struct ca8210_priv *priv = hw->priv; status = mlme_set_request_sync( MAC_MAX_FRAME_RETRIES, 0, 1, &retries, priv->spi ); if (status) { dev_err( &priv->spi->dev, "error setting frame retries, MLME-SET.confirm status = %d", status ); } return link_to_linux_err(status); } static int ca8210_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on) { u8 status; struct ca8210_priv *priv = hw->priv; status = mlme_set_request_sync( MAC_PROMISCUOUS_MODE, 0, 1, (const void *)&on, priv->spi ); if (status) { dev_err( &priv->spi->dev, "error setting promiscuous mode, MLME-SET.confirm status = %d", status ); } else { priv->promiscuous = on; } return link_to_linux_err(status); } static const struct ieee802154_ops ca8210_phy_ops = { .start = ca8210_start, .stop = ca8210_stop, .xmit_async = ca8210_xmit_async, .ed = ca8210_get_ed, .set_channel = ca8210_set_channel, .set_hw_addr_filt = ca8210_set_hw_addr_filt, .set_txpower = ca8210_set_tx_power, .set_cca_mode = ca8210_set_cca_mode, .set_cca_ed_level = ca8210_set_cca_ed_level, .set_csma_params = ca8210_set_csma_params, .set_frame_retries = ca8210_set_frame_retries, .set_promiscuous_mode = ca8210_set_promiscuous_mode }; /* Test/EVBME Interface */ /** * ca8210_test_int_open() - Opens the test interface to the userspace * @inodp: inode representation of file interface * @filp: file interface * * Return: 0 or linux error code */ static int ca8210_test_int_open(struct inode *inodp, struct file *filp) { struct ca8210_priv *priv = inodp->i_private; filp->private_data = priv; return 0; } /** * ca8210_test_check_upstream() - Checks a command received from the upstream * testing interface for required action * @buf: Buffer containing command to check * @device_ref: Nondescript pointer to target device * * Return: 0 or linux error code */ static int ca8210_test_check_upstream(u8 *buf, void *device_ref) { int ret; u8 response[CA8210_SPI_BUF_SIZE]; if (buf[0] == SPI_MLME_SET_REQUEST) { ret = tdme_checkpibattribute(buf[2], buf[4], buf + 5); if (ret) { response[0] = SPI_MLME_SET_CONFIRM; response[1] = 3; response[2] = IEEE802154_INVALID_PARAMETER; response[3] = buf[2]; response[4] = buf[3]; if (cascoda_api_upstream) cascoda_api_upstream(response, 5, device_ref); return ret; } } if (buf[0] == SPI_MLME_ASSOCIATE_REQUEST) { return tdme_channelinit(buf[2], device_ref); } else if (buf[0] == SPI_MLME_START_REQUEST) { return tdme_channelinit(buf[4], device_ref); } else if ( (buf[0] == SPI_MLME_SET_REQUEST) && (buf[2] == PHY_CURRENT_CHANNEL) ) { return tdme_channelinit(buf[5], device_ref); } else if ( (buf[0] == SPI_TDME_SET_REQUEST) && (buf[2] == TDME_CHANNEL) ) { return tdme_channelinit(buf[4], device_ref); } else if ( (CA8210_MAC_WORKAROUNDS) && (buf[0] == SPI_MLME_RESET_REQUEST) && (buf[2] == 1) ) { /* reset COORD Bit for Channel Filtering as Coordinator */ return tdme_setsfr_request_sync( 0, CA8210_SFR_MACCON, 0, device_ref ); } return 0; } /* End of EVBMECheckSerialCommand() */ /** * ca8210_test_int_user_write() - Called by a process in userspace to send a * message to the ca8210 drivers * @filp: file interface * @in_buf: Buffer containing message to write * @len: length of message * @off: file offset * * Return: 0 or linux error code */ static ssize_t ca8210_test_int_user_write( struct file *filp, const char __user *in_buf, size_t len, loff_t *off ) { int ret; struct ca8210_priv *priv = filp->private_data; u8 command[CA8210_SPI_BUF_SIZE]; memset(command, SPI_IDLE, 6); if (len > CA8210_SPI_BUF_SIZE || len < 2) { dev_warn( &priv->spi->dev, "userspace requested erroneous write length (%zu)\n", len ); return -EBADE; } ret = copy_from_user(command, in_buf, len); if (ret) { dev_err( &priv->spi->dev, "%d bytes could not be copied from userspace\n", ret ); return -EIO; } if (len != command[1] + 2) { dev_err( &priv->spi->dev, "write len does not match packet length field\n" ); return -EBADE; } ret = ca8210_test_check_upstream(command, priv->spi); if (ret == 0) { ret = ca8210_spi_exchange( command, command[1] + 2, NULL, priv->spi ); if (ret < 0) { /* effectively 0 bytes were written successfully */ dev_err( &priv->spi->dev, "spi exchange failed\n" ); return ret; } if (command[0] & SPI_SYN) priv->sync_down++; } return len; } /** * ca8210_test_int_user_read() - Called by a process in userspace to read a * message from the ca8210 drivers * @filp: file interface * @buf: Buffer to write message to * @len: length of message to read (ignored) * @offp: file offset * * If the O_NONBLOCK flag was set when opening the file then this function will * not block, i.e. it will return if the fifo is empty. Otherwise the function * will block, i.e. wait until new data arrives. * * Return: number of bytes read */ static ssize_t ca8210_test_int_user_read( struct file *filp, char __user *buf, size_t len, loff_t *offp ) { int i, cmdlen; struct ca8210_priv *priv = filp->private_data; unsigned char *fifo_buffer; unsigned long bytes_not_copied; if (filp->f_flags & O_NONBLOCK) { /* Non-blocking mode */ if (kfifo_is_empty(&priv->test.up_fifo)) return 0; } else { /* Blocking mode */ wait_event_interruptible( priv->test.readq, !kfifo_is_empty(&priv->test.up_fifo) ); } if (kfifo_out(&priv->test.up_fifo, &fifo_buffer, 4) != 4) { dev_err( &priv->spi->dev, "test_interface: Wrong number of elements popped from upstream fifo\n" ); return 0; } cmdlen = fifo_buffer[1]; bytes_not_copied = cmdlen + 2; bytes_not_copied = copy_to_user(buf, fifo_buffer, bytes_not_copied); if (bytes_not_copied > 0) { dev_err( &priv->spi->dev, "%lu bytes could not be copied to user space!\n", bytes_not_copied ); } dev_dbg(&priv->spi->dev, "test_interface: Cmd len = %d\n", cmdlen); dev_dbg(&priv->spi->dev, "test_interface: Read\n"); for (i = 0; i < cmdlen + 2; i++) dev_dbg(&priv->spi->dev, "%#03x\n", fifo_buffer[i]); kfree(fifo_buffer); return cmdlen + 2; } /** * ca8210_test_int_ioctl() - Called by a process in userspace to enact an * arbitrary action * @filp: file interface * @ioctl_num: which action to enact * @ioctl_param: arbitrary parameter for the action * * Return: status */ static long ca8210_test_int_ioctl( struct file *filp, unsigned int ioctl_num, unsigned long ioctl_param ) { struct ca8210_priv *priv = filp->private_data; switch (ioctl_num) { case CA8210_IOCTL_HARD_RESET: ca8210_reset_send(priv->spi, ioctl_param); break; default: break; } return 0; } /** * ca8210_test_int_poll() - Called by a process in userspace to determine which * actions are currently possible for the file * @filp: file interface * @ptable: poll table * * Return: set of poll return flags */ static __poll_t ca8210_test_int_poll( struct file *filp, struct poll_table_struct *ptable ) { __poll_t return_flags = 0; struct ca8210_priv *priv = filp->private_data; poll_wait(filp, &priv->test.readq, ptable); if (!kfifo_is_empty(&priv->test.up_fifo)) return_flags |= (EPOLLIN | EPOLLRDNORM); if (wait_event_interruptible( priv->test.readq, !kfifo_is_empty(&priv->test.up_fifo))) { return EPOLLERR; } return return_flags; } static const struct file_operations test_int_fops = { .read = ca8210_test_int_user_read, .write = ca8210_test_int_user_write, .open = ca8210_test_int_open, .release = NULL, .unlocked_ioctl = ca8210_test_int_ioctl, .poll = ca8210_test_int_poll }; /* Init/Deinit */ /** * ca8210_get_platform_data() - Populate a ca8210_platform_data object * @spi_device: Pointer to ca8210 spi device object to get data for * @pdata: Pointer to ca8210_platform_data object to populate * * Return: 0 or linux error code */ static int ca8210_get_platform_data( struct spi_device *spi_device, struct ca8210_platform_data *pdata ) { int ret = 0; if (!spi_device->dev.of_node) return -EINVAL; pdata->extclockenable = of_property_read_bool( spi_device->dev.of_node, "extclock-enable" ); if (pdata->extclockenable) { ret = of_property_read_u32( spi_device->dev.of_node, "extclock-freq", &pdata->extclockfreq ); if (ret < 0) return ret; ret = of_property_read_u32( spi_device->dev.of_node, "extclock-gpio", &pdata->extclockgpio ); } return ret; } /** * ca8210_config_extern_clk() - Configure the external clock provided by the * ca8210 * @pdata: Pointer to ca8210_platform_data containing clock parameters * @spi: Pointer to target ca8210 spi device * @on: True to turn the clock on, false to turn off * * The external clock is configured with a frequency and output pin taken from * the platform data. * * Return: 0 or linux error code */ static int ca8210_config_extern_clk( struct ca8210_platform_data *pdata, struct spi_device *spi, bool on ) { u8 clkparam[2]; if (on) { dev_info(&spi->dev, "Switching external clock on\n"); switch (pdata->extclockfreq) { case SIXTEEN_MHZ: clkparam[0] = 1; break; case EIGHT_MHZ: clkparam[0] = 2; break; case FOUR_MHZ: clkparam[0] = 3; break; case TWO_MHZ: clkparam[0] = 4; break; case ONE_MHZ: clkparam[0] = 5; break; default: dev_crit(&spi->dev, "Invalid extclock-freq\n"); return -EINVAL; } clkparam[1] = pdata->extclockgpio; } else { dev_info(&spi->dev, "Switching external clock off\n"); clkparam[0] = 0; /* off */ clkparam[1] = 0; } return link_to_linux_err( hwme_set_request_sync(HWME_SYSCLKOUT, 2, clkparam, spi) ); } /** * ca8210_register_ext_clock() - Register ca8210's external clock with kernel * @spi: Pointer to target ca8210 spi device * * Return: 0 or linux error code */ static int ca8210_register_ext_clock(struct spi_device *spi) { struct device_node *np = spi->dev.of_node; struct ca8210_priv *priv = spi_get_drvdata(spi); struct ca8210_platform_data *pdata = spi->dev.platform_data; int ret = 0; if (!np) return -EFAULT; priv->clk = clk_register_fixed_rate( &spi->dev, np->name, NULL, 0, pdata->extclockfreq ); if (IS_ERR(priv->clk)) { dev_crit(&spi->dev, "Failed to register external clk\n"); return PTR_ERR(priv->clk); } ret = of_clk_add_provider(np, of_clk_src_simple_get, priv->clk); if (ret) { clk_unregister(priv->clk); dev_crit( &spi->dev, "Failed to register external clock as clock provider\n" ); } else { dev_info(&spi->dev, "External clock set as clock provider\n"); } return ret; } /** * ca8210_unregister_ext_clock() - Unregister ca8210's external clock with * kernel * @spi: Pointer to target ca8210 spi device */ static void ca8210_unregister_ext_clock(struct spi_device *spi) { struct ca8210_priv *priv = spi_get_drvdata(spi); if (!priv->clk) return of_clk_del_provider(spi->dev.of_node); clk_unregister(priv->clk); dev_info(&spi->dev, "External clock unregistered\n"); } /** * ca8210_reset_init() - Initialise the reset input to the ca8210 * @spi: Pointer to target ca8210 spi device * * Return: 0 or linux error code */ static int ca8210_reset_init(struct spi_device *spi) { int ret; struct ca8210_platform_data *pdata = spi->dev.platform_data; pdata->gpio_reset = of_get_named_gpio( spi->dev.of_node, "reset-gpio", 0 ); ret = gpio_direction_output(pdata->gpio_reset, 1); if (ret < 0) { dev_crit( &spi->dev, "Reset GPIO %d did not set to output mode\n", pdata->gpio_reset ); } return ret; } /** * ca8210_interrupt_init() - Initialise the irq output from the ca8210 * @spi: Pointer to target ca8210 spi device * * Return: 0 or linux error code */ static int ca8210_interrupt_init(struct spi_device *spi) { int ret; struct ca8210_platform_data *pdata = spi->dev.platform_data; pdata->gpio_irq = of_get_named_gpio( spi->dev.of_node, "irq-gpio", 0 ); pdata->irq_id = gpio_to_irq(pdata->gpio_irq); if (pdata->irq_id < 0) { dev_crit( &spi->dev, "Could not get irq for gpio pin %d\n", pdata->gpio_irq ); gpio_free(pdata->gpio_irq); return pdata->irq_id; } ret = request_irq( pdata->irq_id, ca8210_interrupt_handler, IRQF_TRIGGER_FALLING, "ca8210-irq", spi_get_drvdata(spi) ); if (ret) { dev_crit(&spi->dev, "request_irq %d failed\n", pdata->irq_id); gpio_unexport(pdata->gpio_irq); gpio_free(pdata->gpio_irq); } return ret; } /** * ca8210_dev_com_init() - Initialise the spi communication component * @priv: Pointer to private data structure * * Return: 0 or linux error code */ static int ca8210_dev_com_init(struct ca8210_priv *priv) { priv->mlme_workqueue = alloc_ordered_workqueue( "MLME work queue", WQ_UNBOUND ); if (!priv->mlme_workqueue) { dev_crit(&priv->spi->dev, "alloc of mlme_workqueue failed!\n"); return -ENOMEM; } priv->irq_workqueue = alloc_ordered_workqueue( "ca8210 irq worker", WQ_UNBOUND ); if (!priv->irq_workqueue) { dev_crit(&priv->spi->dev, "alloc of irq_workqueue failed!\n"); destroy_workqueue(priv->mlme_workqueue); return -ENOMEM; } return 0; } /** * ca8210_dev_com_clear() - Deinitialise the spi communication component * @priv: Pointer to private data structure */ static void ca8210_dev_com_clear(struct ca8210_priv *priv) { destroy_workqueue(priv->mlme_workqueue); destroy_workqueue(priv->irq_workqueue); } #define CA8210_MAX_TX_POWERS (9) static const s32 ca8210_tx_powers[CA8210_MAX_TX_POWERS] = { 800, 700, 600, 500, 400, 300, 200, 100, 0 }; #define CA8210_MAX_ED_LEVELS (21) static const s32 ca8210_ed_levels[CA8210_MAX_ED_LEVELS] = { -10300, -10250, -10200, -10150, -10100, -10050, -10000, -9950, -9900, -9850, -9800, -9750, -9700, -9650, -9600, -9550, -9500, -9450, -9400, -9350, -9300 }; /** * ca8210_hw_setup() - Populate the ieee802154_hw phy attributes with the * ca8210's defaults * @ca8210_hw: Pointer to ieee802154_hw to populate */ static void ca8210_hw_setup(struct ieee802154_hw *ca8210_hw) { /* Support channels 11-26 */ ca8210_hw->phy->supported.channels[0] = CA8210_VALID_CHANNELS; ca8210_hw->phy->supported.tx_powers_size = CA8210_MAX_TX_POWERS; ca8210_hw->phy->supported.tx_powers = ca8210_tx_powers; ca8210_hw->phy->supported.cca_ed_levels_size = CA8210_MAX_ED_LEVELS; ca8210_hw->phy->supported.cca_ed_levels = ca8210_ed_levels; ca8210_hw->phy->current_channel = 18; ca8210_hw->phy->current_page = 0; ca8210_hw->phy->transmit_power = 800; ca8210_hw->phy->cca.mode = NL802154_CCA_ENERGY_CARRIER; ca8210_hw->phy->cca.opt = NL802154_CCA_OPT_ENERGY_CARRIER_AND; ca8210_hw->phy->cca_ed_level = -9800; ca8210_hw->phy->symbol_duration = 16; ca8210_hw->phy->lifs_period = 40 * ca8210_hw->phy->symbol_duration; ca8210_hw->phy->sifs_period = 12 * ca8210_hw->phy->symbol_duration; ca8210_hw->flags = IEEE802154_HW_AFILT | IEEE802154_HW_OMIT_CKSUM | IEEE802154_HW_FRAME_RETRIES | IEEE802154_HW_PROMISCUOUS | IEEE802154_HW_CSMA_PARAMS; ca8210_hw->phy->flags = WPAN_PHY_FLAG_TXPOWER | WPAN_PHY_FLAG_CCA_ED_LEVEL | WPAN_PHY_FLAG_CCA_MODE; } /** * ca8210_test_interface_init() - Initialise the test file interface * @priv: Pointer to private data structure * * Provided as an alternative to the standard linux network interface, the test * interface exposes a file in the filesystem (ca8210_test) that allows * 802.15.4 SAP Commands and Cascoda EVBME commands to be sent directly to * the stack. * * Return: 0 or linux error code */ static int ca8210_test_interface_init(struct ca8210_priv *priv) { struct ca8210_test *test = &priv->test; char node_name[32]; snprintf( node_name, sizeof(node_name), "ca8210@%d_%d", priv->spi->master->bus_num, priv->spi->chip_select ); test->ca8210_dfs_spi_int = debugfs_create_file( node_name, 0600, /* S_IRUSR | S_IWUSR */ NULL, priv, &test_int_fops ); debugfs_create_symlink("ca8210", NULL, node_name); init_waitqueue_head(&test->readq); return kfifo_alloc( &test->up_fifo, CA8210_TEST_INT_FIFO_SIZE, GFP_KERNEL ); } /** * ca8210_test_interface_clear() - Deinitialise the test file interface * @priv: Pointer to private data structure */ static void ca8210_test_interface_clear(struct ca8210_priv *priv) { struct ca8210_test *test = &priv->test; debugfs_remove(test->ca8210_dfs_spi_int); kfifo_free(&test->up_fifo); dev_info(&priv->spi->dev, "Test interface removed\n"); } /** * ca8210_remove() - Shut down a ca8210 upon being disconnected * @spi_device: Pointer to spi device data structure * * Return: 0 or linux error code */ static void ca8210_remove(struct spi_device *spi_device) { struct ca8210_priv *priv; struct ca8210_platform_data *pdata; dev_info(&spi_device->dev, "Removing ca8210\n"); pdata = spi_device->dev.platform_data; if (pdata) { if (pdata->extclockenable) { ca8210_unregister_ext_clock(spi_device); ca8210_config_extern_clk(pdata, spi_device, 0); } free_irq(pdata->irq_id, spi_device->dev.driver_data); kfree(pdata); spi_device->dev.platform_data = NULL; } /* get spi_device private data */ priv = spi_get_drvdata(spi_device); if (priv) { dev_info( &spi_device->dev, "sync_down = %d, sync_up = %d\n", priv->sync_down, priv->sync_up ); ca8210_dev_com_clear(spi_device->dev.driver_data); if (priv->hw) { if (priv->hw_registered) ieee802154_unregister_hw(priv->hw); ieee802154_free_hw(priv->hw); priv->hw = NULL; dev_info( &spi_device->dev, "Unregistered & freed ieee802154_hw.\n" ); } if (IS_ENABLED(CONFIG_IEEE802154_CA8210_DEBUGFS)) ca8210_test_interface_clear(priv); } } /** * ca8210_probe() - Set up a connected ca8210 upon being detected by the system * @spi_device: Pointer to spi device data structure * * Return: 0 or linux error code */ static int ca8210_probe(struct spi_device *spi_device) { struct ca8210_priv *priv; struct ieee802154_hw *hw; struct ca8210_platform_data *pdata; int ret; dev_info(&spi_device->dev, "Inserting ca8210\n"); /* allocate ieee802154_hw and private data */ hw = ieee802154_alloc_hw(sizeof(struct ca8210_priv), &ca8210_phy_ops); if (!hw) { dev_crit(&spi_device->dev, "ieee802154_alloc_hw failed\n"); ret = -ENOMEM; goto error; } priv = hw->priv; priv->hw = hw; priv->spi = spi_device; hw->parent = &spi_device->dev; spin_lock_init(&priv->lock); priv->async_tx_pending = false; priv->hw_registered = false; priv->sync_up = 0; priv->sync_down = 0; priv->promiscuous = false; priv->retries = 0; init_completion(&priv->ca8210_is_awake); init_completion(&priv->spi_transfer_complete); init_completion(&priv->sync_exchange_complete); spi_set_drvdata(priv->spi, priv); if (IS_ENABLED(CONFIG_IEEE802154_CA8210_DEBUGFS)) { cascoda_api_upstream = ca8210_test_int_driver_write; ca8210_test_interface_init(priv); } else { cascoda_api_upstream = NULL; } ca8210_hw_setup(hw); ieee802154_random_extended_addr(&hw->phy->perm_extended_addr); pdata = kmalloc(sizeof(*pdata), GFP_KERNEL); if (!pdata) { ret = -ENOMEM; goto error; } priv->spi->dev.platform_data = pdata; ret = ca8210_get_platform_data(priv->spi, pdata); if (ret) { dev_crit(&spi_device->dev, "ca8210_get_platform_data failed\n"); goto error; } ret = ca8210_dev_com_init(priv); if (ret) { dev_crit(&spi_device->dev, "ca8210_dev_com_init failed\n"); goto error; } ret = ca8210_reset_init(priv->spi); if (ret) { dev_crit(&spi_device->dev, "ca8210_reset_init failed\n"); goto error; } ret = ca8210_interrupt_init(priv->spi); if (ret) { dev_crit(&spi_device->dev, "ca8210_interrupt_init failed\n"); goto error; } msleep(100); ca8210_reset_send(priv->spi, 1); ret = tdme_chipinit(priv->spi); if (ret) { dev_crit(&spi_device->dev, "tdme_chipinit failed\n"); goto error; } if (pdata->extclockenable) { ret = ca8210_config_extern_clk(pdata, priv->spi, 1); if (ret) { dev_crit( &spi_device->dev, "ca8210_config_extern_clk failed\n" ); goto error; } ret = ca8210_register_ext_clock(priv->spi); if (ret) { dev_crit( &spi_device->dev, "ca8210_register_ext_clock failed\n" ); goto error; } } ret = ieee802154_register_hw(hw); if (ret) { dev_crit(&spi_device->dev, "ieee802154_register_hw failed\n"); goto error; } priv->hw_registered = true; return 0; error: msleep(100); /* wait for pending spi transfers to complete */ ca8210_remove(spi_device); return link_to_linux_err(ret); } static const struct of_device_id ca8210_of_ids[] = { {.compatible = "cascoda,ca8210", }, {}, }; MODULE_DEVICE_TABLE(of, ca8210_of_ids); static struct spi_driver ca8210_spi_driver = { .driver = { .name = DRIVER_NAME, .owner = THIS_MODULE, .of_match_table = of_match_ptr(ca8210_of_ids), }, .probe = ca8210_probe, .remove = ca8210_remove }; module_spi_driver(ca8210_spi_driver); MODULE_AUTHOR("Harry Morris <h.morris@cascoda.com>"); MODULE_DESCRIPTION("CA-8210 SoftMAC driver"); MODULE_LICENSE("Dual BSD/GPL"); MODULE_VERSION("1.0");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1