Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Richard Cochran | 6323 | 82.85% | 25 | 33.78% |
Stefan Sörensen | 642 | 8.41% | 17 | 22.97% |
Stephan Gatzka | 209 | 2.74% | 1 | 1.35% |
Ioana Ciornei | 88 | 1.15% | 2 | 2.70% |
Manfred Rudigier | 68 | 0.89% | 1 | 1.35% |
Andrew Lunn | 50 | 0.66% | 6 | 8.11% |
Christian Riesch | 50 | 0.66% | 1 | 1.35% |
Jacob E Keller | 35 | 0.46% | 2 | 2.70% |
Kurt Kanzenbach | 34 | 0.45% | 2 | 2.70% |
Esben Haabendal | 30 | 0.39% | 1 | 1.35% |
Sergey Organov | 24 | 0.31% | 1 | 1.35% |
Sebastian Andrzej Siewior | 21 | 0.28% | 2 | 2.70% |
Dan Murphy | 18 | 0.24% | 3 | 4.05% |
Joe Perches | 16 | 0.21% | 1 | 1.35% |
Gustavo A. R. Silva | 8 | 0.10% | 1 | 1.35% |
Julia Lawall | 3 | 0.04% | 1 | 1.35% |
Arnaldo Carvalho de Melo | 3 | 0.04% | 1 | 1.35% |
Kees Cook | 3 | 0.04% | 1 | 1.35% |
Alexander Duyck | 2 | 0.03% | 1 | 1.35% |
Wenpeng Liang | 2 | 0.03% | 1 | 1.35% |
Masanari Iida | 1 | 0.01% | 1 | 1.35% |
John Stultz | 1 | 0.01% | 1 | 1.35% |
Heiner Kallweit | 1 | 0.01% | 1 | 1.35% |
Total | 7632 | 74 |
// SPDX-License-Identifier: GPL-2.0+ /* * Driver for the National Semiconductor DP83640 PHYTER * * Copyright (C) 2010 OMICRON electronics GmbH */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/crc32.h> #include <linux/ethtool.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/mii.h> #include <linux/module.h> #include <linux/net_tstamp.h> #include <linux/netdevice.h> #include <linux/if_vlan.h> #include <linux/phy.h> #include <linux/ptp_classify.h> #include <linux/ptp_clock_kernel.h> #include "dp83640_reg.h" #define DP83640_PHY_ID 0x20005ce1 #define PAGESEL 0x13 #define MAX_RXTS 64 #define N_EXT_TS 6 #define N_PER_OUT 7 #define PSF_PTPVER 2 #define PSF_EVNT 0x4000 #define PSF_RX 0x2000 #define PSF_TX 0x1000 #define EXT_EVENT 1 #define CAL_EVENT 7 #define CAL_TRIGGER 1 #define DP83640_N_PINS 12 #define MII_DP83640_MICR 0x11 #define MII_DP83640_MISR 0x12 #define MII_DP83640_MICR_OE 0x1 #define MII_DP83640_MICR_IE 0x2 #define MII_DP83640_MISR_RHF_INT_EN 0x01 #define MII_DP83640_MISR_FHF_INT_EN 0x02 #define MII_DP83640_MISR_ANC_INT_EN 0x04 #define MII_DP83640_MISR_DUP_INT_EN 0x08 #define MII_DP83640_MISR_SPD_INT_EN 0x10 #define MII_DP83640_MISR_LINK_INT_EN 0x20 #define MII_DP83640_MISR_ED_INT_EN 0x40 #define MII_DP83640_MISR_LQ_INT_EN 0x80 #define MII_DP83640_MISR_ANC_INT 0x400 #define MII_DP83640_MISR_DUP_INT 0x800 #define MII_DP83640_MISR_SPD_INT 0x1000 #define MII_DP83640_MISR_LINK_INT 0x2000 #define MII_DP83640_MISR_INT_MASK (MII_DP83640_MISR_ANC_INT |\ MII_DP83640_MISR_DUP_INT |\ MII_DP83640_MISR_SPD_INT |\ MII_DP83640_MISR_LINK_INT) /* phyter seems to miss the mark by 16 ns */ #define ADJTIME_FIX 16 #define SKB_TIMESTAMP_TIMEOUT 2 /* jiffies */ #if defined(__BIG_ENDIAN) #define ENDIAN_FLAG 0 #elif defined(__LITTLE_ENDIAN) #define ENDIAN_FLAG PSF_ENDIAN #endif struct dp83640_skb_info { int ptp_type; unsigned long tmo; }; struct phy_rxts { u16 ns_lo; /* ns[15:0] */ u16 ns_hi; /* overflow[1:0], ns[29:16] */ u16 sec_lo; /* sec[15:0] */ u16 sec_hi; /* sec[31:16] */ u16 seqid; /* sequenceId[15:0] */ u16 msgtype; /* messageType[3:0], hash[11:0] */ }; struct phy_txts { u16 ns_lo; /* ns[15:0] */ u16 ns_hi; /* overflow[1:0], ns[29:16] */ u16 sec_lo; /* sec[15:0] */ u16 sec_hi; /* sec[31:16] */ }; struct rxts { struct list_head list; unsigned long tmo; u64 ns; u16 seqid; u8 msgtype; u16 hash; }; struct dp83640_clock; struct dp83640_private { struct list_head list; struct dp83640_clock *clock; struct phy_device *phydev; struct mii_timestamper mii_ts; struct delayed_work ts_work; int hwts_tx_en; int hwts_rx_en; int layer; int version; /* remember state of cfg0 during calibration */ int cfg0; /* remember the last event time stamp */ struct phy_txts edata; /* list of rx timestamps */ struct list_head rxts; struct list_head rxpool; struct rxts rx_pool_data[MAX_RXTS]; /* protects above three fields from concurrent access */ spinlock_t rx_lock; /* queues of incoming and outgoing packets */ struct sk_buff_head rx_queue; struct sk_buff_head tx_queue; }; struct dp83640_clock { /* keeps the instance in the 'phyter_clocks' list */ struct list_head list; /* we create one clock instance per MII bus */ struct mii_bus *bus; /* protects extended registers from concurrent access */ struct mutex extreg_lock; /* remembers which page was last selected */ int page; /* our advertised capabilities */ struct ptp_clock_info caps; /* protects the three fields below from concurrent access */ struct mutex clock_lock; /* the one phyter from which we shall read */ struct dp83640_private *chosen; /* list of the other attached phyters, not chosen */ struct list_head phylist; /* reference to our PTP hardware clock */ struct ptp_clock *ptp_clock; }; /* globals */ enum { CALIBRATE_GPIO, PEROUT_GPIO, EXTTS0_GPIO, EXTTS1_GPIO, EXTTS2_GPIO, EXTTS3_GPIO, EXTTS4_GPIO, EXTTS5_GPIO, GPIO_TABLE_SIZE }; static int chosen_phy = -1; static ushort gpio_tab[GPIO_TABLE_SIZE] = { 1, 2, 3, 4, 8, 9, 10, 11 }; module_param(chosen_phy, int, 0444); module_param_array(gpio_tab, ushort, NULL, 0444); MODULE_PARM_DESC(chosen_phy, "The address of the PHY to use for the ancillary clock features"); MODULE_PARM_DESC(gpio_tab, "Which GPIO line to use for which purpose: cal,perout,extts1,...,extts6"); static void dp83640_gpio_defaults(struct ptp_pin_desc *pd) { int i, index; for (i = 0; i < DP83640_N_PINS; i++) { snprintf(pd[i].name, sizeof(pd[i].name), "GPIO%d", 1 + i); pd[i].index = i; } for (i = 0; i < GPIO_TABLE_SIZE; i++) { if (gpio_tab[i] < 1 || gpio_tab[i] > DP83640_N_PINS) { pr_err("gpio_tab[%d]=%hu out of range", i, gpio_tab[i]); return; } } index = gpio_tab[CALIBRATE_GPIO] - 1; pd[index].func = PTP_PF_PHYSYNC; pd[index].chan = 0; index = gpio_tab[PEROUT_GPIO] - 1; pd[index].func = PTP_PF_PEROUT; pd[index].chan = 0; for (i = EXTTS0_GPIO; i < GPIO_TABLE_SIZE; i++) { index = gpio_tab[i] - 1; pd[index].func = PTP_PF_EXTTS; pd[index].chan = i - EXTTS0_GPIO; } } /* a list of clocks and a mutex to protect it */ static LIST_HEAD(phyter_clocks); static DEFINE_MUTEX(phyter_clocks_lock); static void rx_timestamp_work(struct work_struct *work); /* extended register access functions */ #define BROADCAST_ADDR 31 static inline int broadcast_write(struct phy_device *phydev, u32 regnum, u16 val) { return mdiobus_write(phydev->mdio.bus, BROADCAST_ADDR, regnum, val); } /* Caller must hold extreg_lock. */ static int ext_read(struct phy_device *phydev, int page, u32 regnum) { struct dp83640_private *dp83640 = phydev->priv; int val; if (dp83640->clock->page != page) { broadcast_write(phydev, PAGESEL, page); dp83640->clock->page = page; } val = phy_read(phydev, regnum); return val; } /* Caller must hold extreg_lock. */ static void ext_write(int broadcast, struct phy_device *phydev, int page, u32 regnum, u16 val) { struct dp83640_private *dp83640 = phydev->priv; if (dp83640->clock->page != page) { broadcast_write(phydev, PAGESEL, page); dp83640->clock->page = page; } if (broadcast) broadcast_write(phydev, regnum, val); else phy_write(phydev, regnum, val); } /* Caller must hold extreg_lock. */ static int tdr_write(int bc, struct phy_device *dev, const struct timespec64 *ts, u16 cmd) { ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec & 0xffff);/* ns[15:0] */ ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec >> 16); /* ns[31:16] */ ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec & 0xffff); /* sec[15:0] */ ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec >> 16); /* sec[31:16]*/ ext_write(bc, dev, PAGE4, PTP_CTL, cmd); return 0; } /* convert phy timestamps into driver timestamps */ static void phy2rxts(struct phy_rxts *p, struct rxts *rxts) { u32 sec; sec = p->sec_lo; sec |= p->sec_hi << 16; rxts->ns = p->ns_lo; rxts->ns |= (p->ns_hi & 0x3fff) << 16; rxts->ns += ((u64)sec) * 1000000000ULL; rxts->seqid = p->seqid; rxts->msgtype = (p->msgtype >> 12) & 0xf; rxts->hash = p->msgtype & 0x0fff; rxts->tmo = jiffies + SKB_TIMESTAMP_TIMEOUT; } static u64 phy2txts(struct phy_txts *p) { u64 ns; u32 sec; sec = p->sec_lo; sec |= p->sec_hi << 16; ns = p->ns_lo; ns |= (p->ns_hi & 0x3fff) << 16; ns += ((u64)sec) * 1000000000ULL; return ns; } static int periodic_output(struct dp83640_clock *clock, struct ptp_clock_request *clkreq, bool on, int trigger) { struct dp83640_private *dp83640 = clock->chosen; struct phy_device *phydev = dp83640->phydev; u32 sec, nsec, pwidth; u16 gpio, ptp_trig, val; if (on) { gpio = 1 + ptp_find_pin(clock->ptp_clock, PTP_PF_PEROUT, trigger); if (gpio < 1) return -EINVAL; } else { gpio = 0; } ptp_trig = TRIG_WR | (trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT | (gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT | TRIG_PER | TRIG_PULSE; val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT; if (!on) { val |= TRIG_DIS; mutex_lock(&clock->extreg_lock); ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig); ext_write(0, phydev, PAGE4, PTP_CTL, val); mutex_unlock(&clock->extreg_lock); return 0; } sec = clkreq->perout.start.sec; nsec = clkreq->perout.start.nsec; pwidth = clkreq->perout.period.sec * 1000000000UL; pwidth += clkreq->perout.period.nsec; pwidth /= 2; mutex_lock(&clock->extreg_lock); ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig); /*load trigger*/ val |= TRIG_LOAD; ext_write(0, phydev, PAGE4, PTP_CTL, val); ext_write(0, phydev, PAGE4, PTP_TDR, nsec & 0xffff); /* ns[15:0] */ ext_write(0, phydev, PAGE4, PTP_TDR, nsec >> 16); /* ns[31:16] */ ext_write(0, phydev, PAGE4, PTP_TDR, sec & 0xffff); /* sec[15:0] */ ext_write(0, phydev, PAGE4, PTP_TDR, sec >> 16); /* sec[31:16] */ ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff); /* ns[15:0] */ ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16); /* ns[31:16] */ /* Triggers 0 and 1 has programmable pulsewidth2 */ if (trigger < 2) { ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff); ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16); } /*enable trigger*/ val &= ~TRIG_LOAD; val |= TRIG_EN; ext_write(0, phydev, PAGE4, PTP_CTL, val); mutex_unlock(&clock->extreg_lock); return 0; } /* ptp clock methods */ static int ptp_dp83640_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) { struct dp83640_clock *clock = container_of(ptp, struct dp83640_clock, caps); struct phy_device *phydev = clock->chosen->phydev; u64 rate; int neg_adj = 0; u16 hi, lo; if (scaled_ppm < 0) { neg_adj = 1; scaled_ppm = -scaled_ppm; } rate = scaled_ppm; rate <<= 13; rate = div_u64(rate, 15625); hi = (rate >> 16) & PTP_RATE_HI_MASK; if (neg_adj) hi |= PTP_RATE_DIR; lo = rate & 0xffff; mutex_lock(&clock->extreg_lock); ext_write(1, phydev, PAGE4, PTP_RATEH, hi); ext_write(1, phydev, PAGE4, PTP_RATEL, lo); mutex_unlock(&clock->extreg_lock); return 0; } static int ptp_dp83640_adjtime(struct ptp_clock_info *ptp, s64 delta) { struct dp83640_clock *clock = container_of(ptp, struct dp83640_clock, caps); struct phy_device *phydev = clock->chosen->phydev; struct timespec64 ts; int err; delta += ADJTIME_FIX; ts = ns_to_timespec64(delta); mutex_lock(&clock->extreg_lock); err = tdr_write(1, phydev, &ts, PTP_STEP_CLK); mutex_unlock(&clock->extreg_lock); return err; } static int ptp_dp83640_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) { struct dp83640_clock *clock = container_of(ptp, struct dp83640_clock, caps); struct phy_device *phydev = clock->chosen->phydev; unsigned int val[4]; mutex_lock(&clock->extreg_lock); ext_write(0, phydev, PAGE4, PTP_CTL, PTP_RD_CLK); val[0] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[15:0] */ val[1] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[31:16] */ val[2] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[15:0] */ val[3] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[31:16] */ mutex_unlock(&clock->extreg_lock); ts->tv_nsec = val[0] | (val[1] << 16); ts->tv_sec = val[2] | (val[3] << 16); return 0; } static int ptp_dp83640_settime(struct ptp_clock_info *ptp, const struct timespec64 *ts) { struct dp83640_clock *clock = container_of(ptp, struct dp83640_clock, caps); struct phy_device *phydev = clock->chosen->phydev; int err; mutex_lock(&clock->extreg_lock); err = tdr_write(1, phydev, ts, PTP_LOAD_CLK); mutex_unlock(&clock->extreg_lock); return err; } static int ptp_dp83640_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *rq, int on) { struct dp83640_clock *clock = container_of(ptp, struct dp83640_clock, caps); struct phy_device *phydev = clock->chosen->phydev; unsigned int index; u16 evnt, event_num, gpio_num; switch (rq->type) { case PTP_CLK_REQ_EXTTS: /* Reject requests with unsupported flags */ if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | PTP_RISING_EDGE | PTP_FALLING_EDGE | PTP_STRICT_FLAGS)) return -EOPNOTSUPP; /* Reject requests to enable time stamping on both edges. */ if ((rq->extts.flags & PTP_STRICT_FLAGS) && (rq->extts.flags & PTP_ENABLE_FEATURE) && (rq->extts.flags & PTP_EXTTS_EDGES) == PTP_EXTTS_EDGES) return -EOPNOTSUPP; index = rq->extts.index; if (index >= N_EXT_TS) return -EINVAL; event_num = EXT_EVENT + index; evnt = EVNT_WR | (event_num & EVNT_SEL_MASK) << EVNT_SEL_SHIFT; if (on) { gpio_num = 1 + ptp_find_pin(clock->ptp_clock, PTP_PF_EXTTS, index); if (gpio_num < 1) return -EINVAL; evnt |= (gpio_num & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT; if (rq->extts.flags & PTP_FALLING_EDGE) evnt |= EVNT_FALL; else evnt |= EVNT_RISE; } mutex_lock(&clock->extreg_lock); ext_write(0, phydev, PAGE5, PTP_EVNT, evnt); mutex_unlock(&clock->extreg_lock); return 0; case PTP_CLK_REQ_PEROUT: /* Reject requests with unsupported flags */ if (rq->perout.flags) return -EOPNOTSUPP; if (rq->perout.index >= N_PER_OUT) return -EINVAL; return periodic_output(clock, rq, on, rq->perout.index); default: break; } return -EOPNOTSUPP; } static int ptp_dp83640_verify(struct ptp_clock_info *ptp, unsigned int pin, enum ptp_pin_function func, unsigned int chan) { struct dp83640_clock *clock = container_of(ptp, struct dp83640_clock, caps); if (clock->caps.pin_config[pin].func == PTP_PF_PHYSYNC && !list_empty(&clock->phylist)) return 1; if (func == PTP_PF_PHYSYNC) return 1; return 0; } static u8 status_frame_dst[6] = { 0x01, 0x1B, 0x19, 0x00, 0x00, 0x00 }; static u8 status_frame_src[6] = { 0x08, 0x00, 0x17, 0x0B, 0x6B, 0x0F }; static void enable_status_frames(struct phy_device *phydev, bool on) { struct dp83640_private *dp83640 = phydev->priv; struct dp83640_clock *clock = dp83640->clock; u16 cfg0 = 0, ver; if (on) cfg0 = PSF_EVNT_EN | PSF_RXTS_EN | PSF_TXTS_EN | ENDIAN_FLAG; ver = (PSF_PTPVER & VERSIONPTP_MASK) << VERSIONPTP_SHIFT; mutex_lock(&clock->extreg_lock); ext_write(0, phydev, PAGE5, PSF_CFG0, cfg0); ext_write(0, phydev, PAGE6, PSF_CFG1, ver); mutex_unlock(&clock->extreg_lock); if (!phydev->attached_dev) { phydev_warn(phydev, "expected to find an attached netdevice\n"); return; } if (on) { if (dev_mc_add(phydev->attached_dev, status_frame_dst)) phydev_warn(phydev, "failed to add mc address\n"); } else { if (dev_mc_del(phydev->attached_dev, status_frame_dst)) phydev_warn(phydev, "failed to delete mc address\n"); } } static bool is_status_frame(struct sk_buff *skb, int type) { struct ethhdr *h = eth_hdr(skb); if (PTP_CLASS_V2_L2 == type && !memcmp(h->h_source, status_frame_src, sizeof(status_frame_src))) return true; else return false; } static int expired(struct rxts *rxts) { return time_after(jiffies, rxts->tmo); } /* Caller must hold rx_lock. */ static void prune_rx_ts(struct dp83640_private *dp83640) { struct list_head *this, *next; struct rxts *rxts; list_for_each_safe(this, next, &dp83640->rxts) { rxts = list_entry(this, struct rxts, list); if (expired(rxts)) { list_del_init(&rxts->list); list_add(&rxts->list, &dp83640->rxpool); } } } /* synchronize the phyters so they act as one clock */ static void enable_broadcast(struct phy_device *phydev, int init_page, int on) { int val; phy_write(phydev, PAGESEL, 0); val = phy_read(phydev, PHYCR2); if (on) val |= BC_WRITE; else val &= ~BC_WRITE; phy_write(phydev, PHYCR2, val); phy_write(phydev, PAGESEL, init_page); } static void recalibrate(struct dp83640_clock *clock) { s64 now, diff; struct phy_txts event_ts; struct timespec64 ts; struct list_head *this; struct dp83640_private *tmp; struct phy_device *master = clock->chosen->phydev; u16 cal_gpio, cfg0, evnt, ptp_trig, trigger, val; trigger = CAL_TRIGGER; cal_gpio = 1 + ptp_find_pin_unlocked(clock->ptp_clock, PTP_PF_PHYSYNC, 0); if (cal_gpio < 1) { pr_err("PHY calibration pin not available - PHY is not calibrated."); return; } mutex_lock(&clock->extreg_lock); /* * enable broadcast, disable status frames, enable ptp clock */ list_for_each(this, &clock->phylist) { tmp = list_entry(this, struct dp83640_private, list); enable_broadcast(tmp->phydev, clock->page, 1); tmp->cfg0 = ext_read(tmp->phydev, PAGE5, PSF_CFG0); ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, 0); ext_write(0, tmp->phydev, PAGE4, PTP_CTL, PTP_ENABLE); } enable_broadcast(master, clock->page, 1); cfg0 = ext_read(master, PAGE5, PSF_CFG0); ext_write(0, master, PAGE5, PSF_CFG0, 0); ext_write(0, master, PAGE4, PTP_CTL, PTP_ENABLE); /* * enable an event timestamp */ evnt = EVNT_WR | EVNT_RISE | EVNT_SINGLE; evnt |= (CAL_EVENT & EVNT_SEL_MASK) << EVNT_SEL_SHIFT; evnt |= (cal_gpio & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT; list_for_each(this, &clock->phylist) { tmp = list_entry(this, struct dp83640_private, list); ext_write(0, tmp->phydev, PAGE5, PTP_EVNT, evnt); } ext_write(0, master, PAGE5, PTP_EVNT, evnt); /* * configure a trigger */ ptp_trig = TRIG_WR | TRIG_IF_LATE | TRIG_PULSE; ptp_trig |= (trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT; ptp_trig |= (cal_gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT; ext_write(0, master, PAGE5, PTP_TRIG, ptp_trig); /* load trigger */ val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT; val |= TRIG_LOAD; ext_write(0, master, PAGE4, PTP_CTL, val); /* enable trigger */ val &= ~TRIG_LOAD; val |= TRIG_EN; ext_write(0, master, PAGE4, PTP_CTL, val); /* disable trigger */ val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT; val |= TRIG_DIS; ext_write(0, master, PAGE4, PTP_CTL, val); /* * read out and correct offsets */ val = ext_read(master, PAGE4, PTP_STS); phydev_info(master, "master PTP_STS 0x%04hx\n", val); val = ext_read(master, PAGE4, PTP_ESTS); phydev_info(master, "master PTP_ESTS 0x%04hx\n", val); event_ts.ns_lo = ext_read(master, PAGE4, PTP_EDATA); event_ts.ns_hi = ext_read(master, PAGE4, PTP_EDATA); event_ts.sec_lo = ext_read(master, PAGE4, PTP_EDATA); event_ts.sec_hi = ext_read(master, PAGE4, PTP_EDATA); now = phy2txts(&event_ts); list_for_each(this, &clock->phylist) { tmp = list_entry(this, struct dp83640_private, list); val = ext_read(tmp->phydev, PAGE4, PTP_STS); phydev_info(tmp->phydev, "slave PTP_STS 0x%04hx\n", val); val = ext_read(tmp->phydev, PAGE4, PTP_ESTS); phydev_info(tmp->phydev, "slave PTP_ESTS 0x%04hx\n", val); event_ts.ns_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA); event_ts.ns_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA); event_ts.sec_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA); event_ts.sec_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA); diff = now - (s64) phy2txts(&event_ts); phydev_info(tmp->phydev, "slave offset %lld nanoseconds\n", diff); diff += ADJTIME_FIX; ts = ns_to_timespec64(diff); tdr_write(0, tmp->phydev, &ts, PTP_STEP_CLK); } /* * restore status frames */ list_for_each(this, &clock->phylist) { tmp = list_entry(this, struct dp83640_private, list); ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, tmp->cfg0); } ext_write(0, master, PAGE5, PSF_CFG0, cfg0); mutex_unlock(&clock->extreg_lock); } /* time stamping methods */ static inline u16 exts_chan_to_edata(int ch) { return 1 << ((ch + EXT_EVENT) * 2); } static int decode_evnt(struct dp83640_private *dp83640, void *data, int len, u16 ests) { struct phy_txts *phy_txts; struct ptp_clock_event event; int i, parsed; int words = (ests >> EVNT_TS_LEN_SHIFT) & EVNT_TS_LEN_MASK; u16 ext_status = 0; /* calculate length of the event timestamp status message */ if (ests & MULT_EVNT) parsed = (words + 2) * sizeof(u16); else parsed = (words + 1) * sizeof(u16); /* check if enough data is available */ if (len < parsed) return len; if (ests & MULT_EVNT) { ext_status = *(u16 *) data; data += sizeof(ext_status); } phy_txts = data; switch (words) { case 3: dp83640->edata.sec_hi = phy_txts->sec_hi; fallthrough; case 2: dp83640->edata.sec_lo = phy_txts->sec_lo; fallthrough; case 1: dp83640->edata.ns_hi = phy_txts->ns_hi; fallthrough; case 0: dp83640->edata.ns_lo = phy_txts->ns_lo; } if (!ext_status) { i = ((ests >> EVNT_NUM_SHIFT) & EVNT_NUM_MASK) - EXT_EVENT; ext_status = exts_chan_to_edata(i); } event.type = PTP_CLOCK_EXTTS; event.timestamp = phy2txts(&dp83640->edata); /* Compensate for input path and synchronization delays */ event.timestamp -= 35; for (i = 0; i < N_EXT_TS; i++) { if (ext_status & exts_chan_to_edata(i)) { event.index = i; ptp_clock_event(dp83640->clock->ptp_clock, &event); } } return parsed; } #define DP83640_PACKET_HASH_LEN 10 static int match(struct sk_buff *skb, unsigned int type, struct rxts *rxts) { struct ptp_header *hdr; u8 msgtype; u16 seqid; u16 hash; /* check sequenceID, messageType, 12 bit hash of offset 20-29 */ hdr = ptp_parse_header(skb, type); if (!hdr) return 0; msgtype = ptp_get_msgtype(hdr, type); if (rxts->msgtype != (msgtype & 0xf)) return 0; seqid = be16_to_cpu(hdr->sequence_id); if (rxts->seqid != seqid) return 0; hash = ether_crc(DP83640_PACKET_HASH_LEN, (unsigned char *)&hdr->source_port_identity) >> 20; if (rxts->hash != hash) return 0; return 1; } static void decode_rxts(struct dp83640_private *dp83640, struct phy_rxts *phy_rxts) { struct rxts *rxts; struct skb_shared_hwtstamps *shhwtstamps = NULL; struct sk_buff *skb; unsigned long flags; u8 overflow; overflow = (phy_rxts->ns_hi >> 14) & 0x3; if (overflow) pr_debug("rx timestamp queue overflow, count %d\n", overflow); spin_lock_irqsave(&dp83640->rx_lock, flags); prune_rx_ts(dp83640); if (list_empty(&dp83640->rxpool)) { pr_debug("rx timestamp pool is empty\n"); goto out; } rxts = list_first_entry(&dp83640->rxpool, struct rxts, list); list_del_init(&rxts->list); phy2rxts(phy_rxts, rxts); spin_lock(&dp83640->rx_queue.lock); skb_queue_walk(&dp83640->rx_queue, skb) { struct dp83640_skb_info *skb_info; skb_info = (struct dp83640_skb_info *)skb->cb; if (match(skb, skb_info->ptp_type, rxts)) { __skb_unlink(skb, &dp83640->rx_queue); shhwtstamps = skb_hwtstamps(skb); memset(shhwtstamps, 0, sizeof(*shhwtstamps)); shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns); list_add(&rxts->list, &dp83640->rxpool); break; } } spin_unlock(&dp83640->rx_queue.lock); if (!shhwtstamps) list_add_tail(&rxts->list, &dp83640->rxts); out: spin_unlock_irqrestore(&dp83640->rx_lock, flags); if (shhwtstamps) netif_rx(skb); } static void decode_txts(struct dp83640_private *dp83640, struct phy_txts *phy_txts) { struct skb_shared_hwtstamps shhwtstamps; struct dp83640_skb_info *skb_info; struct sk_buff *skb; u8 overflow; u64 ns; /* We must already have the skb that triggered this. */ again: skb = skb_dequeue(&dp83640->tx_queue); if (!skb) { pr_debug("have timestamp but tx_queue empty\n"); return; } overflow = (phy_txts->ns_hi >> 14) & 0x3; if (overflow) { pr_debug("tx timestamp queue overflow, count %d\n", overflow); while (skb) { kfree_skb(skb); skb = skb_dequeue(&dp83640->tx_queue); } return; } skb_info = (struct dp83640_skb_info *)skb->cb; if (time_after(jiffies, skb_info->tmo)) { kfree_skb(skb); goto again; } ns = phy2txts(phy_txts); memset(&shhwtstamps, 0, sizeof(shhwtstamps)); shhwtstamps.hwtstamp = ns_to_ktime(ns); skb_complete_tx_timestamp(skb, &shhwtstamps); } static void decode_status_frame(struct dp83640_private *dp83640, struct sk_buff *skb) { struct phy_rxts *phy_rxts; struct phy_txts *phy_txts; u8 *ptr; int len, size; u16 ests, type; ptr = skb->data + 2; for (len = skb_headlen(skb) - 2; len > sizeof(type); len -= size) { type = *(u16 *)ptr; ests = type & 0x0fff; type = type & 0xf000; len -= sizeof(type); ptr += sizeof(type); if (PSF_RX == type && len >= sizeof(*phy_rxts)) { phy_rxts = (struct phy_rxts *) ptr; decode_rxts(dp83640, phy_rxts); size = sizeof(*phy_rxts); } else if (PSF_TX == type && len >= sizeof(*phy_txts)) { phy_txts = (struct phy_txts *) ptr; decode_txts(dp83640, phy_txts); size = sizeof(*phy_txts); } else if (PSF_EVNT == type) { size = decode_evnt(dp83640, ptr, len, ests); } else { size = 0; break; } ptr += size; } } static void dp83640_free_clocks(void) { struct dp83640_clock *clock; struct list_head *this, *next; mutex_lock(&phyter_clocks_lock); list_for_each_safe(this, next, &phyter_clocks) { clock = list_entry(this, struct dp83640_clock, list); if (!list_empty(&clock->phylist)) { pr_warn("phy list non-empty while unloading\n"); BUG(); } list_del(&clock->list); mutex_destroy(&clock->extreg_lock); mutex_destroy(&clock->clock_lock); put_device(&clock->bus->dev); kfree(clock->caps.pin_config); kfree(clock); } mutex_unlock(&phyter_clocks_lock); } static void dp83640_clock_init(struct dp83640_clock *clock, struct mii_bus *bus) { INIT_LIST_HEAD(&clock->list); clock->bus = bus; mutex_init(&clock->extreg_lock); mutex_init(&clock->clock_lock); INIT_LIST_HEAD(&clock->phylist); clock->caps.owner = THIS_MODULE; sprintf(clock->caps.name, "dp83640 timer"); clock->caps.max_adj = 1953124; clock->caps.n_alarm = 0; clock->caps.n_ext_ts = N_EXT_TS; clock->caps.n_per_out = N_PER_OUT; clock->caps.n_pins = DP83640_N_PINS; clock->caps.pps = 0; clock->caps.adjfine = ptp_dp83640_adjfine; clock->caps.adjtime = ptp_dp83640_adjtime; clock->caps.gettime64 = ptp_dp83640_gettime; clock->caps.settime64 = ptp_dp83640_settime; clock->caps.enable = ptp_dp83640_enable; clock->caps.verify = ptp_dp83640_verify; /* * Convert the module param defaults into a dynamic pin configuration. */ dp83640_gpio_defaults(clock->caps.pin_config); /* * Get a reference to this bus instance. */ get_device(&bus->dev); } static int choose_this_phy(struct dp83640_clock *clock, struct phy_device *phydev) { if (chosen_phy == -1 && !clock->chosen) return 1; if (chosen_phy == phydev->mdio.addr) return 1; return 0; } static struct dp83640_clock *dp83640_clock_get(struct dp83640_clock *clock) { if (clock) mutex_lock(&clock->clock_lock); return clock; } /* * Look up and lock a clock by bus instance. * If there is no clock for this bus, then create it first. */ static struct dp83640_clock *dp83640_clock_get_bus(struct mii_bus *bus) { struct dp83640_clock *clock = NULL, *tmp; struct list_head *this; mutex_lock(&phyter_clocks_lock); list_for_each(this, &phyter_clocks) { tmp = list_entry(this, struct dp83640_clock, list); if (tmp->bus == bus) { clock = tmp; break; } } if (clock) goto out; clock = kzalloc(sizeof(struct dp83640_clock), GFP_KERNEL); if (!clock) goto out; clock->caps.pin_config = kcalloc(DP83640_N_PINS, sizeof(struct ptp_pin_desc), GFP_KERNEL); if (!clock->caps.pin_config) { kfree(clock); clock = NULL; goto out; } dp83640_clock_init(clock, bus); list_add_tail(&clock->list, &phyter_clocks); out: mutex_unlock(&phyter_clocks_lock); return dp83640_clock_get(clock); } static void dp83640_clock_put(struct dp83640_clock *clock) { mutex_unlock(&clock->clock_lock); } static int dp83640_soft_reset(struct phy_device *phydev) { int ret; ret = genphy_soft_reset(phydev); if (ret < 0) return ret; /* From DP83640 datasheet: "Software driver code must wait 3 us * following a software reset before allowing further serial MII * operations with the DP83640." */ udelay(10); /* Taking udelay inaccuracy into account */ return 0; } static int dp83640_config_init(struct phy_device *phydev) { struct dp83640_private *dp83640 = phydev->priv; struct dp83640_clock *clock = dp83640->clock; if (clock->chosen && !list_empty(&clock->phylist)) recalibrate(clock); else { mutex_lock(&clock->extreg_lock); enable_broadcast(phydev, clock->page, 1); mutex_unlock(&clock->extreg_lock); } enable_status_frames(phydev, true); mutex_lock(&clock->extreg_lock); ext_write(0, phydev, PAGE4, PTP_CTL, PTP_ENABLE); mutex_unlock(&clock->extreg_lock); return 0; } static int dp83640_ack_interrupt(struct phy_device *phydev) { int err = phy_read(phydev, MII_DP83640_MISR); if (err < 0) return err; return 0; } static int dp83640_config_intr(struct phy_device *phydev) { int micr; int misr; int err; if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { err = dp83640_ack_interrupt(phydev); if (err) return err; misr = phy_read(phydev, MII_DP83640_MISR); if (misr < 0) return misr; misr |= (MII_DP83640_MISR_ANC_INT_EN | MII_DP83640_MISR_DUP_INT_EN | MII_DP83640_MISR_SPD_INT_EN | MII_DP83640_MISR_LINK_INT_EN); err = phy_write(phydev, MII_DP83640_MISR, misr); if (err < 0) return err; micr = phy_read(phydev, MII_DP83640_MICR); if (micr < 0) return micr; micr |= (MII_DP83640_MICR_OE | MII_DP83640_MICR_IE); return phy_write(phydev, MII_DP83640_MICR, micr); } else { micr = phy_read(phydev, MII_DP83640_MICR); if (micr < 0) return micr; micr &= ~(MII_DP83640_MICR_OE | MII_DP83640_MICR_IE); err = phy_write(phydev, MII_DP83640_MICR, micr); if (err < 0) return err; misr = phy_read(phydev, MII_DP83640_MISR); if (misr < 0) return misr; misr &= ~(MII_DP83640_MISR_ANC_INT_EN | MII_DP83640_MISR_DUP_INT_EN | MII_DP83640_MISR_SPD_INT_EN | MII_DP83640_MISR_LINK_INT_EN); err = phy_write(phydev, MII_DP83640_MISR, misr); if (err) return err; return dp83640_ack_interrupt(phydev); } } static irqreturn_t dp83640_handle_interrupt(struct phy_device *phydev) { int irq_status; irq_status = phy_read(phydev, MII_DP83640_MISR); if (irq_status < 0) { phy_error(phydev); return IRQ_NONE; } if (!(irq_status & MII_DP83640_MISR_INT_MASK)) return IRQ_NONE; phy_trigger_machine(phydev); return IRQ_HANDLED; } static int dp83640_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr) { struct dp83640_private *dp83640 = container_of(mii_ts, struct dp83640_private, mii_ts); struct hwtstamp_config cfg; u16 txcfg0, rxcfg0; if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) return -EFAULT; if (cfg.tx_type < 0 || cfg.tx_type > HWTSTAMP_TX_ONESTEP_SYNC) return -ERANGE; dp83640->hwts_tx_en = cfg.tx_type; switch (cfg.rx_filter) { case HWTSTAMP_FILTER_NONE: dp83640->hwts_rx_en = 0; dp83640->layer = 0; dp83640->version = 0; break; case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: dp83640->hwts_rx_en = 1; dp83640->layer = PTP_CLASS_L4; dp83640->version = PTP_CLASS_V1; cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; break; case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: dp83640->hwts_rx_en = 1; dp83640->layer = PTP_CLASS_L4; dp83640->version = PTP_CLASS_V2; cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; break; case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: dp83640->hwts_rx_en = 1; dp83640->layer = PTP_CLASS_L2; dp83640->version = PTP_CLASS_V2; cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT; break; case HWTSTAMP_FILTER_PTP_V2_EVENT: case HWTSTAMP_FILTER_PTP_V2_SYNC: case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: dp83640->hwts_rx_en = 1; dp83640->layer = PTP_CLASS_L4 | PTP_CLASS_L2; dp83640->version = PTP_CLASS_V2; cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; break; default: return -ERANGE; } txcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT; rxcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT; if (dp83640->layer & PTP_CLASS_L2) { txcfg0 |= TX_L2_EN; rxcfg0 |= RX_L2_EN; } if (dp83640->layer & PTP_CLASS_L4) { txcfg0 |= TX_IPV6_EN | TX_IPV4_EN; rxcfg0 |= RX_IPV6_EN | RX_IPV4_EN; } if (dp83640->hwts_tx_en) txcfg0 |= TX_TS_EN; if (dp83640->hwts_tx_en == HWTSTAMP_TX_ONESTEP_SYNC) txcfg0 |= SYNC_1STEP | CHK_1STEP; if (dp83640->hwts_rx_en) rxcfg0 |= RX_TS_EN; mutex_lock(&dp83640->clock->extreg_lock); ext_write(0, dp83640->phydev, PAGE5, PTP_TXCFG0, txcfg0); ext_write(0, dp83640->phydev, PAGE5, PTP_RXCFG0, rxcfg0); mutex_unlock(&dp83640->clock->extreg_lock); return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; } static void rx_timestamp_work(struct work_struct *work) { struct dp83640_private *dp83640 = container_of(work, struct dp83640_private, ts_work.work); struct sk_buff *skb; /* Deliver expired packets. */ while ((skb = skb_dequeue(&dp83640->rx_queue))) { struct dp83640_skb_info *skb_info; skb_info = (struct dp83640_skb_info *)skb->cb; if (!time_after(jiffies, skb_info->tmo)) { skb_queue_head(&dp83640->rx_queue, skb); break; } netif_rx(skb); } if (!skb_queue_empty(&dp83640->rx_queue)) schedule_delayed_work(&dp83640->ts_work, SKB_TIMESTAMP_TIMEOUT); } static bool dp83640_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type) { struct dp83640_private *dp83640 = container_of(mii_ts, struct dp83640_private, mii_ts); struct dp83640_skb_info *skb_info = (struct dp83640_skb_info *)skb->cb; struct list_head *this, *next; struct rxts *rxts; struct skb_shared_hwtstamps *shhwtstamps = NULL; unsigned long flags; if (is_status_frame(skb, type)) { decode_status_frame(dp83640, skb); kfree_skb(skb); return true; } if (!dp83640->hwts_rx_en) return false; if ((type & dp83640->version) == 0 || (type & dp83640->layer) == 0) return false; spin_lock_irqsave(&dp83640->rx_lock, flags); prune_rx_ts(dp83640); list_for_each_safe(this, next, &dp83640->rxts) { rxts = list_entry(this, struct rxts, list); if (match(skb, type, rxts)) { shhwtstamps = skb_hwtstamps(skb); memset(shhwtstamps, 0, sizeof(*shhwtstamps)); shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns); list_del_init(&rxts->list); list_add(&rxts->list, &dp83640->rxpool); break; } } spin_unlock_irqrestore(&dp83640->rx_lock, flags); if (!shhwtstamps) { skb_info->ptp_type = type; skb_info->tmo = jiffies + SKB_TIMESTAMP_TIMEOUT; skb_queue_tail(&dp83640->rx_queue, skb); schedule_delayed_work(&dp83640->ts_work, SKB_TIMESTAMP_TIMEOUT); } else { netif_rx(skb); } return true; } static void dp83640_txtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type) { struct dp83640_skb_info *skb_info = (struct dp83640_skb_info *)skb->cb; struct dp83640_private *dp83640 = container_of(mii_ts, struct dp83640_private, mii_ts); switch (dp83640->hwts_tx_en) { case HWTSTAMP_TX_ONESTEP_SYNC: if (ptp_msg_is_sync(skb, type)) { kfree_skb(skb); return; } fallthrough; case HWTSTAMP_TX_ON: skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; skb_info->tmo = jiffies + SKB_TIMESTAMP_TIMEOUT; skb_queue_tail(&dp83640->tx_queue, skb); break; case HWTSTAMP_TX_OFF: default: kfree_skb(skb); break; } } static int dp83640_ts_info(struct mii_timestamper *mii_ts, struct ethtool_ts_info *info) { struct dp83640_private *dp83640 = container_of(mii_ts, struct dp83640_private, mii_ts); info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | SOF_TIMESTAMPING_RX_HARDWARE | SOF_TIMESTAMPING_RAW_HARDWARE; info->phc_index = ptp_clock_index(dp83640->clock->ptp_clock); info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON) | (1 << HWTSTAMP_TX_ONESTEP_SYNC); info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); return 0; } static int dp83640_probe(struct phy_device *phydev) { struct dp83640_clock *clock; struct dp83640_private *dp83640; int err = -ENOMEM, i; if (phydev->mdio.addr == BROADCAST_ADDR) return 0; clock = dp83640_clock_get_bus(phydev->mdio.bus); if (!clock) goto no_clock; dp83640 = kzalloc(sizeof(struct dp83640_private), GFP_KERNEL); if (!dp83640) goto no_memory; dp83640->phydev = phydev; dp83640->mii_ts.rxtstamp = dp83640_rxtstamp; dp83640->mii_ts.txtstamp = dp83640_txtstamp; dp83640->mii_ts.hwtstamp = dp83640_hwtstamp; dp83640->mii_ts.ts_info = dp83640_ts_info; INIT_DELAYED_WORK(&dp83640->ts_work, rx_timestamp_work); INIT_LIST_HEAD(&dp83640->rxts); INIT_LIST_HEAD(&dp83640->rxpool); for (i = 0; i < MAX_RXTS; i++) list_add(&dp83640->rx_pool_data[i].list, &dp83640->rxpool); phydev->mii_ts = &dp83640->mii_ts; phydev->priv = dp83640; spin_lock_init(&dp83640->rx_lock); skb_queue_head_init(&dp83640->rx_queue); skb_queue_head_init(&dp83640->tx_queue); dp83640->clock = clock; if (choose_this_phy(clock, phydev)) { clock->chosen = dp83640; clock->ptp_clock = ptp_clock_register(&clock->caps, &phydev->mdio.dev); if (IS_ERR(clock->ptp_clock)) { err = PTR_ERR(clock->ptp_clock); goto no_register; } } else list_add_tail(&dp83640->list, &clock->phylist); dp83640_clock_put(clock); return 0; no_register: clock->chosen = NULL; kfree(dp83640); no_memory: dp83640_clock_put(clock); no_clock: return err; } static void dp83640_remove(struct phy_device *phydev) { struct dp83640_clock *clock; struct list_head *this, *next; struct dp83640_private *tmp, *dp83640 = phydev->priv; if (phydev->mdio.addr == BROADCAST_ADDR) return; phydev->mii_ts = NULL; enable_status_frames(phydev, false); cancel_delayed_work_sync(&dp83640->ts_work); skb_queue_purge(&dp83640->rx_queue); skb_queue_purge(&dp83640->tx_queue); clock = dp83640_clock_get(dp83640->clock); if (dp83640 == clock->chosen) { ptp_clock_unregister(clock->ptp_clock); clock->chosen = NULL; } else { list_for_each_safe(this, next, &clock->phylist) { tmp = list_entry(this, struct dp83640_private, list); if (tmp == dp83640) { list_del_init(&tmp->list); break; } } } dp83640_clock_put(clock); kfree(dp83640); } static struct phy_driver dp83640_driver = { .phy_id = DP83640_PHY_ID, .phy_id_mask = 0xfffffff0, .name = "NatSemi DP83640", /* PHY_BASIC_FEATURES */ .probe = dp83640_probe, .remove = dp83640_remove, .soft_reset = dp83640_soft_reset, .config_init = dp83640_config_init, .config_intr = dp83640_config_intr, .handle_interrupt = dp83640_handle_interrupt, }; static int __init dp83640_init(void) { return phy_driver_register(&dp83640_driver, THIS_MODULE); } static void __exit dp83640_exit(void) { dp83640_free_clocks(); phy_driver_unregister(&dp83640_driver); } MODULE_DESCRIPTION("National Semiconductor DP83640 PHY driver"); MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>"); MODULE_LICENSE("GPL"); module_init(dp83640_init); module_exit(dp83640_exit); static struct mdio_device_id __maybe_unused dp83640_tbl[] = { { DP83640_PHY_ID, 0xfffffff0 }, { } }; MODULE_DEVICE_TABLE(mdio, dp83640_tbl);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1