Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Michael Wu | 8858 | 89.07% | 7 | 11.67% |
Johannes Berg | 709 | 7.13% | 21 | 35.00% |
Alexey Khoroshilov | 98 | 0.99% | 1 | 1.67% |
Christophe Jaillet | 74 | 0.74% | 1 | 1.67% |
Joe Perches | 35 | 0.35% | 3 | 5.00% |
Vaibhav Gupta | 20 | 0.20% | 1 | 1.67% |
Yi Zhu | 18 | 0.18% | 1 | 1.67% |
Zhang Changzhong | 17 | 0.17% | 1 | 1.67% |
Jiri Pirko | 15 | 0.15% | 1 | 1.67% |
Luis R. Rodriguez | 11 | 0.11% | 1 | 1.67% |
Andrzej Zaborowski | 9 | 0.09% | 1 | 1.67% |
Jiri Benc | 9 | 0.09% | 1 | 1.67% |
Bruno Randolf | 6 | 0.06% | 1 | 1.67% |
Benoit Taine | 6 | 0.06% | 1 | 1.67% |
Dan Carpenter | 6 | 0.06% | 1 | 1.67% |
Samuel Ortiz | 6 | 0.06% | 1 | 1.67% |
Julia Lawall | 5 | 0.05% | 1 | 1.67% |
Alexander Wetzel | 5 | 0.05% | 1 | 1.67% |
Thomas Huehn | 5 | 0.05% | 1 | 1.67% |
Al Viro | 4 | 0.04% | 1 | 1.67% |
Yang Hongyang | 4 | 0.04% | 1 | 1.67% |
Paul Gortmaker | 3 | 0.03% | 1 | 1.67% |
Vasiliy Kulikov | 3 | 0.03% | 1 | 1.67% |
Karl Beldan | 3 | 0.03% | 1 | 1.67% |
Alexey Dobriyan | 3 | 0.03% | 1 | 1.67% |
Axel Lin | 2 | 0.02% | 1 | 1.67% |
Okash Khawaja | 2 | 0.02% | 1 | 1.67% |
Linus Torvalds (pre-git) | 2 | 0.02% | 1 | 1.67% |
Harvey Harrison | 2 | 0.02% | 1 | 1.67% |
Ding Tianhong | 2 | 0.02% | 1 | 1.67% |
Thomas Gleixner | 2 | 0.02% | 1 | 1.67% |
Linus Torvalds | 1 | 0.01% | 1 | 1.67% |
Total | 9945 | 60 |
// SPDX-License-Identifier: GPL-2.0-only /* * Linux device driver for ADMtek ADM8211 (IEEE 802.11b MAC/BBP) * * Copyright (c) 2003, Jouni Malinen <j@w1.fi> * Copyright (c) 2004-2007, Michael Wu <flamingice@sourmilk.net> * Some parts copyright (c) 2003 by David Young <dyoung@pobox.com> * and used with permission. * * Much thanks to Infineon-ADMtek for their support of this driver. */ #include <linux/interrupt.h> #include <linux/if.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <linux/etherdevice.h> #include <linux/pci.h> #include <linux/delay.h> #include <linux/crc32.h> #include <linux/eeprom_93cx6.h> #include <linux/module.h> #include <net/mac80211.h> #include "adm8211.h" MODULE_AUTHOR("Michael Wu <flamingice@sourmilk.net>"); MODULE_AUTHOR("Jouni Malinen <j@w1.fi>"); MODULE_DESCRIPTION("Driver for IEEE 802.11b wireless cards based on ADMtek ADM8211"); MODULE_LICENSE("GPL"); static unsigned int tx_ring_size __read_mostly = 16; static unsigned int rx_ring_size __read_mostly = 16; module_param(tx_ring_size, uint, 0); module_param(rx_ring_size, uint, 0); static const struct pci_device_id adm8211_pci_id_table[] = { /* ADMtek ADM8211 */ { PCI_DEVICE(0x10B7, 0x6000) }, /* 3Com 3CRSHPW796 */ { PCI_DEVICE(0x1200, 0x8201) }, /* ? */ { PCI_DEVICE(0x1317, 0x8201) }, /* ADM8211A */ { PCI_DEVICE(0x1317, 0x8211) }, /* ADM8211B/C */ { 0 } }; static struct ieee80211_rate adm8211_rates[] = { { .bitrate = 10, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 220, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, /* XX ?? */ }; static const struct ieee80211_channel adm8211_channels[] = { { .center_freq = 2412}, { .center_freq = 2417}, { .center_freq = 2422}, { .center_freq = 2427}, { .center_freq = 2432}, { .center_freq = 2437}, { .center_freq = 2442}, { .center_freq = 2447}, { .center_freq = 2452}, { .center_freq = 2457}, { .center_freq = 2462}, { .center_freq = 2467}, { .center_freq = 2472}, { .center_freq = 2484}, }; static void adm8211_eeprom_register_read(struct eeprom_93cx6 *eeprom) { struct adm8211_priv *priv = eeprom->data; u32 reg = ADM8211_CSR_READ(SPR); eeprom->reg_data_in = reg & ADM8211_SPR_SDI; eeprom->reg_data_out = reg & ADM8211_SPR_SDO; eeprom->reg_data_clock = reg & ADM8211_SPR_SCLK; eeprom->reg_chip_select = reg & ADM8211_SPR_SCS; } static void adm8211_eeprom_register_write(struct eeprom_93cx6 *eeprom) { struct adm8211_priv *priv = eeprom->data; u32 reg = 0x4000 | ADM8211_SPR_SRS; if (eeprom->reg_data_in) reg |= ADM8211_SPR_SDI; if (eeprom->reg_data_out) reg |= ADM8211_SPR_SDO; if (eeprom->reg_data_clock) reg |= ADM8211_SPR_SCLK; if (eeprom->reg_chip_select) reg |= ADM8211_SPR_SCS; ADM8211_CSR_WRITE(SPR, reg); ADM8211_CSR_READ(SPR); /* eeprom_delay */ } static int adm8211_read_eeprom(struct ieee80211_hw *dev) { struct adm8211_priv *priv = dev->priv; unsigned int words, i; struct ieee80211_chan_range chan_range; u16 cr49; struct eeprom_93cx6 eeprom = { .data = priv, .register_read = adm8211_eeprom_register_read, .register_write = adm8211_eeprom_register_write }; if (ADM8211_CSR_READ(CSR_TEST0) & ADM8211_CSR_TEST0_EPTYP) { /* 256 * 16-bit = 512 bytes */ eeprom.width = PCI_EEPROM_WIDTH_93C66; words = 256; } else { /* 64 * 16-bit = 128 bytes */ eeprom.width = PCI_EEPROM_WIDTH_93C46; words = 64; } priv->eeprom_len = words * 2; priv->eeprom = kmalloc(priv->eeprom_len, GFP_KERNEL); if (!priv->eeprom) return -ENOMEM; eeprom_93cx6_multiread(&eeprom, 0, (__le16 *)priv->eeprom, words); cr49 = le16_to_cpu(priv->eeprom->cr49); priv->rf_type = (cr49 >> 3) & 0x7; switch (priv->rf_type) { case ADM8211_TYPE_INTERSIL: case ADM8211_TYPE_RFMD: case ADM8211_TYPE_MARVEL: case ADM8211_TYPE_AIROHA: case ADM8211_TYPE_ADMTEK: break; default: if (priv->pdev->revision < ADM8211_REV_CA) priv->rf_type = ADM8211_TYPE_RFMD; else priv->rf_type = ADM8211_TYPE_AIROHA; printk(KERN_WARNING "%s (adm8211): Unknown RFtype %d\n", pci_name(priv->pdev), (cr49 >> 3) & 0x7); } priv->bbp_type = cr49 & 0x7; switch (priv->bbp_type) { case ADM8211_TYPE_INTERSIL: case ADM8211_TYPE_RFMD: case ADM8211_TYPE_MARVEL: case ADM8211_TYPE_AIROHA: case ADM8211_TYPE_ADMTEK: break; default: if (priv->pdev->revision < ADM8211_REV_CA) priv->bbp_type = ADM8211_TYPE_RFMD; else priv->bbp_type = ADM8211_TYPE_ADMTEK; printk(KERN_WARNING "%s (adm8211): Unknown BBPtype: %d\n", pci_name(priv->pdev), cr49 >> 3); } if (priv->eeprom->country_code >= ARRAY_SIZE(cranges)) { printk(KERN_WARNING "%s (adm8211): Invalid country code (%d)\n", pci_name(priv->pdev), priv->eeprom->country_code); chan_range = cranges[2]; } else chan_range = cranges[priv->eeprom->country_code]; printk(KERN_DEBUG "%s (adm8211): Channel range: %d - %d\n", pci_name(priv->pdev), (int)chan_range.min, (int)chan_range.max); BUILD_BUG_ON(sizeof(priv->channels) != sizeof(adm8211_channels)); memcpy(priv->channels, adm8211_channels, sizeof(priv->channels)); priv->band.channels = priv->channels; priv->band.n_channels = ARRAY_SIZE(adm8211_channels); priv->band.bitrates = adm8211_rates; priv->band.n_bitrates = ARRAY_SIZE(adm8211_rates); for (i = 1; i <= ARRAY_SIZE(adm8211_channels); i++) if (i < chan_range.min || i > chan_range.max) priv->channels[i - 1].flags |= IEEE80211_CHAN_DISABLED; switch (priv->eeprom->specific_bbptype) { case ADM8211_BBP_RFMD3000: case ADM8211_BBP_RFMD3002: case ADM8211_BBP_ADM8011: priv->specific_bbptype = priv->eeprom->specific_bbptype; break; default: if (priv->pdev->revision < ADM8211_REV_CA) priv->specific_bbptype = ADM8211_BBP_RFMD3000; else priv->specific_bbptype = ADM8211_BBP_ADM8011; printk(KERN_WARNING "%s (adm8211): Unknown specific BBP: %d\n", pci_name(priv->pdev), priv->eeprom->specific_bbptype); } switch (priv->eeprom->specific_rftype) { case ADM8211_RFMD2948: case ADM8211_RFMD2958: case ADM8211_RFMD2958_RF3000_CONTROL_POWER: case ADM8211_MAX2820: case ADM8211_AL2210L: priv->transceiver_type = priv->eeprom->specific_rftype; break; default: if (priv->pdev->revision == ADM8211_REV_BA) priv->transceiver_type = ADM8211_RFMD2958_RF3000_CONTROL_POWER; else if (priv->pdev->revision == ADM8211_REV_CA) priv->transceiver_type = ADM8211_AL2210L; else if (priv->pdev->revision == ADM8211_REV_AB) priv->transceiver_type = ADM8211_RFMD2948; printk(KERN_WARNING "%s (adm8211): Unknown transceiver: %d\n", pci_name(priv->pdev), priv->eeprom->specific_rftype); break; } printk(KERN_DEBUG "%s (adm8211): RFtype=%d BBPtype=%d Specific BBP=%d " "Transceiver=%d\n", pci_name(priv->pdev), priv->rf_type, priv->bbp_type, priv->specific_bbptype, priv->transceiver_type); return 0; } static inline void adm8211_write_sram(struct ieee80211_hw *dev, u32 addr, u32 data) { struct adm8211_priv *priv = dev->priv; ADM8211_CSR_WRITE(WEPCTL, addr | ADM8211_WEPCTL_TABLE_WR | (priv->pdev->revision < ADM8211_REV_BA ? 0 : ADM8211_WEPCTL_SEL_WEPTABLE )); ADM8211_CSR_READ(WEPCTL); msleep(1); ADM8211_CSR_WRITE(WESK, data); ADM8211_CSR_READ(WESK); msleep(1); } static void adm8211_write_sram_bytes(struct ieee80211_hw *dev, unsigned int addr, u8 *buf, unsigned int len) { struct adm8211_priv *priv = dev->priv; u32 reg = ADM8211_CSR_READ(WEPCTL); unsigned int i; if (priv->pdev->revision < ADM8211_REV_BA) { for (i = 0; i < len; i += 2) { u16 val = buf[i] | (buf[i + 1] << 8); adm8211_write_sram(dev, addr + i / 2, val); } } else { for (i = 0; i < len; i += 4) { u32 val = (buf[i + 0] << 0 ) | (buf[i + 1] << 8 ) | (buf[i + 2] << 16) | (buf[i + 3] << 24); adm8211_write_sram(dev, addr + i / 4, val); } } ADM8211_CSR_WRITE(WEPCTL, reg); } static void adm8211_clear_sram(struct ieee80211_hw *dev) { struct adm8211_priv *priv = dev->priv; u32 reg = ADM8211_CSR_READ(WEPCTL); unsigned int addr; for (addr = 0; addr < ADM8211_SRAM_SIZE; addr++) adm8211_write_sram(dev, addr, 0); ADM8211_CSR_WRITE(WEPCTL, reg); } static int adm8211_get_stats(struct ieee80211_hw *dev, struct ieee80211_low_level_stats *stats) { struct adm8211_priv *priv = dev->priv; memcpy(stats, &priv->stats, sizeof(*stats)); return 0; } static void adm8211_interrupt_tci(struct ieee80211_hw *dev) { struct adm8211_priv *priv = dev->priv; unsigned int dirty_tx; spin_lock(&priv->lock); for (dirty_tx = priv->dirty_tx; priv->cur_tx - dirty_tx; dirty_tx++) { unsigned int entry = dirty_tx % priv->tx_ring_size; u32 status = le32_to_cpu(priv->tx_ring[entry].status); struct ieee80211_tx_info *txi; struct adm8211_tx_ring_info *info; struct sk_buff *skb; if (status & TDES0_CONTROL_OWN || !(status & TDES0_CONTROL_DONE)) break; info = &priv->tx_buffers[entry]; skb = info->skb; txi = IEEE80211_SKB_CB(skb); /* TODO: check TDES0_STATUS_TUF and TDES0_STATUS_TRO */ dma_unmap_single(&priv->pdev->dev, info->mapping, info->skb->len, DMA_TO_DEVICE); ieee80211_tx_info_clear_status(txi); skb_pull(skb, sizeof(struct adm8211_tx_hdr)); memcpy(skb_push(skb, info->hdrlen), skb->cb, info->hdrlen); if (!(txi->flags & IEEE80211_TX_CTL_NO_ACK) && !(status & TDES0_STATUS_ES)) txi->flags |= IEEE80211_TX_STAT_ACK; ieee80211_tx_status_irqsafe(dev, skb); info->skb = NULL; } if (priv->cur_tx - dirty_tx < priv->tx_ring_size - 2) ieee80211_wake_queue(dev, 0); priv->dirty_tx = dirty_tx; spin_unlock(&priv->lock); } static void adm8211_interrupt_rci(struct ieee80211_hw *dev) { struct adm8211_priv *priv = dev->priv; unsigned int entry = priv->cur_rx % priv->rx_ring_size; u32 status; unsigned int pktlen; struct sk_buff *skb, *newskb; unsigned int limit = priv->rx_ring_size; u8 rssi, rate; while (!(priv->rx_ring[entry].status & cpu_to_le32(RDES0_STATUS_OWN))) { if (!limit--) break; status = le32_to_cpu(priv->rx_ring[entry].status); rate = (status & RDES0_STATUS_RXDR) >> 12; rssi = le32_to_cpu(priv->rx_ring[entry].length) & RDES1_STATUS_RSSI; pktlen = status & RDES0_STATUS_FL; if (pktlen > RX_PKT_SIZE) { if (net_ratelimit()) wiphy_debug(dev->wiphy, "frame too long (%d)\n", pktlen); pktlen = RX_PKT_SIZE; } if (!priv->soft_rx_crc && status & RDES0_STATUS_ES) { skb = NULL; /* old buffer will be reused */ /* TODO: update RX error stats */ /* TODO: check RDES0_STATUS_CRC*E */ } else if (pktlen < RX_COPY_BREAK) { skb = dev_alloc_skb(pktlen); if (skb) { dma_sync_single_for_cpu(&priv->pdev->dev, priv->rx_buffers[entry].mapping, pktlen, DMA_FROM_DEVICE); skb_put_data(skb, skb_tail_pointer(priv->rx_buffers[entry].skb), pktlen); dma_sync_single_for_device(&priv->pdev->dev, priv->rx_buffers[entry].mapping, RX_PKT_SIZE, DMA_FROM_DEVICE); } } else { newskb = dev_alloc_skb(RX_PKT_SIZE); if (newskb) { skb = priv->rx_buffers[entry].skb; skb_put(skb, pktlen); dma_unmap_single(&priv->pdev->dev, priv->rx_buffers[entry].mapping, RX_PKT_SIZE, DMA_FROM_DEVICE); priv->rx_buffers[entry].skb = newskb; priv->rx_buffers[entry].mapping = dma_map_single(&priv->pdev->dev, skb_tail_pointer(newskb), RX_PKT_SIZE, DMA_FROM_DEVICE); if (dma_mapping_error(&priv->pdev->dev, priv->rx_buffers[entry].mapping)) { priv->rx_buffers[entry].skb = NULL; dev_kfree_skb(newskb); skb = NULL; /* TODO: update rx dropped stats */ } } else { skb = NULL; /* TODO: update rx dropped stats */ } priv->rx_ring[entry].buffer1 = cpu_to_le32(priv->rx_buffers[entry].mapping); } priv->rx_ring[entry].status = cpu_to_le32(RDES0_STATUS_OWN | RDES0_STATUS_SQL); priv->rx_ring[entry].length = cpu_to_le32(RX_PKT_SIZE | (entry == priv->rx_ring_size - 1 ? RDES1_CONTROL_RER : 0)); if (skb) { struct ieee80211_rx_status rx_status = {0}; if (priv->pdev->revision < ADM8211_REV_CA) rx_status.signal = rssi; else rx_status.signal = 100 - rssi; rx_status.rate_idx = rate; rx_status.freq = adm8211_channels[priv->channel - 1].center_freq; rx_status.band = NL80211_BAND_2GHZ; memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); ieee80211_rx_irqsafe(dev, skb); } entry = (++priv->cur_rx) % priv->rx_ring_size; } /* TODO: check LPC and update stats? */ } static irqreturn_t adm8211_interrupt(int irq, void *dev_id) { #define ADM8211_INT(x) \ do { \ if (unlikely(stsr & ADM8211_STSR_ ## x)) \ wiphy_debug(dev->wiphy, "%s\n", #x); \ } while (0) struct ieee80211_hw *dev = dev_id; struct adm8211_priv *priv = dev->priv; u32 stsr = ADM8211_CSR_READ(STSR); ADM8211_CSR_WRITE(STSR, stsr); if (stsr == 0xffffffff) return IRQ_HANDLED; if (!(stsr & (ADM8211_STSR_NISS | ADM8211_STSR_AISS))) return IRQ_HANDLED; if (stsr & ADM8211_STSR_RCI) adm8211_interrupt_rci(dev); if (stsr & ADM8211_STSR_TCI) adm8211_interrupt_tci(dev); ADM8211_INT(PCF); ADM8211_INT(BCNTC); ADM8211_INT(GPINT); ADM8211_INT(ATIMTC); ADM8211_INT(TSFTF); ADM8211_INT(TSCZ); ADM8211_INT(SQL); ADM8211_INT(WEPTD); ADM8211_INT(ATIME); ADM8211_INT(TEIS); ADM8211_INT(FBE); ADM8211_INT(REIS); ADM8211_INT(GPTT); ADM8211_INT(RPS); ADM8211_INT(RDU); ADM8211_INT(TUF); ADM8211_INT(TPS); return IRQ_HANDLED; #undef ADM8211_INT } #define WRITE_SYN(name,v_mask,v_shift,a_mask,a_shift,bits,prewrite,postwrite)\ static void adm8211_rf_write_syn_ ## name (struct ieee80211_hw *dev, \ u16 addr, u32 value) { \ struct adm8211_priv *priv = dev->priv; \ unsigned int i; \ u32 reg, bitbuf; \ \ value &= v_mask; \ addr &= a_mask; \ bitbuf = (value << v_shift) | (addr << a_shift); \ \ ADM8211_CSR_WRITE(SYNRF, ADM8211_SYNRF_IF_SELECT_1); \ ADM8211_CSR_READ(SYNRF); \ ADM8211_CSR_WRITE(SYNRF, ADM8211_SYNRF_IF_SELECT_0); \ ADM8211_CSR_READ(SYNRF); \ \ if (prewrite) { \ ADM8211_CSR_WRITE(SYNRF, ADM8211_SYNRF_WRITE_SYNDATA_0); \ ADM8211_CSR_READ(SYNRF); \ } \ \ for (i = 0; i <= bits; i++) { \ if (bitbuf & (1 << (bits - i))) \ reg = ADM8211_SYNRF_WRITE_SYNDATA_1; \ else \ reg = ADM8211_SYNRF_WRITE_SYNDATA_0; \ \ ADM8211_CSR_WRITE(SYNRF, reg); \ ADM8211_CSR_READ(SYNRF); \ \ ADM8211_CSR_WRITE(SYNRF, reg | ADM8211_SYNRF_WRITE_CLOCK_1); \ ADM8211_CSR_READ(SYNRF); \ ADM8211_CSR_WRITE(SYNRF, reg | ADM8211_SYNRF_WRITE_CLOCK_0); \ ADM8211_CSR_READ(SYNRF); \ } \ \ if (postwrite == 1) { \ ADM8211_CSR_WRITE(SYNRF, reg | ADM8211_SYNRF_IF_SELECT_0); \ ADM8211_CSR_READ(SYNRF); \ } \ if (postwrite == 2) { \ ADM8211_CSR_WRITE(SYNRF, reg | ADM8211_SYNRF_IF_SELECT_1); \ ADM8211_CSR_READ(SYNRF); \ } \ \ ADM8211_CSR_WRITE(SYNRF, 0); \ ADM8211_CSR_READ(SYNRF); \ } WRITE_SYN(max2820, 0x00FFF, 0, 0x0F, 12, 15, 1, 1) WRITE_SYN(al2210l, 0xFFFFF, 4, 0x0F, 0, 23, 1, 1) WRITE_SYN(rfmd2958, 0x3FFFF, 0, 0x1F, 18, 23, 0, 1) WRITE_SYN(rfmd2948, 0x0FFFF, 4, 0x0F, 0, 21, 0, 2) #undef WRITE_SYN static int adm8211_write_bbp(struct ieee80211_hw *dev, u8 addr, u8 data) { struct adm8211_priv *priv = dev->priv; unsigned int timeout; u32 reg; timeout = 10; while (timeout > 0) { reg = ADM8211_CSR_READ(BBPCTL); if (!(reg & (ADM8211_BBPCTL_WR | ADM8211_BBPCTL_RD))) break; timeout--; msleep(2); } if (timeout == 0) { wiphy_debug(dev->wiphy, "adm8211_write_bbp(%d,%d) failed prewrite (reg=0x%08x)\n", addr, data, reg); return -ETIMEDOUT; } switch (priv->bbp_type) { case ADM8211_TYPE_INTERSIL: reg = ADM8211_BBPCTL_MMISEL; /* three wire interface */ break; case ADM8211_TYPE_RFMD: reg = (0x20 << 24) | ADM8211_BBPCTL_TXCE | ADM8211_BBPCTL_CCAP | (0x01 << 18); break; case ADM8211_TYPE_ADMTEK: reg = (0x20 << 24) | ADM8211_BBPCTL_TXCE | ADM8211_BBPCTL_CCAP | (0x05 << 18); break; } reg |= ADM8211_BBPCTL_WR | (addr << 8) | data; ADM8211_CSR_WRITE(BBPCTL, reg); timeout = 10; while (timeout > 0) { reg = ADM8211_CSR_READ(BBPCTL); if (!(reg & ADM8211_BBPCTL_WR)) break; timeout--; msleep(2); } if (timeout == 0) { ADM8211_CSR_WRITE(BBPCTL, ADM8211_CSR_READ(BBPCTL) & ~ADM8211_BBPCTL_WR); wiphy_debug(dev->wiphy, "adm8211_write_bbp(%d,%d) failed postwrite (reg=0x%08x)\n", addr, data, reg); return -ETIMEDOUT; } return 0; } static int adm8211_rf_set_channel(struct ieee80211_hw *dev, unsigned int chan) { static const u32 adm8211_rfmd2958_reg5[] = {0x22BD, 0x22D2, 0x22E8, 0x22FE, 0x2314, 0x232A, 0x2340, 0x2355, 0x236B, 0x2381, 0x2397, 0x23AD, 0x23C2, 0x23F7}; static const u32 adm8211_rfmd2958_reg6[] = {0x05D17, 0x3A2E8, 0x2E8BA, 0x22E8B, 0x1745D, 0x0BA2E, 0x00000, 0x345D1, 0x28BA2, 0x1D174, 0x11745, 0x05D17, 0x3A2E8, 0x11745}; struct adm8211_priv *priv = dev->priv; u8 ant_power = priv->ant_power > 0x3F ? priv->eeprom->antenna_power[chan - 1] : priv->ant_power; u8 tx_power = priv->tx_power > 0x3F ? priv->eeprom->tx_power[chan - 1] : priv->tx_power; u8 lpf_cutoff = priv->lpf_cutoff == 0xFF ? priv->eeprom->lpf_cutoff[chan - 1] : priv->lpf_cutoff; u8 lnags_thresh = priv->lnags_threshold == 0xFF ? priv->eeprom->lnags_threshold[chan - 1] : priv->lnags_threshold; u32 reg; ADM8211_IDLE(); /* Program synthesizer to new channel */ switch (priv->transceiver_type) { case ADM8211_RFMD2958: case ADM8211_RFMD2958_RF3000_CONTROL_POWER: adm8211_rf_write_syn_rfmd2958(dev, 0x00, 0x04007); adm8211_rf_write_syn_rfmd2958(dev, 0x02, 0x00033); adm8211_rf_write_syn_rfmd2958(dev, 0x05, adm8211_rfmd2958_reg5[chan - 1]); adm8211_rf_write_syn_rfmd2958(dev, 0x06, adm8211_rfmd2958_reg6[chan - 1]); break; case ADM8211_RFMD2948: adm8211_rf_write_syn_rfmd2948(dev, SI4126_MAIN_CONF, SI4126_MAIN_XINDIV2); adm8211_rf_write_syn_rfmd2948(dev, SI4126_POWERDOWN, SI4126_POWERDOWN_PDIB | SI4126_POWERDOWN_PDRB); adm8211_rf_write_syn_rfmd2948(dev, SI4126_PHASE_DET_GAIN, 0); adm8211_rf_write_syn_rfmd2948(dev, SI4126_RF2_N_DIV, (chan == 14 ? 2110 : (2033 + (chan * 5)))); adm8211_rf_write_syn_rfmd2948(dev, SI4126_IF_N_DIV, 1496); adm8211_rf_write_syn_rfmd2948(dev, SI4126_RF2_R_DIV, 44); adm8211_rf_write_syn_rfmd2948(dev, SI4126_IF_R_DIV, 44); break; case ADM8211_MAX2820: adm8211_rf_write_syn_max2820(dev, 0x3, (chan == 14 ? 0x054 : (0x7 + (chan * 5)))); break; case ADM8211_AL2210L: adm8211_rf_write_syn_al2210l(dev, 0x0, (chan == 14 ? 0x229B4 : (0x22967 + (chan * 5)))); break; default: wiphy_debug(dev->wiphy, "unsupported transceiver type %d\n", priv->transceiver_type); break; } /* write BBP regs */ if (priv->bbp_type == ADM8211_TYPE_RFMD) { /* SMC 2635W specific? adm8211b doesn't use the 2948 though.. */ /* TODO: remove if SMC 2635W doesn't need this */ if (priv->transceiver_type == ADM8211_RFMD2948) { reg = ADM8211_CSR_READ(GPIO); reg &= 0xfffc0000; reg |= ADM8211_CSR_GPIO_EN0; if (chan != 14) reg |= ADM8211_CSR_GPIO_O0; ADM8211_CSR_WRITE(GPIO, reg); } if (priv->transceiver_type == ADM8211_RFMD2958) { /* set PCNT2 */ adm8211_rf_write_syn_rfmd2958(dev, 0x0B, 0x07100); /* set PCNT1 P_DESIRED/MID_BIAS */ reg = le16_to_cpu(priv->eeprom->cr49); reg >>= 13; reg <<= 15; reg |= ant_power << 9; adm8211_rf_write_syn_rfmd2958(dev, 0x0A, reg); /* set TXRX TX_GAIN */ adm8211_rf_write_syn_rfmd2958(dev, 0x09, 0x00050 | (priv->pdev->revision < ADM8211_REV_CA ? tx_power : 0)); } else { reg = ADM8211_CSR_READ(PLCPHD); reg &= 0xff00ffff; reg |= tx_power << 18; ADM8211_CSR_WRITE(PLCPHD, reg); } ADM8211_CSR_WRITE(SYNRF, ADM8211_SYNRF_SELRF | ADM8211_SYNRF_PE1 | ADM8211_SYNRF_PHYRST); ADM8211_CSR_READ(SYNRF); msleep(30); /* RF3000 BBP */ if (priv->transceiver_type != ADM8211_RFMD2958) adm8211_write_bbp(dev, RF3000_TX_VAR_GAIN__TX_LEN_EXT, tx_power<<2); adm8211_write_bbp(dev, RF3000_LOW_GAIN_CALIB, lpf_cutoff); adm8211_write_bbp(dev, RF3000_HIGH_GAIN_CALIB, lnags_thresh); adm8211_write_bbp(dev, 0x1c, priv->pdev->revision == ADM8211_REV_BA ? priv->eeprom->cr28 : 0); adm8211_write_bbp(dev, 0x1d, priv->eeprom->cr29); ADM8211_CSR_WRITE(SYNRF, 0); /* Nothing to do for ADMtek BBP */ } else if (priv->bbp_type != ADM8211_TYPE_ADMTEK) wiphy_debug(dev->wiphy, "unsupported BBP type %d\n", priv->bbp_type); ADM8211_RESTORE(); /* update current channel for adhoc (and maybe AP mode) */ reg = ADM8211_CSR_READ(CAP0); reg &= ~0xF; reg |= chan; ADM8211_CSR_WRITE(CAP0, reg); return 0; } static void adm8211_update_mode(struct ieee80211_hw *dev) { struct adm8211_priv *priv = dev->priv; ADM8211_IDLE(); priv->soft_rx_crc = 0; switch (priv->mode) { case NL80211_IFTYPE_STATION: priv->nar &= ~(ADM8211_NAR_PR | ADM8211_NAR_EA); priv->nar |= ADM8211_NAR_ST | ADM8211_NAR_SR; break; case NL80211_IFTYPE_ADHOC: priv->nar &= ~ADM8211_NAR_PR; priv->nar |= ADM8211_NAR_EA | ADM8211_NAR_ST | ADM8211_NAR_SR; /* don't trust the error bits on rev 0x20 and up in adhoc */ if (priv->pdev->revision >= ADM8211_REV_BA) priv->soft_rx_crc = 1; break; case NL80211_IFTYPE_MONITOR: priv->nar &= ~(ADM8211_NAR_EA | ADM8211_NAR_ST); priv->nar |= ADM8211_NAR_PR | ADM8211_NAR_SR; break; } ADM8211_RESTORE(); } static void adm8211_hw_init_syn(struct ieee80211_hw *dev) { struct adm8211_priv *priv = dev->priv; switch (priv->transceiver_type) { case ADM8211_RFMD2958: case ADM8211_RFMD2958_RF3000_CONTROL_POWER: /* comments taken from ADMtek vendor driver */ /* Reset RF2958 after power on */ adm8211_rf_write_syn_rfmd2958(dev, 0x1F, 0x00000); /* Initialize RF VCO Core Bias to maximum */ adm8211_rf_write_syn_rfmd2958(dev, 0x0C, 0x3001F); /* Initialize IF PLL */ adm8211_rf_write_syn_rfmd2958(dev, 0x01, 0x29C03); /* Initialize IF PLL Coarse Tuning */ adm8211_rf_write_syn_rfmd2958(dev, 0x03, 0x1FF6F); /* Initialize RF PLL */ adm8211_rf_write_syn_rfmd2958(dev, 0x04, 0x29403); /* Initialize RF PLL Coarse Tuning */ adm8211_rf_write_syn_rfmd2958(dev, 0x07, 0x1456F); /* Initialize TX gain and filter BW (R9) */ adm8211_rf_write_syn_rfmd2958(dev, 0x09, (priv->transceiver_type == ADM8211_RFMD2958 ? 0x10050 : 0x00050)); /* Initialize CAL register */ adm8211_rf_write_syn_rfmd2958(dev, 0x08, 0x3FFF8); break; case ADM8211_MAX2820: adm8211_rf_write_syn_max2820(dev, 0x1, 0x01E); adm8211_rf_write_syn_max2820(dev, 0x2, 0x001); adm8211_rf_write_syn_max2820(dev, 0x3, 0x054); adm8211_rf_write_syn_max2820(dev, 0x4, 0x310); adm8211_rf_write_syn_max2820(dev, 0x5, 0x000); break; case ADM8211_AL2210L: adm8211_rf_write_syn_al2210l(dev, 0x0, 0x0196C); adm8211_rf_write_syn_al2210l(dev, 0x1, 0x007CB); adm8211_rf_write_syn_al2210l(dev, 0x2, 0x3582F); adm8211_rf_write_syn_al2210l(dev, 0x3, 0x010A9); adm8211_rf_write_syn_al2210l(dev, 0x4, 0x77280); adm8211_rf_write_syn_al2210l(dev, 0x5, 0x45641); adm8211_rf_write_syn_al2210l(dev, 0x6, 0xEA130); adm8211_rf_write_syn_al2210l(dev, 0x7, 0x80000); adm8211_rf_write_syn_al2210l(dev, 0x8, 0x7850F); adm8211_rf_write_syn_al2210l(dev, 0x9, 0xF900C); adm8211_rf_write_syn_al2210l(dev, 0xA, 0x00000); adm8211_rf_write_syn_al2210l(dev, 0xB, 0x00000); break; case ADM8211_RFMD2948: default: break; } } static int adm8211_hw_init_bbp(struct ieee80211_hw *dev) { struct adm8211_priv *priv = dev->priv; u32 reg; /* write addresses */ if (priv->bbp_type == ADM8211_TYPE_INTERSIL) { ADM8211_CSR_WRITE(MMIWA, 0x100E0C0A); ADM8211_CSR_WRITE(MMIRD0, 0x00007C7E); ADM8211_CSR_WRITE(MMIRD1, 0x00100000); } else if (priv->bbp_type == ADM8211_TYPE_RFMD || priv->bbp_type == ADM8211_TYPE_ADMTEK) { /* check specific BBP type */ switch (priv->specific_bbptype) { case ADM8211_BBP_RFMD3000: case ADM8211_BBP_RFMD3002: ADM8211_CSR_WRITE(MMIWA, 0x00009101); ADM8211_CSR_WRITE(MMIRD0, 0x00000301); break; case ADM8211_BBP_ADM8011: ADM8211_CSR_WRITE(MMIWA, 0x00008903); ADM8211_CSR_WRITE(MMIRD0, 0x00001716); reg = ADM8211_CSR_READ(BBPCTL); reg &= ~ADM8211_BBPCTL_TYPE; reg |= 0x5 << 18; ADM8211_CSR_WRITE(BBPCTL, reg); break; } switch (priv->pdev->revision) { case ADM8211_REV_CA: if (priv->transceiver_type == ADM8211_RFMD2958 || priv->transceiver_type == ADM8211_RFMD2958_RF3000_CONTROL_POWER || priv->transceiver_type == ADM8211_RFMD2948) ADM8211_CSR_WRITE(SYNCTL, 0x1 << 22); else if (priv->transceiver_type == ADM8211_MAX2820 || priv->transceiver_type == ADM8211_AL2210L) ADM8211_CSR_WRITE(SYNCTL, 0x3 << 22); break; case ADM8211_REV_BA: reg = ADM8211_CSR_READ(MMIRD1); reg &= 0x0000FFFF; reg |= 0x7e100000; ADM8211_CSR_WRITE(MMIRD1, reg); break; case ADM8211_REV_AB: case ADM8211_REV_AF: default: ADM8211_CSR_WRITE(MMIRD1, 0x7e100000); break; } /* For RFMD */ ADM8211_CSR_WRITE(MACTEST, 0x800); } adm8211_hw_init_syn(dev); /* Set RF Power control IF pin to PE1+PHYRST# */ ADM8211_CSR_WRITE(SYNRF, ADM8211_SYNRF_SELRF | ADM8211_SYNRF_PE1 | ADM8211_SYNRF_PHYRST); ADM8211_CSR_READ(SYNRF); msleep(20); /* write BBP regs */ if (priv->bbp_type == ADM8211_TYPE_RFMD) { /* RF3000 BBP */ /* another set: * 11: c8 * 14: 14 * 15: 50 (chan 1..13; chan 14: d0) * 1c: 00 * 1d: 84 */ adm8211_write_bbp(dev, RF3000_CCA_CTRL, 0x80); /* antenna selection: diversity */ adm8211_write_bbp(dev, RF3000_DIVERSITY__RSSI, 0x80); adm8211_write_bbp(dev, RF3000_TX_VAR_GAIN__TX_LEN_EXT, 0x74); adm8211_write_bbp(dev, RF3000_LOW_GAIN_CALIB, 0x38); adm8211_write_bbp(dev, RF3000_HIGH_GAIN_CALIB, 0x40); if (priv->eeprom->major_version < 2) { adm8211_write_bbp(dev, 0x1c, 0x00); adm8211_write_bbp(dev, 0x1d, 0x80); } else { if (priv->pdev->revision == ADM8211_REV_BA) adm8211_write_bbp(dev, 0x1c, priv->eeprom->cr28); else adm8211_write_bbp(dev, 0x1c, 0x00); adm8211_write_bbp(dev, 0x1d, priv->eeprom->cr29); } } else if (priv->bbp_type == ADM8211_TYPE_ADMTEK) { /* reset baseband */ adm8211_write_bbp(dev, 0x00, 0xFF); /* antenna selection: diversity */ adm8211_write_bbp(dev, 0x07, 0x0A); /* TODO: find documentation for this */ switch (priv->transceiver_type) { case ADM8211_RFMD2958: case ADM8211_RFMD2958_RF3000_CONTROL_POWER: adm8211_write_bbp(dev, 0x00, 0x00); adm8211_write_bbp(dev, 0x01, 0x00); adm8211_write_bbp(dev, 0x02, 0x00); adm8211_write_bbp(dev, 0x03, 0x00); adm8211_write_bbp(dev, 0x06, 0x0f); adm8211_write_bbp(dev, 0x09, 0x00); adm8211_write_bbp(dev, 0x0a, 0x00); adm8211_write_bbp(dev, 0x0b, 0x00); adm8211_write_bbp(dev, 0x0c, 0x00); adm8211_write_bbp(dev, 0x0f, 0xAA); adm8211_write_bbp(dev, 0x10, 0x8c); adm8211_write_bbp(dev, 0x11, 0x43); adm8211_write_bbp(dev, 0x18, 0x40); adm8211_write_bbp(dev, 0x20, 0x23); adm8211_write_bbp(dev, 0x21, 0x02); adm8211_write_bbp(dev, 0x22, 0x28); adm8211_write_bbp(dev, 0x23, 0x30); adm8211_write_bbp(dev, 0x24, 0x2d); adm8211_write_bbp(dev, 0x28, 0x35); adm8211_write_bbp(dev, 0x2a, 0x8c); adm8211_write_bbp(dev, 0x2b, 0x81); adm8211_write_bbp(dev, 0x2c, 0x44); adm8211_write_bbp(dev, 0x2d, 0x0A); adm8211_write_bbp(dev, 0x29, 0x40); adm8211_write_bbp(dev, 0x60, 0x08); adm8211_write_bbp(dev, 0x64, 0x01); break; case ADM8211_MAX2820: adm8211_write_bbp(dev, 0x00, 0x00); adm8211_write_bbp(dev, 0x01, 0x00); adm8211_write_bbp(dev, 0x02, 0x00); adm8211_write_bbp(dev, 0x03, 0x00); adm8211_write_bbp(dev, 0x06, 0x0f); adm8211_write_bbp(dev, 0x09, 0x05); adm8211_write_bbp(dev, 0x0a, 0x02); adm8211_write_bbp(dev, 0x0b, 0x00); adm8211_write_bbp(dev, 0x0c, 0x0f); adm8211_write_bbp(dev, 0x0f, 0x55); adm8211_write_bbp(dev, 0x10, 0x8d); adm8211_write_bbp(dev, 0x11, 0x43); adm8211_write_bbp(dev, 0x18, 0x4a); adm8211_write_bbp(dev, 0x20, 0x20); adm8211_write_bbp(dev, 0x21, 0x02); adm8211_write_bbp(dev, 0x22, 0x23); adm8211_write_bbp(dev, 0x23, 0x30); adm8211_write_bbp(dev, 0x24, 0x2d); adm8211_write_bbp(dev, 0x2a, 0x8c); adm8211_write_bbp(dev, 0x2b, 0x81); adm8211_write_bbp(dev, 0x2c, 0x44); adm8211_write_bbp(dev, 0x29, 0x4a); adm8211_write_bbp(dev, 0x60, 0x2b); adm8211_write_bbp(dev, 0x64, 0x01); break; case ADM8211_AL2210L: adm8211_write_bbp(dev, 0x00, 0x00); adm8211_write_bbp(dev, 0x01, 0x00); adm8211_write_bbp(dev, 0x02, 0x00); adm8211_write_bbp(dev, 0x03, 0x00); adm8211_write_bbp(dev, 0x06, 0x0f); adm8211_write_bbp(dev, 0x07, 0x05); adm8211_write_bbp(dev, 0x08, 0x03); adm8211_write_bbp(dev, 0x09, 0x00); adm8211_write_bbp(dev, 0x0a, 0x00); adm8211_write_bbp(dev, 0x0b, 0x00); adm8211_write_bbp(dev, 0x0c, 0x10); adm8211_write_bbp(dev, 0x0f, 0x55); adm8211_write_bbp(dev, 0x10, 0x8d); adm8211_write_bbp(dev, 0x11, 0x43); adm8211_write_bbp(dev, 0x18, 0x4a); adm8211_write_bbp(dev, 0x20, 0x20); adm8211_write_bbp(dev, 0x21, 0x02); adm8211_write_bbp(dev, 0x22, 0x23); adm8211_write_bbp(dev, 0x23, 0x30); adm8211_write_bbp(dev, 0x24, 0x2d); adm8211_write_bbp(dev, 0x2a, 0xaa); adm8211_write_bbp(dev, 0x2b, 0x81); adm8211_write_bbp(dev, 0x2c, 0x44); adm8211_write_bbp(dev, 0x29, 0xfa); adm8211_write_bbp(dev, 0x60, 0x2d); adm8211_write_bbp(dev, 0x64, 0x01); break; case ADM8211_RFMD2948: break; default: wiphy_debug(dev->wiphy, "unsupported transceiver %d\n", priv->transceiver_type); break; } } else wiphy_debug(dev->wiphy, "unsupported BBP %d\n", priv->bbp_type); ADM8211_CSR_WRITE(SYNRF, 0); /* Set RF CAL control source to MAC control */ reg = ADM8211_CSR_READ(SYNCTL); reg |= ADM8211_SYNCTL_SELCAL; ADM8211_CSR_WRITE(SYNCTL, reg); return 0; } /* configures hw beacons/probe responses */ static int adm8211_set_rate(struct ieee80211_hw *dev) { struct adm8211_priv *priv = dev->priv; u32 reg; int i = 0; u8 rate_buf[12] = {0}; /* write supported rates */ if (priv->pdev->revision != ADM8211_REV_BA) { rate_buf[0] = ARRAY_SIZE(adm8211_rates); for (i = 0; i < ARRAY_SIZE(adm8211_rates); i++) rate_buf[i + 1] = (adm8211_rates[i].bitrate / 5) | 0x80; } else { /* workaround for rev BA specific bug */ rate_buf[0] = 0x04; rate_buf[1] = 0x82; rate_buf[2] = 0x04; rate_buf[3] = 0x0b; rate_buf[4] = 0x16; } adm8211_write_sram_bytes(dev, ADM8211_SRAM_SUPP_RATE, rate_buf, ARRAY_SIZE(adm8211_rates) + 1); reg = ADM8211_CSR_READ(PLCPHD) & 0x00FFFFFF; /* keep bits 0-23 */ reg |= 1 << 15; /* short preamble */ reg |= 110 << 24; ADM8211_CSR_WRITE(PLCPHD, reg); /* MTMLT = 512 TU (max TX MSDU lifetime) * BCNTSIG = plcp_signal (beacon, probe resp, and atim TX rate) * SRTYLIM = 224 (short retry limit, TX header value is default) */ ADM8211_CSR_WRITE(TXLMT, (512 << 16) | (110 << 8) | (224 << 0)); return 0; } static void adm8211_hw_init(struct ieee80211_hw *dev) { struct adm8211_priv *priv = dev->priv; u32 reg; u8 cline; reg = ADM8211_CSR_READ(PAR); reg |= ADM8211_PAR_MRLE | ADM8211_PAR_MRME; reg &= ~(ADM8211_PAR_BAR | ADM8211_PAR_CAL); if (!pci_set_mwi(priv->pdev)) { reg |= 0x1 << 24; pci_read_config_byte(priv->pdev, PCI_CACHE_LINE_SIZE, &cline); switch (cline) { case 0x8: reg |= (0x1 << 14); break; case 0x10: reg |= (0x2 << 14); break; case 0x20: reg |= (0x3 << 14); break; default: reg |= (0x0 << 14); break; } } ADM8211_CSR_WRITE(PAR, reg); reg = ADM8211_CSR_READ(CSR_TEST1); reg &= ~(0xF << 28); reg |= (1 << 28) | (1 << 31); ADM8211_CSR_WRITE(CSR_TEST1, reg); /* lose link after 4 lost beacons */ reg = (0x04 << 21) | ADM8211_WCSR_TSFTWE | ADM8211_WCSR_LSOE; ADM8211_CSR_WRITE(WCSR, reg); /* Disable APM, enable receive FIFO threshold, and set drain receive * threshold to store-and-forward */ reg = ADM8211_CSR_READ(CMDR); reg &= ~(ADM8211_CMDR_APM | ADM8211_CMDR_DRT); reg |= ADM8211_CMDR_RTE | ADM8211_CMDR_DRT_SF; ADM8211_CSR_WRITE(CMDR, reg); adm8211_set_rate(dev); /* 4-bit values: * PWR1UP = 8 * 2 ms * PWR0PAPE = 8 us or 5 us * PWR1PAPE = 1 us or 3 us * PWR0TRSW = 5 us * PWR1TRSW = 12 us * PWR0PE2 = 13 us * PWR1PE2 = 1 us * PWR0TXPE = 8 or 6 */ if (priv->pdev->revision < ADM8211_REV_CA) ADM8211_CSR_WRITE(TOFS2, 0x8815cd18); else ADM8211_CSR_WRITE(TOFS2, 0x8535cd16); /* Enable store and forward for transmit */ priv->nar = ADM8211_NAR_SF | ADM8211_NAR_PB; ADM8211_CSR_WRITE(NAR, priv->nar); /* Reset RF */ ADM8211_CSR_WRITE(SYNRF, ADM8211_SYNRF_RADIO); ADM8211_CSR_READ(SYNRF); msleep(10); ADM8211_CSR_WRITE(SYNRF, 0); ADM8211_CSR_READ(SYNRF); msleep(5); /* Set CFP Max Duration to 0x10 TU */ reg = ADM8211_CSR_READ(CFPP); reg &= ~(0xffff << 8); reg |= 0x0010 << 8; ADM8211_CSR_WRITE(CFPP, reg); /* USCNT = 0x16 (number of system clocks, 22 MHz, in 1us * TUCNT = 0x3ff - Tu counter 1024 us */ ADM8211_CSR_WRITE(TOFS0, (0x16 << 24) | 0x3ff); /* SLOT=20 us, SIFS=110 cycles of 22 MHz (5 us), * DIFS=50 us, EIFS=100 us */ if (priv->pdev->revision < ADM8211_REV_CA) ADM8211_CSR_WRITE(IFST, (20 << 23) | (110 << 15) | (50 << 9) | 100); else ADM8211_CSR_WRITE(IFST, (20 << 23) | (24 << 15) | (50 << 9) | 100); /* PCNT = 1 (MAC idle time awake/sleep, unit S) * RMRD = 2346 * 8 + 1 us (max RX duration) */ ADM8211_CSR_WRITE(RMD, (1 << 16) | 18769); /* MART=65535 us, MIRT=256 us, TSFTOFST=0 us */ ADM8211_CSR_WRITE(RSPT, 0xffffff00); /* Initialize BBP (and SYN) */ adm8211_hw_init_bbp(dev); /* make sure interrupts are off */ ADM8211_CSR_WRITE(IER, 0); /* ACK interrupts */ ADM8211_CSR_WRITE(STSR, ADM8211_CSR_READ(STSR)); /* Setup WEP (turns it off for now) */ reg = ADM8211_CSR_READ(MACTEST); reg &= ~(7 << 20); ADM8211_CSR_WRITE(MACTEST, reg); reg = ADM8211_CSR_READ(WEPCTL); reg &= ~ADM8211_WEPCTL_WEPENABLE; reg |= ADM8211_WEPCTL_WEPRXBYP; ADM8211_CSR_WRITE(WEPCTL, reg); /* Clear the missed-packet counter. */ ADM8211_CSR_READ(LPC); } static int adm8211_hw_reset(struct ieee80211_hw *dev) { struct adm8211_priv *priv = dev->priv; u32 reg, tmp; int timeout = 100; /* Power-on issue */ /* TODO: check if this is necessary */ ADM8211_CSR_WRITE(FRCTL, 0); /* Reset the chip */ tmp = ADM8211_CSR_READ(PAR); ADM8211_CSR_WRITE(PAR, ADM8211_PAR_SWR); while ((ADM8211_CSR_READ(PAR) & ADM8211_PAR_SWR) && timeout--) msleep(50); if (timeout <= 0) return -ETIMEDOUT; ADM8211_CSR_WRITE(PAR, tmp); if (priv->pdev->revision == ADM8211_REV_BA && (priv->transceiver_type == ADM8211_RFMD2958_RF3000_CONTROL_POWER || priv->transceiver_type == ADM8211_RFMD2958)) { reg = ADM8211_CSR_READ(CSR_TEST1); reg |= (1 << 4) | (1 << 5); ADM8211_CSR_WRITE(CSR_TEST1, reg); } else if (priv->pdev->revision == ADM8211_REV_CA) { reg = ADM8211_CSR_READ(CSR_TEST1); reg &= ~((1 << 4) | (1 << 5)); ADM8211_CSR_WRITE(CSR_TEST1, reg); } ADM8211_CSR_WRITE(FRCTL, 0); reg = ADM8211_CSR_READ(CSR_TEST0); reg |= ADM8211_CSR_TEST0_EPRLD; /* EEPROM Recall */ ADM8211_CSR_WRITE(CSR_TEST0, reg); adm8211_clear_sram(dev); return 0; } static u64 adm8211_get_tsft(struct ieee80211_hw *dev, struct ieee80211_vif *vif) { struct adm8211_priv *priv = dev->priv; u32 tsftl; u64 tsft; tsftl = ADM8211_CSR_READ(TSFTL); tsft = ADM8211_CSR_READ(TSFTH); tsft <<= 32; tsft |= tsftl; return tsft; } static void adm8211_set_interval(struct ieee80211_hw *dev, unsigned short bi, unsigned short li) { struct adm8211_priv *priv = dev->priv; u32 reg; /* BP (beacon interval) = data->beacon_interval * LI (listen interval) = data->listen_interval (in beacon intervals) */ reg = (bi << 16) | li; ADM8211_CSR_WRITE(BPLI, reg); } static void adm8211_set_bssid(struct ieee80211_hw *dev, const u8 *bssid) { struct adm8211_priv *priv = dev->priv; u32 reg; ADM8211_CSR_WRITE(BSSID0, le32_to_cpu(*(__le32 *)bssid)); reg = ADM8211_CSR_READ(ABDA1); reg &= 0x0000ffff; reg |= (bssid[4] << 16) | (bssid[5] << 24); ADM8211_CSR_WRITE(ABDA1, reg); } static int adm8211_config(struct ieee80211_hw *dev, u32 changed) { struct adm8211_priv *priv = dev->priv; struct ieee80211_conf *conf = &dev->conf; int channel = ieee80211_frequency_to_channel(conf->chandef.chan->center_freq); if (channel != priv->channel) { priv->channel = channel; adm8211_rf_set_channel(dev, priv->channel); } return 0; } static void adm8211_bss_info_changed(struct ieee80211_hw *dev, struct ieee80211_vif *vif, struct ieee80211_bss_conf *conf, u64 changes) { struct adm8211_priv *priv = dev->priv; if (!(changes & BSS_CHANGED_BSSID)) return; if (!ether_addr_equal(conf->bssid, priv->bssid)) { adm8211_set_bssid(dev, conf->bssid); memcpy(priv->bssid, conf->bssid, ETH_ALEN); } } static u64 adm8211_prepare_multicast(struct ieee80211_hw *hw, struct netdev_hw_addr_list *mc_list) { unsigned int bit_nr; u32 mc_filter[2]; struct netdev_hw_addr *ha; mc_filter[1] = mc_filter[0] = 0; netdev_hw_addr_list_for_each(ha, mc_list) { bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26; bit_nr &= 0x3F; mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31); } return mc_filter[0] | ((u64)(mc_filter[1]) << 32); } static void adm8211_configure_filter(struct ieee80211_hw *dev, unsigned int changed_flags, unsigned int *total_flags, u64 multicast) { static const u8 bcast[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; struct adm8211_priv *priv = dev->priv; unsigned int new_flags; u32 mc_filter[2]; mc_filter[0] = multicast; mc_filter[1] = multicast >> 32; new_flags = 0; if (*total_flags & FIF_ALLMULTI || multicast == ~(0ULL)) { new_flags |= FIF_ALLMULTI; priv->nar &= ~ADM8211_NAR_PR; priv->nar |= ADM8211_NAR_MM; mc_filter[1] = mc_filter[0] = ~0; } else { priv->nar &= ~(ADM8211_NAR_MM | ADM8211_NAR_PR); } ADM8211_IDLE_RX(); ADM8211_CSR_WRITE(MAR0, mc_filter[0]); ADM8211_CSR_WRITE(MAR1, mc_filter[1]); ADM8211_CSR_READ(NAR); if (priv->nar & ADM8211_NAR_PR) ieee80211_hw_set(dev, RX_INCLUDES_FCS); else __clear_bit(IEEE80211_HW_RX_INCLUDES_FCS, dev->flags); if (*total_flags & FIF_BCN_PRBRESP_PROMISC) adm8211_set_bssid(dev, bcast); else adm8211_set_bssid(dev, priv->bssid); ADM8211_RESTORE(); *total_flags = new_flags; } static int adm8211_add_interface(struct ieee80211_hw *dev, struct ieee80211_vif *vif) { struct adm8211_priv *priv = dev->priv; if (priv->mode != NL80211_IFTYPE_MONITOR) return -EOPNOTSUPP; switch (vif->type) { case NL80211_IFTYPE_STATION: priv->mode = vif->type; break; default: return -EOPNOTSUPP; } ADM8211_IDLE(); ADM8211_CSR_WRITE(PAR0, le32_to_cpu(*(__le32 *)vif->addr)); ADM8211_CSR_WRITE(PAR1, le16_to_cpu(*(__le16 *)(vif->addr + 4))); adm8211_update_mode(dev); ADM8211_RESTORE(); return 0; } static void adm8211_remove_interface(struct ieee80211_hw *dev, struct ieee80211_vif *vif) { struct adm8211_priv *priv = dev->priv; priv->mode = NL80211_IFTYPE_MONITOR; } static int adm8211_init_rings(struct ieee80211_hw *dev) { struct adm8211_priv *priv = dev->priv; struct adm8211_desc *desc = NULL; struct adm8211_rx_ring_info *rx_info; struct adm8211_tx_ring_info *tx_info; unsigned int i; for (i = 0; i < priv->rx_ring_size; i++) { desc = &priv->rx_ring[i]; desc->status = 0; desc->length = cpu_to_le32(RX_PKT_SIZE); priv->rx_buffers[i].skb = NULL; } /* Mark the end of RX ring; hw returns to base address after this * descriptor */ desc->length |= cpu_to_le32(RDES1_CONTROL_RER); for (i = 0; i < priv->rx_ring_size; i++) { desc = &priv->rx_ring[i]; rx_info = &priv->rx_buffers[i]; rx_info->skb = dev_alloc_skb(RX_PKT_SIZE); if (rx_info->skb == NULL) break; rx_info->mapping = dma_map_single(&priv->pdev->dev, skb_tail_pointer(rx_info->skb), RX_PKT_SIZE, DMA_FROM_DEVICE); if (dma_mapping_error(&priv->pdev->dev, rx_info->mapping)) { dev_kfree_skb(rx_info->skb); rx_info->skb = NULL; break; } desc->buffer1 = cpu_to_le32(rx_info->mapping); desc->status = cpu_to_le32(RDES0_STATUS_OWN | RDES0_STATUS_SQL); } /* Setup TX ring. TX buffers descriptors will be filled in as needed */ for (i = 0; i < priv->tx_ring_size; i++) { desc = &priv->tx_ring[i]; tx_info = &priv->tx_buffers[i]; tx_info->skb = NULL; tx_info->mapping = 0; desc->status = 0; } desc->length = cpu_to_le32(TDES1_CONTROL_TER); priv->cur_rx = priv->cur_tx = priv->dirty_tx = 0; ADM8211_CSR_WRITE(RDB, priv->rx_ring_dma); ADM8211_CSR_WRITE(TDBD, priv->tx_ring_dma); return 0; } static void adm8211_free_rings(struct ieee80211_hw *dev) { struct adm8211_priv *priv = dev->priv; unsigned int i; for (i = 0; i < priv->rx_ring_size; i++) { if (!priv->rx_buffers[i].skb) continue; dma_unmap_single(&priv->pdev->dev, priv->rx_buffers[i].mapping, RX_PKT_SIZE, DMA_FROM_DEVICE); dev_kfree_skb(priv->rx_buffers[i].skb); } for (i = 0; i < priv->tx_ring_size; i++) { if (!priv->tx_buffers[i].skb) continue; dma_unmap_single(&priv->pdev->dev, priv->tx_buffers[i].mapping, priv->tx_buffers[i].skb->len, DMA_TO_DEVICE); dev_kfree_skb(priv->tx_buffers[i].skb); } } static int adm8211_start(struct ieee80211_hw *dev) { struct adm8211_priv *priv = dev->priv; int retval; /* Power up MAC and RF chips */ retval = adm8211_hw_reset(dev); if (retval) { wiphy_err(dev->wiphy, "hardware reset failed\n"); goto fail; } retval = adm8211_init_rings(dev); if (retval) { wiphy_err(dev->wiphy, "failed to initialize rings\n"); goto fail; } /* Init hardware */ adm8211_hw_init(dev); adm8211_rf_set_channel(dev, priv->channel); retval = request_irq(priv->pdev->irq, adm8211_interrupt, IRQF_SHARED, "adm8211", dev); if (retval) { wiphy_err(dev->wiphy, "failed to register IRQ handler\n"); goto fail; } ADM8211_CSR_WRITE(IER, ADM8211_IER_NIE | ADM8211_IER_AIE | ADM8211_IER_RCIE | ADM8211_IER_TCIE | ADM8211_IER_TDUIE | ADM8211_IER_GPTIE); priv->mode = NL80211_IFTYPE_MONITOR; adm8211_update_mode(dev); ADM8211_CSR_WRITE(RDR, 0); adm8211_set_interval(dev, 100, 10); return 0; fail: return retval; } static void adm8211_stop(struct ieee80211_hw *dev) { struct adm8211_priv *priv = dev->priv; priv->mode = NL80211_IFTYPE_UNSPECIFIED; priv->nar = 0; ADM8211_CSR_WRITE(NAR, 0); ADM8211_CSR_WRITE(IER, 0); ADM8211_CSR_READ(NAR); free_irq(priv->pdev->irq, dev); adm8211_free_rings(dev); } static void adm8211_calc_durations(int *dur, int *plcp, size_t payload_len, int len, int plcp_signal, int short_preamble) { /* Alternative calculation from NetBSD: */ /* IEEE 802.11b durations for DSSS PHY in microseconds */ #define IEEE80211_DUR_DS_LONG_PREAMBLE 144 #define IEEE80211_DUR_DS_SHORT_PREAMBLE 72 #define IEEE80211_DUR_DS_FAST_PLCPHDR 24 #define IEEE80211_DUR_DS_SLOW_PLCPHDR 48 #define IEEE80211_DUR_DS_SLOW_ACK 112 #define IEEE80211_DUR_DS_FAST_ACK 56 #define IEEE80211_DUR_DS_SLOW_CTS 112 #define IEEE80211_DUR_DS_FAST_CTS 56 #define IEEE80211_DUR_DS_SLOT 20 #define IEEE80211_DUR_DS_SIFS 10 int remainder; *dur = (80 * (24 + payload_len) + plcp_signal - 1) / plcp_signal; if (plcp_signal <= PLCP_SIGNAL_2M) /* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */ *dur += 3 * (IEEE80211_DUR_DS_SIFS + IEEE80211_DUR_DS_SHORT_PREAMBLE + IEEE80211_DUR_DS_FAST_PLCPHDR) + IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK; else /* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */ *dur += 3 * (IEEE80211_DUR_DS_SIFS + IEEE80211_DUR_DS_SHORT_PREAMBLE + IEEE80211_DUR_DS_FAST_PLCPHDR) + IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK; /* lengthen duration if long preamble */ if (!short_preamble) *dur += 3 * (IEEE80211_DUR_DS_LONG_PREAMBLE - IEEE80211_DUR_DS_SHORT_PREAMBLE) + 3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR - IEEE80211_DUR_DS_FAST_PLCPHDR); *plcp = (80 * len) / plcp_signal; remainder = (80 * len) % plcp_signal; if (plcp_signal == PLCP_SIGNAL_11M && remainder <= 30 && remainder > 0) *plcp = (*plcp | 0x8000) + 1; else if (remainder) (*plcp)++; } /* Transmit skb w/adm8211_tx_hdr (802.11 header created by hardware) */ static int adm8211_tx_raw(struct ieee80211_hw *dev, struct sk_buff *skb, u16 plcp_signal, size_t hdrlen) { struct adm8211_priv *priv = dev->priv; unsigned long flags; dma_addr_t mapping; unsigned int entry; u32 flag; mapping = dma_map_single(&priv->pdev->dev, skb->data, skb->len, DMA_TO_DEVICE); if (dma_mapping_error(&priv->pdev->dev, mapping)) return -ENOMEM; spin_lock_irqsave(&priv->lock, flags); if (priv->cur_tx - priv->dirty_tx == priv->tx_ring_size / 2) flag = TDES1_CONTROL_IC | TDES1_CONTROL_LS | TDES1_CONTROL_FS; else flag = TDES1_CONTROL_LS | TDES1_CONTROL_FS; if (priv->cur_tx - priv->dirty_tx == priv->tx_ring_size - 2) ieee80211_stop_queue(dev, 0); entry = priv->cur_tx % priv->tx_ring_size; priv->tx_buffers[entry].skb = skb; priv->tx_buffers[entry].mapping = mapping; priv->tx_buffers[entry].hdrlen = hdrlen; priv->tx_ring[entry].buffer1 = cpu_to_le32(mapping); if (entry == priv->tx_ring_size - 1) flag |= TDES1_CONTROL_TER; priv->tx_ring[entry].length = cpu_to_le32(flag | skb->len); /* Set TX rate (SIGNAL field in PLCP PPDU format) */ flag = TDES0_CONTROL_OWN | (plcp_signal << 20) | 8 /* ? */; priv->tx_ring[entry].status = cpu_to_le32(flag); priv->cur_tx++; spin_unlock_irqrestore(&priv->lock, flags); /* Trigger transmit poll */ ADM8211_CSR_WRITE(TDR, 0); return 0; } /* Put adm8211_tx_hdr on skb and transmit */ static void adm8211_tx(struct ieee80211_hw *dev, struct ieee80211_tx_control *control, struct sk_buff *skb) { struct adm8211_tx_hdr *txhdr; size_t payload_len, hdrlen; int plcp, dur, len, plcp_signal, short_preamble; struct ieee80211_hdr *hdr; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_rate *txrate = ieee80211_get_tx_rate(dev, info); u8 rc_flags; rc_flags = info->control.rates[0].flags; short_preamble = !!(rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE); plcp_signal = txrate->bitrate; hdr = (struct ieee80211_hdr *)skb->data; hdrlen = ieee80211_hdrlen(hdr->frame_control); memcpy(skb->cb, skb->data, hdrlen); hdr = (struct ieee80211_hdr *)skb->cb; skb_pull(skb, hdrlen); payload_len = skb->len; txhdr = skb_push(skb, sizeof(*txhdr)); memset(txhdr, 0, sizeof(*txhdr)); memcpy(txhdr->da, ieee80211_get_DA(hdr), ETH_ALEN); txhdr->signal = plcp_signal; txhdr->frame_body_size = cpu_to_le16(payload_len); txhdr->frame_control = hdr->frame_control; len = hdrlen + payload_len + FCS_LEN; txhdr->frag = cpu_to_le16(0x0FFF); adm8211_calc_durations(&dur, &plcp, payload_len, len, plcp_signal, short_preamble); txhdr->plcp_frag_head_len = cpu_to_le16(plcp); txhdr->plcp_frag_tail_len = cpu_to_le16(plcp); txhdr->dur_frag_head = cpu_to_le16(dur); txhdr->dur_frag_tail = cpu_to_le16(dur); txhdr->header_control = cpu_to_le16(ADM8211_TXHDRCTL_ENABLE_EXTEND_HEADER); if (short_preamble) txhdr->header_control |= cpu_to_le16(ADM8211_TXHDRCTL_SHORT_PREAMBLE); if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) txhdr->header_control |= cpu_to_le16(ADM8211_TXHDRCTL_ENABLE_RTS); txhdr->retry_limit = info->control.rates[0].count; if (adm8211_tx_raw(dev, skb, plcp_signal, hdrlen)) { /* Drop packet */ ieee80211_free_txskb(dev, skb); } } static int adm8211_alloc_rings(struct ieee80211_hw *dev) { struct adm8211_priv *priv = dev->priv; unsigned int ring_size; priv->rx_buffers = kmalloc(sizeof(*priv->rx_buffers) * priv->rx_ring_size + sizeof(*priv->tx_buffers) * priv->tx_ring_size, GFP_KERNEL); if (!priv->rx_buffers) return -ENOMEM; priv->tx_buffers = (void *)priv->rx_buffers + sizeof(*priv->rx_buffers) * priv->rx_ring_size; /* Allocate TX/RX descriptors */ ring_size = sizeof(struct adm8211_desc) * priv->rx_ring_size + sizeof(struct adm8211_desc) * priv->tx_ring_size; priv->rx_ring = dma_alloc_coherent(&priv->pdev->dev, ring_size, &priv->rx_ring_dma, GFP_KERNEL); if (!priv->rx_ring) { kfree(priv->rx_buffers); priv->rx_buffers = NULL; priv->tx_buffers = NULL; return -ENOMEM; } priv->tx_ring = priv->rx_ring + priv->rx_ring_size; priv->tx_ring_dma = priv->rx_ring_dma + sizeof(struct adm8211_desc) * priv->rx_ring_size; return 0; } static const struct ieee80211_ops adm8211_ops = { .tx = adm8211_tx, .wake_tx_queue = ieee80211_handle_wake_tx_queue, .start = adm8211_start, .stop = adm8211_stop, .add_interface = adm8211_add_interface, .remove_interface = adm8211_remove_interface, .config = adm8211_config, .bss_info_changed = adm8211_bss_info_changed, .prepare_multicast = adm8211_prepare_multicast, .configure_filter = adm8211_configure_filter, .get_stats = adm8211_get_stats, .get_tsf = adm8211_get_tsft }; static int adm8211_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct ieee80211_hw *dev; struct adm8211_priv *priv; unsigned long mem_len; unsigned int io_len; int err; u32 reg; u8 perm_addr[ETH_ALEN]; err = pci_enable_device(pdev); if (err) { printk(KERN_ERR "%s (adm8211): Cannot enable new PCI device\n", pci_name(pdev)); return err; } io_len = pci_resource_len(pdev, 0); mem_len = pci_resource_len(pdev, 1); if (io_len < 256 || mem_len < 1024) { printk(KERN_ERR "%s (adm8211): Too short PCI resources\n", pci_name(pdev)); err = -ENOMEM; goto err_disable_pdev; } /* check signature */ pci_read_config_dword(pdev, 0x80 /* CR32 */, ®); if (reg != ADM8211_SIG1 && reg != ADM8211_SIG2) { printk(KERN_ERR "%s (adm8211): Invalid signature (0x%x)\n", pci_name(pdev), reg); err = -EINVAL; goto err_disable_pdev; } err = pci_request_regions(pdev, "adm8211"); if (err) { printk(KERN_ERR "%s (adm8211): Cannot obtain PCI resources\n", pci_name(pdev)); return err; /* someone else grabbed it? don't disable it */ } err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); if (err) { printk(KERN_ERR "%s (adm8211): No suitable DMA available\n", pci_name(pdev)); goto err_free_reg; } pci_set_master(pdev); dev = ieee80211_alloc_hw(sizeof(*priv), &adm8211_ops); if (!dev) { printk(KERN_ERR "%s (adm8211): ieee80211 alloc failed\n", pci_name(pdev)); err = -ENOMEM; goto err_free_reg; } priv = dev->priv; priv->pdev = pdev; spin_lock_init(&priv->lock); SET_IEEE80211_DEV(dev, &pdev->dev); pci_set_drvdata(pdev, dev); priv->map = pci_iomap(pdev, 1, mem_len); if (!priv->map) priv->map = pci_iomap(pdev, 0, io_len); if (!priv->map) { printk(KERN_ERR "%s (adm8211): Cannot map device memory\n", pci_name(pdev)); err = -ENOMEM; goto err_free_dev; } priv->rx_ring_size = rx_ring_size; priv->tx_ring_size = tx_ring_size; err = adm8211_alloc_rings(dev); if (err) { printk(KERN_ERR "%s (adm8211): Cannot allocate TX/RX ring\n", pci_name(pdev)); goto err_iounmap; } *(__le32 *)perm_addr = cpu_to_le32(ADM8211_CSR_READ(PAR0)); *(__le16 *)&perm_addr[4] = cpu_to_le16(ADM8211_CSR_READ(PAR1) & 0xFFFF); if (!is_valid_ether_addr(perm_addr)) { printk(KERN_WARNING "%s (adm8211): Invalid hwaddr in EEPROM!\n", pci_name(pdev)); eth_random_addr(perm_addr); } SET_IEEE80211_PERM_ADDR(dev, perm_addr); dev->extra_tx_headroom = sizeof(struct adm8211_tx_hdr); /* dev->flags = RX_INCLUDES_FCS in promisc mode */ ieee80211_hw_set(dev, SIGNAL_UNSPEC); dev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION); dev->max_signal = 100; /* FIXME: find better value */ dev->queues = 1; /* ADM8211C supports more, maybe ADM8211B too */ priv->retry_limit = 3; priv->ant_power = 0x40; priv->tx_power = 0x40; priv->lpf_cutoff = 0xFF; priv->lnags_threshold = 0xFF; priv->mode = NL80211_IFTYPE_UNSPECIFIED; /* Power-on issue. EEPROM won't read correctly without */ if (pdev->revision >= ADM8211_REV_BA) { ADM8211_CSR_WRITE(FRCTL, 0); ADM8211_CSR_READ(FRCTL); ADM8211_CSR_WRITE(FRCTL, 1); ADM8211_CSR_READ(FRCTL); msleep(100); } err = adm8211_read_eeprom(dev); if (err) { printk(KERN_ERR "%s (adm8211): Can't alloc eeprom buffer\n", pci_name(pdev)); goto err_free_desc; } priv->channel = 1; dev->wiphy->bands[NL80211_BAND_2GHZ] = &priv->band; wiphy_ext_feature_set(dev->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST); err = ieee80211_register_hw(dev); if (err) { printk(KERN_ERR "%s (adm8211): Cannot register device\n", pci_name(pdev)); goto err_free_eeprom; } wiphy_info(dev->wiphy, "hwaddr %pM, Rev 0x%02x\n", dev->wiphy->perm_addr, pdev->revision); return 0; err_free_eeprom: kfree(priv->eeprom); err_free_desc: dma_free_coherent(&pdev->dev, sizeof(struct adm8211_desc) * priv->rx_ring_size + sizeof(struct adm8211_desc) * priv->tx_ring_size, priv->rx_ring, priv->rx_ring_dma); kfree(priv->rx_buffers); err_iounmap: pci_iounmap(pdev, priv->map); err_free_dev: ieee80211_free_hw(dev); err_free_reg: pci_release_regions(pdev); err_disable_pdev: pci_disable_device(pdev); return err; } static void adm8211_remove(struct pci_dev *pdev) { struct ieee80211_hw *dev = pci_get_drvdata(pdev); struct adm8211_priv *priv; if (!dev) return; ieee80211_unregister_hw(dev); priv = dev->priv; dma_free_coherent(&pdev->dev, sizeof(struct adm8211_desc) * priv->rx_ring_size + sizeof(struct adm8211_desc) * priv->tx_ring_size, priv->rx_ring, priv->rx_ring_dma); kfree(priv->rx_buffers); kfree(priv->eeprom); pci_iounmap(pdev, priv->map); pci_release_regions(pdev); pci_disable_device(pdev); ieee80211_free_hw(dev); } #define adm8211_suspend NULL #define adm8211_resume NULL MODULE_DEVICE_TABLE(pci, adm8211_pci_id_table); static SIMPLE_DEV_PM_OPS(adm8211_pm_ops, adm8211_suspend, adm8211_resume); /* TODO: implement enable_wake */ static struct pci_driver adm8211_driver = { .name = "adm8211", .id_table = adm8211_pci_id_table, .probe = adm8211_probe, .remove = adm8211_remove, .driver.pm = &adm8211_pm_ops, }; module_pci_driver(adm8211_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1