Contributors: 100
Author Tokens Token Proportion Commits Commit Proportion
James Ketrenos 45531 79.41% 23 8.81%
Yi Zhu 5762 10.05% 65 24.90%
John W. Linville 1428 2.49% 8 3.07%
Dan J Williams 760 1.33% 7 2.68%
Mike Kershaw 629 1.10% 1 0.38%
David Howells 339 0.59% 1 0.38%
Hong Liu 325 0.57% 8 3.07%
Stanislav Yakovlev 254 0.44% 7 2.68%
Olivier Hochreutiner 238 0.42% 1 0.38%
Tejun Heo 168 0.29% 2 0.77%
Joe Perches 167 0.29% 7 2.68%
Reinette Chatre 147 0.26% 2 0.77%
Andy Shevchenko 128 0.22% 1 0.38%
Al Viro 125 0.22% 7 2.68%
Stephen Hemminger 109 0.19% 4 1.53%
Jiri Slaby 95 0.17% 1 0.38%
Andrew Morton 91 0.16% 1 0.38%
Greg Kroah-Hartman 80 0.14% 2 0.77%
Benoit Boissinot 59 0.10% 1 0.38%
tangmeng 58 0.10% 1 0.38%
Christophe Jaillet 58 0.10% 1 0.38%
Helmut Schaa 53 0.09% 1 0.38%
Matthew Garrett 43 0.07% 1 0.38%
Jeff Garzik 38 0.07% 7 2.68%
Dan Carpenter 38 0.07% 3 1.15%
Ben M Cahill 34 0.06% 2 0.77%
Vaibhav Gupta 32 0.06% 1 0.38%
Frans Pop 32 0.06% 1 0.38%
Jarod Wilson 28 0.05% 1 0.38%
Adrian Bunk 26 0.05% 3 1.15%
Johannes Berg 25 0.04% 5 1.92%
Stanislaw Gruszka 24 0.04% 1 0.38%
Takashi Iwai 24 0.04% 1 0.38%
Ben Hutchings 23 0.04% 2 0.77%
Panagiotis Issaris 19 0.03% 2 0.77%
Indan Zupancic 19 0.03% 1 0.38%
Ding Tianhong 17 0.03% 1 0.38%
Jouni Malinen 17 0.03% 1 0.38%
Jiri Benc 16 0.03% 1 0.38%
Masakazu Mokuno 14 0.02% 1 0.38%
Henrik Brix Andersen 14 0.02% 1 0.38%
Lee Jones 14 0.02% 1 0.38%
Allen Pais 13 0.02% 1 0.38%
Peter Jones 11 0.02% 2 0.77%
Daniel Drake 10 0.02% 1 0.38%
Eric Sesterhenn / Snakebyte 9 0.02% 1 0.38%
Wei Yongjun 9 0.02% 3 1.15%
Pavel Roskin 9 0.02% 1 0.38%
Florian Westphal 9 0.02% 1 0.38%
Rickard Strandqvist 9 0.02% 1 0.38%
Kees Cook 9 0.02% 1 0.38%
Romain Perier 9 0.02% 1 0.38%
Bill Moss 8 0.01% 1 0.38%
Yang Hongyang 8 0.01% 1 0.38%
Lucas De Marchi 7 0.01% 1 0.38%
Jakub Kiciński 6 0.01% 3 1.15%
Benoit Taine 6 0.01% 1 0.38%
Jean Tourrilhes 6 0.01% 1 0.38%
Arnaldo Carvalho de Melo 6 0.01% 2 0.77%
Pavel Machek 5 0.01% 2 0.77%
Jason Yan 5 0.01% 2 0.77%
Linus Torvalds (pre-git) 4 0.01% 2 0.77%
Phong Tran 4 0.01% 1 0.38%
André Goddard Rosa 4 0.01% 1 0.38%
David S. Miller 4 0.01% 1 0.38%
Linus Torvalds 4 0.01% 2 0.77%
Rick Jones 4 0.01% 1 0.38%
Luis R. Rodriguez 4 0.01% 1 0.38%
Alexander Beregalov 4 0.01% 1 0.38%
Marcin Ślusarz 3 0.01% 1 0.38%
Julia Lawall 3 0.01% 1 0.38%
Thomas Gleixner 3 0.01% 2 0.77%
Yan Burman 3 0.01% 1 0.38%
Arnd Bergmann 3 0.01% 2 0.77%
Anton Blanchard 3 0.01% 1 0.38%
Jesper Juhl 3 0.01% 1 0.38%
Wolfram Sang 3 0.01% 1 0.38%
Silvan Jegen 2 0.00% 1 0.38%
Alexey Dobriyan 2 0.00% 1 0.38%
ubuntu@tjworld.net 2 0.00% 1 0.38%
Colin Ian King 2 0.00% 2 0.77%
Masahiro Yamada 2 0.00% 2 0.77%
Christoph Hellwig 1 0.00% 1 0.38%
Masanari Iida 1 0.00% 1 0.38%
Dave Jones 1 0.00% 1 0.38%
Jiri Pirko 1 0.00% 1 0.38%
Arvind Yadav 1 0.00% 1 0.38%
Harvey Harrison 1 0.00% 1 0.38%
Jilin Yuan 1 0.00% 1 0.38%
caihuoqing 1 0.00% 1 0.38%
Varsha Rao 1 0.00% 1 0.38%
Jean Delvare 1 0.00% 1 0.38%
Arjan van de Ven 1 0.00% 1 0.38%
David Gibson 1 0.00% 1 0.38%
Tim Gardner 1 0.00% 1 0.38%
Bhumika Goyal 1 0.00% 1 0.38%
Nick Andrew 1 0.00% 1 0.38%
Matt LaPlante 1 0.00% 1 0.38%
Gustavo A. R. Silva 1 0.00% 1 0.38%
Patrick McHardy 1 0.00% 1 0.38%
Total 57339 261


// SPDX-License-Identifier: GPL-2.0-only
/******************************************************************************

  Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.

  802.11 status code portion of this file from ethereal-0.10.6:
    Copyright 2000, Axis Communications AB
    Ethereal - Network traffic analyzer
    By Gerald Combs <gerald@ethereal.com>
    Copyright 1998 Gerald Combs


  Contact Information:
  Intel Linux Wireless <ilw@linux.intel.com>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

******************************************************************************/

#include <linux/sched.h>
#include <linux/slab.h>
#include <net/cfg80211-wext.h>
#include "ipw2200.h"
#include "ipw.h"


#ifndef KBUILD_EXTMOD
#define VK "k"
#else
#define VK
#endif

#ifdef CONFIG_IPW2200_DEBUG
#define VD "d"
#else
#define VD
#endif

#ifdef CONFIG_IPW2200_MONITOR
#define VM "m"
#else
#define VM
#endif

#ifdef CONFIG_IPW2200_PROMISCUOUS
#define VP "p"
#else
#define VP
#endif

#ifdef CONFIG_IPW2200_RADIOTAP
#define VR "r"
#else
#define VR
#endif

#ifdef CONFIG_IPW2200_QOS
#define VQ "q"
#else
#define VQ
#endif

#define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
#define DRV_DESCRIPTION	"Intel(R) PRO/Wireless 2200/2915 Network Driver"
#define DRV_COPYRIGHT	"Copyright(c) 2003-2006 Intel Corporation"
#define DRV_VERSION     IPW2200_VERSION

#define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)

MODULE_DESCRIPTION(DRV_DESCRIPTION);
MODULE_VERSION(DRV_VERSION);
MODULE_AUTHOR(DRV_COPYRIGHT);
MODULE_LICENSE("GPL");
MODULE_FIRMWARE("ipw2200-ibss.fw");
#ifdef CONFIG_IPW2200_MONITOR
MODULE_FIRMWARE("ipw2200-sniffer.fw");
#endif
MODULE_FIRMWARE("ipw2200-bss.fw");

static int cmdlog = 0;
static int debug = 0;
static int default_channel = 0;
static int network_mode = 0;

static u32 ipw_debug_level;
static int associate;
static int auto_create = 1;
static int led_support = 1;
static int disable = 0;
static int bt_coexist = 0;
static int hwcrypto = 0;
static int roaming = 1;
static const char ipw_modes[] = {
	'a', 'b', 'g', '?'
};
static int antenna = CFG_SYS_ANTENNA_BOTH;

#ifdef CONFIG_IPW2200_PROMISCUOUS
static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
#endif

static struct ieee80211_rate ipw2200_rates[] = {
	{ .bitrate = 10 },
	{ .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
	{ .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
	{ .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
	{ .bitrate = 60 },
	{ .bitrate = 90 },
	{ .bitrate = 120 },
	{ .bitrate = 180 },
	{ .bitrate = 240 },
	{ .bitrate = 360 },
	{ .bitrate = 480 },
	{ .bitrate = 540 }
};

#define ipw2200_a_rates		(ipw2200_rates + 4)
#define ipw2200_num_a_rates	8
#define ipw2200_bg_rates	(ipw2200_rates + 0)
#define ipw2200_num_bg_rates	12

/* Ugly macro to convert literal channel numbers into their mhz equivalents
 * There are certianly some conditions that will break this (like feeding it '30')
 * but they shouldn't arise since nothing talks on channel 30. */
#define ieee80211chan2mhz(x) \
	(((x) <= 14) ? \
	(((x) == 14) ? 2484 : ((x) * 5) + 2407) : \
	((x) + 1000) * 5)

#ifdef CONFIG_IPW2200_QOS
static int qos_enable = 0;
static int qos_burst_enable = 0;
static int qos_no_ack_mask = 0;
static int burst_duration_CCK = 0;
static int burst_duration_OFDM = 0;

static struct libipw_qos_parameters def_qos_parameters_OFDM = {
	{QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
	 QOS_TX3_CW_MIN_OFDM},
	{QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
	 QOS_TX3_CW_MAX_OFDM},
	{QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
	{QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
	{QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
	 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
};

static struct libipw_qos_parameters def_qos_parameters_CCK = {
	{QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
	 QOS_TX3_CW_MIN_CCK},
	{QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
	 QOS_TX3_CW_MAX_CCK},
	{QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
	{QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
	{QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
	 QOS_TX3_TXOP_LIMIT_CCK}
};

static struct libipw_qos_parameters def_parameters_OFDM = {
	{DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
	 DEF_TX3_CW_MIN_OFDM},
	{DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
	 DEF_TX3_CW_MAX_OFDM},
	{DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
	{DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
	{DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
	 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
};

static struct libipw_qos_parameters def_parameters_CCK = {
	{DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
	 DEF_TX3_CW_MIN_CCK},
	{DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
	 DEF_TX3_CW_MAX_CCK},
	{DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
	{DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
	{DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
	 DEF_TX3_TXOP_LIMIT_CCK}
};

static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };

static int from_priority_to_tx_queue[] = {
	IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
	IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
};

static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);

static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
				       *qos_param);
static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
				     *qos_param);
#endif				/* CONFIG_IPW2200_QOS */

static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
static void ipw_remove_current_network(struct ipw_priv *priv);
static void ipw_rx(struct ipw_priv *priv);
static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
				struct clx2_tx_queue *txq, int qindex);
static int ipw_queue_reset(struct ipw_priv *priv);

static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, const void *buf,
			     int len, int sync);

static void ipw_tx_queue_free(struct ipw_priv *);

static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
static void ipw_rx_queue_replenish(void *);
static int ipw_up(struct ipw_priv *);
static void ipw_bg_up(struct work_struct *work);
static void ipw_down(struct ipw_priv *);
static void ipw_bg_down(struct work_struct *work);
static int ipw_config(struct ipw_priv *);
static int init_supported_rates(struct ipw_priv *priv,
				struct ipw_supported_rates *prates);
static void ipw_set_hwcrypto_keys(struct ipw_priv *);
static void ipw_send_wep_keys(struct ipw_priv *, int);

static int snprint_line(char *buf, size_t count,
			const u8 * data, u32 len, u32 ofs)
{
	int out, i, j, l;
	char c;

	out = scnprintf(buf, count, "%08X", ofs);

	for (l = 0, i = 0; i < 2; i++) {
		out += scnprintf(buf + out, count - out, " ");
		for (j = 0; j < 8 && l < len; j++, l++)
			out += scnprintf(buf + out, count - out, "%02X ",
					data[(i * 8 + j)]);
		for (; j < 8; j++)
			out += scnprintf(buf + out, count - out, "   ");
	}

	out += scnprintf(buf + out, count - out, " ");
	for (l = 0, i = 0; i < 2; i++) {
		out += scnprintf(buf + out, count - out, " ");
		for (j = 0; j < 8 && l < len; j++, l++) {
			c = data[(i * 8 + j)];
			if (!isascii(c) || !isprint(c))
				c = '.';

			out += scnprintf(buf + out, count - out, "%c", c);
		}

		for (; j < 8; j++)
			out += scnprintf(buf + out, count - out, " ");
	}

	return out;
}

static void printk_buf(int level, const u8 * data, u32 len)
{
	char line[81];
	u32 ofs = 0;
	if (!(ipw_debug_level & level))
		return;

	while (len) {
		snprint_line(line, sizeof(line), &data[ofs],
			     min(len, 16U), ofs);
		printk(KERN_DEBUG "%s\n", line);
		ofs += 16;
		len -= min(len, 16U);
	}
}

static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
{
	size_t out = size;
	u32 ofs = 0;
	int total = 0;

	while (size && len) {
		out = snprint_line(output, size, &data[ofs],
				   min_t(size_t, len, 16U), ofs);

		ofs += 16;
		output += out;
		size -= out;
		len -= min_t(size_t, len, 16U);
		total += out;
	}
	return total;
}

/* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
#define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)

/* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
#define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)

/* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
{
	IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
		     __LINE__, (u32) (b), (u32) (c));
	_ipw_write_reg8(a, b, c);
}

/* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
{
	IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
		     __LINE__, (u32) (b), (u32) (c));
	_ipw_write_reg16(a, b, c);
}

/* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
{
	IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
		     __LINE__, (u32) (b), (u32) (c));
	_ipw_write_reg32(a, b, c);
}

/* 8-bit direct write (low 4K) */
static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
		u8 val)
{
	writeb(val, ipw->hw_base + ofs);
}

/* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
#define ipw_write8(ipw, ofs, val) do { \
	IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
			__LINE__, (u32)(ofs), (u32)(val)); \
	_ipw_write8(ipw, ofs, val); \
} while (0)

/* 16-bit direct write (low 4K) */
static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
		u16 val)
{
	writew(val, ipw->hw_base + ofs);
}

/* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
#define ipw_write16(ipw, ofs, val) do { \
	IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
			__LINE__, (u32)(ofs), (u32)(val)); \
	_ipw_write16(ipw, ofs, val); \
} while (0)

/* 32-bit direct write (low 4K) */
static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
		u32 val)
{
	writel(val, ipw->hw_base + ofs);
}

/* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
#define ipw_write32(ipw, ofs, val) do { \
	IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
			__LINE__, (u32)(ofs), (u32)(val)); \
	_ipw_write32(ipw, ofs, val); \
} while (0)

/* 8-bit direct read (low 4K) */
static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
{
	return readb(ipw->hw_base + ofs);
}

/* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
#define ipw_read8(ipw, ofs) ({ \
	IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
			(u32)(ofs)); \
	_ipw_read8(ipw, ofs); \
})

/* 16-bit direct read (low 4K) */
static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
{
	return readw(ipw->hw_base + ofs);
}

/* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
#define ipw_read16(ipw, ofs) ({ \
	IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
			(u32)(ofs)); \
	_ipw_read16(ipw, ofs); \
})

/* 32-bit direct read (low 4K) */
static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
{
	return readl(ipw->hw_base + ofs);
}

/* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
#define ipw_read32(ipw, ofs) ({ \
	IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
			(u32)(ofs)); \
	_ipw_read32(ipw, ofs); \
})

static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
/* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
#define ipw_read_indirect(a, b, c, d) ({ \
	IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
			__LINE__, (u32)(b), (u32)(d)); \
	_ipw_read_indirect(a, b, c, d); \
})

/* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
				int num);
#define ipw_write_indirect(a, b, c, d) do { \
	IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
			__LINE__, (u32)(b), (u32)(d)); \
	_ipw_write_indirect(a, b, c, d); \
} while (0)

/* 32-bit indirect write (above 4K) */
static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
{
	IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
	_ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
	_ipw_write32(priv, IPW_INDIRECT_DATA, value);
}

/* 8-bit indirect write (above 4K) */
static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
{
	u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;	/* dword align */
	u32 dif_len = reg - aligned_addr;

	IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
	_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
	_ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
}

/* 16-bit indirect write (above 4K) */
static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
{
	u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;	/* dword align */
	u32 dif_len = (reg - aligned_addr) & (~0x1ul);

	IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
	_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
	_ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
}

/* 8-bit indirect read (above 4K) */
static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
{
	u32 word;
	_ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
	IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
	word = _ipw_read32(priv, IPW_INDIRECT_DATA);
	return (word >> ((reg & 0x3) * 8)) & 0xff;
}

/* 32-bit indirect read (above 4K) */
static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
{
	u32 value;

	IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);

	_ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
	value = _ipw_read32(priv, IPW_INDIRECT_DATA);
	IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
	return value;
}

/* General purpose, no alignment requirement, iterative (multi-byte) read, */
/*    for area above 1st 4K of SRAM/reg space */
static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
			       int num)
{
	u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;	/* dword align */
	u32 dif_len = addr - aligned_addr;
	u32 i;

	IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);

	if (num <= 0) {
		return;
	}

	/* Read the first dword (or portion) byte by byte */
	if (unlikely(dif_len)) {
		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
		/* Start reading at aligned_addr + dif_len */
		for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
			*buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
		aligned_addr += 4;
	}

	/* Read all of the middle dwords as dwords, with auto-increment */
	_ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
	for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
		*(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);

	/* Read the last dword (or portion) byte by byte */
	if (unlikely(num)) {
		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
		for (i = 0; num > 0; i++, num--)
			*buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
	}
}

/* General purpose, no alignment requirement, iterative (multi-byte) write, */
/*    for area above 1st 4K of SRAM/reg space */
static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
				int num)
{
	u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;	/* dword align */
	u32 dif_len = addr - aligned_addr;
	u32 i;

	IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);

	if (num <= 0) {
		return;
	}

	/* Write the first dword (or portion) byte by byte */
	if (unlikely(dif_len)) {
		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
		/* Start writing at aligned_addr + dif_len */
		for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
			_ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
		aligned_addr += 4;
	}

	/* Write all of the middle dwords as dwords, with auto-increment */
	_ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
	for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
		_ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);

	/* Write the last dword (or portion) byte by byte */
	if (unlikely(num)) {
		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
		for (i = 0; num > 0; i++, num--, buf++)
			_ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
	}
}

/* General purpose, no alignment requirement, iterative (multi-byte) write, */
/*    for 1st 4K of SRAM/regs space */
static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
			     int num)
{
	memcpy_toio((priv->hw_base + addr), buf, num);
}

/* Set bit(s) in low 4K of SRAM/regs */
static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
{
	ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
}

/* Clear bit(s) in low 4K of SRAM/regs */
static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
{
	ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
}

static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
{
	if (priv->status & STATUS_INT_ENABLED)
		return;
	priv->status |= STATUS_INT_ENABLED;
	ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
}

static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
{
	if (!(priv->status & STATUS_INT_ENABLED))
		return;
	priv->status &= ~STATUS_INT_ENABLED;
	ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
}

static inline void ipw_enable_interrupts(struct ipw_priv *priv)
{
	unsigned long flags;

	spin_lock_irqsave(&priv->irq_lock, flags);
	__ipw_enable_interrupts(priv);
	spin_unlock_irqrestore(&priv->irq_lock, flags);
}

static inline void ipw_disable_interrupts(struct ipw_priv *priv)
{
	unsigned long flags;

	spin_lock_irqsave(&priv->irq_lock, flags);
	__ipw_disable_interrupts(priv);
	spin_unlock_irqrestore(&priv->irq_lock, flags);
}

static char *ipw_error_desc(u32 val)
{
	switch (val) {
	case IPW_FW_ERROR_OK:
		return "ERROR_OK";
	case IPW_FW_ERROR_FAIL:
		return "ERROR_FAIL";
	case IPW_FW_ERROR_MEMORY_UNDERFLOW:
		return "MEMORY_UNDERFLOW";
	case IPW_FW_ERROR_MEMORY_OVERFLOW:
		return "MEMORY_OVERFLOW";
	case IPW_FW_ERROR_BAD_PARAM:
		return "BAD_PARAM";
	case IPW_FW_ERROR_BAD_CHECKSUM:
		return "BAD_CHECKSUM";
	case IPW_FW_ERROR_NMI_INTERRUPT:
		return "NMI_INTERRUPT";
	case IPW_FW_ERROR_BAD_DATABASE:
		return "BAD_DATABASE";
	case IPW_FW_ERROR_ALLOC_FAIL:
		return "ALLOC_FAIL";
	case IPW_FW_ERROR_DMA_UNDERRUN:
		return "DMA_UNDERRUN";
	case IPW_FW_ERROR_DMA_STATUS:
		return "DMA_STATUS";
	case IPW_FW_ERROR_DINO_ERROR:
		return "DINO_ERROR";
	case IPW_FW_ERROR_EEPROM_ERROR:
		return "EEPROM_ERROR";
	case IPW_FW_ERROR_SYSASSERT:
		return "SYSASSERT";
	case IPW_FW_ERROR_FATAL_ERROR:
		return "FATAL_ERROR";
	default:
		return "UNKNOWN_ERROR";
	}
}

static void ipw_dump_error_log(struct ipw_priv *priv,
			       struct ipw_fw_error *error)
{
	u32 i;

	if (!error) {
		IPW_ERROR("Error allocating and capturing error log.  "
			  "Nothing to dump.\n");
		return;
	}

	IPW_ERROR("Start IPW Error Log Dump:\n");
	IPW_ERROR("Status: 0x%08X, Config: %08X\n",
		  error->status, error->config);

	for (i = 0; i < error->elem_len; i++)
		IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
			  ipw_error_desc(error->elem[i].desc),
			  error->elem[i].time,
			  error->elem[i].blink1,
			  error->elem[i].blink2,
			  error->elem[i].link1,
			  error->elem[i].link2, error->elem[i].data);
	for (i = 0; i < error->log_len; i++)
		IPW_ERROR("%i\t0x%08x\t%i\n",
			  error->log[i].time,
			  error->log[i].data, error->log[i].event);
}

static inline int ipw_is_init(struct ipw_priv *priv)
{
	return (priv->status & STATUS_INIT) ? 1 : 0;
}

static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
{
	u32 addr, field_info, field_len, field_count, total_len;

	IPW_DEBUG_ORD("ordinal = %i\n", ord);

	if (!priv || !val || !len) {
		IPW_DEBUG_ORD("Invalid argument\n");
		return -EINVAL;
	}

	/* verify device ordinal tables have been initialized */
	if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
		IPW_DEBUG_ORD("Access ordinals before initialization\n");
		return -EINVAL;
	}

	switch (IPW_ORD_TABLE_ID_MASK & ord) {
	case IPW_ORD_TABLE_0_MASK:
		/*
		 * TABLE 0: Direct access to a table of 32 bit values
		 *
		 * This is a very simple table with the data directly
		 * read from the table
		 */

		/* remove the table id from the ordinal */
		ord &= IPW_ORD_TABLE_VALUE_MASK;

		/* boundary check */
		if (ord > priv->table0_len) {
			IPW_DEBUG_ORD("ordinal value (%i) longer then "
				      "max (%i)\n", ord, priv->table0_len);
			return -EINVAL;
		}

		/* verify we have enough room to store the value */
		if (*len < sizeof(u32)) {
			IPW_DEBUG_ORD("ordinal buffer length too small, "
				      "need %zd\n", sizeof(u32));
			return -EINVAL;
		}

		IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
			      ord, priv->table0_addr + (ord << 2));

		*len = sizeof(u32);
		ord <<= 2;
		*((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
		break;

	case IPW_ORD_TABLE_1_MASK:
		/*
		 * TABLE 1: Indirect access to a table of 32 bit values
		 *
		 * This is a fairly large table of u32 values each
		 * representing starting addr for the data (which is
		 * also a u32)
		 */

		/* remove the table id from the ordinal */
		ord &= IPW_ORD_TABLE_VALUE_MASK;

		/* boundary check */
		if (ord > priv->table1_len) {
			IPW_DEBUG_ORD("ordinal value too long\n");
			return -EINVAL;
		}

		/* verify we have enough room to store the value */
		if (*len < sizeof(u32)) {
			IPW_DEBUG_ORD("ordinal buffer length too small, "
				      "need %zd\n", sizeof(u32));
			return -EINVAL;
		}

		*((u32 *) val) =
		    ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
		*len = sizeof(u32);
		break;

	case IPW_ORD_TABLE_2_MASK:
		/*
		 * TABLE 2: Indirect access to a table of variable sized values
		 *
		 * This table consist of six values, each containing
		 *     - dword containing the starting offset of the data
		 *     - dword containing the lengh in the first 16bits
		 *       and the count in the second 16bits
		 */

		/* remove the table id from the ordinal */
		ord &= IPW_ORD_TABLE_VALUE_MASK;

		/* boundary check */
		if (ord > priv->table2_len) {
			IPW_DEBUG_ORD("ordinal value too long\n");
			return -EINVAL;
		}

		/* get the address of statistic */
		addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));

		/* get the second DW of statistics ;
		 * two 16-bit words - first is length, second is count */
		field_info =
		    ipw_read_reg32(priv,
				   priv->table2_addr + (ord << 3) +
				   sizeof(u32));

		/* get each entry length */
		field_len = *((u16 *) & field_info);

		/* get number of entries */
		field_count = *(((u16 *) & field_info) + 1);

		/* abort if not enough memory */
		total_len = field_len * field_count;
		if (total_len > *len) {
			*len = total_len;
			return -EINVAL;
		}

		*len = total_len;
		if (!total_len)
			return 0;

		IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
			      "field_info = 0x%08x\n",
			      addr, total_len, field_info);
		ipw_read_indirect(priv, addr, val, total_len);
		break;

	default:
		IPW_DEBUG_ORD("Invalid ordinal!\n");
		return -EINVAL;

	}

	return 0;
}

static void ipw_init_ordinals(struct ipw_priv *priv)
{
	priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
	priv->table0_len = ipw_read32(priv, priv->table0_addr);

	IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
		      priv->table0_addr, priv->table0_len);

	priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
	priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);

	IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
		      priv->table1_addr, priv->table1_len);

	priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
	priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
	priv->table2_len &= 0x0000ffff;	/* use first two bytes */

	IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
		      priv->table2_addr, priv->table2_len);

}

static u32 ipw_register_toggle(u32 reg)
{
	reg &= ~IPW_START_STANDBY;
	if (reg & IPW_GATE_ODMA)
		reg &= ~IPW_GATE_ODMA;
	if (reg & IPW_GATE_IDMA)
		reg &= ~IPW_GATE_IDMA;
	if (reg & IPW_GATE_ADMA)
		reg &= ~IPW_GATE_ADMA;
	return reg;
}

/*
 * LED behavior:
 * - On radio ON, turn on any LEDs that require to be on during start
 * - On initialization, start unassociated blink
 * - On association, disable unassociated blink
 * - On disassociation, start unassociated blink
 * - On radio OFF, turn off any LEDs started during radio on
 *
 */
#define LD_TIME_LINK_ON msecs_to_jiffies(300)
#define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
#define LD_TIME_ACT_ON msecs_to_jiffies(250)

static void ipw_led_link_on(struct ipw_priv *priv)
{
	unsigned long flags;
	u32 led;

	/* If configured to not use LEDs, or nic_type is 1,
	 * then we don't toggle a LINK led */
	if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
		return;

	spin_lock_irqsave(&priv->lock, flags);

	if (!(priv->status & STATUS_RF_KILL_MASK) &&
	    !(priv->status & STATUS_LED_LINK_ON)) {
		IPW_DEBUG_LED("Link LED On\n");
		led = ipw_read_reg32(priv, IPW_EVENT_REG);
		led |= priv->led_association_on;

		led = ipw_register_toggle(led);

		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
		ipw_write_reg32(priv, IPW_EVENT_REG, led);

		priv->status |= STATUS_LED_LINK_ON;

		/* If we aren't associated, schedule turning the LED off */
		if (!(priv->status & STATUS_ASSOCIATED))
			schedule_delayed_work(&priv->led_link_off,
					      LD_TIME_LINK_ON);
	}

	spin_unlock_irqrestore(&priv->lock, flags);
}

static void ipw_bg_led_link_on(struct work_struct *work)
{
	struct ipw_priv *priv =
		container_of(work, struct ipw_priv, led_link_on.work);
	mutex_lock(&priv->mutex);
	ipw_led_link_on(priv);
	mutex_unlock(&priv->mutex);
}

static void ipw_led_link_off(struct ipw_priv *priv)
{
	unsigned long flags;
	u32 led;

	/* If configured not to use LEDs, or nic type is 1,
	 * then we don't goggle the LINK led. */
	if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
		return;

	spin_lock_irqsave(&priv->lock, flags);

	if (priv->status & STATUS_LED_LINK_ON) {
		led = ipw_read_reg32(priv, IPW_EVENT_REG);
		led &= priv->led_association_off;
		led = ipw_register_toggle(led);

		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
		ipw_write_reg32(priv, IPW_EVENT_REG, led);

		IPW_DEBUG_LED("Link LED Off\n");

		priv->status &= ~STATUS_LED_LINK_ON;

		/* If we aren't associated and the radio is on, schedule
		 * turning the LED on (blink while unassociated) */
		if (!(priv->status & STATUS_RF_KILL_MASK) &&
		    !(priv->status & STATUS_ASSOCIATED))
			schedule_delayed_work(&priv->led_link_on,
					      LD_TIME_LINK_OFF);

	}

	spin_unlock_irqrestore(&priv->lock, flags);
}

static void ipw_bg_led_link_off(struct work_struct *work)
{
	struct ipw_priv *priv =
		container_of(work, struct ipw_priv, led_link_off.work);
	mutex_lock(&priv->mutex);
	ipw_led_link_off(priv);
	mutex_unlock(&priv->mutex);
}

static void __ipw_led_activity_on(struct ipw_priv *priv)
{
	u32 led;

	if (priv->config & CFG_NO_LED)
		return;

	if (priv->status & STATUS_RF_KILL_MASK)
		return;

	if (!(priv->status & STATUS_LED_ACT_ON)) {
		led = ipw_read_reg32(priv, IPW_EVENT_REG);
		led |= priv->led_activity_on;

		led = ipw_register_toggle(led);

		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
		ipw_write_reg32(priv, IPW_EVENT_REG, led);

		IPW_DEBUG_LED("Activity LED On\n");

		priv->status |= STATUS_LED_ACT_ON;

		cancel_delayed_work(&priv->led_act_off);
		schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
	} else {
		/* Reschedule LED off for full time period */
		cancel_delayed_work(&priv->led_act_off);
		schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
	}
}

#if 0
void ipw_led_activity_on(struct ipw_priv *priv)
{
	unsigned long flags;
	spin_lock_irqsave(&priv->lock, flags);
	__ipw_led_activity_on(priv);
	spin_unlock_irqrestore(&priv->lock, flags);
}
#endif  /*  0  */

static void ipw_led_activity_off(struct ipw_priv *priv)
{
	unsigned long flags;
	u32 led;

	if (priv->config & CFG_NO_LED)
		return;

	spin_lock_irqsave(&priv->lock, flags);

	if (priv->status & STATUS_LED_ACT_ON) {
		led = ipw_read_reg32(priv, IPW_EVENT_REG);
		led &= priv->led_activity_off;

		led = ipw_register_toggle(led);

		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
		ipw_write_reg32(priv, IPW_EVENT_REG, led);

		IPW_DEBUG_LED("Activity LED Off\n");

		priv->status &= ~STATUS_LED_ACT_ON;
	}

	spin_unlock_irqrestore(&priv->lock, flags);
}

static void ipw_bg_led_activity_off(struct work_struct *work)
{
	struct ipw_priv *priv =
		container_of(work, struct ipw_priv, led_act_off.work);
	mutex_lock(&priv->mutex);
	ipw_led_activity_off(priv);
	mutex_unlock(&priv->mutex);
}

static void ipw_led_band_on(struct ipw_priv *priv)
{
	unsigned long flags;
	u32 led;

	/* Only nic type 1 supports mode LEDs */
	if (priv->config & CFG_NO_LED ||
	    priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
		return;

	spin_lock_irqsave(&priv->lock, flags);

	led = ipw_read_reg32(priv, IPW_EVENT_REG);
	if (priv->assoc_network->mode == IEEE_A) {
		led |= priv->led_ofdm_on;
		led &= priv->led_association_off;
		IPW_DEBUG_LED("Mode LED On: 802.11a\n");
	} else if (priv->assoc_network->mode == IEEE_G) {
		led |= priv->led_ofdm_on;
		led |= priv->led_association_on;
		IPW_DEBUG_LED("Mode LED On: 802.11g\n");
	} else {
		led &= priv->led_ofdm_off;
		led |= priv->led_association_on;
		IPW_DEBUG_LED("Mode LED On: 802.11b\n");
	}

	led = ipw_register_toggle(led);

	IPW_DEBUG_LED("Reg: 0x%08X\n", led);
	ipw_write_reg32(priv, IPW_EVENT_REG, led);

	spin_unlock_irqrestore(&priv->lock, flags);
}

static void ipw_led_band_off(struct ipw_priv *priv)
{
	unsigned long flags;
	u32 led;

	/* Only nic type 1 supports mode LEDs */
	if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
		return;

	spin_lock_irqsave(&priv->lock, flags);

	led = ipw_read_reg32(priv, IPW_EVENT_REG);
	led &= priv->led_ofdm_off;
	led &= priv->led_association_off;

	led = ipw_register_toggle(led);

	IPW_DEBUG_LED("Reg: 0x%08X\n", led);
	ipw_write_reg32(priv, IPW_EVENT_REG, led);

	spin_unlock_irqrestore(&priv->lock, flags);
}

static void ipw_led_radio_on(struct ipw_priv *priv)
{
	ipw_led_link_on(priv);
}

static void ipw_led_radio_off(struct ipw_priv *priv)
{
	ipw_led_activity_off(priv);
	ipw_led_link_off(priv);
}

static void ipw_led_link_up(struct ipw_priv *priv)
{
	/* Set the Link Led on for all nic types */
	ipw_led_link_on(priv);
}

static void ipw_led_link_down(struct ipw_priv *priv)
{
	ipw_led_activity_off(priv);
	ipw_led_link_off(priv);

	if (priv->status & STATUS_RF_KILL_MASK)
		ipw_led_radio_off(priv);
}

static void ipw_led_init(struct ipw_priv *priv)
{
	priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];

	/* Set the default PINs for the link and activity leds */
	priv->led_activity_on = IPW_ACTIVITY_LED;
	priv->led_activity_off = ~(IPW_ACTIVITY_LED);

	priv->led_association_on = IPW_ASSOCIATED_LED;
	priv->led_association_off = ~(IPW_ASSOCIATED_LED);

	/* Set the default PINs for the OFDM leds */
	priv->led_ofdm_on = IPW_OFDM_LED;
	priv->led_ofdm_off = ~(IPW_OFDM_LED);

	switch (priv->nic_type) {
	case EEPROM_NIC_TYPE_1:
		/* In this NIC type, the LEDs are reversed.... */
		priv->led_activity_on = IPW_ASSOCIATED_LED;
		priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
		priv->led_association_on = IPW_ACTIVITY_LED;
		priv->led_association_off = ~(IPW_ACTIVITY_LED);

		if (!(priv->config & CFG_NO_LED))
			ipw_led_band_on(priv);

		/* And we don't blink link LEDs for this nic, so
		 * just return here */
		return;

	case EEPROM_NIC_TYPE_3:
	case EEPROM_NIC_TYPE_2:
	case EEPROM_NIC_TYPE_4:
	case EEPROM_NIC_TYPE_0:
		break;

	default:
		IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
			       priv->nic_type);
		priv->nic_type = EEPROM_NIC_TYPE_0;
		break;
	}

	if (!(priv->config & CFG_NO_LED)) {
		if (priv->status & STATUS_ASSOCIATED)
			ipw_led_link_on(priv);
		else
			ipw_led_link_off(priv);
	}
}

static void ipw_led_shutdown(struct ipw_priv *priv)
{
	ipw_led_activity_off(priv);
	ipw_led_link_off(priv);
	ipw_led_band_off(priv);
	cancel_delayed_work(&priv->led_link_on);
	cancel_delayed_work(&priv->led_link_off);
	cancel_delayed_work(&priv->led_act_off);
}

/*
 * The following adds a new attribute to the sysfs representation
 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
 * used for controlling the debug level.
 *
 * See the level definitions in ipw for details.
 */
static ssize_t debug_level_show(struct device_driver *d, char *buf)
{
	return sprintf(buf, "0x%08X\n", ipw_debug_level);
}

static ssize_t debug_level_store(struct device_driver *d, const char *buf,
				 size_t count)
{
	char *p = (char *)buf;
	u32 val;

	if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
		p++;
		if (p[0] == 'x' || p[0] == 'X')
			p++;
		val = simple_strtoul(p, &p, 16);
	} else
		val = simple_strtoul(p, &p, 10);
	if (p == buf)
		printk(KERN_INFO DRV_NAME
		       ": %s is not in hex or decimal form.\n", buf);
	else
		ipw_debug_level = val;

	return strnlen(buf, count);
}
static DRIVER_ATTR_RW(debug_level);

static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
{
	/* length = 1st dword in log */
	return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
}

static void ipw_capture_event_log(struct ipw_priv *priv,
				  u32 log_len, struct ipw_event *log)
{
	u32 base;

	if (log_len) {
		base = ipw_read32(priv, IPW_EVENT_LOG);
		ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
				  (u8 *) log, sizeof(*log) * log_len);
	}
}

static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
{
	struct ipw_fw_error *error;
	u32 log_len = ipw_get_event_log_len(priv);
	u32 base = ipw_read32(priv, IPW_ERROR_LOG);
	u32 elem_len = ipw_read_reg32(priv, base);

	error = kmalloc(sizeof(*error) +
			sizeof(*error->elem) * elem_len +
			sizeof(*error->log) * log_len, GFP_ATOMIC);
	if (!error) {
		IPW_ERROR("Memory allocation for firmware error log "
			  "failed.\n");
		return NULL;
	}
	error->jiffies = jiffies;
	error->status = priv->status;
	error->config = priv->config;
	error->elem_len = elem_len;
	error->log_len = log_len;
	error->elem = (struct ipw_error_elem *)error->payload;
	error->log = (struct ipw_event *)(error->elem + elem_len);

	ipw_capture_event_log(priv, log_len, error->log);

	if (elem_len)
		ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
				  sizeof(*error->elem) * elem_len);

	return error;
}

static ssize_t event_log_show(struct device *d,
			      struct device_attribute *attr, char *buf)
{
	struct ipw_priv *priv = dev_get_drvdata(d);
	u32 log_len = ipw_get_event_log_len(priv);
	u32 log_size;
	struct ipw_event *log;
	u32 len = 0, i;

	/* not using min() because of its strict type checking */
	log_size = PAGE_SIZE / sizeof(*log) > log_len ?
			sizeof(*log) * log_len : PAGE_SIZE;
	log = kzalloc(log_size, GFP_KERNEL);
	if (!log) {
		IPW_ERROR("Unable to allocate memory for log\n");
		return 0;
	}
	log_len = log_size / sizeof(*log);
	ipw_capture_event_log(priv, log_len, log);

	len += scnprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
	for (i = 0; i < log_len; i++)
		len += scnprintf(buf + len, PAGE_SIZE - len,
				"\n%08X%08X%08X",
				log[i].time, log[i].event, log[i].data);
	len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
	kfree(log);
	return len;
}

static DEVICE_ATTR_RO(event_log);

static ssize_t error_show(struct device *d,
			  struct device_attribute *attr, char *buf)
{
	struct ipw_priv *priv = dev_get_drvdata(d);
	u32 len = 0, i;
	if (!priv->error)
		return 0;
	len += scnprintf(buf + len, PAGE_SIZE - len,
			"%08lX%08X%08X%08X",
			priv->error->jiffies,
			priv->error->status,
			priv->error->config, priv->error->elem_len);
	for (i = 0; i < priv->error->elem_len; i++)
		len += scnprintf(buf + len, PAGE_SIZE - len,
				"\n%08X%08X%08X%08X%08X%08X%08X",
				priv->error->elem[i].time,
				priv->error->elem[i].desc,
				priv->error->elem[i].blink1,
				priv->error->elem[i].blink2,
				priv->error->elem[i].link1,
				priv->error->elem[i].link2,
				priv->error->elem[i].data);

	len += scnprintf(buf + len, PAGE_SIZE - len,
			"\n%08X", priv->error->log_len);
	for (i = 0; i < priv->error->log_len; i++)
		len += scnprintf(buf + len, PAGE_SIZE - len,
				"\n%08X%08X%08X",
				priv->error->log[i].time,
				priv->error->log[i].event,
				priv->error->log[i].data);
	len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
	return len;
}

static ssize_t error_store(struct device *d,
			   struct device_attribute *attr,
			   const char *buf, size_t count)
{
	struct ipw_priv *priv = dev_get_drvdata(d);

	kfree(priv->error);
	priv->error = NULL;
	return count;
}

static DEVICE_ATTR_RW(error);

static ssize_t cmd_log_show(struct device *d,
			    struct device_attribute *attr, char *buf)
{
	struct ipw_priv *priv = dev_get_drvdata(d);
	u32 len = 0, i;
	if (!priv->cmdlog)
		return 0;
	for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
	     (i != priv->cmdlog_pos) && (len < PAGE_SIZE);
	     i = (i + 1) % priv->cmdlog_len) {
		len +=
		    scnprintf(buf + len, PAGE_SIZE - len,
			     "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
			     priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
			     priv->cmdlog[i].cmd.len);
		len +=
		    snprintk_buf(buf + len, PAGE_SIZE - len,
				 (u8 *) priv->cmdlog[i].cmd.param,
				 priv->cmdlog[i].cmd.len);
		len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
	}
	len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
	return len;
}

static DEVICE_ATTR_RO(cmd_log);

#ifdef CONFIG_IPW2200_PROMISCUOUS
static void ipw_prom_free(struct ipw_priv *priv);
static int ipw_prom_alloc(struct ipw_priv *priv);
static ssize_t rtap_iface_store(struct device *d,
			 struct device_attribute *attr,
			 const char *buf, size_t count)
{
	struct ipw_priv *priv = dev_get_drvdata(d);
	int rc = 0;

	if (count < 1)
		return -EINVAL;

	switch (buf[0]) {
	case '0':
		if (!rtap_iface)
			return count;

		if (netif_running(priv->prom_net_dev)) {
			IPW_WARNING("Interface is up.  Cannot unregister.\n");
			return count;
		}

		ipw_prom_free(priv);
		rtap_iface = 0;
		break;

	case '1':
		if (rtap_iface)
			return count;

		rc = ipw_prom_alloc(priv);
		if (!rc)
			rtap_iface = 1;
		break;

	default:
		return -EINVAL;
	}

	if (rc) {
		IPW_ERROR("Failed to register promiscuous network "
			  "device (error %d).\n", rc);
	}

	return count;
}

static ssize_t rtap_iface_show(struct device *d,
			struct device_attribute *attr,
			char *buf)
{
	struct ipw_priv *priv = dev_get_drvdata(d);
	if (rtap_iface)
		return sprintf(buf, "%s", priv->prom_net_dev->name);
	else {
		buf[0] = '-';
		buf[1] = '1';
		buf[2] = '\0';
		return 3;
	}
}

static DEVICE_ATTR_ADMIN_RW(rtap_iface);

static ssize_t rtap_filter_store(struct device *d,
			 struct device_attribute *attr,
			 const char *buf, size_t count)
{
	struct ipw_priv *priv = dev_get_drvdata(d);

	if (!priv->prom_priv) {
		IPW_ERROR("Attempting to set filter without "
			  "rtap_iface enabled.\n");
		return -EPERM;
	}

	priv->prom_priv->filter = simple_strtol(buf, NULL, 0);

	IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
		       BIT_ARG16(priv->prom_priv->filter));

	return count;
}

static ssize_t rtap_filter_show(struct device *d,
			struct device_attribute *attr,
			char *buf)
{
	struct ipw_priv *priv = dev_get_drvdata(d);
	return sprintf(buf, "0x%04X",
		       priv->prom_priv ? priv->prom_priv->filter : 0);
}

static DEVICE_ATTR_ADMIN_RW(rtap_filter);
#endif

static ssize_t scan_age_show(struct device *d, struct device_attribute *attr,
			     char *buf)
{
	struct ipw_priv *priv = dev_get_drvdata(d);
	return sprintf(buf, "%d\n", priv->ieee->scan_age);
}

static ssize_t scan_age_store(struct device *d, struct device_attribute *attr,
			      const char *buf, size_t count)
{
	struct ipw_priv *priv = dev_get_drvdata(d);
	struct net_device *dev = priv->net_dev;
	char buffer[] = "00000000";
	unsigned long len =
	    (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
	unsigned long val;
	char *p = buffer;

	IPW_DEBUG_INFO("enter\n");

	strncpy(buffer, buf, len);
	buffer[len] = 0;

	if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
		p++;
		if (p[0] == 'x' || p[0] == 'X')
			p++;
		val = simple_strtoul(p, &p, 16);
	} else
		val = simple_strtoul(p, &p, 10);
	if (p == buffer) {
		IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
	} else {
		priv->ieee->scan_age = val;
		IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
	}

	IPW_DEBUG_INFO("exit\n");
	return len;
}

static DEVICE_ATTR_RW(scan_age);

static ssize_t led_show(struct device *d, struct device_attribute *attr,
			char *buf)
{
	struct ipw_priv *priv = dev_get_drvdata(d);
	return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
}

static ssize_t led_store(struct device *d, struct device_attribute *attr,
			 const char *buf, size_t count)
{
	struct ipw_priv *priv = dev_get_drvdata(d);

	IPW_DEBUG_INFO("enter\n");

	if (count == 0)
		return 0;

	if (*buf == 0) {
		IPW_DEBUG_LED("Disabling LED control.\n");
		priv->config |= CFG_NO_LED;
		ipw_led_shutdown(priv);
	} else {
		IPW_DEBUG_LED("Enabling LED control.\n");
		priv->config &= ~CFG_NO_LED;
		ipw_led_init(priv);
	}

	IPW_DEBUG_INFO("exit\n");
	return count;
}

static DEVICE_ATTR_RW(led);

static ssize_t status_show(struct device *d,
			   struct device_attribute *attr, char *buf)
{
	struct ipw_priv *p = dev_get_drvdata(d);
	return sprintf(buf, "0x%08x\n", (int)p->status);
}

static DEVICE_ATTR_RO(status);

static ssize_t cfg_show(struct device *d, struct device_attribute *attr,
			char *buf)
{
	struct ipw_priv *p = dev_get_drvdata(d);
	return sprintf(buf, "0x%08x\n", (int)p->config);
}

static DEVICE_ATTR_RO(cfg);

static ssize_t nic_type_show(struct device *d,
			     struct device_attribute *attr, char *buf)
{
	struct ipw_priv *priv = dev_get_drvdata(d);
	return sprintf(buf, "TYPE: %d\n", priv->nic_type);
}

static DEVICE_ATTR_RO(nic_type);

static ssize_t ucode_version_show(struct device *d,
				  struct device_attribute *attr, char *buf)
{
	u32 len = sizeof(u32), tmp = 0;
	struct ipw_priv *p = dev_get_drvdata(d);

	if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
		return 0;

	return sprintf(buf, "0x%08x\n", tmp);
}

static DEVICE_ATTR_RO(ucode_version);

static ssize_t rtc_show(struct device *d, struct device_attribute *attr,
			char *buf)
{
	u32 len = sizeof(u32), tmp = 0;
	struct ipw_priv *p = dev_get_drvdata(d);

	if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
		return 0;

	return sprintf(buf, "0x%08x\n", tmp);
}

static DEVICE_ATTR_RO(rtc);

/*
 * Add a device attribute to view/control the delay between eeprom
 * operations.
 */
static ssize_t eeprom_delay_show(struct device *d,
				 struct device_attribute *attr, char *buf)
{
	struct ipw_priv *p = dev_get_drvdata(d);
	int n = p->eeprom_delay;
	return sprintf(buf, "%i\n", n);
}
static ssize_t eeprom_delay_store(struct device *d,
				  struct device_attribute *attr,
				  const char *buf, size_t count)
{
	struct ipw_priv *p = dev_get_drvdata(d);
	sscanf(buf, "%i", &p->eeprom_delay);
	return strnlen(buf, count);
}

static DEVICE_ATTR_RW(eeprom_delay);

static ssize_t command_event_reg_show(struct device *d,
				      struct device_attribute *attr, char *buf)
{
	u32 reg = 0;
	struct ipw_priv *p = dev_get_drvdata(d);

	reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
	return sprintf(buf, "0x%08x\n", reg);
}
static ssize_t command_event_reg_store(struct device *d,
				       struct device_attribute *attr,
				       const char *buf, size_t count)
{
	u32 reg;
	struct ipw_priv *p = dev_get_drvdata(d);

	sscanf(buf, "%x", &reg);
	ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
	return strnlen(buf, count);
}

static DEVICE_ATTR_RW(command_event_reg);

static ssize_t mem_gpio_reg_show(struct device *d,
				 struct device_attribute *attr, char *buf)
{
	u32 reg = 0;
	struct ipw_priv *p = dev_get_drvdata(d);

	reg = ipw_read_reg32(p, 0x301100);
	return sprintf(buf, "0x%08x\n", reg);
}
static ssize_t mem_gpio_reg_store(struct device *d,
				  struct device_attribute *attr,
				  const char *buf, size_t count)
{
	u32 reg;
	struct ipw_priv *p = dev_get_drvdata(d);

	sscanf(buf, "%x", &reg);
	ipw_write_reg32(p, 0x301100, reg);
	return strnlen(buf, count);
}

static DEVICE_ATTR_RW(mem_gpio_reg);

static ssize_t indirect_dword_show(struct device *d,
				   struct device_attribute *attr, char *buf)
{
	u32 reg = 0;
	struct ipw_priv *priv = dev_get_drvdata(d);

	if (priv->status & STATUS_INDIRECT_DWORD)
		reg = ipw_read_reg32(priv, priv->indirect_dword);
	else
		reg = 0;

	return sprintf(buf, "0x%08x\n", reg);
}
static ssize_t indirect_dword_store(struct device *d,
				    struct device_attribute *attr,
				    const char *buf, size_t count)
{
	struct ipw_priv *priv = dev_get_drvdata(d);

	sscanf(buf, "%x", &priv->indirect_dword);
	priv->status |= STATUS_INDIRECT_DWORD;
	return strnlen(buf, count);
}

static DEVICE_ATTR_RW(indirect_dword);

static ssize_t indirect_byte_show(struct device *d,
				  struct device_attribute *attr, char *buf)
{
	u8 reg = 0;
	struct ipw_priv *priv = dev_get_drvdata(d);

	if (priv->status & STATUS_INDIRECT_BYTE)
		reg = ipw_read_reg8(priv, priv->indirect_byte);
	else
		reg = 0;

	return sprintf(buf, "0x%02x\n", reg);
}
static ssize_t indirect_byte_store(struct device *d,
				   struct device_attribute *attr,
				   const char *buf, size_t count)
{
	struct ipw_priv *priv = dev_get_drvdata(d);

	sscanf(buf, "%x", &priv->indirect_byte);
	priv->status |= STATUS_INDIRECT_BYTE;
	return strnlen(buf, count);
}

static DEVICE_ATTR_RW(indirect_byte);

static ssize_t direct_dword_show(struct device *d,
				 struct device_attribute *attr, char *buf)
{
	u32 reg = 0;
	struct ipw_priv *priv = dev_get_drvdata(d);

	if (priv->status & STATUS_DIRECT_DWORD)
		reg = ipw_read32(priv, priv->direct_dword);
	else
		reg = 0;

	return sprintf(buf, "0x%08x\n", reg);
}
static ssize_t direct_dword_store(struct device *d,
				  struct device_attribute *attr,
				  const char *buf, size_t count)
{
	struct ipw_priv *priv = dev_get_drvdata(d);

	sscanf(buf, "%x", &priv->direct_dword);
	priv->status |= STATUS_DIRECT_DWORD;
	return strnlen(buf, count);
}

static DEVICE_ATTR_RW(direct_dword);

static int rf_kill_active(struct ipw_priv *priv)
{
	if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
		priv->status |= STATUS_RF_KILL_HW;
		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
	} else {
		priv->status &= ~STATUS_RF_KILL_HW;
		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
	}

	return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
}

static ssize_t rf_kill_show(struct device *d, struct device_attribute *attr,
			    char *buf)
{
	/* 0 - RF kill not enabled
	   1 - SW based RF kill active (sysfs)
	   2 - HW based RF kill active
	   3 - Both HW and SW baed RF kill active */
	struct ipw_priv *priv = dev_get_drvdata(d);
	int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
	    (rf_kill_active(priv) ? 0x2 : 0x0);
	return sprintf(buf, "%i\n", val);
}

static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
{
	if ((disable_radio ? 1 : 0) ==
	    ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
		return 0;

	IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
			  disable_radio ? "OFF" : "ON");

	if (disable_radio) {
		priv->status |= STATUS_RF_KILL_SW;

		cancel_delayed_work(&priv->request_scan);
		cancel_delayed_work(&priv->request_direct_scan);
		cancel_delayed_work(&priv->request_passive_scan);
		cancel_delayed_work(&priv->scan_event);
		schedule_work(&priv->down);
	} else {
		priv->status &= ~STATUS_RF_KILL_SW;
		if (rf_kill_active(priv)) {
			IPW_DEBUG_RF_KILL("Can not turn radio back on - "
					  "disabled by HW switch\n");
			/* Make sure the RF_KILL check timer is running */
			cancel_delayed_work(&priv->rf_kill);
			schedule_delayed_work(&priv->rf_kill,
					      round_jiffies_relative(2 * HZ));
		} else
			schedule_work(&priv->up);
	}

	return 1;
}

static ssize_t rf_kill_store(struct device *d, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct ipw_priv *priv = dev_get_drvdata(d);

	ipw_radio_kill_sw(priv, buf[0] == '1');

	return count;
}

static DEVICE_ATTR_RW(rf_kill);

static ssize_t speed_scan_show(struct device *d, struct device_attribute *attr,
			       char *buf)
{
	struct ipw_priv *priv = dev_get_drvdata(d);
	int pos = 0, len = 0;
	if (priv->config & CFG_SPEED_SCAN) {
		while (priv->speed_scan[pos] != 0)
			len += sprintf(&buf[len], "%d ",
				       priv->speed_scan[pos++]);
		return len + sprintf(&buf[len], "\n");
	}

	return sprintf(buf, "0\n");
}

static ssize_t speed_scan_store(struct device *d, struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct ipw_priv *priv = dev_get_drvdata(d);
	int channel, pos = 0;
	const char *p = buf;

	/* list of space separated channels to scan, optionally ending with 0 */
	while ((channel = simple_strtol(p, NULL, 0))) {
		if (pos == MAX_SPEED_SCAN - 1) {
			priv->speed_scan[pos] = 0;
			break;
		}

		if (libipw_is_valid_channel(priv->ieee, channel))
			priv->speed_scan[pos++] = channel;
		else
			IPW_WARNING("Skipping invalid channel request: %d\n",
				    channel);
		p = strchr(p, ' ');
		if (!p)
			break;
		while (*p == ' ' || *p == '\t')
			p++;
	}

	if (pos == 0)
		priv->config &= ~CFG_SPEED_SCAN;
	else {
		priv->speed_scan_pos = 0;
		priv->config |= CFG_SPEED_SCAN;
	}

	return count;
}

static DEVICE_ATTR_RW(speed_scan);

static ssize_t net_stats_show(struct device *d, struct device_attribute *attr,
			      char *buf)
{
	struct ipw_priv *priv = dev_get_drvdata(d);
	return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
}

static ssize_t net_stats_store(struct device *d, struct device_attribute *attr,
			       const char *buf, size_t count)
{
	struct ipw_priv *priv = dev_get_drvdata(d);
	if (buf[0] == '1')
		priv->config |= CFG_NET_STATS;
	else
		priv->config &= ~CFG_NET_STATS;

	return count;
}

static DEVICE_ATTR_RW(net_stats);

static ssize_t channels_show(struct device *d,
			     struct device_attribute *attr,
			     char *buf)
{
	struct ipw_priv *priv = dev_get_drvdata(d);
	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
	int len = 0, i;

	len = sprintf(&buf[len],
		      "Displaying %d channels in 2.4Ghz band "
		      "(802.11bg):\n", geo->bg_channels);

	for (i = 0; i < geo->bg_channels; i++) {
		len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
			       geo->bg[i].channel,
			       geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
			       " (radar spectrum)" : "",
			       ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
				(geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
			       ? "" : ", IBSS",
			       geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
			       "passive only" : "active/passive",
			       geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
			       "B" : "B/G");
	}

	len += sprintf(&buf[len],
		       "Displaying %d channels in 5.2Ghz band "
		       "(802.11a):\n", geo->a_channels);
	for (i = 0; i < geo->a_channels; i++) {
		len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
			       geo->a[i].channel,
			       geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
			       " (radar spectrum)" : "",
			       ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
				(geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
			       ? "" : ", IBSS",
			       geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
			       "passive only" : "active/passive");
	}

	return len;
}

static DEVICE_ATTR_ADMIN_RO(channels);

static void notify_wx_assoc_event(struct ipw_priv *priv)
{
	union iwreq_data wrqu;
	wrqu.ap_addr.sa_family = ARPHRD_ETHER;
	if (priv->status & STATUS_ASSOCIATED)
		memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
	else
		eth_zero_addr(wrqu.ap_addr.sa_data);
	wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
}

static void ipw_irq_tasklet(struct tasklet_struct *t)
{
	struct ipw_priv *priv = from_tasklet(priv, t, irq_tasklet);
	u32 inta, inta_mask, handled = 0;
	unsigned long flags;

	spin_lock_irqsave(&priv->irq_lock, flags);

	inta = ipw_read32(priv, IPW_INTA_RW);
	inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);

	if (inta == 0xFFFFFFFF) {
		/* Hardware disappeared */
		IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n");
		/* Only handle the cached INTA values */
		inta = 0;
	}
	inta &= (IPW_INTA_MASK_ALL & inta_mask);

	/* Add any cached INTA values that need to be handled */
	inta |= priv->isr_inta;

	spin_unlock_irqrestore(&priv->irq_lock, flags);

	spin_lock_irqsave(&priv->lock, flags);

	/* handle all the justifications for the interrupt */
	if (inta & IPW_INTA_BIT_RX_TRANSFER) {
		ipw_rx(priv);
		handled |= IPW_INTA_BIT_RX_TRANSFER;
	}

	if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
		IPW_DEBUG_HC("Command completed.\n");
		ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
		priv->status &= ~STATUS_HCMD_ACTIVE;
		wake_up_interruptible(&priv->wait_command_queue);
		handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
	}

	if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
		IPW_DEBUG_TX("TX_QUEUE_1\n");
		ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
		handled |= IPW_INTA_BIT_TX_QUEUE_1;
	}

	if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
		IPW_DEBUG_TX("TX_QUEUE_2\n");
		ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
		handled |= IPW_INTA_BIT_TX_QUEUE_2;
	}

	if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
		IPW_DEBUG_TX("TX_QUEUE_3\n");
		ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
		handled |= IPW_INTA_BIT_TX_QUEUE_3;
	}

	if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
		IPW_DEBUG_TX("TX_QUEUE_4\n");
		ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
		handled |= IPW_INTA_BIT_TX_QUEUE_4;
	}

	if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
		IPW_WARNING("STATUS_CHANGE\n");
		handled |= IPW_INTA_BIT_STATUS_CHANGE;
	}

	if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
		IPW_WARNING("TX_PERIOD_EXPIRED\n");
		handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
	}

	if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
		IPW_WARNING("HOST_CMD_DONE\n");
		handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
	}

	if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
		IPW_WARNING("FW_INITIALIZATION_DONE\n");
		handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
	}

	if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
		IPW_WARNING("PHY_OFF_DONE\n");
		handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
	}

	if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
		IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
		priv->status |= STATUS_RF_KILL_HW;
		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
		wake_up_interruptible(&priv->wait_command_queue);
		priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
		cancel_delayed_work(&priv->request_scan);
		cancel_delayed_work(&priv->request_direct_scan);
		cancel_delayed_work(&priv->request_passive_scan);
		cancel_delayed_work(&priv->scan_event);
		schedule_work(&priv->link_down);
		schedule_delayed_work(&priv->rf_kill, 2 * HZ);
		handled |= IPW_INTA_BIT_RF_KILL_DONE;
	}

	if (inta & IPW_INTA_BIT_FATAL_ERROR) {
		IPW_WARNING("Firmware error detected.  Restarting.\n");
		if (priv->error) {
			IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
			if (ipw_debug_level & IPW_DL_FW_ERRORS) {
				struct ipw_fw_error *error =
				    ipw_alloc_error_log(priv);
				ipw_dump_error_log(priv, error);
				kfree(error);
			}
		} else {
			priv->error = ipw_alloc_error_log(priv);
			if (priv->error)
				IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
			else
				IPW_DEBUG_FW("Error allocating sysfs 'error' "
					     "log.\n");
			if (ipw_debug_level & IPW_DL_FW_ERRORS)
				ipw_dump_error_log(priv, priv->error);
		}

		/* XXX: If hardware encryption is for WPA/WPA2,
		 * we have to notify the supplicant. */
		if (priv->ieee->sec.encrypt) {
			priv->status &= ~STATUS_ASSOCIATED;
			notify_wx_assoc_event(priv);
		}

		/* Keep the restart process from trying to send host
		 * commands by clearing the INIT status bit */
		priv->status &= ~STATUS_INIT;

		/* Cancel currently queued command. */
		priv->status &= ~STATUS_HCMD_ACTIVE;
		wake_up_interruptible(&priv->wait_command_queue);

		schedule_work(&priv->adapter_restart);
		handled |= IPW_INTA_BIT_FATAL_ERROR;
	}

	if (inta & IPW_INTA_BIT_PARITY_ERROR) {
		IPW_ERROR("Parity error\n");
		handled |= IPW_INTA_BIT_PARITY_ERROR;
	}

	if (handled != inta) {
		IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
	}

	spin_unlock_irqrestore(&priv->lock, flags);

	/* enable all interrupts */
	ipw_enable_interrupts(priv);
}

#define IPW_CMD(x) case IPW_CMD_ ## x : return #x
static char *get_cmd_string(u8 cmd)
{
	switch (cmd) {
		IPW_CMD(HOST_COMPLETE);
		IPW_CMD(POWER_DOWN);
		IPW_CMD(SYSTEM_CONFIG);
		IPW_CMD(MULTICAST_ADDRESS);
		IPW_CMD(SSID);
		IPW_CMD(ADAPTER_ADDRESS);
		IPW_CMD(PORT_TYPE);
		IPW_CMD(RTS_THRESHOLD);
		IPW_CMD(FRAG_THRESHOLD);
		IPW_CMD(POWER_MODE);
		IPW_CMD(WEP_KEY);
		IPW_CMD(TGI_TX_KEY);
		IPW_CMD(SCAN_REQUEST);
		IPW_CMD(SCAN_REQUEST_EXT);
		IPW_CMD(ASSOCIATE);
		IPW_CMD(SUPPORTED_RATES);
		IPW_CMD(SCAN_ABORT);
		IPW_CMD(TX_FLUSH);
		IPW_CMD(QOS_PARAMETERS);
		IPW_CMD(DINO_CONFIG);
		IPW_CMD(RSN_CAPABILITIES);
		IPW_CMD(RX_KEY);
		IPW_CMD(CARD_DISABLE);
		IPW_CMD(SEED_NUMBER);
		IPW_CMD(TX_POWER);
		IPW_CMD(COUNTRY_INFO);
		IPW_CMD(AIRONET_INFO);
		IPW_CMD(AP_TX_POWER);
		IPW_CMD(CCKM_INFO);
		IPW_CMD(CCX_VER_INFO);
		IPW_CMD(SET_CALIBRATION);
		IPW_CMD(SENSITIVITY_CALIB);
		IPW_CMD(RETRY_LIMIT);
		IPW_CMD(IPW_PRE_POWER_DOWN);
		IPW_CMD(VAP_BEACON_TEMPLATE);
		IPW_CMD(VAP_DTIM_PERIOD);
		IPW_CMD(EXT_SUPPORTED_RATES);
		IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
		IPW_CMD(VAP_QUIET_INTERVALS);
		IPW_CMD(VAP_CHANNEL_SWITCH);
		IPW_CMD(VAP_MANDATORY_CHANNELS);
		IPW_CMD(VAP_CELL_PWR_LIMIT);
		IPW_CMD(VAP_CF_PARAM_SET);
		IPW_CMD(VAP_SET_BEACONING_STATE);
		IPW_CMD(MEASUREMENT);
		IPW_CMD(POWER_CAPABILITY);
		IPW_CMD(SUPPORTED_CHANNELS);
		IPW_CMD(TPC_REPORT);
		IPW_CMD(WME_INFO);
		IPW_CMD(PRODUCTION_COMMAND);
	default:
		return "UNKNOWN";
	}
}

#define HOST_COMPLETE_TIMEOUT HZ

static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
{
	int rc = 0;
	unsigned long flags;
	unsigned long now, end;

	spin_lock_irqsave(&priv->lock, flags);
	if (priv->status & STATUS_HCMD_ACTIVE) {
		IPW_ERROR("Failed to send %s: Already sending a command.\n",
			  get_cmd_string(cmd->cmd));
		spin_unlock_irqrestore(&priv->lock, flags);
		return -EAGAIN;
	}

	priv->status |= STATUS_HCMD_ACTIVE;

	if (priv->cmdlog) {
		priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
		priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
		priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
		memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
		       cmd->len);
		priv->cmdlog[priv->cmdlog_pos].retcode = -1;
	}

	IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
		     get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
		     priv->status);

#ifndef DEBUG_CMD_WEP_KEY
	if (cmd->cmd == IPW_CMD_WEP_KEY)
		IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
	else
#endif
		printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);

	rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
	if (rc) {
		priv->status &= ~STATUS_HCMD_ACTIVE;
		IPW_ERROR("Failed to send %s: Reason %d\n",
			  get_cmd_string(cmd->cmd), rc);
		spin_unlock_irqrestore(&priv->lock, flags);
		goto exit;
	}
	spin_unlock_irqrestore(&priv->lock, flags);

	now = jiffies;
	end = now + HOST_COMPLETE_TIMEOUT;
again:
	rc = wait_event_interruptible_timeout(priv->wait_command_queue,
					      !(priv->
						status & STATUS_HCMD_ACTIVE),
					      end - now);
	if (rc < 0) {
		now = jiffies;
		if (time_before(now, end))
			goto again;
		rc = 0;
	}

	if (rc == 0) {
		spin_lock_irqsave(&priv->lock, flags);
		if (priv->status & STATUS_HCMD_ACTIVE) {
			IPW_ERROR("Failed to send %s: Command timed out.\n",
				  get_cmd_string(cmd->cmd));
			priv->status &= ~STATUS_HCMD_ACTIVE;
			spin_unlock_irqrestore(&priv->lock, flags);
			rc = -EIO;
			goto exit;
		}
		spin_unlock_irqrestore(&priv->lock, flags);
	} else
		rc = 0;

	if (priv->status & STATUS_RF_KILL_HW) {
		IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
			  get_cmd_string(cmd->cmd));
		rc = -EIO;
		goto exit;
	}

      exit:
	if (priv->cmdlog) {
		priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
		priv->cmdlog_pos %= priv->cmdlog_len;
	}
	return rc;
}

static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
{
	struct host_cmd cmd = {
		.cmd = command,
	};

	return __ipw_send_cmd(priv, &cmd);
}

static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
			    const void *data)
{
	struct host_cmd cmd = {
		.cmd = command,
		.len = len,
		.param = data,
	};

	return __ipw_send_cmd(priv, &cmd);
}

static int ipw_send_host_complete(struct ipw_priv *priv)
{
	if (!priv) {
		IPW_ERROR("Invalid args\n");
		return -1;
	}

	return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
}

static int ipw_send_system_config(struct ipw_priv *priv)
{
	return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
				sizeof(priv->sys_config),
				&priv->sys_config);
}

static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
{
	if (!priv || !ssid) {
		IPW_ERROR("Invalid args\n");
		return -1;
	}

	return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
				ssid);
}

static int ipw_send_adapter_address(struct ipw_priv *priv, const u8 * mac)
{
	if (!priv || !mac) {
		IPW_ERROR("Invalid args\n");
		return -1;
	}

	IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
		       priv->net_dev->name, mac);

	return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
}

static void ipw_adapter_restart(void *adapter)
{
	struct ipw_priv *priv = adapter;

	if (priv->status & STATUS_RF_KILL_MASK)
		return;

	ipw_down(priv);

	if (priv->assoc_network &&
	    (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
		ipw_remove_current_network(priv);

	if (ipw_up(priv)) {
		IPW_ERROR("Failed to up device\n");
		return;
	}
}

static void ipw_bg_adapter_restart(struct work_struct *work)
{
	struct ipw_priv *priv =
		container_of(work, struct ipw_priv, adapter_restart);
	mutex_lock(&priv->mutex);
	ipw_adapter_restart(priv);
	mutex_unlock(&priv->mutex);
}

static void ipw_abort_scan(struct ipw_priv *priv);

#define IPW_SCAN_CHECK_WATCHDOG	(5 * HZ)

static void ipw_scan_check(void *data)
{
	struct ipw_priv *priv = data;

	if (priv->status & STATUS_SCAN_ABORTING) {
		IPW_DEBUG_SCAN("Scan completion watchdog resetting "
			       "adapter after (%dms).\n",
			       jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
		schedule_work(&priv->adapter_restart);
	} else if (priv->status & STATUS_SCANNING) {
		IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
			       "after (%dms).\n",
			       jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
		ipw_abort_scan(priv);
		schedule_delayed_work(&priv->scan_check, HZ);
	}
}

static void ipw_bg_scan_check(struct work_struct *work)
{
	struct ipw_priv *priv =
		container_of(work, struct ipw_priv, scan_check.work);
	mutex_lock(&priv->mutex);
	ipw_scan_check(priv);
	mutex_unlock(&priv->mutex);
}

static int ipw_send_scan_request_ext(struct ipw_priv *priv,
				     struct ipw_scan_request_ext *request)
{
	return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
				sizeof(*request), request);
}

static int ipw_send_scan_abort(struct ipw_priv *priv)
{
	if (!priv) {
		IPW_ERROR("Invalid args\n");
		return -1;
	}

	return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
}

static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
{
	struct ipw_sensitivity_calib calib = {
		.beacon_rssi_raw = cpu_to_le16(sens),
	};

	return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
				&calib);
}

static int ipw_send_associate(struct ipw_priv *priv,
			      struct ipw_associate *associate)
{
	if (!priv || !associate) {
		IPW_ERROR("Invalid args\n");
		return -1;
	}

	return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
				associate);
}

static int ipw_send_supported_rates(struct ipw_priv *priv,
				    struct ipw_supported_rates *rates)
{
	if (!priv || !rates) {
		IPW_ERROR("Invalid args\n");
		return -1;
	}

	return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
				rates);
}

static int ipw_set_random_seed(struct ipw_priv *priv)
{
	u32 val;

	if (!priv) {
		IPW_ERROR("Invalid args\n");
		return -1;
	}

	get_random_bytes(&val, sizeof(val));

	return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
}

static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
{
	__le32 v = cpu_to_le32(phy_off);
	if (!priv) {
		IPW_ERROR("Invalid args\n");
		return -1;
	}

	return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
}

static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
{
	if (!priv || !power) {
		IPW_ERROR("Invalid args\n");
		return -1;
	}

	return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
}

static int ipw_set_tx_power(struct ipw_priv *priv)
{
	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
	struct ipw_tx_power tx_power;
	s8 max_power;
	int i;

	memset(&tx_power, 0, sizeof(tx_power));

	/* configure device for 'G' band */
	tx_power.ieee_mode = IPW_G_MODE;
	tx_power.num_channels = geo->bg_channels;
	for (i = 0; i < geo->bg_channels; i++) {
		max_power = geo->bg[i].max_power;
		tx_power.channels_tx_power[i].channel_number =
		    geo->bg[i].channel;
		tx_power.channels_tx_power[i].tx_power = max_power ?
		    min(max_power, priv->tx_power) : priv->tx_power;
	}
	if (ipw_send_tx_power(priv, &tx_power))
		return -EIO;

	/* configure device to also handle 'B' band */
	tx_power.ieee_mode = IPW_B_MODE;
	if (ipw_send_tx_power(priv, &tx_power))
		return -EIO;

	/* configure device to also handle 'A' band */
	if (priv->ieee->abg_true) {
		tx_power.ieee_mode = IPW_A_MODE;
		tx_power.num_channels = geo->a_channels;
		for (i = 0; i < tx_power.num_channels; i++) {
			max_power = geo->a[i].max_power;
			tx_power.channels_tx_power[i].channel_number =
			    geo->a[i].channel;
			tx_power.channels_tx_power[i].tx_power = max_power ?
			    min(max_power, priv->tx_power) : priv->tx_power;
		}
		if (ipw_send_tx_power(priv, &tx_power))
			return -EIO;
	}
	return 0;
}

static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
{
	struct ipw_rts_threshold rts_threshold = {
		.rts_threshold = cpu_to_le16(rts),
	};

	if (!priv) {
		IPW_ERROR("Invalid args\n");
		return -1;
	}

	return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
				sizeof(rts_threshold), &rts_threshold);
}

static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
{
	struct ipw_frag_threshold frag_threshold = {
		.frag_threshold = cpu_to_le16(frag),
	};

	if (!priv) {
		IPW_ERROR("Invalid args\n");
		return -1;
	}

	return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
				sizeof(frag_threshold), &frag_threshold);
}

static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
{
	__le32 param;

	if (!priv) {
		IPW_ERROR("Invalid args\n");
		return -1;
	}

	/* If on battery, set to 3, if AC set to CAM, else user
	 * level */
	switch (mode) {
	case IPW_POWER_BATTERY:
		param = cpu_to_le32(IPW_POWER_INDEX_3);
		break;
	case IPW_POWER_AC:
		param = cpu_to_le32(IPW_POWER_MODE_CAM);
		break;
	default:
		param = cpu_to_le32(mode);
		break;
	}

	return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
				&param);
}

static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
{
	struct ipw_retry_limit retry_limit = {
		.short_retry_limit = slimit,
		.long_retry_limit = llimit
	};

	if (!priv) {
		IPW_ERROR("Invalid args\n");
		return -1;
	}

	return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
				&retry_limit);
}

/*
 * The IPW device contains a Microwire compatible EEPROM that stores
 * various data like the MAC address.  Usually the firmware has exclusive
 * access to the eeprom, but during device initialization (before the
 * device driver has sent the HostComplete command to the firmware) the
 * device driver has read access to the EEPROM by way of indirect addressing
 * through a couple of memory mapped registers.
 *
 * The following is a simplified implementation for pulling data out of the
 * eeprom, along with some helper functions to find information in
 * the per device private data's copy of the eeprom.
 *
 * NOTE: To better understand how these functions work (i.e what is a chip
 *       select and why do have to keep driving the eeprom clock?), read
 *       just about any data sheet for a Microwire compatible EEPROM.
 */

/* write a 32 bit value into the indirect accessor register */
static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
{
	ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);

	/* the eeprom requires some time to complete the operation */
	udelay(p->eeprom_delay);
}

/* perform a chip select operation */
static void eeprom_cs(struct ipw_priv *priv)
{
	eeprom_write_reg(priv, 0);
	eeprom_write_reg(priv, EEPROM_BIT_CS);
	eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
	eeprom_write_reg(priv, EEPROM_BIT_CS);
}

/* perform a chip select operation */
static void eeprom_disable_cs(struct ipw_priv *priv)
{
	eeprom_write_reg(priv, EEPROM_BIT_CS);
	eeprom_write_reg(priv, 0);
	eeprom_write_reg(priv, EEPROM_BIT_SK);
}

/* push a single bit down to the eeprom */
static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
{
	int d = (bit ? EEPROM_BIT_DI : 0);
	eeprom_write_reg(p, EEPROM_BIT_CS | d);
	eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
}

/* push an opcode followed by an address down to the eeprom */
static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
{
	int i;

	eeprom_cs(priv);
	eeprom_write_bit(priv, 1);
	eeprom_write_bit(priv, op & 2);
	eeprom_write_bit(priv, op & 1);
	for (i = 7; i >= 0; i--) {
		eeprom_write_bit(priv, addr & (1 << i));
	}
}

/* pull 16 bits off the eeprom, one bit at a time */
static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
{
	int i;
	u16 r = 0;

	/* Send READ Opcode */
	eeprom_op(priv, EEPROM_CMD_READ, addr);

	/* Send dummy bit */
	eeprom_write_reg(priv, EEPROM_BIT_CS);

	/* Read the byte off the eeprom one bit at a time */
	for (i = 0; i < 16; i++) {
		u32 data = 0;
		eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
		eeprom_write_reg(priv, EEPROM_BIT_CS);
		data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
		r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
	}

	/* Send another dummy bit */
	eeprom_write_reg(priv, 0);
	eeprom_disable_cs(priv);

	return r;
}

/* helper function for pulling the mac address out of the private */
/* data's copy of the eeprom data                                 */
static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
{
	memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], ETH_ALEN);
}

static void ipw_read_eeprom(struct ipw_priv *priv)
{
	int i;
	__le16 *eeprom = (__le16 *) priv->eeprom;

	IPW_DEBUG_TRACE(">>\n");

	/* read entire contents of eeprom into private buffer */
	for (i = 0; i < 128; i++)
		eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));

	IPW_DEBUG_TRACE("<<\n");
}

/*
 * Either the device driver (i.e. the host) or the firmware can
 * load eeprom data into the designated region in SRAM.  If neither
 * happens then the FW will shutdown with a fatal error.
 *
 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
 * bit needs region of shared SRAM needs to be non-zero.
 */
static void ipw_eeprom_init_sram(struct ipw_priv *priv)
{
	int i;

	IPW_DEBUG_TRACE(">>\n");

	/*
	   If the data looks correct, then copy it to our private
	   copy.  Otherwise let the firmware know to perform the operation
	   on its own.
	 */
	if (priv->eeprom[EEPROM_VERSION] != 0) {
		IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");

		/* write the eeprom data to sram */
		for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
			ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);

		/* Do not load eeprom data on fatal error or suspend */
		ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
	} else {
		IPW_DEBUG_INFO("Enabling FW initialization of SRAM\n");

		/* Load eeprom data on fatal error or suspend */
		ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
	}

	IPW_DEBUG_TRACE("<<\n");
}

static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
{
	count >>= 2;
	if (!count)
		return;
	_ipw_write32(priv, IPW_AUTOINC_ADDR, start);
	while (count--)
		_ipw_write32(priv, IPW_AUTOINC_DATA, 0);
}

static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
{
	ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
			CB_NUMBER_OF_ELEMENTS_SMALL *
			sizeof(struct command_block));
}

static int ipw_fw_dma_enable(struct ipw_priv *priv)
{				/* start dma engine but no transfers yet */

	IPW_DEBUG_FW(">> :\n");

	/* Start the dma */
	ipw_fw_dma_reset_command_blocks(priv);

	/* Write CB base address */
	ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);

	IPW_DEBUG_FW("<< :\n");
	return 0;
}

static void ipw_fw_dma_abort(struct ipw_priv *priv)
{
	u32 control = 0;

	IPW_DEBUG_FW(">> :\n");

	/* set the Stop and Abort bit */
	control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
	ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
	priv->sram_desc.last_cb_index = 0;

	IPW_DEBUG_FW("<<\n");
}

static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
					  struct command_block *cb)
{
	u32 address =
	    IPW_SHARED_SRAM_DMA_CONTROL +
	    (sizeof(struct command_block) * index);
	IPW_DEBUG_FW(">> :\n");

	ipw_write_indirect(priv, address, (u8 *) cb,
			   (int)sizeof(struct command_block));

	IPW_DEBUG_FW("<< :\n");
	return 0;

}

static int ipw_fw_dma_kick(struct ipw_priv *priv)
{
	u32 control = 0;
	u32 index = 0;

	IPW_DEBUG_FW(">> :\n");

	for (index = 0; index < priv->sram_desc.last_cb_index; index++)
		ipw_fw_dma_write_command_block(priv, index,
					       &priv->sram_desc.cb_list[index]);

	/* Enable the DMA in the CSR register */
	ipw_clear_bit(priv, IPW_RESET_REG,
		      IPW_RESET_REG_MASTER_DISABLED |
		      IPW_RESET_REG_STOP_MASTER);

	/* Set the Start bit. */
	control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
	ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);

	IPW_DEBUG_FW("<< :\n");
	return 0;
}

static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
{
	u32 address;
	u32 register_value = 0;
	u32 cb_fields_address = 0;

	IPW_DEBUG_FW(">> :\n");
	address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
	IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);

	/* Read the DMA Controlor register */
	register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
	IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);

	/* Print the CB values */
	cb_fields_address = address;
	register_value = ipw_read_reg32(priv, cb_fields_address);
	IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);

	cb_fields_address += sizeof(u32);
	register_value = ipw_read_reg32(priv, cb_fields_address);
	IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);

	cb_fields_address += sizeof(u32);
	register_value = ipw_read_reg32(priv, cb_fields_address);
	IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
			  register_value);

	cb_fields_address += sizeof(u32);
	register_value = ipw_read_reg32(priv, cb_fields_address);
	IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);

	IPW_DEBUG_FW(">> :\n");
}

static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
{
	u32 current_cb_address = 0;
	u32 current_cb_index = 0;

	IPW_DEBUG_FW("<< :\n");
	current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);

	current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
	    sizeof(struct command_block);

	IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
			  current_cb_index, current_cb_address);

	IPW_DEBUG_FW(">> :\n");
	return current_cb_index;

}

static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
					u32 src_address,
					u32 dest_address,
					u32 length,
					int interrupt_enabled, int is_last)
{

	u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
	    CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
	    CB_DEST_SIZE_LONG;
	struct command_block *cb;
	u32 last_cb_element = 0;

	IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
			  src_address, dest_address, length);

	if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
		return -1;

	last_cb_element = priv->sram_desc.last_cb_index;
	cb = &priv->sram_desc.cb_list[last_cb_element];
	priv->sram_desc.last_cb_index++;

	/* Calculate the new CB control word */
	if (interrupt_enabled)
		control |= CB_INT_ENABLED;

	if (is_last)
		control |= CB_LAST_VALID;

	control |= length;

	/* Calculate the CB Element's checksum value */
	cb->status = control ^ src_address ^ dest_address;

	/* Copy the Source and Destination addresses */
	cb->dest_addr = dest_address;
	cb->source_addr = src_address;

	/* Copy the Control Word last */
	cb->control = control;

	return 0;
}

static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
				 int nr, u32 dest_address, u32 len)
{
	int ret, i;
	u32 size;

	IPW_DEBUG_FW(">>\n");
	IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
			  nr, dest_address, len);

	for (i = 0; i < nr; i++) {
		size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
		ret = ipw_fw_dma_add_command_block(priv, src_address[i],
						   dest_address +
						   i * CB_MAX_LENGTH, size,
						   0, 0);
		if (ret) {
			IPW_DEBUG_FW_INFO(": Failed\n");
			return -1;
		} else
			IPW_DEBUG_FW_INFO(": Added new cb\n");
	}

	IPW_DEBUG_FW("<<\n");
	return 0;
}

static int ipw_fw_dma_wait(struct ipw_priv *priv)
{
	u32 current_index = 0, previous_index;
	u32 watchdog = 0;

	IPW_DEBUG_FW(">> :\n");

	current_index = ipw_fw_dma_command_block_index(priv);
	IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
			  (int)priv->sram_desc.last_cb_index);

	while (current_index < priv->sram_desc.last_cb_index) {
		udelay(50);
		previous_index = current_index;
		current_index = ipw_fw_dma_command_block_index(priv);

		if (previous_index < current_index) {
			watchdog = 0;
			continue;
		}
		if (++watchdog > 400) {
			IPW_DEBUG_FW_INFO("Timeout\n");
			ipw_fw_dma_dump_command_block(priv);
			ipw_fw_dma_abort(priv);
			return -1;
		}
	}

	ipw_fw_dma_abort(priv);

	/*Disable the DMA in the CSR register */
	ipw_set_bit(priv, IPW_RESET_REG,
		    IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);

	IPW_DEBUG_FW("<< dmaWaitSync\n");
	return 0;
}

static void ipw_remove_current_network(struct ipw_priv *priv)
{
	struct list_head *element, *safe;
	struct libipw_network *network = NULL;
	unsigned long flags;

	spin_lock_irqsave(&priv->ieee->lock, flags);
	list_for_each_safe(element, safe, &priv->ieee->network_list) {
		network = list_entry(element, struct libipw_network, list);
		if (ether_addr_equal(network->bssid, priv->bssid)) {
			list_del(element);
			list_add_tail(&network->list,
				      &priv->ieee->network_free_list);
		}
	}
	spin_unlock_irqrestore(&priv->ieee->lock, flags);
}

/* timeout in msec, attempted in 10-msec quanta */
static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
			       int timeout)
{
	int i = 0;

	do {
		if ((ipw_read32(priv, addr) & mask) == mask)
			return i;
		mdelay(10);
		i += 10;
	} while (i < timeout);

	return -ETIME;
}

/* These functions load the firmware and micro code for the operation of
 * the ipw hardware.  It assumes the buffer has all the bits for the
 * image and the caller is handling the memory allocation and clean up.
 */

static int ipw_stop_master(struct ipw_priv *priv)
{
	int rc;

	IPW_DEBUG_TRACE(">>\n");
	/* stop master. typical delay - 0 */
	ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);

	/* timeout is in msec, polled in 10-msec quanta */
	rc = ipw_poll_bit(priv, IPW_RESET_REG,
			  IPW_RESET_REG_MASTER_DISABLED, 100);
	if (rc < 0) {
		IPW_ERROR("wait for stop master failed after 100ms\n");
		return -1;
	}

	IPW_DEBUG_INFO("stop master %dms\n", rc);

	return rc;
}

static void ipw_arc_release(struct ipw_priv *priv)
{
	IPW_DEBUG_TRACE(">>\n");
	mdelay(5);

	ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);

	/* no one knows timing, for safety add some delay */
	mdelay(5);
}

struct fw_chunk {
	__le32 address;
	__le32 length;
};

static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
{
	int rc = 0, i, addr;
	u8 cr = 0;
	__le16 *image;

	image = (__le16 *) data;

	IPW_DEBUG_TRACE(">>\n");

	rc = ipw_stop_master(priv);

	if (rc < 0)
		return rc;

	for (addr = IPW_SHARED_LOWER_BOUND;
	     addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
		ipw_write32(priv, addr, 0);
	}

	/* no ucode (yet) */
	memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
	/* destroy DMA queues */
	/* reset sequence */

	ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
	ipw_arc_release(priv);
	ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
	mdelay(1);

	/* reset PHY */
	ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
	mdelay(1);

	ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
	mdelay(1);

	/* enable ucode store */
	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
	mdelay(1);

	/* write ucode */
	/*
	 * @bug
	 * Do NOT set indirect address register once and then
	 * store data to indirect data register in the loop.
	 * It seems very reasonable, but in this case DINO do not
	 * accept ucode. It is essential to set address each time.
	 */
	/* load new ipw uCode */
	for (i = 0; i < len / 2; i++)
		ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
				le16_to_cpu(image[i]));

	/* enable DINO */
	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);

	/* this is where the igx / win driver deveates from the VAP driver. */

	/* wait for alive response */
	for (i = 0; i < 100; i++) {
		/* poll for incoming data */
		cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
		if (cr & DINO_RXFIFO_DATA)
			break;
		mdelay(1);
	}

	if (cr & DINO_RXFIFO_DATA) {
		/* alive_command_responce size is NOT multiple of 4 */
		__le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];

		for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
			response_buffer[i] =
			    cpu_to_le32(ipw_read_reg32(priv,
						       IPW_BASEBAND_RX_FIFO_READ));
		memcpy(&priv->dino_alive, response_buffer,
		       sizeof(priv->dino_alive));
		if (priv->dino_alive.alive_command == 1
		    && priv->dino_alive.ucode_valid == 1) {
			rc = 0;
			IPW_DEBUG_INFO
			    ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
			     "of %02d/%02d/%02d %02d:%02d\n",
			     priv->dino_alive.software_revision,
			     priv->dino_alive.software_revision,
			     priv->dino_alive.device_identifier,
			     priv->dino_alive.device_identifier,
			     priv->dino_alive.time_stamp[0],
			     priv->dino_alive.time_stamp[1],
			     priv->dino_alive.time_stamp[2],
			     priv->dino_alive.time_stamp[3],
			     priv->dino_alive.time_stamp[4]);
		} else {
			IPW_DEBUG_INFO("Microcode is not alive\n");
			rc = -EINVAL;
		}
	} else {
		IPW_DEBUG_INFO("No alive response from DINO\n");
		rc = -ETIME;
	}

	/* disable DINO, otherwise for some reason
	   firmware have problem getting alive resp. */
	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);

	return rc;
}

static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
{
	int ret = -1;
	int offset = 0;
	struct fw_chunk *chunk;
	int total_nr = 0;
	int i;
	struct dma_pool *pool;
	void **virts;
	dma_addr_t *phys;

	IPW_DEBUG_TRACE("<< :\n");

	virts = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(void *),
			      GFP_KERNEL);
	if (!virts)
		return -ENOMEM;

	phys = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(dma_addr_t),
			     GFP_KERNEL);
	if (!phys) {
		kfree(virts);
		return -ENOMEM;
	}
	pool = dma_pool_create("ipw2200", &priv->pci_dev->dev, CB_MAX_LENGTH, 0,
			       0);
	if (!pool) {
		IPW_ERROR("dma_pool_create failed\n");
		kfree(phys);
		kfree(virts);
		return -ENOMEM;
	}

	/* Start the Dma */
	ret = ipw_fw_dma_enable(priv);

	/* the DMA is already ready this would be a bug. */
	BUG_ON(priv->sram_desc.last_cb_index > 0);

	do {
		u32 chunk_len;
		u8 *start;
		int size;
		int nr = 0;

		chunk = (struct fw_chunk *)(data + offset);
		offset += sizeof(struct fw_chunk);
		chunk_len = le32_to_cpu(chunk->length);
		start = data + offset;

		nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
		for (i = 0; i < nr; i++) {
			virts[total_nr] = dma_pool_alloc(pool, GFP_KERNEL,
							 &phys[total_nr]);
			if (!virts[total_nr]) {
				ret = -ENOMEM;
				goto out;
			}
			size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
				     CB_MAX_LENGTH);
			memcpy(virts[total_nr], start, size);
			start += size;
			total_nr++;
			/* We don't support fw chunk larger than 64*8K */
			BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
		}

		/* build DMA packet and queue up for sending */
		/* dma to chunk->address, the chunk->length bytes from data +
		 * offeset*/
		/* Dma loading */
		ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
					    nr, le32_to_cpu(chunk->address),
					    chunk_len);
		if (ret) {
			IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
			goto out;
		}

		offset += chunk_len;
	} while (offset < len);

	/* Run the DMA and wait for the answer */
	ret = ipw_fw_dma_kick(priv);
	if (ret) {
		IPW_ERROR("dmaKick Failed\n");
		goto out;
	}

	ret = ipw_fw_dma_wait(priv);
	if (ret) {
		IPW_ERROR("dmaWaitSync Failed\n");
		goto out;
	}
 out:
	for (i = 0; i < total_nr; i++)
		dma_pool_free(pool, virts[i], phys[i]);

	dma_pool_destroy(pool);
	kfree(phys);
	kfree(virts);

	return ret;
}

/* stop nic */
static int ipw_stop_nic(struct ipw_priv *priv)
{
	int rc = 0;

	/* stop */
	ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);

	rc = ipw_poll_bit(priv, IPW_RESET_REG,
			  IPW_RESET_REG_MASTER_DISABLED, 500);
	if (rc < 0) {
		IPW_ERROR("wait for reg master disabled failed after 500ms\n");
		return rc;
	}

	ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);

	return rc;
}

static void ipw_start_nic(struct ipw_priv *priv)
{
	IPW_DEBUG_TRACE(">>\n");

	/* prvHwStartNic  release ARC */
	ipw_clear_bit(priv, IPW_RESET_REG,
		      IPW_RESET_REG_MASTER_DISABLED |
		      IPW_RESET_REG_STOP_MASTER |
		      CBD_RESET_REG_PRINCETON_RESET);

	/* enable power management */
	ipw_set_bit(priv, IPW_GP_CNTRL_RW,
		    IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);

	IPW_DEBUG_TRACE("<<\n");
}

static int ipw_init_nic(struct ipw_priv *priv)
{
	int rc;

	IPW_DEBUG_TRACE(">>\n");
	/* reset */
	/*prvHwInitNic */
	/* set "initialization complete" bit to move adapter to D0 state */
	ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);

	/* low-level PLL activation */
	ipw_write32(priv, IPW_READ_INT_REGISTER,
		    IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);

	/* wait for clock stabilization */
	rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
			  IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
	if (rc < 0)
		IPW_DEBUG_INFO("FAILED wait for clock stablization\n");

	/* assert SW reset */
	ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);

	udelay(10);

	/* set "initialization complete" bit to move adapter to D0 state */
	ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);

	IPW_DEBUG_TRACE(">>\n");
	return 0;
}

/* Call this function from process context, it will sleep in request_firmware.
 * Probe is an ok place to call this from.
 */
static int ipw_reset_nic(struct ipw_priv *priv)
{
	int rc = 0;
	unsigned long flags;

	IPW_DEBUG_TRACE(">>\n");

	rc = ipw_init_nic(priv);

	spin_lock_irqsave(&priv->lock, flags);
	/* Clear the 'host command active' bit... */
	priv->status &= ~STATUS_HCMD_ACTIVE;
	wake_up_interruptible(&priv->wait_command_queue);
	priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
	wake_up_interruptible(&priv->wait_state);
	spin_unlock_irqrestore(&priv->lock, flags);

	IPW_DEBUG_TRACE("<<\n");
	return rc;
}


struct ipw_fw {
	__le32 ver;
	__le32 boot_size;
	__le32 ucode_size;
	__le32 fw_size;
	u8 data[];
};

static int ipw_get_fw(struct ipw_priv *priv,
		      const struct firmware **raw, const char *name)
{
	struct ipw_fw *fw;
	int rc;

	/* ask firmware_class module to get the boot firmware off disk */
	rc = request_firmware(raw, name, &priv->pci_dev->dev);
	if (rc < 0) {
		IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
		return rc;
	}

	if ((*raw)->size < sizeof(*fw)) {
		IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
		return -EINVAL;
	}

	fw = (void *)(*raw)->data;

	if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
	    le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
		IPW_ERROR("%s is too small or corrupt (%zd)\n",
			  name, (*raw)->size);
		return -EINVAL;
	}

	IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
		       name,
		       le32_to_cpu(fw->ver) >> 16,
		       le32_to_cpu(fw->ver) & 0xff,
		       (*raw)->size - sizeof(*fw));
	return 0;
}

#define IPW_RX_BUF_SIZE (3000)

static void ipw_rx_queue_reset(struct ipw_priv *priv,
				      struct ipw_rx_queue *rxq)
{
	unsigned long flags;
	int i;

	spin_lock_irqsave(&rxq->lock, flags);

	INIT_LIST_HEAD(&rxq->rx_free);
	INIT_LIST_HEAD(&rxq->rx_used);

	/* Fill the rx_used queue with _all_ of the Rx buffers */
	for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
		/* In the reset function, these buffers may have been allocated
		 * to an SKB, so we need to unmap and free potential storage */
		if (rxq->pool[i].skb != NULL) {
			dma_unmap_single(&priv->pci_dev->dev,
					 rxq->pool[i].dma_addr,
					 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
			dev_kfree_skb(rxq->pool[i].skb);
			rxq->pool[i].skb = NULL;
		}
		list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
	}

	/* Set us so that we have processed and used all buffers, but have
	 * not restocked the Rx queue with fresh buffers */
	rxq->read = rxq->write = 0;
	rxq->free_count = 0;
	spin_unlock_irqrestore(&rxq->lock, flags);
}

#ifdef CONFIG_PM
static int fw_loaded = 0;
static const struct firmware *raw = NULL;

static void free_firmware(void)
{
	if (fw_loaded) {
		release_firmware(raw);
		raw = NULL;
		fw_loaded = 0;
	}
}
#else
#define free_firmware() do {} while (0)
#endif

static int ipw_load(struct ipw_priv *priv)
{
#ifndef CONFIG_PM
	const struct firmware *raw = NULL;
#endif
	struct ipw_fw *fw;
	u8 *boot_img, *ucode_img, *fw_img;
	u8 *name = NULL;
	int rc = 0, retries = 3;

	switch (priv->ieee->iw_mode) {
	case IW_MODE_ADHOC:
		name = "ipw2200-ibss.fw";
		break;
#ifdef CONFIG_IPW2200_MONITOR
	case IW_MODE_MONITOR:
		name = "ipw2200-sniffer.fw";
		break;
#endif
	case IW_MODE_INFRA:
		name = "ipw2200-bss.fw";
		break;
	}

	if (!name) {
		rc = -EINVAL;
		goto error;
	}

#ifdef CONFIG_PM
	if (!fw_loaded) {
#endif
		rc = ipw_get_fw(priv, &raw, name);
		if (rc < 0)
			goto error;
#ifdef CONFIG_PM
	}
#endif

	fw = (void *)raw->data;
	boot_img = &fw->data[0];
	ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
	fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
			   le32_to_cpu(fw->ucode_size)];

	if (!priv->rxq)
		priv->rxq = ipw_rx_queue_alloc(priv);
	else
		ipw_rx_queue_reset(priv, priv->rxq);
	if (!priv->rxq) {
		IPW_ERROR("Unable to initialize Rx queue\n");
		rc = -ENOMEM;
		goto error;
	}

      retry:
	/* Ensure interrupts are disabled */
	ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
	priv->status &= ~STATUS_INT_ENABLED;

	/* ack pending interrupts */
	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);

	ipw_stop_nic(priv);

	rc = ipw_reset_nic(priv);
	if (rc < 0) {
		IPW_ERROR("Unable to reset NIC\n");
		goto error;
	}

	ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
			IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);

	/* DMA the initial boot firmware into the device */
	rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
	if (rc < 0) {
		IPW_ERROR("Unable to load boot firmware: %d\n", rc);
		goto error;
	}

	/* kick start the device */
	ipw_start_nic(priv);

	/* wait for the device to finish its initial startup sequence */
	rc = ipw_poll_bit(priv, IPW_INTA_RW,
			  IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
	if (rc < 0) {
		IPW_ERROR("device failed to boot initial fw image\n");
		goto error;
	}
	IPW_DEBUG_INFO("initial device response after %dms\n", rc);

	/* ack fw init done interrupt */
	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);

	/* DMA the ucode into the device */
	rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
	if (rc < 0) {
		IPW_ERROR("Unable to load ucode: %d\n", rc);
		goto error;
	}

	/* stop nic */
	ipw_stop_nic(priv);

	/* DMA bss firmware into the device */
	rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
	if (rc < 0) {
		IPW_ERROR("Unable to load firmware: %d\n", rc);
		goto error;
	}
#ifdef CONFIG_PM
	fw_loaded = 1;
#endif

	ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);

	rc = ipw_queue_reset(priv);
	if (rc < 0) {
		IPW_ERROR("Unable to initialize queues\n");
		goto error;
	}

	/* Ensure interrupts are disabled */
	ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
	/* ack pending interrupts */
	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);

	/* kick start the device */
	ipw_start_nic(priv);

	if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
		if (retries > 0) {
			IPW_WARNING("Parity error.  Retrying init.\n");
			retries--;
			goto retry;
		}

		IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
		rc = -EIO;
		goto error;
	}

	/* wait for the device */
	rc = ipw_poll_bit(priv, IPW_INTA_RW,
			  IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
	if (rc < 0) {
		IPW_ERROR("device failed to start within 500ms\n");
		goto error;
	}
	IPW_DEBUG_INFO("device response after %dms\n", rc);

	/* ack fw init done interrupt */
	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);

	/* read eeprom data */
	priv->eeprom_delay = 1;
	ipw_read_eeprom(priv);
	/* initialize the eeprom region of sram */
	ipw_eeprom_init_sram(priv);

	/* enable interrupts */
	ipw_enable_interrupts(priv);

	/* Ensure our queue has valid packets */
	ipw_rx_queue_replenish(priv);

	ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);

	/* ack pending interrupts */
	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);

#ifndef CONFIG_PM
	release_firmware(raw);
#endif
	return 0;

      error:
	if (priv->rxq) {
		ipw_rx_queue_free(priv, priv->rxq);
		priv->rxq = NULL;
	}
	ipw_tx_queue_free(priv);
	release_firmware(raw);
#ifdef CONFIG_PM
	fw_loaded = 0;
	raw = NULL;
#endif

	return rc;
}

/*
 * DMA services
 *
 * Theory of operation
 *
 * A queue is a circular buffers with 'Read' and 'Write' pointers.
 * 2 empty entries always kept in the buffer to protect from overflow.
 *
 * For Tx queue, there are low mark and high mark limits. If, after queuing
 * the packet for Tx, free space become < low mark, Tx queue stopped. When
 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
 * Tx queue resumed.
 *
 * The IPW operates with six queues, one receive queue in the device's
 * sram, one transmit queue for sending commands to the device firmware,
 * and four transmit queues for data.
 *
 * The four transmit queues allow for performing quality of service (qos)
 * transmissions as per the 802.11 protocol.  Currently Linux does not
 * provide a mechanism to the user for utilizing prioritized queues, so
 * we only utilize the first data transmit queue (queue1).
 */

/*
 * Driver allocates buffers of this size for Rx
 */

/*
 * ipw_rx_queue_space - Return number of free slots available in queue.
 */
static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
{
	int s = q->read - q->write;
	if (s <= 0)
		s += RX_QUEUE_SIZE;
	/* keep some buffer to not confuse full and empty queue */
	s -= 2;
	if (s < 0)
		s = 0;
	return s;
}

static inline int ipw_tx_queue_space(const struct clx2_queue *q)
{
	int s = q->last_used - q->first_empty;
	if (s <= 0)
		s += q->n_bd;
	s -= 2;			/* keep some reserve to not confuse empty and full situations */
	if (s < 0)
		s = 0;
	return s;
}

static inline int ipw_queue_inc_wrap(int index, int n_bd)
{
	return (++index == n_bd) ? 0 : index;
}

/*
 * Initialize common DMA queue structure
 *
 * @param q                queue to init
 * @param count            Number of BD's to allocate. Should be power of 2
 * @param read_register    Address for 'read' register
 *                         (not offset within BAR, full address)
 * @param write_register   Address for 'write' register
 *                         (not offset within BAR, full address)
 * @param base_register    Address for 'base' register
 *                         (not offset within BAR, full address)
 * @param size             Address for 'size' register
 *                         (not offset within BAR, full address)
 */
static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
			   int count, u32 read, u32 write, u32 base, u32 size)
{
	q->n_bd = count;

	q->low_mark = q->n_bd / 4;
	if (q->low_mark < 4)
		q->low_mark = 4;

	q->high_mark = q->n_bd / 8;
	if (q->high_mark < 2)
		q->high_mark = 2;

	q->first_empty = q->last_used = 0;
	q->reg_r = read;
	q->reg_w = write;

	ipw_write32(priv, base, q->dma_addr);
	ipw_write32(priv, size, count);
	ipw_write32(priv, read, 0);
	ipw_write32(priv, write, 0);

	_ipw_read32(priv, 0x90);
}

static int ipw_queue_tx_init(struct ipw_priv *priv,
			     struct clx2_tx_queue *q,
			     int count, u32 read, u32 write, u32 base, u32 size)
{
	struct pci_dev *dev = priv->pci_dev;

	q->txb = kmalloc_array(count, sizeof(q->txb[0]), GFP_KERNEL);
	if (!q->txb)
		return -ENOMEM;

	q->bd =
	    dma_alloc_coherent(&dev->dev, sizeof(q->bd[0]) * count,
			       &q->q.dma_addr, GFP_KERNEL);
	if (!q->bd) {
		IPW_ERROR("dma_alloc_coherent(%zd) failed\n",
			  sizeof(q->bd[0]) * count);
		kfree(q->txb);
		q->txb = NULL;
		return -ENOMEM;
	}

	ipw_queue_init(priv, &q->q, count, read, write, base, size);
	return 0;
}

/*
 * Free one TFD, those at index [txq->q.last_used].
 * Do NOT advance any indexes
 *
 * @param dev
 * @param txq
 */
static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
				  struct clx2_tx_queue *txq)
{
	struct tfd_frame *bd = &txq->bd[txq->q.last_used];
	struct pci_dev *dev = priv->pci_dev;
	int i;

	/* classify bd */
	if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
		/* nothing to cleanup after for host commands */
		return;

	/* sanity check */
	if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
		IPW_ERROR("Too many chunks: %i\n",
			  le32_to_cpu(bd->u.data.num_chunks));
		/* @todo issue fatal error, it is quite serious situation */
		return;
	}

	/* unmap chunks if any */
	for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
		dma_unmap_single(&dev->dev,
				 le32_to_cpu(bd->u.data.chunk_ptr[i]),
				 le16_to_cpu(bd->u.data.chunk_len[i]),
				 DMA_TO_DEVICE);
		if (txq->txb[txq->q.last_used]) {
			libipw_txb_free(txq->txb[txq->q.last_used]);
			txq->txb[txq->q.last_used] = NULL;
		}
	}
}

/*
 * Deallocate DMA queue.
 *
 * Empty queue by removing and destroying all BD's.
 * Free all buffers.
 *
 * @param dev
 * @param q
 */
static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
{
	struct clx2_queue *q = &txq->q;
	struct pci_dev *dev = priv->pci_dev;

	if (q->n_bd == 0)
		return;

	/* first, empty all BD's */
	for (; q->first_empty != q->last_used;
	     q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
		ipw_queue_tx_free_tfd(priv, txq);
	}

	/* free buffers belonging to queue itself */
	dma_free_coherent(&dev->dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
			  q->dma_addr);
	kfree(txq->txb);

	/* 0 fill whole structure */
	memset(txq, 0, sizeof(*txq));
}

/*
 * Destroy all DMA queues and structures
 *
 * @param priv
 */
static void ipw_tx_queue_free(struct ipw_priv *priv)
{
	/* Tx CMD queue */
	ipw_queue_tx_free(priv, &priv->txq_cmd);

	/* Tx queues */
	ipw_queue_tx_free(priv, &priv->txq[0]);
	ipw_queue_tx_free(priv, &priv->txq[1]);
	ipw_queue_tx_free(priv, &priv->txq[2]);
	ipw_queue_tx_free(priv, &priv->txq[3]);
}

static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
{
	/* First 3 bytes are manufacturer */
	bssid[0] = priv->mac_addr[0];
	bssid[1] = priv->mac_addr[1];
	bssid[2] = priv->mac_addr[2];

	/* Last bytes are random */
	get_random_bytes(&bssid[3], ETH_ALEN - 3);

	bssid[0] &= 0xfe;	/* clear multicast bit */
	bssid[0] |= 0x02;	/* set local assignment bit (IEEE802) */
}

static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
{
	struct ipw_station_entry entry;
	int i;

	for (i = 0; i < priv->num_stations; i++) {
		if (ether_addr_equal(priv->stations[i], bssid)) {
			/* Another node is active in network */
			priv->missed_adhoc_beacons = 0;
			if (!(priv->config & CFG_STATIC_CHANNEL))
				/* when other nodes drop out, we drop out */
				priv->config &= ~CFG_ADHOC_PERSIST;

			return i;
		}
	}

	if (i == MAX_STATIONS)
		return IPW_INVALID_STATION;

	IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);

	entry.reserved = 0;
	entry.support_mode = 0;
	memcpy(entry.mac_addr, bssid, ETH_ALEN);
	memcpy(priv->stations[i], bssid, ETH_ALEN);
	ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
			 &entry, sizeof(entry));
	priv->num_stations++;

	return i;
}

static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
{
	int i;

	for (i = 0; i < priv->num_stations; i++)
		if (ether_addr_equal(priv->stations[i], bssid))
			return i;

	return IPW_INVALID_STATION;
}

static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
{
	int err;

	if (priv->status & STATUS_ASSOCIATING) {
		IPW_DEBUG_ASSOC("Disassociating while associating.\n");
		schedule_work(&priv->disassociate);
		return;
	}

	if (!(priv->status & STATUS_ASSOCIATED)) {
		IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
		return;
	}

	IPW_DEBUG_ASSOC("Disassociation attempt from %pM "
			"on channel %d.\n",
			priv->assoc_request.bssid,
			priv->assoc_request.channel);

	priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
	priv->status |= STATUS_DISASSOCIATING;

	if (quiet)
		priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
	else
		priv->assoc_request.assoc_type = HC_DISASSOCIATE;

	err = ipw_send_associate(priv, &priv->assoc_request);
	if (err) {
		IPW_DEBUG_HC("Attempt to send [dis]associate command "
			     "failed.\n");
		return;
	}

}

static int ipw_disassociate(void *data)
{
	struct ipw_priv *priv = data;
	if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
		return 0;
	ipw_send_disassociate(data, 0);
	netif_carrier_off(priv->net_dev);
	return 1;
}

static void ipw_bg_disassociate(struct work_struct *work)
{
	struct ipw_priv *priv =
		container_of(work, struct ipw_priv, disassociate);
	mutex_lock(&priv->mutex);
	ipw_disassociate(priv);
	mutex_unlock(&priv->mutex);
}

static void ipw_system_config(struct work_struct *work)
{
	struct ipw_priv *priv =
		container_of(work, struct ipw_priv, system_config);

#ifdef CONFIG_IPW2200_PROMISCUOUS
	if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
		priv->sys_config.accept_all_data_frames = 1;
		priv->sys_config.accept_non_directed_frames = 1;
		priv->sys_config.accept_all_mgmt_bcpr = 1;
		priv->sys_config.accept_all_mgmt_frames = 1;
	}
#endif

	ipw_send_system_config(priv);
}

struct ipw_status_code {
	u16 status;
	const char *reason;
};

static const struct ipw_status_code ipw_status_codes[] = {
	{0x00, "Successful"},
	{0x01, "Unspecified failure"},
	{0x0A, "Cannot support all requested capabilities in the "
	 "Capability information field"},
	{0x0B, "Reassociation denied due to inability to confirm that "
	 "association exists"},
	{0x0C, "Association denied due to reason outside the scope of this "
	 "standard"},
	{0x0D,
	 "Responding station does not support the specified authentication "
	 "algorithm"},
	{0x0E,
	 "Received an Authentication frame with authentication sequence "
	 "transaction sequence number out of expected sequence"},
	{0x0F, "Authentication rejected because of challenge failure"},
	{0x10, "Authentication rejected due to timeout waiting for next "
	 "frame in sequence"},
	{0x11, "Association denied because AP is unable to handle additional "
	 "associated stations"},
	{0x12,
	 "Association denied due to requesting station not supporting all "
	 "of the datarates in the BSSBasicServiceSet Parameter"},
	{0x13,
	 "Association denied due to requesting station not supporting "
	 "short preamble operation"},
	{0x14,
	 "Association denied due to requesting station not supporting "
	 "PBCC encoding"},
	{0x15,
	 "Association denied due to requesting station not supporting "
	 "channel agility"},
	{0x19,
	 "Association denied due to requesting station not supporting "
	 "short slot operation"},
	{0x1A,
	 "Association denied due to requesting station not supporting "
	 "DSSS-OFDM operation"},
	{0x28, "Invalid Information Element"},
	{0x29, "Group Cipher is not valid"},
	{0x2A, "Pairwise Cipher is not valid"},
	{0x2B, "AKMP is not valid"},
	{0x2C, "Unsupported RSN IE version"},
	{0x2D, "Invalid RSN IE Capabilities"},
	{0x2E, "Cipher suite is rejected per security policy"},
};

static const char *ipw_get_status_code(u16 status)
{
	int i;
	for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
		if (ipw_status_codes[i].status == (status & 0xff))
			return ipw_status_codes[i].reason;
	return "Unknown status value.";
}

static inline void average_init(struct average *avg)
{
	memset(avg, 0, sizeof(*avg));
}

#define DEPTH_RSSI 8
#define DEPTH_NOISE 16
static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
{
	return ((depth-1)*prev_avg +  val)/depth;
}

static void average_add(struct average *avg, s16 val)
{
	avg->sum -= avg->entries[avg->pos];
	avg->sum += val;
	avg->entries[avg->pos++] = val;
	if (unlikely(avg->pos == AVG_ENTRIES)) {
		avg->init = 1;
		avg->pos = 0;
	}
}

static s16 average_value(struct average *avg)
{
	if (!unlikely(avg->init)) {
		if (avg->pos)
			return avg->sum / avg->pos;
		return 0;
	}

	return avg->sum / AVG_ENTRIES;
}

static void ipw_reset_stats(struct ipw_priv *priv)
{
	u32 len = sizeof(u32);

	priv->quality = 0;

	average_init(&priv->average_missed_beacons);
	priv->exp_avg_rssi = -60;
	priv->exp_avg_noise = -85 + 0x100;

	priv->last_rate = 0;
	priv->last_missed_beacons = 0;
	priv->last_rx_packets = 0;
	priv->last_tx_packets = 0;
	priv->last_tx_failures = 0;

	/* Firmware managed, reset only when NIC is restarted, so we have to
	 * normalize on the current value */
	ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
			&priv->last_rx_err, &len);
	ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
			&priv->last_tx_failures, &len);

	/* Driver managed, reset with each association */
	priv->missed_adhoc_beacons = 0;
	priv->missed_beacons = 0;
	priv->tx_packets = 0;
	priv->rx_packets = 0;

}

static u32 ipw_get_max_rate(struct ipw_priv *priv)
{
	u32 i = 0x80000000;
	u32 mask = priv->rates_mask;
	/* If currently associated in B mode, restrict the maximum
	 * rate match to B rates */
	if (priv->assoc_request.ieee_mode == IPW_B_MODE)
		mask &= LIBIPW_CCK_RATES_MASK;

	/* TODO: Verify that the rate is supported by the current rates
	 * list. */

	while (i && !(mask & i))
		i >>= 1;
	switch (i) {
	case LIBIPW_CCK_RATE_1MB_MASK:
		return 1000000;
	case LIBIPW_CCK_RATE_2MB_MASK:
		return 2000000;
	case LIBIPW_CCK_RATE_5MB_MASK:
		return 5500000;
	case LIBIPW_OFDM_RATE_6MB_MASK:
		return 6000000;
	case LIBIPW_OFDM_RATE_9MB_MASK:
		return 9000000;
	case LIBIPW_CCK_RATE_11MB_MASK:
		return 11000000;
	case LIBIPW_OFDM_RATE_12MB_MASK:
		return 12000000;
	case LIBIPW_OFDM_RATE_18MB_MASK:
		return 18000000;
	case LIBIPW_OFDM_RATE_24MB_MASK:
		return 24000000;
	case LIBIPW_OFDM_RATE_36MB_MASK:
		return 36000000;
	case LIBIPW_OFDM_RATE_48MB_MASK:
		return 48000000;
	case LIBIPW_OFDM_RATE_54MB_MASK:
		return 54000000;
	}

	if (priv->ieee->mode == IEEE_B)
		return 11000000;
	else
		return 54000000;
}

static u32 ipw_get_current_rate(struct ipw_priv *priv)
{
	u32 rate, len = sizeof(rate);
	int err;

	if (!(priv->status & STATUS_ASSOCIATED))
		return 0;

	if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
		err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
				      &len);
		if (err) {
			IPW_DEBUG_INFO("failed querying ordinals.\n");
			return 0;
		}
	} else
		return ipw_get_max_rate(priv);

	switch (rate) {
	case IPW_TX_RATE_1MB:
		return 1000000;
	case IPW_TX_RATE_2MB:
		return 2000000;
	case IPW_TX_RATE_5MB:
		return 5500000;
	case IPW_TX_RATE_6MB:
		return 6000000;
	case IPW_TX_RATE_9MB:
		return 9000000;
	case IPW_TX_RATE_11MB:
		return 11000000;
	case IPW_TX_RATE_12MB:
		return 12000000;
	case IPW_TX_RATE_18MB:
		return 18000000;
	case IPW_TX_RATE_24MB:
		return 24000000;
	case IPW_TX_RATE_36MB:
		return 36000000;
	case IPW_TX_RATE_48MB:
		return 48000000;
	case IPW_TX_RATE_54MB:
		return 54000000;
	}

	return 0;
}

#define IPW_STATS_INTERVAL (2 * HZ)
static void ipw_gather_stats(struct ipw_priv *priv)
{
	u32 rx_err, rx_err_delta, rx_packets_delta;
	u32 tx_failures, tx_failures_delta, tx_packets_delta;
	u32 missed_beacons_percent, missed_beacons_delta;
	u32 quality = 0;
	u32 len = sizeof(u32);
	s16 rssi;
	u32 beacon_quality, signal_quality, tx_quality, rx_quality,
	    rate_quality;
	u32 max_rate;

	if (!(priv->status & STATUS_ASSOCIATED)) {
		priv->quality = 0;
		return;
	}

	/* Update the statistics */
	ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
			&priv->missed_beacons, &len);
	missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
	priv->last_missed_beacons = priv->missed_beacons;
	if (priv->assoc_request.beacon_interval) {
		missed_beacons_percent = missed_beacons_delta *
		    (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
		    (IPW_STATS_INTERVAL * 10);
	} else {
		missed_beacons_percent = 0;
	}
	average_add(&priv->average_missed_beacons, missed_beacons_percent);

	ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
	rx_err_delta = rx_err - priv->last_rx_err;
	priv->last_rx_err = rx_err;

	ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
	tx_failures_delta = tx_failures - priv->last_tx_failures;
	priv->last_tx_failures = tx_failures;

	rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
	priv->last_rx_packets = priv->rx_packets;

	tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
	priv->last_tx_packets = priv->tx_packets;

	/* Calculate quality based on the following:
	 *
	 * Missed beacon: 100% = 0, 0% = 70% missed
	 * Rate: 60% = 1Mbs, 100% = Max
	 * Rx and Tx errors represent a straight % of total Rx/Tx
	 * RSSI: 100% = > -50,  0% = < -80
	 * Rx errors: 100% = 0, 0% = 50% missed
	 *
	 * The lowest computed quality is used.
	 *
	 */
#define BEACON_THRESHOLD 5
	beacon_quality = 100 - missed_beacons_percent;
	if (beacon_quality < BEACON_THRESHOLD)
		beacon_quality = 0;
	else
		beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
		    (100 - BEACON_THRESHOLD);
	IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
			beacon_quality, missed_beacons_percent);

	priv->last_rate = ipw_get_current_rate(priv);
	max_rate = ipw_get_max_rate(priv);
	rate_quality = priv->last_rate * 40 / max_rate + 60;
	IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
			rate_quality, priv->last_rate / 1000000);

	if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
		rx_quality = 100 - (rx_err_delta * 100) /
		    (rx_packets_delta + rx_err_delta);
	else
		rx_quality = 100;
	IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
			rx_quality, rx_err_delta, rx_packets_delta);

	if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
		tx_quality = 100 - (tx_failures_delta * 100) /
		    (tx_packets_delta + tx_failures_delta);
	else
		tx_quality = 100;
	IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
			tx_quality, tx_failures_delta, tx_packets_delta);

	rssi = priv->exp_avg_rssi;
	signal_quality =
	    (100 *
	     (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
	     (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
	     (priv->ieee->perfect_rssi - rssi) *
	     (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
	      62 * (priv->ieee->perfect_rssi - rssi))) /
	    ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
	     (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
	if (signal_quality > 100)
		signal_quality = 100;
	else if (signal_quality < 1)
		signal_quality = 0;

	IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
			signal_quality, rssi);

	quality = min(rx_quality, signal_quality);
	quality = min(tx_quality, quality);
	quality = min(rate_quality, quality);
	quality = min(beacon_quality, quality);
	if (quality == beacon_quality)
		IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
				quality);
	if (quality == rate_quality)
		IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
				quality);
	if (quality == tx_quality)
		IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
				quality);
	if (quality == rx_quality)
		IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
				quality);
	if (quality == signal_quality)
		IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
				quality);

	priv->quality = quality;

	schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL);
}

static void ipw_bg_gather_stats(struct work_struct *work)
{
	struct ipw_priv *priv =
		container_of(work, struct ipw_priv, gather_stats.work);
	mutex_lock(&priv->mutex);
	ipw_gather_stats(priv);
	mutex_unlock(&priv->mutex);
}

/* Missed beacon behavior:
 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
 * Above disassociate threshold, give up and stop scanning.
 * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
static void ipw_handle_missed_beacon(struct ipw_priv *priv,
					    int missed_count)
{
	priv->notif_missed_beacons = missed_count;

	if (missed_count > priv->disassociate_threshold &&
	    priv->status & STATUS_ASSOCIATED) {
		/* If associated and we've hit the missed
		 * beacon threshold, disassociate, turn
		 * off roaming, and abort any active scans */
		IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
			  IPW_DL_STATE | IPW_DL_ASSOC,
			  "Missed beacon: %d - disassociate\n", missed_count);
		priv->status &= ~STATUS_ROAMING;
		if (priv->status & STATUS_SCANNING) {
			IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
				  IPW_DL_STATE,
				  "Aborting scan with missed beacon.\n");
			schedule_work(&priv->abort_scan);
		}

		schedule_work(&priv->disassociate);
		return;
	}

	if (priv->status & STATUS_ROAMING) {
		/* If we are currently roaming, then just
		 * print a debug statement... */
		IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
			  "Missed beacon: %d - roam in progress\n",
			  missed_count);
		return;
	}

	if (roaming &&
	    (missed_count > priv->roaming_threshold &&
	     missed_count <= priv->disassociate_threshold)) {
		/* If we are not already roaming, set the ROAM
		 * bit in the status and kick off a scan.
		 * This can happen several times before we reach
		 * disassociate_threshold. */
		IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
			  "Missed beacon: %d - initiate "
			  "roaming\n", missed_count);
		if (!(priv->status & STATUS_ROAMING)) {
			priv->status |= STATUS_ROAMING;
			if (!(priv->status & STATUS_SCANNING))
				schedule_delayed_work(&priv->request_scan, 0);
		}
		return;
	}

	if (priv->status & STATUS_SCANNING &&
	    missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
		/* Stop scan to keep fw from getting
		 * stuck (only if we aren't roaming --
		 * otherwise we'll never scan more than 2 or 3
		 * channels..) */
		IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
			  "Aborting scan with missed beacon.\n");
		schedule_work(&priv->abort_scan);
	}

	IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
}

static void ipw_scan_event(struct work_struct *work)
{
	union iwreq_data wrqu;

	struct ipw_priv *priv =
		container_of(work, struct ipw_priv, scan_event.work);

	wrqu.data.length = 0;
	wrqu.data.flags = 0;
	wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
}

static void handle_scan_event(struct ipw_priv *priv)
{
	/* Only userspace-requested scan completion events go out immediately */
	if (!priv->user_requested_scan) {
		schedule_delayed_work(&priv->scan_event,
				      round_jiffies_relative(msecs_to_jiffies(4000)));
	} else {
		priv->user_requested_scan = 0;
		mod_delayed_work(system_wq, &priv->scan_event, 0);
	}
}

/*
 * Handle host notification packet.
 * Called from interrupt routine
 */
static void ipw_rx_notification(struct ipw_priv *priv,
				       struct ipw_rx_notification *notif)
{
	u16 size = le16_to_cpu(notif->size);

	IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);

	switch (notif->subtype) {
	case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
			struct notif_association *assoc = &notif->u.assoc;

			switch (assoc->state) {
			case CMAS_ASSOCIATED:{
					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
						  IPW_DL_ASSOC,
						  "associated: '%*pE' %pM\n",
						  priv->essid_len, priv->essid,
						  priv->bssid);

					switch (priv->ieee->iw_mode) {
					case IW_MODE_INFRA:
						memcpy(priv->ieee->bssid,
						       priv->bssid, ETH_ALEN);
						break;

					case IW_MODE_ADHOC:
						memcpy(priv->ieee->bssid,
						       priv->bssid, ETH_ALEN);

						/* clear out the station table */
						priv->num_stations = 0;

						IPW_DEBUG_ASSOC
						    ("queueing adhoc check\n");
						schedule_delayed_work(
							&priv->adhoc_check,
							le16_to_cpu(priv->
							assoc_request.
							beacon_interval));
						break;
					}

					priv->status &= ~STATUS_ASSOCIATING;
					priv->status |= STATUS_ASSOCIATED;
					schedule_work(&priv->system_config);

#ifdef CONFIG_IPW2200_QOS
#define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
			 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
					if ((priv->status & STATUS_AUTH) &&
					    (IPW_GET_PACKET_STYPE(&notif->u.raw)
					     == IEEE80211_STYPE_ASSOC_RESP)) {
						if ((sizeof
						     (struct
						      libipw_assoc_response)
						     <= size)
						    && (size <= 2314)) {
							struct
							libipw_rx_stats
							    stats = {
								.len = size - 1,
							};

							IPW_DEBUG_QOS
							    ("QoS Associate "
							     "size %d\n", size);
							libipw_rx_mgt(priv->
									 ieee,
									 (struct
									  libipw_hdr_4addr
									  *)
									 &notif->u.raw, &stats);
						}
					}
#endif

					schedule_work(&priv->link_up);

					break;
				}

			case CMAS_AUTHENTICATED:{
					if (priv->
					    status & (STATUS_ASSOCIATED |
						      STATUS_AUTH)) {
						struct notif_authenticate *auth
						    = &notif->u.auth;
						IPW_DEBUG(IPW_DL_NOTIF |
							  IPW_DL_STATE |
							  IPW_DL_ASSOC,
							  "deauthenticated: '%*pE' %pM: (0x%04X) - %s\n",
							  priv->essid_len,
							  priv->essid,
							  priv->bssid,
							  le16_to_cpu(auth->status),
							  ipw_get_status_code
							  (le16_to_cpu
							   (auth->status)));

						priv->status &=
						    ~(STATUS_ASSOCIATING |
						      STATUS_AUTH |
						      STATUS_ASSOCIATED);

						schedule_work(&priv->link_down);
						break;
					}

					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
						  IPW_DL_ASSOC,
						  "authenticated: '%*pE' %pM\n",
						  priv->essid_len, priv->essid,
						  priv->bssid);
					break;
				}

			case CMAS_INIT:{
					if (priv->status & STATUS_AUTH) {
						struct
						    libipw_assoc_response
						*resp;
						resp =
						    (struct
						     libipw_assoc_response
						     *)&notif->u.raw;
						IPW_DEBUG(IPW_DL_NOTIF |
							  IPW_DL_STATE |
							  IPW_DL_ASSOC,
							  "association failed (0x%04X): %s\n",
							  le16_to_cpu(resp->status),
							  ipw_get_status_code
							  (le16_to_cpu
							   (resp->status)));
					}

					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
						  IPW_DL_ASSOC,
						  "disassociated: '%*pE' %pM\n",
						  priv->essid_len, priv->essid,
						  priv->bssid);

					priv->status &=
					    ~(STATUS_DISASSOCIATING |
					      STATUS_ASSOCIATING |
					      STATUS_ASSOCIATED | STATUS_AUTH);
					if (priv->assoc_network
					    && (priv->assoc_network->
						capability &
						WLAN_CAPABILITY_IBSS))
						ipw_remove_current_network
						    (priv);

					schedule_work(&priv->link_down);

					break;
				}

			case CMAS_RX_ASSOC_RESP:
				break;

			default:
				IPW_ERROR("assoc: unknown (%d)\n",
					  assoc->state);
				break;
			}

			break;
		}

	case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
			struct notif_authenticate *auth = &notif->u.auth;
			switch (auth->state) {
			case CMAS_AUTHENTICATED:
				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
					  "authenticated: '%*pE' %pM\n",
					  priv->essid_len, priv->essid,
					  priv->bssid);
				priv->status |= STATUS_AUTH;
				break;

			case CMAS_INIT:
				if (priv->status & STATUS_AUTH) {
					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
						  IPW_DL_ASSOC,
						  "authentication failed (0x%04X): %s\n",
						  le16_to_cpu(auth->status),
						  ipw_get_status_code(le16_to_cpu
								      (auth->
								       status)));
				}
				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
					  IPW_DL_ASSOC,
					  "deauthenticated: '%*pE' %pM\n",
					  priv->essid_len, priv->essid,
					  priv->bssid);

				priv->status &= ~(STATUS_ASSOCIATING |
						  STATUS_AUTH |
						  STATUS_ASSOCIATED);

				schedule_work(&priv->link_down);
				break;

			case CMAS_TX_AUTH_SEQ_1:
				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
					  IPW_DL_ASSOC, "AUTH_SEQ_1\n");
				break;
			case CMAS_RX_AUTH_SEQ_2:
				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
					  IPW_DL_ASSOC, "AUTH_SEQ_2\n");
				break;
			case CMAS_AUTH_SEQ_1_PASS:
				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
					  IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
				break;
			case CMAS_AUTH_SEQ_1_FAIL:
				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
					  IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
				break;
			case CMAS_TX_AUTH_SEQ_3:
				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
					  IPW_DL_ASSOC, "AUTH_SEQ_3\n");
				break;
			case CMAS_RX_AUTH_SEQ_4:
				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
					  IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
				break;
			case CMAS_AUTH_SEQ_2_PASS:
				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
					  IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
				break;
			case CMAS_AUTH_SEQ_2_FAIL:
				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
					  IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
				break;
			case CMAS_TX_ASSOC:
				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
					  IPW_DL_ASSOC, "TX_ASSOC\n");
				break;
			case CMAS_RX_ASSOC_RESP:
				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
					  IPW_DL_ASSOC, "RX_ASSOC_RESP\n");

				break;
			case CMAS_ASSOCIATED:
				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
					  IPW_DL_ASSOC, "ASSOCIATED\n");
				break;
			default:
				IPW_DEBUG_NOTIF("auth: failure - %d\n",
						auth->state);
				break;
			}
			break;
		}

	case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
			struct notif_channel_result *x =
			    &notif->u.channel_result;

			if (size == sizeof(*x)) {
				IPW_DEBUG_SCAN("Scan result for channel %d\n",
					       x->channel_num);
			} else {
				IPW_DEBUG_SCAN("Scan result of wrong size %d "
					       "(should be %zd)\n",
					       size, sizeof(*x));
			}
			break;
		}

	case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
			struct notif_scan_complete *x = &notif->u.scan_complete;
			if (size == sizeof(*x)) {
				IPW_DEBUG_SCAN
				    ("Scan completed: type %d, %d channels, "
				     "%d status\n", x->scan_type,
				     x->num_channels, x->status);
			} else {
				IPW_ERROR("Scan completed of wrong size %d "
					  "(should be %zd)\n",
					  size, sizeof(*x));
			}

			priv->status &=
			    ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);

			wake_up_interruptible(&priv->wait_state);
			cancel_delayed_work(&priv->scan_check);

			if (priv->status & STATUS_EXIT_PENDING)
				break;

			priv->ieee->scans++;

#ifdef CONFIG_IPW2200_MONITOR
			if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
				priv->status |= STATUS_SCAN_FORCED;
				schedule_delayed_work(&priv->request_scan, 0);
				break;
			}
			priv->status &= ~STATUS_SCAN_FORCED;
#endif				/* CONFIG_IPW2200_MONITOR */

			/* Do queued direct scans first */
			if (priv->status & STATUS_DIRECT_SCAN_PENDING)
				schedule_delayed_work(&priv->request_direct_scan, 0);

			if (!(priv->status & (STATUS_ASSOCIATED |
					      STATUS_ASSOCIATING |
					      STATUS_ROAMING |
					      STATUS_DISASSOCIATING)))
				schedule_work(&priv->associate);
			else if (priv->status & STATUS_ROAMING) {
				if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
					/* If a scan completed and we are in roam mode, then
					 * the scan that completed was the one requested as a
					 * result of entering roam... so, schedule the
					 * roam work */
					schedule_work(&priv->roam);
				else
					/* Don't schedule if we aborted the scan */
					priv->status &= ~STATUS_ROAMING;
			} else if (priv->status & STATUS_SCAN_PENDING)
				schedule_delayed_work(&priv->request_scan, 0);
			else if (priv->config & CFG_BACKGROUND_SCAN
				 && priv->status & STATUS_ASSOCIATED)
				schedule_delayed_work(&priv->request_scan,
						      round_jiffies_relative(HZ));

			/* Send an empty event to user space.
			 * We don't send the received data on the event because
			 * it would require us to do complex transcoding, and
			 * we want to minimise the work done in the irq handler
			 * Use a request to extract the data.
			 * Also, we generate this even for any scan, regardless
			 * on how the scan was initiated. User space can just
			 * sync on periodic scan to get fresh data...
			 * Jean II */
			if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
				handle_scan_event(priv);
			break;
		}

	case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
			struct notif_frag_length *x = &notif->u.frag_len;

			if (size == sizeof(*x))
				IPW_ERROR("Frag length: %d\n",
					  le16_to_cpu(x->frag_length));
			else
				IPW_ERROR("Frag length of wrong size %d "
					  "(should be %zd)\n",
					  size, sizeof(*x));
			break;
		}

	case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
			struct notif_link_deterioration *x =
			    &notif->u.link_deterioration;

			if (size == sizeof(*x)) {
				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
					"link deterioration: type %d, cnt %d\n",
					x->silence_notification_type,
					x->silence_count);
				memcpy(&priv->last_link_deterioration, x,
				       sizeof(*x));
			} else {
				IPW_ERROR("Link Deterioration of wrong size %d "
					  "(should be %zd)\n",
					  size, sizeof(*x));
			}
			break;
		}

	case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
			IPW_ERROR("Dino config\n");
			if (priv->hcmd
			    && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
				IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");

			break;
		}

	case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
			struct notif_beacon_state *x = &notif->u.beacon_state;
			if (size != sizeof(*x)) {
				IPW_ERROR
				    ("Beacon state of wrong size %d (should "
				     "be %zd)\n", size, sizeof(*x));
				break;
			}

			if (le32_to_cpu(x->state) ==
			    HOST_NOTIFICATION_STATUS_BEACON_MISSING)
				ipw_handle_missed_beacon(priv,
							 le32_to_cpu(x->
								     number));

			break;
		}

	case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
			struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
			if (size == sizeof(*x)) {
				IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
					  "0x%02x station %d\n",
					  x->key_state, x->security_type,
					  x->station_index);
				break;
			}

			IPW_ERROR
			    ("TGi Tx Key of wrong size %d (should be %zd)\n",
			     size, sizeof(*x));
			break;
		}

	case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
			struct notif_calibration *x = &notif->u.calibration;

			if (size == sizeof(*x)) {
				memcpy(&priv->calib, x, sizeof(*x));
				IPW_DEBUG_INFO("TODO: Calibration\n");
				break;
			}

			IPW_ERROR
			    ("Calibration of wrong size %d (should be %zd)\n",
			     size, sizeof(*x));
			break;
		}

	case HOST_NOTIFICATION_NOISE_STATS:{
			if (size == sizeof(u32)) {
				priv->exp_avg_noise =
				    exponential_average(priv->exp_avg_noise,
				    (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
				    DEPTH_NOISE);
				break;
			}

			IPW_ERROR
			    ("Noise stat is wrong size %d (should be %zd)\n",
			     size, sizeof(u32));
			break;
		}

	default:
		IPW_DEBUG_NOTIF("Unknown notification: "
				"subtype=%d,flags=0x%2x,size=%d\n",
				notif->subtype, notif->flags, size);
	}
}

/*
 * Destroys all DMA structures and initialise them again
 *
 * @param priv
 * @return error code
 */
static int ipw_queue_reset(struct ipw_priv *priv)
{
	int rc = 0;
	/* @todo customize queue sizes */
	int nTx = 64, nTxCmd = 8;
	ipw_tx_queue_free(priv);
	/* Tx CMD queue */
	rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
			       IPW_TX_CMD_QUEUE_READ_INDEX,
			       IPW_TX_CMD_QUEUE_WRITE_INDEX,
			       IPW_TX_CMD_QUEUE_BD_BASE,
			       IPW_TX_CMD_QUEUE_BD_SIZE);
	if (rc) {
		IPW_ERROR("Tx Cmd queue init failed\n");
		goto error;
	}
	/* Tx queue(s) */
	rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
			       IPW_TX_QUEUE_0_READ_INDEX,
			       IPW_TX_QUEUE_0_WRITE_INDEX,
			       IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
	if (rc) {
		IPW_ERROR("Tx 0 queue init failed\n");
		goto error;
	}
	rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
			       IPW_TX_QUEUE_1_READ_INDEX,
			       IPW_TX_QUEUE_1_WRITE_INDEX,
			       IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
	if (rc) {
		IPW_ERROR("Tx 1 queue init failed\n");
		goto error;
	}
	rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
			       IPW_TX_QUEUE_2_READ_INDEX,
			       IPW_TX_QUEUE_2_WRITE_INDEX,
			       IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
	if (rc) {
		IPW_ERROR("Tx 2 queue init failed\n");
		goto error;
	}
	rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
			       IPW_TX_QUEUE_3_READ_INDEX,
			       IPW_TX_QUEUE_3_WRITE_INDEX,
			       IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
	if (rc) {
		IPW_ERROR("Tx 3 queue init failed\n");
		goto error;
	}
	/* statistics */
	priv->rx_bufs_min = 0;
	priv->rx_pend_max = 0;
	return rc;

      error:
	ipw_tx_queue_free(priv);
	return rc;
}

/*
 * Reclaim Tx queue entries no more used by NIC.
 *
 * When FW advances 'R' index, all entries between old and
 * new 'R' index need to be reclaimed. As result, some free space
 * forms. If there is enough free space (> low mark), wake Tx queue.
 *
 * @note Need to protect against garbage in 'R' index
 * @param priv
 * @param txq
 * @param qindex
 * @return Number of used entries remains in the queue
 */
static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
				struct clx2_tx_queue *txq, int qindex)
{
	u32 hw_tail;
	int used;
	struct clx2_queue *q = &txq->q;

	hw_tail = ipw_read32(priv, q->reg_r);
	if (hw_tail >= q->n_bd) {
		IPW_ERROR
		    ("Read index for DMA queue (%d) is out of range [0-%d)\n",
		     hw_tail, q->n_bd);
		goto done;
	}
	for (; q->last_used != hw_tail;
	     q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
		ipw_queue_tx_free_tfd(priv, txq);
		priv->tx_packets++;
	}
      done:
	if ((ipw_tx_queue_space(q) > q->low_mark) &&
	    (qindex >= 0))
		netif_wake_queue(priv->net_dev);
	used = q->first_empty - q->last_used;
	if (used < 0)
		used += q->n_bd;

	return used;
}

static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, const void *buf,
			     int len, int sync)
{
	struct clx2_tx_queue *txq = &priv->txq_cmd;
	struct clx2_queue *q = &txq->q;
	struct tfd_frame *tfd;

	if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
		IPW_ERROR("No space for Tx\n");
		return -EBUSY;
	}

	tfd = &txq->bd[q->first_empty];
	txq->txb[q->first_empty] = NULL;

	memset(tfd, 0, sizeof(*tfd));
	tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
	tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
	priv->hcmd_seq++;
	tfd->u.cmd.index = hcmd;
	tfd->u.cmd.length = len;
	memcpy(tfd->u.cmd.payload, buf, len);
	q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
	ipw_write32(priv, q->reg_w, q->first_empty);
	_ipw_read32(priv, 0x90);

	return 0;
}

/*
 * Rx theory of operation
 *
 * The host allocates 32 DMA target addresses and passes the host address
 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
 * 0 to 31
 *
 * Rx Queue Indexes
 * The host/firmware share two index registers for managing the Rx buffers.
 *
 * The READ index maps to the first position that the firmware may be writing
 * to -- the driver can read up to (but not including) this position and get
 * good data.
 * The READ index is managed by the firmware once the card is enabled.
 *
 * The WRITE index maps to the last position the driver has read from -- the
 * position preceding WRITE is the last slot the firmware can place a packet.
 *
 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
 * WRITE = READ.
 *
 * During initialization the host sets up the READ queue position to the first
 * INDEX position, and WRITE to the last (READ - 1 wrapped)
 *
 * When the firmware places a packet in a buffer it will advance the READ index
 * and fire the RX interrupt.  The driver can then query the READ index and
 * process as many packets as possible, moving the WRITE index forward as it
 * resets the Rx queue buffers with new memory.
 *
 * The management in the driver is as follows:
 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
 *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
 *   to replensish the ipw->rxq->rx_free.
 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
 *   ipw->rxq is replenished and the READ INDEX is updated (updating the
 *   'processed' and 'read' driver indexes as well)
 * + A received packet is processed and handed to the kernel network stack,
 *   detached from the ipw->rxq.  The driver 'processed' index is updated.
 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
 *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
 *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
 *   were enough free buffers and RX_STALLED is set it is cleared.
 *
 *
 * Driver sequence:
 *
 * ipw_rx_queue_alloc()       Allocates rx_free
 * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
 *                            ipw_rx_queue_restock
 * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
 *                            queue, updates firmware pointers, and updates
 *                            the WRITE index.  If insufficient rx_free buffers
 *                            are available, schedules ipw_rx_queue_replenish
 *
 * -- enable interrupts --
 * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
 *                            READ INDEX, detaching the SKB from the pool.
 *                            Moves the packet buffer from queue to rx_used.
 *                            Calls ipw_rx_queue_restock to refill any empty
 *                            slots.
 * ...
 *
 */

/*
 * If there are slots in the RX queue that  need to be restocked,
 * and we have free pre-allocated buffers, fill the ranks as much
 * as we can pulling from rx_free.
 *
 * This moves the 'write' index forward to catch up with 'processed', and
 * also updates the memory address in the firmware to reference the new
 * target buffer.
 */
static void ipw_rx_queue_restock(struct ipw_priv *priv)
{
	struct ipw_rx_queue *rxq = priv->rxq;
	struct list_head *element;
	struct ipw_rx_mem_buffer *rxb;
	unsigned long flags;
	int write;

	spin_lock_irqsave(&rxq->lock, flags);
	write = rxq->write;
	while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
		element = rxq->rx_free.next;
		rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
		list_del(element);

		ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
			    rxb->dma_addr);
		rxq->queue[rxq->write] = rxb;
		rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
		rxq->free_count--;
	}
	spin_unlock_irqrestore(&rxq->lock, flags);

	/* If the pre-allocated buffer pool is dropping low, schedule to
	 * refill it */
	if (rxq->free_count <= RX_LOW_WATERMARK)
		schedule_work(&priv->rx_replenish);

	/* If we've added more space for the firmware to place data, tell it */
	if (write != rxq->write)
		ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
}

/*
 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
 * Also restock the Rx queue via ipw_rx_queue_restock.
 *
 * This is called as a scheduled work item (except for during initialization)
 */
static void ipw_rx_queue_replenish(void *data)
{
	struct ipw_priv *priv = data;
	struct ipw_rx_queue *rxq = priv->rxq;
	struct list_head *element;
	struct ipw_rx_mem_buffer *rxb;
	unsigned long flags;

	spin_lock_irqsave(&rxq->lock, flags);
	while (!list_empty(&rxq->rx_used)) {
		element = rxq->rx_used.next;
		rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
		rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
		if (!rxb->skb) {
			printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
			       priv->net_dev->name);
			/* We don't reschedule replenish work here -- we will
			 * call the restock method and if it still needs
			 * more buffers it will schedule replenish */
			break;
		}
		list_del(element);

		rxb->dma_addr =
		    dma_map_single(&priv->pci_dev->dev, rxb->skb->data,
				   IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);

		list_add_tail(&rxb->list, &rxq->rx_free);
		rxq->free_count++;
	}
	spin_unlock_irqrestore(&rxq->lock, flags);

	ipw_rx_queue_restock(priv);
}

static void ipw_bg_rx_queue_replenish(struct work_struct *work)
{
	struct ipw_priv *priv =
		container_of(work, struct ipw_priv, rx_replenish);
	mutex_lock(&priv->mutex);
	ipw_rx_queue_replenish(priv);
	mutex_unlock(&priv->mutex);
}

/* Assumes that the skb field of the buffers in 'pool' is kept accurate.
 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
 * This free routine walks the list of POOL entries and if SKB is set to
 * non NULL it is unmapped and freed
 */
static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
{
	int i;

	if (!rxq)
		return;

	for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
		if (rxq->pool[i].skb != NULL) {
			dma_unmap_single(&priv->pci_dev->dev,
					 rxq->pool[i].dma_addr,
					 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
			dev_kfree_skb(rxq->pool[i].skb);
		}
	}

	kfree(rxq);
}

static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
{
	struct ipw_rx_queue *rxq;
	int i;

	rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
	if (unlikely(!rxq)) {
		IPW_ERROR("memory allocation failed\n");
		return NULL;
	}
	spin_lock_init(&rxq->lock);
	INIT_LIST_HEAD(&rxq->rx_free);
	INIT_LIST_HEAD(&rxq->rx_used);

	/* Fill the rx_used queue with _all_ of the Rx buffers */
	for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
		list_add_tail(&rxq->pool[i].list, &rxq->rx_used);

	/* Set us so that we have processed and used all buffers, but have
	 * not restocked the Rx queue with fresh buffers */
	rxq->read = rxq->write = 0;
	rxq->free_count = 0;

	return rxq;
}

static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
{
	rate &= ~LIBIPW_BASIC_RATE_MASK;
	if (ieee_mode == IEEE_A) {
		switch (rate) {
		case LIBIPW_OFDM_RATE_6MB:
			return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
			    1 : 0;
		case LIBIPW_OFDM_RATE_9MB:
			return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
			    1 : 0;
		case LIBIPW_OFDM_RATE_12MB:
			return priv->
			    rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
		case LIBIPW_OFDM_RATE_18MB:
			return priv->
			    rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
		case LIBIPW_OFDM_RATE_24MB:
			return priv->
			    rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
		case LIBIPW_OFDM_RATE_36MB:
			return priv->
			    rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
		case LIBIPW_OFDM_RATE_48MB:
			return priv->
			    rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
		case LIBIPW_OFDM_RATE_54MB:
			return priv->
			    rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
		default:
			return 0;
		}
	}

	/* B and G mixed */
	switch (rate) {
	case LIBIPW_CCK_RATE_1MB:
		return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
	case LIBIPW_CCK_RATE_2MB:
		return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
	case LIBIPW_CCK_RATE_5MB:
		return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
	case LIBIPW_CCK_RATE_11MB:
		return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
	}

	/* If we are limited to B modulations, bail at this point */
	if (ieee_mode == IEEE_B)
		return 0;

	/* G */
	switch (rate) {
	case LIBIPW_OFDM_RATE_6MB:
		return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
	case LIBIPW_OFDM_RATE_9MB:
		return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
	case LIBIPW_OFDM_RATE_12MB:
		return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
	case LIBIPW_OFDM_RATE_18MB:
		return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
	case LIBIPW_OFDM_RATE_24MB:
		return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
	case LIBIPW_OFDM_RATE_36MB:
		return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
	case LIBIPW_OFDM_RATE_48MB:
		return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
	case LIBIPW_OFDM_RATE_54MB:
		return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
	}

	return 0;
}

static int ipw_compatible_rates(struct ipw_priv *priv,
				const struct libipw_network *network,
				struct ipw_supported_rates *rates)
{
	int num_rates, i;

	memset(rates, 0, sizeof(*rates));
	num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
	rates->num_rates = 0;
	for (i = 0; i < num_rates; i++) {
		if (!ipw_is_rate_in_mask(priv, network->mode,
					 network->rates[i])) {

			if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
				IPW_DEBUG_SCAN("Adding masked mandatory "
					       "rate %02X\n",
					       network->rates[i]);
				rates->supported_rates[rates->num_rates++] =
				    network->rates[i];
				continue;
			}

			IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
				       network->rates[i], priv->rates_mask);
			continue;
		}

		rates->supported_rates[rates->num_rates++] = network->rates[i];
	}

	num_rates = min(network->rates_ex_len,
			(u8) (IPW_MAX_RATES - num_rates));
	for (i = 0; i < num_rates; i++) {
		if (!ipw_is_rate_in_mask(priv, network->mode,
					 network->rates_ex[i])) {
			if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
				IPW_DEBUG_SCAN("Adding masked mandatory "
					       "rate %02X\n",
					       network->rates_ex[i]);
				rates->supported_rates[rates->num_rates++] =
				    network->rates[i];
				continue;
			}

			IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
				       network->rates_ex[i], priv->rates_mask);
			continue;
		}

		rates->supported_rates[rates->num_rates++] =
		    network->rates_ex[i];
	}

	return 1;
}

static void ipw_copy_rates(struct ipw_supported_rates *dest,
				  const struct ipw_supported_rates *src)
{
	u8 i;
	for (i = 0; i < src->num_rates; i++)
		dest->supported_rates[i] = src->supported_rates[i];
	dest->num_rates = src->num_rates;
}

/* TODO: Look at sniffed packets in the air to determine if the basic rate
 * mask should ever be used -- right now all callers to add the scan rates are
 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
				   u8 modulation, u32 rate_mask)
{
	u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
	    LIBIPW_BASIC_RATE_MASK : 0;

	if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
		rates->supported_rates[rates->num_rates++] =
		    LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;

	if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
		rates->supported_rates[rates->num_rates++] =
		    LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;

	if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
		rates->supported_rates[rates->num_rates++] = basic_mask |
		    LIBIPW_CCK_RATE_5MB;

	if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
		rates->supported_rates[rates->num_rates++] = basic_mask |
		    LIBIPW_CCK_RATE_11MB;
}

static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
				    u8 modulation, u32 rate_mask)
{
	u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
	    LIBIPW_BASIC_RATE_MASK : 0;

	if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
		rates->supported_rates[rates->num_rates++] = basic_mask |
		    LIBIPW_OFDM_RATE_6MB;

	if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
		rates->supported_rates[rates->num_rates++] =
		    LIBIPW_OFDM_RATE_9MB;

	if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
		rates->supported_rates[rates->num_rates++] = basic_mask |
		    LIBIPW_OFDM_RATE_12MB;

	if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
		rates->supported_rates[rates->num_rates++] =
		    LIBIPW_OFDM_RATE_18MB;

	if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
		rates->supported_rates[rates->num_rates++] = basic_mask |
		    LIBIPW_OFDM_RATE_24MB;

	if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
		rates->supported_rates[rates->num_rates++] =
		    LIBIPW_OFDM_RATE_36MB;

	if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
		rates->supported_rates[rates->num_rates++] =
		    LIBIPW_OFDM_RATE_48MB;

	if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
		rates->supported_rates[rates->num_rates++] =
		    LIBIPW_OFDM_RATE_54MB;
}

struct ipw_network_match {
	struct libipw_network *network;
	struct ipw_supported_rates rates;
};

static int ipw_find_adhoc_network(struct ipw_priv *priv,
				  struct ipw_network_match *match,
				  struct libipw_network *network,
				  int roaming)
{
	struct ipw_supported_rates rates;

	/* Verify that this network's capability is compatible with the
	 * current mode (AdHoc or Infrastructure) */
	if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
	     !(network->capability & WLAN_CAPABILITY_IBSS))) {
		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
				network->ssid_len, network->ssid,
				network->bssid);
		return 0;
	}

	if (unlikely(roaming)) {
		/* If we are roaming, then ensure check if this is a valid
		 * network to try and roam to */
		if ((network->ssid_len != match->network->ssid_len) ||
		    memcmp(network->ssid, match->network->ssid,
			   network->ssid_len)) {
			IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
					network->ssid_len, network->ssid,
					network->bssid);
			return 0;
		}
	} else {
		/* If an ESSID has been configured then compare the broadcast
		 * ESSID to ours */
		if ((priv->config & CFG_STATIC_ESSID) &&
		    ((network->ssid_len != priv->essid_len) ||
		     memcmp(network->ssid, priv->essid,
			    min(network->ssid_len, priv->essid_len)))) {
			IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
					network->ssid_len, network->ssid,
					network->bssid, priv->essid_len,
					priv->essid);
			return 0;
		}
	}

	/* If the old network rate is better than this one, don't bother
	 * testing everything else. */

	if (network->time_stamp[0] < match->network->time_stamp[0]) {
		IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
				match->network->ssid_len, match->network->ssid);
		return 0;
	} else if (network->time_stamp[1] < match->network->time_stamp[1]) {
		IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
				match->network->ssid_len, match->network->ssid);
		return 0;
	}

	/* Now go through and see if the requested network is valid... */
	if (priv->ieee->scan_age != 0 &&
	    time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of age: %ums.\n",
				network->ssid_len, network->ssid,
				network->bssid,
				jiffies_to_msecs(jiffies -
						 network->last_scanned));
		return 0;
	}

	if ((priv->config & CFG_STATIC_CHANNEL) &&
	    (network->channel != priv->channel)) {
		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
				network->ssid_len, network->ssid,
				network->bssid,
				network->channel, priv->channel);
		return 0;
	}

	/* Verify privacy compatibility */
	if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
	    ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
				network->ssid_len, network->ssid,
				network->bssid,
				priv->
				capability & CAP_PRIVACY_ON ? "on" : "off",
				network->
				capability & WLAN_CAPABILITY_PRIVACY ? "on" :
				"off");
		return 0;
	}

	if (ether_addr_equal(network->bssid, priv->bssid)) {
		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of the same BSSID match: %pM.\n",
				network->ssid_len, network->ssid,
				network->bssid, priv->bssid);
		return 0;
	}

	/* Filter out any incompatible freq / mode combinations */
	if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
				network->ssid_len, network->ssid,
				network->bssid);
		return 0;
	}

	/* Ensure that the rates supported by the driver are compatible with
	 * this AP, including verification of basic rates (mandatory) */
	if (!ipw_compatible_rates(priv, network, &rates)) {
		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
				network->ssid_len, network->ssid,
				network->bssid);
		return 0;
	}

	if (rates.num_rates == 0) {
		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
				network->ssid_len, network->ssid,
				network->bssid);
		return 0;
	}

	/* TODO: Perform any further minimal comparititive tests.  We do not
	 * want to put too much policy logic here; intelligent scan selection
	 * should occur within a generic IEEE 802.11 user space tool.  */

	/* Set up 'new' AP to this network */
	ipw_copy_rates(&match->rates, &rates);
	match->network = network;
	IPW_DEBUG_MERGE("Network '%*pE (%pM)' is a viable match.\n",
			network->ssid_len, network->ssid, network->bssid);

	return 1;
}

static void ipw_merge_adhoc_network(struct work_struct *work)
{
	struct ipw_priv *priv =
		container_of(work, struct ipw_priv, merge_networks);
	struct libipw_network *network = NULL;
	struct ipw_network_match match = {
		.network = priv->assoc_network
	};

	if ((priv->status & STATUS_ASSOCIATED) &&
	    (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
		/* First pass through ROAM process -- look for a better
		 * network */
		unsigned long flags;

		spin_lock_irqsave(&priv->ieee->lock, flags);
		list_for_each_entry(network, &priv->ieee->network_list, list) {
			if (network != priv->assoc_network)
				ipw_find_adhoc_network(priv, &match, network,
						       1);
		}
		spin_unlock_irqrestore(&priv->ieee->lock, flags);

		if (match.network == priv->assoc_network) {
			IPW_DEBUG_MERGE("No better ADHOC in this network to "
					"merge to.\n");
			return;
		}

		mutex_lock(&priv->mutex);
		if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
			IPW_DEBUG_MERGE("remove network %*pE\n",
					priv->essid_len, priv->essid);
			ipw_remove_current_network(priv);
		}

		ipw_disassociate(priv);
		priv->assoc_network = match.network;
		mutex_unlock(&priv->mutex);
		return;
	}
}

static int ipw_best_network(struct ipw_priv *priv,
			    struct ipw_network_match *match,
			    struct libipw_network *network, int roaming)
{
	struct ipw_supported_rates rates;

	/* Verify that this network's capability is compatible with the
	 * current mode (AdHoc or Infrastructure) */
	if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
	     !(network->capability & WLAN_CAPABILITY_ESS)) ||
	    (priv->ieee->iw_mode == IW_MODE_ADHOC &&
	     !(network->capability & WLAN_CAPABILITY_IBSS))) {
		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
				network->ssid_len, network->ssid,
				network->bssid);
		return 0;
	}

	if (unlikely(roaming)) {
		/* If we are roaming, then ensure check if this is a valid
		 * network to try and roam to */
		if ((network->ssid_len != match->network->ssid_len) ||
		    memcmp(network->ssid, match->network->ssid,
			   network->ssid_len)) {
			IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
					network->ssid_len, network->ssid,
					network->bssid);
			return 0;
		}
	} else {
		/* If an ESSID has been configured then compare the broadcast
		 * ESSID to ours */
		if ((priv->config & CFG_STATIC_ESSID) &&
		    ((network->ssid_len != priv->essid_len) ||
		     memcmp(network->ssid, priv->essid,
			    min(network->ssid_len, priv->essid_len)))) {
			IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
					network->ssid_len, network->ssid,
					network->bssid, priv->essid_len,
					priv->essid);
			return 0;
		}
	}

	/* If the old network rate is better than this one, don't bother
	 * testing everything else. */
	if (match->network && match->network->stats.rssi > network->stats.rssi) {
		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because '%*pE (%pM)' has a stronger signal.\n",
				network->ssid_len, network->ssid,
				network->bssid, match->network->ssid_len,
				match->network->ssid, match->network->bssid);
		return 0;
	}

	/* If this network has already had an association attempt within the
	 * last 3 seconds, do not try and associate again... */
	if (network->last_associate &&
	    time_after(network->last_associate + (HZ * 3UL), jiffies)) {
		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of storming (%ums since last assoc attempt).\n",
				network->ssid_len, network->ssid,
				network->bssid,
				jiffies_to_msecs(jiffies -
						 network->last_associate));
		return 0;
	}

	/* Now go through and see if the requested network is valid... */
	if (priv->ieee->scan_age != 0 &&
	    time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of age: %ums.\n",
				network->ssid_len, network->ssid,
				network->bssid,
				jiffies_to_msecs(jiffies -
						 network->last_scanned));
		return 0;
	}

	if ((priv->config & CFG_STATIC_CHANNEL) &&
	    (network->channel != priv->channel)) {
		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
				network->ssid_len, network->ssid,
				network->bssid,
				network->channel, priv->channel);
		return 0;
	}

	/* Verify privacy compatibility */
	if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
	    ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
				network->ssid_len, network->ssid,
				network->bssid,
				priv->capability & CAP_PRIVACY_ON ? "on" :
				"off",
				network->capability &
				WLAN_CAPABILITY_PRIVACY ? "on" : "off");
		return 0;
	}

	if ((priv->config & CFG_STATIC_BSSID) &&
	    !ether_addr_equal(network->bssid, priv->bssid)) {
		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of BSSID mismatch: %pM.\n",
				network->ssid_len, network->ssid,
				network->bssid, priv->bssid);
		return 0;
	}

	/* Filter out any incompatible freq / mode combinations */
	if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
				network->ssid_len, network->ssid,
				network->bssid);
		return 0;
	}

	/* Filter out invalid channel in current GEO */
	if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid channel in current GEO\n",
				network->ssid_len, network->ssid,
				network->bssid);
		return 0;
	}

	/* Ensure that the rates supported by the driver are compatible with
	 * this AP, including verification of basic rates (mandatory) */
	if (!ipw_compatible_rates(priv, network, &rates)) {
		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
				network->ssid_len, network->ssid,
				network->bssid);
		return 0;
	}

	if (rates.num_rates == 0) {
		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
				network->ssid_len, network->ssid,
				network->bssid);
		return 0;
	}

	/* TODO: Perform any further minimal comparititive tests.  We do not
	 * want to put too much policy logic here; intelligent scan selection
	 * should occur within a generic IEEE 802.11 user space tool.  */

	/* Set up 'new' AP to this network */
	ipw_copy_rates(&match->rates, &rates);
	match->network = network;

	IPW_DEBUG_ASSOC("Network '%*pE (%pM)' is a viable match.\n",
			network->ssid_len, network->ssid, network->bssid);

	return 1;
}

static void ipw_adhoc_create(struct ipw_priv *priv,
			     struct libipw_network *network)
{
	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
	int i;

	/*
	 * For the purposes of scanning, we can set our wireless mode
	 * to trigger scans across combinations of bands, but when it
	 * comes to creating a new ad-hoc network, we have tell the FW
	 * exactly which band to use.
	 *
	 * We also have the possibility of an invalid channel for the
	 * chossen band.  Attempting to create a new ad-hoc network
	 * with an invalid channel for wireless mode will trigger a
	 * FW fatal error.
	 *
	 */
	switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
	case LIBIPW_52GHZ_BAND:
		network->mode = IEEE_A;
		i = libipw_channel_to_index(priv->ieee, priv->channel);
		BUG_ON(i == -1);
		if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
			IPW_WARNING("Overriding invalid channel\n");
			priv->channel = geo->a[0].channel;
		}
		break;

	case LIBIPW_24GHZ_BAND:
		if (priv->ieee->mode & IEEE_G)
			network->mode = IEEE_G;
		else
			network->mode = IEEE_B;
		i = libipw_channel_to_index(priv->ieee, priv->channel);
		BUG_ON(i == -1);
		if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
			IPW_WARNING("Overriding invalid channel\n");
			priv->channel = geo->bg[0].channel;
		}
		break;

	default:
		IPW_WARNING("Overriding invalid channel\n");
		if (priv->ieee->mode & IEEE_A) {
			network->mode = IEEE_A;
			priv->channel = geo->a[0].channel;
		} else if (priv->ieee->mode & IEEE_G) {
			network->mode = IEEE_G;
			priv->channel = geo->bg[0].channel;
		} else {
			network->mode = IEEE_B;
			priv->channel = geo->bg[0].channel;
		}
		break;
	}

	network->channel = priv->channel;
	priv->config |= CFG_ADHOC_PERSIST;
	ipw_create_bssid(priv, network->bssid);
	network->ssid_len = priv->essid_len;
	memcpy(network->ssid, priv->essid, priv->essid_len);
	memset(&network->stats, 0, sizeof(network->stats));
	network->capability = WLAN_CAPABILITY_IBSS;
	if (!(priv->config & CFG_PREAMBLE_LONG))
		network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
	if (priv->capability & CAP_PRIVACY_ON)
		network->capability |= WLAN_CAPABILITY_PRIVACY;
	network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
	memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
	network->rates_ex_len = priv->rates.num_rates - network->rates_len;
	memcpy(network->rates_ex,
	       &priv->rates.supported_rates[network->rates_len],
	       network->rates_ex_len);
	network->last_scanned = 0;
	network->flags = 0;
	network->last_associate = 0;
	network->time_stamp[0] = 0;
	network->time_stamp[1] = 0;
	network->beacon_interval = 100;	/* Default */
	network->listen_interval = 10;	/* Default */
	network->atim_window = 0;	/* Default */
	network->wpa_ie_len = 0;
	network->rsn_ie_len = 0;
}

static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
{
	struct ipw_tgi_tx_key key;

	if (!(priv->ieee->sec.flags & (1 << index)))
		return;

	key.key_id = index;
	memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
	key.security_type = type;
	key.station_index = 0;	/* always 0 for BSS */
	key.flags = 0;
	/* 0 for new key; previous value of counter (after fatal error) */
	key.tx_counter[0] = cpu_to_le32(0);
	key.tx_counter[1] = cpu_to_le32(0);

	ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
}

static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
{
	struct ipw_wep_key key;
	int i;

	key.cmd_id = DINO_CMD_WEP_KEY;
	key.seq_num = 0;

	/* Note: AES keys cannot be set for multiple times.
	 * Only set it at the first time. */
	for (i = 0; i < 4; i++) {
		key.key_index = i | type;
		if (!(priv->ieee->sec.flags & (1 << i))) {
			key.key_size = 0;
			continue;
		}

		key.key_size = priv->ieee->sec.key_sizes[i];
		memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);

		ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
	}
}

static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
{
	if (priv->ieee->host_encrypt)
		return;

	switch (level) {
	case SEC_LEVEL_3:
		priv->sys_config.disable_unicast_decryption = 0;
		priv->ieee->host_decrypt = 0;
		break;
	case SEC_LEVEL_2:
		priv->sys_config.disable_unicast_decryption = 1;
		priv->ieee->host_decrypt = 1;
		break;
	case SEC_LEVEL_1:
		priv->sys_config.disable_unicast_decryption = 0;
		priv->ieee->host_decrypt = 0;
		break;
	case SEC_LEVEL_0:
		priv->sys_config.disable_unicast_decryption = 1;
		break;
	default:
		break;
	}
}

static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
{
	if (priv->ieee->host_encrypt)
		return;

	switch (level) {
	case SEC_LEVEL_3:
		priv->sys_config.disable_multicast_decryption = 0;
		break;
	case SEC_LEVEL_2:
		priv->sys_config.disable_multicast_decryption = 1;
		break;
	case SEC_LEVEL_1:
		priv->sys_config.disable_multicast_decryption = 0;
		break;
	case SEC_LEVEL_0:
		priv->sys_config.disable_multicast_decryption = 1;
		break;
	default:
		break;
	}
}

static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
{
	switch (priv->ieee->sec.level) {
	case SEC_LEVEL_3:
		if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
			ipw_send_tgi_tx_key(priv,
					    DCT_FLAG_EXT_SECURITY_CCM,
					    priv->ieee->sec.active_key);

		if (!priv->ieee->host_mc_decrypt)
			ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
		break;
	case SEC_LEVEL_2:
		if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
			ipw_send_tgi_tx_key(priv,
					    DCT_FLAG_EXT_SECURITY_TKIP,
					    priv->ieee->sec.active_key);
		break;
	case SEC_LEVEL_1:
		ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
		ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
		ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
		break;
	case SEC_LEVEL_0:
	default:
		break;
	}
}

static void ipw_adhoc_check(void *data)
{
	struct ipw_priv *priv = data;

	if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
	    !(priv->config & CFG_ADHOC_PERSIST)) {
		IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
			  IPW_DL_STATE | IPW_DL_ASSOC,
			  "Missed beacon: %d - disassociate\n",
			  priv->missed_adhoc_beacons);
		ipw_remove_current_network(priv);
		ipw_disassociate(priv);
		return;
	}

	schedule_delayed_work(&priv->adhoc_check,
			      le16_to_cpu(priv->assoc_request.beacon_interval));
}

static void ipw_bg_adhoc_check(struct work_struct *work)
{
	struct ipw_priv *priv =
		container_of(work, struct ipw_priv, adhoc_check.work);
	mutex_lock(&priv->mutex);
	ipw_adhoc_check(priv);
	mutex_unlock(&priv->mutex);
}

static void ipw_debug_config(struct ipw_priv *priv)
{
	IPW_DEBUG_INFO("Scan completed, no valid APs matched "
		       "[CFG 0x%08X]\n", priv->config);
	if (priv->config & CFG_STATIC_CHANNEL)
		IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
	else
		IPW_DEBUG_INFO("Channel unlocked.\n");
	if (priv->config & CFG_STATIC_ESSID)
		IPW_DEBUG_INFO("ESSID locked to '%*pE'\n",
			       priv->essid_len, priv->essid);
	else
		IPW_DEBUG_INFO("ESSID unlocked.\n");
	if (priv->config & CFG_STATIC_BSSID)
		IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
	else
		IPW_DEBUG_INFO("BSSID unlocked.\n");
	if (priv->capability & CAP_PRIVACY_ON)
		IPW_DEBUG_INFO("PRIVACY on\n");
	else
		IPW_DEBUG_INFO("PRIVACY off\n");
	IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
}

static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
{
	/* TODO: Verify that this works... */
	struct ipw_fixed_rate fr;
	u32 reg;
	u16 mask = 0;
	u16 new_tx_rates = priv->rates_mask;

	/* Identify 'current FW band' and match it with the fixed
	 * Tx rates */

	switch (priv->ieee->freq_band) {
	case LIBIPW_52GHZ_BAND:	/* A only */
		/* IEEE_A */
		if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
			/* Invalid fixed rate mask */
			IPW_DEBUG_WX
			    ("invalid fixed rate mask in ipw_set_fixed_rate\n");
			new_tx_rates = 0;
			break;
		}

		new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
		break;

	default:		/* 2.4Ghz or Mixed */
		/* IEEE_B */
		if (mode == IEEE_B) {
			if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
				/* Invalid fixed rate mask */
				IPW_DEBUG_WX
				    ("invalid fixed rate mask in ipw_set_fixed_rate\n");
				new_tx_rates = 0;
			}
			break;
		}

		/* IEEE_G */
		if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
				    LIBIPW_OFDM_RATES_MASK)) {
			/* Invalid fixed rate mask */
			IPW_DEBUG_WX
			    ("invalid fixed rate mask in ipw_set_fixed_rate\n");
			new_tx_rates = 0;
			break;
		}

		if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
			mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
			new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
		}

		if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
			mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
			new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
		}

		if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
			mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
			new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
		}

		new_tx_rates |= mask;
		break;
	}

	fr.tx_rates = cpu_to_le16(new_tx_rates);

	reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
	ipw_write_reg32(priv, reg, *(u32 *) & fr);
}

static void ipw_abort_scan(struct ipw_priv *priv)
{
	int err;

	if (priv->status & STATUS_SCAN_ABORTING) {
		IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
		return;
	}
	priv->status |= STATUS_SCAN_ABORTING;

	err = ipw_send_scan_abort(priv);
	if (err)
		IPW_DEBUG_HC("Request to abort scan failed.\n");
}

static void ipw_add_scan_channels(struct ipw_priv *priv,
				  struct ipw_scan_request_ext *scan,
				  int scan_type)
{
	int channel_index = 0;
	const struct libipw_geo *geo;
	int i;

	geo = libipw_get_geo(priv->ieee);

	if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
		int start = channel_index;
		for (i = 0; i < geo->a_channels; i++) {
			if ((priv->status & STATUS_ASSOCIATED) &&
			    geo->a[i].channel == priv->channel)
				continue;
			channel_index++;
			scan->channels_list[channel_index] = geo->a[i].channel;
			ipw_set_scan_type(scan, channel_index,
					  geo->a[i].
					  flags & LIBIPW_CH_PASSIVE_ONLY ?
					  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
					  scan_type);
		}

		if (start != channel_index) {
			scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
			    (channel_index - start);
			channel_index++;
		}
	}

	if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
		int start = channel_index;
		if (priv->config & CFG_SPEED_SCAN) {
			int index;
			u8 channels[LIBIPW_24GHZ_CHANNELS] = {
				/* nop out the list */
				[0] = 0
			};

			u8 channel;
			while (channel_index < IPW_SCAN_CHANNELS - 1) {
				channel =
				    priv->speed_scan[priv->speed_scan_pos];
				if (channel == 0) {
					priv->speed_scan_pos = 0;
					channel = priv->speed_scan[0];
				}
				if ((priv->status & STATUS_ASSOCIATED) &&
				    channel == priv->channel) {
					priv->speed_scan_pos++;
					continue;
				}

				/* If this channel has already been
				 * added in scan, break from loop
				 * and this will be the first channel
				 * in the next scan.
				 */
				if (channels[channel - 1] != 0)
					break;

				channels[channel - 1] = 1;
				priv->speed_scan_pos++;
				channel_index++;
				scan->channels_list[channel_index] = channel;
				index =
				    libipw_channel_to_index(priv->ieee, channel);
				ipw_set_scan_type(scan, channel_index,
						  geo->bg[index].
						  flags &
						  LIBIPW_CH_PASSIVE_ONLY ?
						  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
						  : scan_type);
			}
		} else {
			for (i = 0; i < geo->bg_channels; i++) {
				if ((priv->status & STATUS_ASSOCIATED) &&
				    geo->bg[i].channel == priv->channel)
					continue;
				channel_index++;
				scan->channels_list[channel_index] =
				    geo->bg[i].channel;
				ipw_set_scan_type(scan, channel_index,
						  geo->bg[i].
						  flags &
						  LIBIPW_CH_PASSIVE_ONLY ?
						  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
						  : scan_type);
			}
		}

		if (start != channel_index) {
			scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
			    (channel_index - start);
		}
	}
}

static int ipw_passive_dwell_time(struct ipw_priv *priv)
{
	/* staying on passive channels longer than the DTIM interval during a
	 * scan, while associated, causes the firmware to cancel the scan
	 * without notification. Hence, don't stay on passive channels longer
	 * than the beacon interval.
	 */
	if (priv->status & STATUS_ASSOCIATED
	    && priv->assoc_network->beacon_interval > 10)
		return priv->assoc_network->beacon_interval - 10;
	else
		return 120;
}

static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
{
	struct ipw_scan_request_ext scan;
	int err = 0, scan_type;

	if (!(priv->status & STATUS_INIT) ||
	    (priv->status & STATUS_EXIT_PENDING))
		return 0;

	mutex_lock(&priv->mutex);

	if (direct && (priv->direct_scan_ssid_len == 0)) {
		IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
		priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
		goto done;
	}

	if (priv->status & STATUS_SCANNING) {
		IPW_DEBUG_HC("Concurrent scan requested.  Queuing.\n");
		priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
					STATUS_SCAN_PENDING;
		goto done;
	}

	if (!(priv->status & STATUS_SCAN_FORCED) &&
	    priv->status & STATUS_SCAN_ABORTING) {
		IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
		priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
					STATUS_SCAN_PENDING;
		goto done;
	}

	if (priv->status & STATUS_RF_KILL_MASK) {
		IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
		priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
					STATUS_SCAN_PENDING;
		goto done;
	}

	memset(&scan, 0, sizeof(scan));
	scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));

	if (type == IW_SCAN_TYPE_PASSIVE) {
		IPW_DEBUG_WX("use passive scanning\n");
		scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
		scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
			cpu_to_le16(ipw_passive_dwell_time(priv));
		ipw_add_scan_channels(priv, &scan, scan_type);
		goto send_request;
	}

	/* Use active scan by default. */
	if (priv->config & CFG_SPEED_SCAN)
		scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
			cpu_to_le16(30);
	else
		scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
			cpu_to_le16(20);

	scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
		cpu_to_le16(20);

	scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
		cpu_to_le16(ipw_passive_dwell_time(priv));
	scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);

#ifdef CONFIG_IPW2200_MONITOR
	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
		u8 channel;
		u8 band = 0;

		switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
		case LIBIPW_52GHZ_BAND:
			band = (u8) (IPW_A_MODE << 6) | 1;
			channel = priv->channel;
			break;

		case LIBIPW_24GHZ_BAND:
			band = (u8) (IPW_B_MODE << 6) | 1;
			channel = priv->channel;
			break;

		default:
			band = (u8) (IPW_B_MODE << 6) | 1;
			channel = 9;
			break;
		}

		scan.channels_list[0] = band;
		scan.channels_list[1] = channel;
		ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);

		/* NOTE:  The card will sit on this channel for this time
		 * period.  Scan aborts are timing sensitive and frequently
		 * result in firmware restarts.  As such, it is best to
		 * set a small dwell_time here and just keep re-issuing
		 * scans.  Otherwise fast channel hopping will not actually
		 * hop channels.
		 *
		 * TODO: Move SPEED SCAN support to all modes and bands */
		scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
			cpu_to_le16(2000);
	} else {
#endif				/* CONFIG_IPW2200_MONITOR */
		/* Honor direct scans first, otherwise if we are roaming make
		 * this a direct scan for the current network.  Finally,
		 * ensure that every other scan is a fast channel hop scan */
		if (direct) {
			err = ipw_send_ssid(priv, priv->direct_scan_ssid,
			                    priv->direct_scan_ssid_len);
			if (err) {
				IPW_DEBUG_HC("Attempt to send SSID command  "
					     "failed\n");
				goto done;
			}

			scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
		} else if ((priv->status & STATUS_ROAMING)
			   || (!(priv->status & STATUS_ASSOCIATED)
			       && (priv->config & CFG_STATIC_ESSID)
			       && (le32_to_cpu(scan.full_scan_index) % 2))) {
			err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
			if (err) {
				IPW_DEBUG_HC("Attempt to send SSID command "
					     "failed.\n");
				goto done;
			}

			scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
		} else
			scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;

		ipw_add_scan_channels(priv, &scan, scan_type);
#ifdef CONFIG_IPW2200_MONITOR
	}
#endif

send_request:
	err = ipw_send_scan_request_ext(priv, &scan);
	if (err) {
		IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
		goto done;
	}

	priv->status |= STATUS_SCANNING;
	if (direct) {
		priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
		priv->direct_scan_ssid_len = 0;
	} else
		priv->status &= ~STATUS_SCAN_PENDING;

	schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG);
done:
	mutex_unlock(&priv->mutex);
	return err;
}

static void ipw_request_passive_scan(struct work_struct *work)
{
	struct ipw_priv *priv =
		container_of(work, struct ipw_priv, request_passive_scan.work);
	ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
}

static void ipw_request_scan(struct work_struct *work)
{
	struct ipw_priv *priv =
		container_of(work, struct ipw_priv, request_scan.work);
	ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
}

static void ipw_request_direct_scan(struct work_struct *work)
{
	struct ipw_priv *priv =
		container_of(work, struct ipw_priv, request_direct_scan.work);
	ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
}

static void ipw_bg_abort_scan(struct work_struct *work)
{
	struct ipw_priv *priv =
		container_of(work, struct ipw_priv, abort_scan);
	mutex_lock(&priv->mutex);
	ipw_abort_scan(priv);
	mutex_unlock(&priv->mutex);
}

static int ipw_wpa_enable(struct ipw_priv *priv, int value)
{
	/* This is called when wpa_supplicant loads and closes the driver
	 * interface. */
	priv->ieee->wpa_enabled = value;
	return 0;
}

static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
{
	struct libipw_device *ieee = priv->ieee;
	struct libipw_security sec = {
		.flags = SEC_AUTH_MODE,
	};
	int ret = 0;

	if (value & IW_AUTH_ALG_SHARED_KEY) {
		sec.auth_mode = WLAN_AUTH_SHARED_KEY;
		ieee->open_wep = 0;
	} else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
		sec.auth_mode = WLAN_AUTH_OPEN;
		ieee->open_wep = 1;
	} else if (value & IW_AUTH_ALG_LEAP) {
		sec.auth_mode = WLAN_AUTH_LEAP;
		ieee->open_wep = 1;
	} else
		return -EINVAL;

	if (ieee->set_security)
		ieee->set_security(ieee->dev, &sec);
	else
		ret = -EOPNOTSUPP;

	return ret;
}

static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
				int wpa_ie_len)
{
	/* make sure WPA is enabled */
	ipw_wpa_enable(priv, 1);
}

static int ipw_set_rsn_capa(struct ipw_priv *priv,
			    char *capabilities, int length)
{
	IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");

	return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
				capabilities);
}

/*
 * WE-18 support
 */

/* SIOCSIWGENIE */
static int ipw_wx_set_genie(struct net_device *dev,
			    struct iw_request_info *info,
			    union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);
	struct libipw_device *ieee = priv->ieee;
	u8 *buf;
	int err = 0;

	if (wrqu->data.length > MAX_WPA_IE_LEN ||
	    (wrqu->data.length && extra == NULL))
		return -EINVAL;

	if (wrqu->data.length) {
		buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
		if (buf == NULL) {
			err = -ENOMEM;
			goto out;
		}

		kfree(ieee->wpa_ie);
		ieee->wpa_ie = buf;
		ieee->wpa_ie_len = wrqu->data.length;
	} else {
		kfree(ieee->wpa_ie);
		ieee->wpa_ie = NULL;
		ieee->wpa_ie_len = 0;
	}

	ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
      out:
	return err;
}

/* SIOCGIWGENIE */
static int ipw_wx_get_genie(struct net_device *dev,
			    struct iw_request_info *info,
			    union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);
	struct libipw_device *ieee = priv->ieee;
	int err = 0;

	if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
		wrqu->data.length = 0;
		goto out;
	}

	if (wrqu->data.length < ieee->wpa_ie_len) {
		err = -E2BIG;
		goto out;
	}

	wrqu->data.length = ieee->wpa_ie_len;
	memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);

      out:
	return err;
}

static int wext_cipher2level(int cipher)
{
	switch (cipher) {
	case IW_AUTH_CIPHER_NONE:
		return SEC_LEVEL_0;
	case IW_AUTH_CIPHER_WEP40:
	case IW_AUTH_CIPHER_WEP104:
		return SEC_LEVEL_1;
	case IW_AUTH_CIPHER_TKIP:
		return SEC_LEVEL_2;
	case IW_AUTH_CIPHER_CCMP:
		return SEC_LEVEL_3;
	default:
		return -1;
	}
}

/* SIOCSIWAUTH */
static int ipw_wx_set_auth(struct net_device *dev,
			   struct iw_request_info *info,
			   union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);
	struct libipw_device *ieee = priv->ieee;
	struct iw_param *param = &wrqu->param;
	struct lib80211_crypt_data *crypt;
	unsigned long flags;
	int ret = 0;

	switch (param->flags & IW_AUTH_INDEX) {
	case IW_AUTH_WPA_VERSION:
		break;
	case IW_AUTH_CIPHER_PAIRWISE:
		ipw_set_hw_decrypt_unicast(priv,
					   wext_cipher2level(param->value));
		break;
	case IW_AUTH_CIPHER_GROUP:
		ipw_set_hw_decrypt_multicast(priv,
					     wext_cipher2level(param->value));
		break;
	case IW_AUTH_KEY_MGMT:
		/*
		 * ipw2200 does not use these parameters
		 */
		break;

	case IW_AUTH_TKIP_COUNTERMEASURES:
		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
		if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
			break;

		flags = crypt->ops->get_flags(crypt->priv);

		if (param->value)
			flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
		else
			flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;

		crypt->ops->set_flags(flags, crypt->priv);

		break;

	case IW_AUTH_DROP_UNENCRYPTED:{
			/* HACK:
			 *
			 * wpa_supplicant calls set_wpa_enabled when the driver
			 * is loaded and unloaded, regardless of if WPA is being
			 * used.  No other calls are made which can be used to
			 * determine if encryption will be used or not prior to
			 * association being expected.  If encryption is not being
			 * used, drop_unencrypted is set to false, else true -- we
			 * can use this to determine if the CAP_PRIVACY_ON bit should
			 * be set.
			 */
			struct libipw_security sec = {
				.flags = SEC_ENABLED,
				.enabled = param->value,
			};
			priv->ieee->drop_unencrypted = param->value;
			/* We only change SEC_LEVEL for open mode. Others
			 * are set by ipw_wpa_set_encryption.
			 */
			if (!param->value) {
				sec.flags |= SEC_LEVEL;
				sec.level = SEC_LEVEL_0;
			} else {
				sec.flags |= SEC_LEVEL;
				sec.level = SEC_LEVEL_1;
			}
			if (priv->ieee->set_security)
				priv->ieee->set_security(priv->ieee->dev, &sec);
			break;
		}

	case IW_AUTH_80211_AUTH_ALG:
		ret = ipw_wpa_set_auth_algs(priv, param->value);
		break;

	case IW_AUTH_WPA_ENABLED:
		ret = ipw_wpa_enable(priv, param->value);
		ipw_disassociate(priv);
		break;

	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
		ieee->ieee802_1x = param->value;
		break;

	case IW_AUTH_PRIVACY_INVOKED:
		ieee->privacy_invoked = param->value;
		break;

	default:
		return -EOPNOTSUPP;
	}
	return ret;
}

/* SIOCGIWAUTH */
static int ipw_wx_get_auth(struct net_device *dev,
			   struct iw_request_info *info,
			   union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);
	struct libipw_device *ieee = priv->ieee;
	struct lib80211_crypt_data *crypt;
	struct iw_param *param = &wrqu->param;

	switch (param->flags & IW_AUTH_INDEX) {
	case IW_AUTH_WPA_VERSION:
	case IW_AUTH_CIPHER_PAIRWISE:
	case IW_AUTH_CIPHER_GROUP:
	case IW_AUTH_KEY_MGMT:
		/*
		 * wpa_supplicant will control these internally
		 */
		return -EOPNOTSUPP;

	case IW_AUTH_TKIP_COUNTERMEASURES:
		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
		if (!crypt || !crypt->ops->get_flags)
			break;

		param->value = (crypt->ops->get_flags(crypt->priv) &
				IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;

		break;

	case IW_AUTH_DROP_UNENCRYPTED:
		param->value = ieee->drop_unencrypted;
		break;

	case IW_AUTH_80211_AUTH_ALG:
		param->value = ieee->sec.auth_mode;
		break;

	case IW_AUTH_WPA_ENABLED:
		param->value = ieee->wpa_enabled;
		break;

	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
		param->value = ieee->ieee802_1x;
		break;

	case IW_AUTH_ROAMING_CONTROL:
	case IW_AUTH_PRIVACY_INVOKED:
		param->value = ieee->privacy_invoked;
		break;

	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

/* SIOCSIWENCODEEXT */
static int ipw_wx_set_encodeext(struct net_device *dev,
				struct iw_request_info *info,
				union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);
	struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;

	if (hwcrypto) {
		if (ext->alg == IW_ENCODE_ALG_TKIP) {
			/* IPW HW can't build TKIP MIC,
			   host decryption still needed */
			if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
				priv->ieee->host_mc_decrypt = 1;
			else {
				priv->ieee->host_encrypt = 0;
				priv->ieee->host_encrypt_msdu = 1;
				priv->ieee->host_decrypt = 1;
			}
		} else {
			priv->ieee->host_encrypt = 0;
			priv->ieee->host_encrypt_msdu = 0;
			priv->ieee->host_decrypt = 0;
			priv->ieee->host_mc_decrypt = 0;
		}
	}

	return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
}

/* SIOCGIWENCODEEXT */
static int ipw_wx_get_encodeext(struct net_device *dev,
				struct iw_request_info *info,
				union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);
	return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
}

/* SIOCSIWMLME */
static int ipw_wx_set_mlme(struct net_device *dev,
			   struct iw_request_info *info,
			   union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);
	struct iw_mlme *mlme = (struct iw_mlme *)extra;

	switch (mlme->cmd) {
	case IW_MLME_DEAUTH:
		/* silently ignore */
		break;

	case IW_MLME_DISASSOC:
		ipw_disassociate(priv);
		break;

	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

#ifdef CONFIG_IPW2200_QOS

/* QoS */
/*
* get the modulation type of the current network or
* the card current mode
*/
static u8 ipw_qos_current_mode(struct ipw_priv * priv)
{
	u8 mode = 0;

	if (priv->status & STATUS_ASSOCIATED) {
		unsigned long flags;

		spin_lock_irqsave(&priv->ieee->lock, flags);
		mode = priv->assoc_network->mode;
		spin_unlock_irqrestore(&priv->ieee->lock, flags);
	} else {
		mode = priv->ieee->mode;
	}
	IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
	return mode;
}

/*
* Handle management frame beacon and probe response
*/
static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
					 int active_network,
					 struct libipw_network *network)
{
	u32 size = sizeof(struct libipw_qos_parameters);

	if (network->capability & WLAN_CAPABILITY_IBSS)
		network->qos_data.active = network->qos_data.supported;

	if (network->flags & NETWORK_HAS_QOS_MASK) {
		if (active_network &&
		    (network->flags & NETWORK_HAS_QOS_PARAMETERS))
			network->qos_data.active = network->qos_data.supported;

		if ((network->qos_data.active == 1) && (active_network == 1) &&
		    (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
		    (network->qos_data.old_param_count !=
		     network->qos_data.param_count)) {
			network->qos_data.old_param_count =
			    network->qos_data.param_count;
			schedule_work(&priv->qos_activate);
			IPW_DEBUG_QOS("QoS parameters change call "
				      "qos_activate\n");
		}
	} else {
		if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
			memcpy(&network->qos_data.parameters,
			       &def_parameters_CCK, size);
		else
			memcpy(&network->qos_data.parameters,
			       &def_parameters_OFDM, size);

		if ((network->qos_data.active == 1) && (active_network == 1)) {
			IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
			schedule_work(&priv->qos_activate);
		}

		network->qos_data.active = 0;
		network->qos_data.supported = 0;
	}
	if ((priv->status & STATUS_ASSOCIATED) &&
	    (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
		if (!ether_addr_equal(network->bssid, priv->bssid))
			if (network->capability & WLAN_CAPABILITY_IBSS)
				if ((network->ssid_len ==
				     priv->assoc_network->ssid_len) &&
				    !memcmp(network->ssid,
					    priv->assoc_network->ssid,
					    network->ssid_len)) {
					schedule_work(&priv->merge_networks);
				}
	}

	return 0;
}

/*
* This function set up the firmware to support QoS. It sends
* IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
*/
static int ipw_qos_activate(struct ipw_priv *priv,
			    struct libipw_qos_data *qos_network_data)
{
	int err;
	struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
	struct libipw_qos_parameters *active_one = NULL;
	u32 size = sizeof(struct libipw_qos_parameters);
	u32 burst_duration;
	int i;
	u8 type;

	type = ipw_qos_current_mode(priv);

	active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
	memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
	active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
	memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);

	if (qos_network_data == NULL) {
		if (type == IEEE_B) {
			IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
			active_one = &def_parameters_CCK;
		} else
			active_one = &def_parameters_OFDM;

		memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
		burst_duration = ipw_qos_get_burst_duration(priv);
		for (i = 0; i < QOS_QUEUE_NUM; i++)
			qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
			    cpu_to_le16(burst_duration);
	} else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
		if (type == IEEE_B) {
			IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n",
				      type);
			if (priv->qos_data.qos_enable == 0)
				active_one = &def_parameters_CCK;
			else
				active_one = priv->qos_data.def_qos_parm_CCK;
		} else {
			if (priv->qos_data.qos_enable == 0)
				active_one = &def_parameters_OFDM;
			else
				active_one = priv->qos_data.def_qos_parm_OFDM;
		}
		memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
	} else {
		unsigned long flags;
		int active;

		spin_lock_irqsave(&priv->ieee->lock, flags);
		active_one = &(qos_network_data->parameters);
		qos_network_data->old_param_count =
		    qos_network_data->param_count;
		memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
		active = qos_network_data->supported;
		spin_unlock_irqrestore(&priv->ieee->lock, flags);

		if (active == 0) {
			burst_duration = ipw_qos_get_burst_duration(priv);
			for (i = 0; i < QOS_QUEUE_NUM; i++)
				qos_parameters[QOS_PARAM_SET_ACTIVE].
				    tx_op_limit[i] = cpu_to_le16(burst_duration);
		}
	}

	IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
	err = ipw_send_qos_params_command(priv, &qos_parameters[0]);
	if (err)
		IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");

	return err;
}

/*
* send IPW_CMD_WME_INFO to the firmware
*/
static int ipw_qos_set_info_element(struct ipw_priv *priv)
{
	int ret = 0;
	struct libipw_qos_information_element qos_info;

	if (priv == NULL)
		return -1;

	qos_info.elementID = QOS_ELEMENT_ID;
	qos_info.length = sizeof(struct libipw_qos_information_element) - 2;

	qos_info.version = QOS_VERSION_1;
	qos_info.ac_info = 0;

	memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
	qos_info.qui_type = QOS_OUI_TYPE;
	qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;

	ret = ipw_send_qos_info_command(priv, &qos_info);
	if (ret != 0) {
		IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
	}
	return ret;
}

/*
* Set the QoS parameter with the association request structure
*/
static int ipw_qos_association(struct ipw_priv *priv,
			       struct libipw_network *network)
{
	int err = 0;
	struct libipw_qos_data *qos_data = NULL;
	struct libipw_qos_data ibss_data = {
		.supported = 1,
		.active = 1,
	};

	switch (priv->ieee->iw_mode) {
	case IW_MODE_ADHOC:
		BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));

		qos_data = &ibss_data;
		break;

	case IW_MODE_INFRA:
		qos_data = &network->qos_data;
		break;

	default:
		BUG();
		break;
	}

	err = ipw_qos_activate(priv, qos_data);
	if (err) {
		priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
		return err;
	}

	if (priv->qos_data.qos_enable && qos_data->supported) {
		IPW_DEBUG_QOS("QoS will be enabled for this association\n");
		priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
		return ipw_qos_set_info_element(priv);
	}

	return 0;
}

/*
* handling the beaconing responses. if we get different QoS setting
* off the network from the associated setting, adjust the QoS
* setting
*/
static void ipw_qos_association_resp(struct ipw_priv *priv,
				    struct libipw_network *network)
{
	unsigned long flags;
	u32 size = sizeof(struct libipw_qos_parameters);
	int set_qos_param = 0;

	if ((priv == NULL) || (network == NULL) ||
	    (priv->assoc_network == NULL))
		return;

	if (!(priv->status & STATUS_ASSOCIATED))
		return;

	if ((priv->ieee->iw_mode != IW_MODE_INFRA))
		return;

	spin_lock_irqsave(&priv->ieee->lock, flags);
	if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
		memcpy(&priv->assoc_network->qos_data, &network->qos_data,
		       sizeof(struct libipw_qos_data));
		priv->assoc_network->qos_data.active = 1;
		if ((network->qos_data.old_param_count !=
		     network->qos_data.param_count)) {
			set_qos_param = 1;
			network->qos_data.old_param_count =
			    network->qos_data.param_count;
		}

	} else {
		if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
			memcpy(&priv->assoc_network->qos_data.parameters,
			       &def_parameters_CCK, size);
		else
			memcpy(&priv->assoc_network->qos_data.parameters,
			       &def_parameters_OFDM, size);
		priv->assoc_network->qos_data.active = 0;
		priv->assoc_network->qos_data.supported = 0;
		set_qos_param = 1;
	}

	spin_unlock_irqrestore(&priv->ieee->lock, flags);

	if (set_qos_param == 1)
		schedule_work(&priv->qos_activate);
}

static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
{
	u32 ret = 0;

	if (!priv)
		return 0;

	if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
		ret = priv->qos_data.burst_duration_CCK;
	else
		ret = priv->qos_data.burst_duration_OFDM;

	return ret;
}

/*
* Initialize the setting of QoS global
*/
static void ipw_qos_init(struct ipw_priv *priv, int enable,
			 int burst_enable, u32 burst_duration_CCK,
			 u32 burst_duration_OFDM)
{
	priv->qos_data.qos_enable = enable;

	if (priv->qos_data.qos_enable) {
		priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
		priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
		IPW_DEBUG_QOS("QoS is enabled\n");
	} else {
		priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
		priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
		IPW_DEBUG_QOS("QoS is not enabled\n");
	}

	priv->qos_data.burst_enable = burst_enable;

	if (burst_enable) {
		priv->qos_data.burst_duration_CCK = burst_duration_CCK;
		priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
	} else {
		priv->qos_data.burst_duration_CCK = 0;
		priv->qos_data.burst_duration_OFDM = 0;
	}
}

/*
* map the packet priority to the right TX Queue
*/
static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
{
	if (priority > 7 || !priv->qos_data.qos_enable)
		priority = 0;

	return from_priority_to_tx_queue[priority] - 1;
}

static int ipw_is_qos_active(struct net_device *dev,
			     struct sk_buff *skb)
{
	struct ipw_priv *priv = libipw_priv(dev);
	struct libipw_qos_data *qos_data = NULL;
	int active, supported;
	u8 *daddr = skb->data + ETH_ALEN;
	int unicast = !is_multicast_ether_addr(daddr);

	if (!(priv->status & STATUS_ASSOCIATED))
		return 0;

	qos_data = &priv->assoc_network->qos_data;

	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
		if (unicast == 0)
			qos_data->active = 0;
		else
			qos_data->active = qos_data->supported;
	}
	active = qos_data->active;
	supported = qos_data->supported;
	IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
		      "unicast %d\n",
		      priv->qos_data.qos_enable, active, supported, unicast);
	if (active && priv->qos_data.qos_enable)
		return 1;

	return 0;

}
/*
* add QoS parameter to the TX command
*/
static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
					u16 priority,
					struct tfd_data *tfd)
{
	int tx_queue_id = 0;


	tx_queue_id = from_priority_to_tx_queue[priority] - 1;
	tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;

	if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
		tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
		tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
	}
	return 0;
}

/*
* background support to run QoS activate functionality
*/
static void ipw_bg_qos_activate(struct work_struct *work)
{
	struct ipw_priv *priv =
		container_of(work, struct ipw_priv, qos_activate);

	mutex_lock(&priv->mutex);

	if (priv->status & STATUS_ASSOCIATED)
		ipw_qos_activate(priv, &(priv->assoc_network->qos_data));

	mutex_unlock(&priv->mutex);
}

static int ipw_handle_probe_response(struct net_device *dev,
				     struct libipw_probe_response *resp,
				     struct libipw_network *network)
{
	struct ipw_priv *priv = libipw_priv(dev);
	int active_network = ((priv->status & STATUS_ASSOCIATED) &&
			      (network == priv->assoc_network));

	ipw_qos_handle_probe_response(priv, active_network, network);

	return 0;
}

static int ipw_handle_beacon(struct net_device *dev,
			     struct libipw_beacon *resp,
			     struct libipw_network *network)
{
	struct ipw_priv *priv = libipw_priv(dev);
	int active_network = ((priv->status & STATUS_ASSOCIATED) &&
			      (network == priv->assoc_network));

	ipw_qos_handle_probe_response(priv, active_network, network);

	return 0;
}

static int ipw_handle_assoc_response(struct net_device *dev,
				     struct libipw_assoc_response *resp,
				     struct libipw_network *network)
{
	struct ipw_priv *priv = libipw_priv(dev);
	ipw_qos_association_resp(priv, network);
	return 0;
}

static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
				       *qos_param)
{
	return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
				sizeof(*qos_param) * 3, qos_param);
}

static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
				     *qos_param)
{
	return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
				qos_param);
}

#endif				/* CONFIG_IPW2200_QOS */

static int ipw_associate_network(struct ipw_priv *priv,
				 struct libipw_network *network,
				 struct ipw_supported_rates *rates, int roaming)
{
	int err;

	if (priv->config & CFG_FIXED_RATE)
		ipw_set_fixed_rate(priv, network->mode);

	if (!(priv->config & CFG_STATIC_ESSID)) {
		priv->essid_len = min(network->ssid_len,
				      (u8) IW_ESSID_MAX_SIZE);
		memcpy(priv->essid, network->ssid, priv->essid_len);
	}

	network->last_associate = jiffies;

	memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
	priv->assoc_request.channel = network->channel;
	priv->assoc_request.auth_key = 0;

	if ((priv->capability & CAP_PRIVACY_ON) &&
	    (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
		priv->assoc_request.auth_type = AUTH_SHARED_KEY;
		priv->assoc_request.auth_key = priv->ieee->sec.active_key;

		if (priv->ieee->sec.level == SEC_LEVEL_1)
			ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);

	} else if ((priv->capability & CAP_PRIVACY_ON) &&
		   (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
		priv->assoc_request.auth_type = AUTH_LEAP;
	else
		priv->assoc_request.auth_type = AUTH_OPEN;

	if (priv->ieee->wpa_ie_len) {
		priv->assoc_request.policy_support = cpu_to_le16(0x02);	/* RSN active */
		ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
				 priv->ieee->wpa_ie_len);
	}

	/*
	 * It is valid for our ieee device to support multiple modes, but
	 * when it comes to associating to a given network we have to choose
	 * just one mode.
	 */
	if (network->mode & priv->ieee->mode & IEEE_A)
		priv->assoc_request.ieee_mode = IPW_A_MODE;
	else if (network->mode & priv->ieee->mode & IEEE_G)
		priv->assoc_request.ieee_mode = IPW_G_MODE;
	else if (network->mode & priv->ieee->mode & IEEE_B)
		priv->assoc_request.ieee_mode = IPW_B_MODE;

	priv->assoc_request.capability = cpu_to_le16(network->capability);
	if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
	    && !(priv->config & CFG_PREAMBLE_LONG)) {
		priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
	} else {
		priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;

		/* Clear the short preamble if we won't be supporting it */
		priv->assoc_request.capability &=
		    ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
	}

	/* Clear capability bits that aren't used in Ad Hoc */
	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
		priv->assoc_request.capability &=
		    ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);

	IPW_DEBUG_ASSOC("%ssociation attempt: '%*pE', channel %d, 802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
			roaming ? "Rea" : "A",
			priv->essid_len, priv->essid,
			network->channel,
			ipw_modes[priv->assoc_request.ieee_mode],
			rates->num_rates,
			(priv->assoc_request.preamble_length ==
			 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
			network->capability &
			WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
			priv->capability & CAP_PRIVACY_ON ? "on " : "off",
			priv->capability & CAP_PRIVACY_ON ?
			(priv->capability & CAP_SHARED_KEY ? "(shared)" :
			 "(open)") : "",
			priv->capability & CAP_PRIVACY_ON ? " key=" : "",
			priv->capability & CAP_PRIVACY_ON ?
			'1' + priv->ieee->sec.active_key : '.',
			priv->capability & CAP_PRIVACY_ON ? '.' : ' ');

	priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
	if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
	    (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
		priv->assoc_request.assoc_type = HC_IBSS_START;
		priv->assoc_request.assoc_tsf_msw = 0;
		priv->assoc_request.assoc_tsf_lsw = 0;
	} else {
		if (unlikely(roaming))
			priv->assoc_request.assoc_type = HC_REASSOCIATE;
		else
			priv->assoc_request.assoc_type = HC_ASSOCIATE;
		priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
		priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
	}

	memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);

	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
		eth_broadcast_addr(priv->assoc_request.dest);
		priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
	} else {
		memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
		priv->assoc_request.atim_window = 0;
	}

	priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);

	err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
	if (err) {
		IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
		return err;
	}

	rates->ieee_mode = priv->assoc_request.ieee_mode;
	rates->purpose = IPW_RATE_CONNECT;
	ipw_send_supported_rates(priv, rates);

	if (priv->assoc_request.ieee_mode == IPW_G_MODE)
		priv->sys_config.dot11g_auto_detection = 1;
	else
		priv->sys_config.dot11g_auto_detection = 0;

	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
		priv->sys_config.answer_broadcast_ssid_probe = 1;
	else
		priv->sys_config.answer_broadcast_ssid_probe = 0;

	err = ipw_send_system_config(priv);
	if (err) {
		IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
		return err;
	}

	IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
	err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
	if (err) {
		IPW_DEBUG_HC("Attempt to send associate command failed.\n");
		return err;
	}

	/*
	 * If preemption is enabled, it is possible for the association
	 * to complete before we return from ipw_send_associate.  Therefore
	 * we have to be sure and update our priviate data first.
	 */
	priv->channel = network->channel;
	memcpy(priv->bssid, network->bssid, ETH_ALEN);
	priv->status |= STATUS_ASSOCIATING;
	priv->status &= ~STATUS_SECURITY_UPDATED;

	priv->assoc_network = network;

#ifdef CONFIG_IPW2200_QOS
	ipw_qos_association(priv, network);
#endif

	err = ipw_send_associate(priv, &priv->assoc_request);
	if (err) {
		IPW_DEBUG_HC("Attempt to send associate command failed.\n");
		return err;
	}

	IPW_DEBUG(IPW_DL_STATE, "associating: '%*pE' %pM\n",
		  priv->essid_len, priv->essid, priv->bssid);

	return 0;
}

static void ipw_roam(void *data)
{
	struct ipw_priv *priv = data;
	struct libipw_network *network = NULL;
	struct ipw_network_match match = {
		.network = priv->assoc_network
	};

	/* The roaming process is as follows:
	 *
	 * 1.  Missed beacon threshold triggers the roaming process by
	 *     setting the status ROAM bit and requesting a scan.
	 * 2.  When the scan completes, it schedules the ROAM work
	 * 3.  The ROAM work looks at all of the known networks for one that
	 *     is a better network than the currently associated.  If none
	 *     found, the ROAM process is over (ROAM bit cleared)
	 * 4.  If a better network is found, a disassociation request is
	 *     sent.
	 * 5.  When the disassociation completes, the roam work is again
	 *     scheduled.  The second time through, the driver is no longer
	 *     associated, and the newly selected network is sent an
	 *     association request.
	 * 6.  At this point ,the roaming process is complete and the ROAM
	 *     status bit is cleared.
	 */

	/* If we are no longer associated, and the roaming bit is no longer
	 * set, then we are not actively roaming, so just return */
	if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
		return;

	if (priv->status & STATUS_ASSOCIATED) {
		/* First pass through ROAM process -- look for a better
		 * network */
		unsigned long flags;
		u8 rssi = priv->assoc_network->stats.rssi;
		priv->assoc_network->stats.rssi = -128;
		spin_lock_irqsave(&priv->ieee->lock, flags);
		list_for_each_entry(network, &priv->ieee->network_list, list) {
			if (network != priv->assoc_network)
				ipw_best_network(priv, &match, network, 1);
		}
		spin_unlock_irqrestore(&priv->ieee->lock, flags);
		priv->assoc_network->stats.rssi = rssi;

		if (match.network == priv->assoc_network) {
			IPW_DEBUG_ASSOC("No better APs in this network to "
					"roam to.\n");
			priv->status &= ~STATUS_ROAMING;
			ipw_debug_config(priv);
			return;
		}

		ipw_send_disassociate(priv, 1);
		priv->assoc_network = match.network;

		return;
	}

	/* Second pass through ROAM process -- request association */
	ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
	ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
	priv->status &= ~STATUS_ROAMING;
}

static void ipw_bg_roam(struct work_struct *work)
{
	struct ipw_priv *priv =
		container_of(work, struct ipw_priv, roam);
	mutex_lock(&priv->mutex);
	ipw_roam(priv);
	mutex_unlock(&priv->mutex);
}

static int ipw_associate(void *data)
{
	struct ipw_priv *priv = data;

	struct libipw_network *network = NULL;
	struct ipw_network_match match = {
		.network = NULL
	};
	struct ipw_supported_rates *rates;
	struct list_head *element;
	unsigned long flags;

	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
		IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
		return 0;
	}

	if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
		IPW_DEBUG_ASSOC("Not attempting association (already in "
				"progress)\n");
		return 0;
	}

	if (priv->status & STATUS_DISASSOCIATING) {
		IPW_DEBUG_ASSOC("Not attempting association (in disassociating)\n");
		schedule_work(&priv->associate);
		return 0;
	}

	if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
		IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
				"initialized)\n");
		return 0;
	}

	if (!(priv->config & CFG_ASSOCIATE) &&
	    !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
		IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
		return 0;
	}

	/* Protect our use of the network_list */
	spin_lock_irqsave(&priv->ieee->lock, flags);
	list_for_each_entry(network, &priv->ieee->network_list, list)
	    ipw_best_network(priv, &match, network, 0);

	network = match.network;
	rates = &match.rates;

	if (network == NULL &&
	    priv->ieee->iw_mode == IW_MODE_ADHOC &&
	    priv->config & CFG_ADHOC_CREATE &&
	    priv->config & CFG_STATIC_ESSID &&
	    priv->config & CFG_STATIC_CHANNEL) {
		/* Use oldest network if the free list is empty */
		if (list_empty(&priv->ieee->network_free_list)) {
			struct libipw_network *oldest = NULL;
			struct libipw_network *target;

			list_for_each_entry(target, &priv->ieee->network_list, list) {
				if ((oldest == NULL) ||
				    (target->last_scanned < oldest->last_scanned))
					oldest = target;
			}

			/* If there are no more slots, expire the oldest */
			list_del(&oldest->list);
			target = oldest;
			IPW_DEBUG_ASSOC("Expired '%*pE' (%pM) from network list.\n",
					target->ssid_len, target->ssid,
					target->bssid);
			list_add_tail(&target->list,
				      &priv->ieee->network_free_list);
		}

		element = priv->ieee->network_free_list.next;
		network = list_entry(element, struct libipw_network, list);
		ipw_adhoc_create(priv, network);
		rates = &priv->rates;
		list_del(element);
		list_add_tail(&network->list, &priv->ieee->network_list);
	}
	spin_unlock_irqrestore(&priv->ieee->lock, flags);

	/* If we reached the end of the list, then we don't have any valid
	 * matching APs */
	if (!network) {
		ipw_debug_config(priv);

		if (!(priv->status & STATUS_SCANNING)) {
			if (!(priv->config & CFG_SPEED_SCAN))
				schedule_delayed_work(&priv->request_scan,
						      SCAN_INTERVAL);
			else
				schedule_delayed_work(&priv->request_scan, 0);
		}

		return 0;
	}

	ipw_associate_network(priv, network, rates, 0);

	return 1;
}

static void ipw_bg_associate(struct work_struct *work)
{
	struct ipw_priv *priv =
		container_of(work, struct ipw_priv, associate);
	mutex_lock(&priv->mutex);
	ipw_associate(priv);
	mutex_unlock(&priv->mutex);
}

static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
				      struct sk_buff *skb)
{
	struct ieee80211_hdr *hdr;
	u16 fc;

	hdr = (struct ieee80211_hdr *)skb->data;
	fc = le16_to_cpu(hdr->frame_control);
	if (!(fc & IEEE80211_FCTL_PROTECTED))
		return;

	fc &= ~IEEE80211_FCTL_PROTECTED;
	hdr->frame_control = cpu_to_le16(fc);
	switch (priv->ieee->sec.level) {
	case SEC_LEVEL_3:
		/* Remove CCMP HDR */
		memmove(skb->data + LIBIPW_3ADDR_LEN,
			skb->data + LIBIPW_3ADDR_LEN + 8,
			skb->len - LIBIPW_3ADDR_LEN - 8);
		skb_trim(skb, skb->len - 16);	/* CCMP_HDR_LEN + CCMP_MIC_LEN */
		break;
	case SEC_LEVEL_2:
		break;
	case SEC_LEVEL_1:
		/* Remove IV */
		memmove(skb->data + LIBIPW_3ADDR_LEN,
			skb->data + LIBIPW_3ADDR_LEN + 4,
			skb->len - LIBIPW_3ADDR_LEN - 4);
		skb_trim(skb, skb->len - 8);	/* IV + ICV */
		break;
	case SEC_LEVEL_0:
		break;
	default:
		printk(KERN_ERR "Unknown security level %d\n",
		       priv->ieee->sec.level);
		break;
	}
}

static void ipw_handle_data_packet(struct ipw_priv *priv,
				   struct ipw_rx_mem_buffer *rxb,
				   struct libipw_rx_stats *stats)
{
	struct net_device *dev = priv->net_dev;
	struct libipw_hdr_4addr *hdr;
	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;

	/* We received data from the HW, so stop the watchdog */
	netif_trans_update(dev);

	/* We only process data packets if the
	 * interface is open */
	if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
		     skb_tailroom(rxb->skb))) {
		dev->stats.rx_errors++;
		priv->wstats.discard.misc++;
		IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
		return;
	} else if (unlikely(!netif_running(priv->net_dev))) {
		dev->stats.rx_dropped++;
		priv->wstats.discard.misc++;
		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
		return;
	}

	/* Advance skb->data to the start of the actual payload */
	skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));

	/* Set the size of the skb to the size of the frame */
	skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));

	IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);

	/* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
	hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
	if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
	    (is_multicast_ether_addr(hdr->addr1) ?
	     !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
		ipw_rebuild_decrypted_skb(priv, rxb->skb);

	if (!libipw_rx(priv->ieee, rxb->skb, stats))
		dev->stats.rx_errors++;
	else {			/* libipw_rx succeeded, so it now owns the SKB */
		rxb->skb = NULL;
		__ipw_led_activity_on(priv);
	}
}

#ifdef CONFIG_IPW2200_RADIOTAP
static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
					   struct ipw_rx_mem_buffer *rxb,
					   struct libipw_rx_stats *stats)
{
	struct net_device *dev = priv->net_dev;
	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
	struct ipw_rx_frame *frame = &pkt->u.frame;

	/* initial pull of some data */
	u16 received_channel = frame->received_channel;
	u8 antennaAndPhy = frame->antennaAndPhy;
	s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;	/* call it signed anyhow */
	u16 pktrate = frame->rate;

	/* Magic struct that slots into the radiotap header -- no reason
	 * to build this manually element by element, we can write it much
	 * more efficiently than we can parse it. ORDER MATTERS HERE */
	struct ipw_rt_hdr *ipw_rt;

	unsigned short len = le16_to_cpu(pkt->u.frame.length);

	/* We received data from the HW, so stop the watchdog */
	netif_trans_update(dev);

	/* We only process data packets if the
	 * interface is open */
	if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
		     skb_tailroom(rxb->skb))) {
		dev->stats.rx_errors++;
		priv->wstats.discard.misc++;
		IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
		return;
	} else if (unlikely(!netif_running(priv->net_dev))) {
		dev->stats.rx_dropped++;
		priv->wstats.discard.misc++;
		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
		return;
	}

	/* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
	 * that now */
	if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
		/* FIXME: Should alloc bigger skb instead */
		dev->stats.rx_dropped++;
		priv->wstats.discard.misc++;
		IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
		return;
	}

	/* copy the frame itself */
	memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
		rxb->skb->data + IPW_RX_FRAME_SIZE, len);

	ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;

	ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
	ipw_rt->rt_hdr.it_pad = 0;	/* always good to zero */
	ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr));	/* total header+data */

	/* Big bitfield of all the fields we provide in radiotap */
	ipw_rt->rt_hdr.it_present = cpu_to_le32(
	     (1 << IEEE80211_RADIOTAP_TSFT) |
	     (1 << IEEE80211_RADIOTAP_FLAGS) |
	     (1 << IEEE80211_RADIOTAP_RATE) |
	     (1 << IEEE80211_RADIOTAP_CHANNEL) |
	     (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
	     (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
	     (1 << IEEE80211_RADIOTAP_ANTENNA));

	/* Zero the flags, we'll add to them as we go */
	ipw_rt->rt_flags = 0;
	ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
			       frame->parent_tsf[2] << 16 |
			       frame->parent_tsf[1] << 8  |
			       frame->parent_tsf[0]);

	/* Convert signal to DBM */
	ipw_rt->rt_dbmsignal = antsignal;
	ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);

	/* Convert the channel data and set the flags */
	ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
	if (received_channel > 14) {	/* 802.11a */
		ipw_rt->rt_chbitmask =
		    cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
	} else if (antennaAndPhy & 32) {	/* 802.11b */
		ipw_rt->rt_chbitmask =
		    cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
	} else {		/* 802.11g */
		ipw_rt->rt_chbitmask =
		    cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
	}

	/* set the rate in multiples of 500k/s */
	switch (pktrate) {
	case IPW_TX_RATE_1MB:
		ipw_rt->rt_rate = 2;
		break;
	case IPW_TX_RATE_2MB:
		ipw_rt->rt_rate = 4;
		break;
	case IPW_TX_RATE_5MB:
		ipw_rt->rt_rate = 10;
		break;
	case IPW_TX_RATE_6MB:
		ipw_rt->rt_rate = 12;
		break;
	case IPW_TX_RATE_9MB:
		ipw_rt->rt_rate = 18;
		break;
	case IPW_TX_RATE_11MB:
		ipw_rt->rt_rate = 22;
		break;
	case IPW_TX_RATE_12MB:
		ipw_rt->rt_rate = 24;
		break;
	case IPW_TX_RATE_18MB:
		ipw_rt->rt_rate = 36;
		break;
	case IPW_TX_RATE_24MB:
		ipw_rt->rt_rate = 48;
		break;
	case IPW_TX_RATE_36MB:
		ipw_rt->rt_rate = 72;
		break;
	case IPW_TX_RATE_48MB:
		ipw_rt->rt_rate = 96;
		break;
	case IPW_TX_RATE_54MB:
		ipw_rt->rt_rate = 108;
		break;
	default:
		ipw_rt->rt_rate = 0;
		break;
	}

	/* antenna number */
	ipw_rt->rt_antenna = (antennaAndPhy & 3);	/* Is this right? */

	/* set the preamble flag if we have it */
	if ((antennaAndPhy & 64))
		ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;

	/* Set the size of the skb to the size of the frame */
	skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));

	IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);

	if (!libipw_rx(priv->ieee, rxb->skb, stats))
		dev->stats.rx_errors++;
	else {			/* libipw_rx succeeded, so it now owns the SKB */
		rxb->skb = NULL;
		/* no LED during capture */
	}
}
#endif

#ifdef CONFIG_IPW2200_PROMISCUOUS
#define libipw_is_probe_response(fc) \
   ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
    (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )

#define libipw_is_management(fc) \
   ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)

#define libipw_is_control(fc) \
   ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)

#define libipw_is_data(fc) \
   ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)

#define libipw_is_assoc_request(fc) \
   ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)

#define libipw_is_reassoc_request(fc) \
   ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)

static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
				      struct ipw_rx_mem_buffer *rxb,
				      struct libipw_rx_stats *stats)
{
	struct net_device *dev = priv->prom_net_dev;
	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
	struct ipw_rx_frame *frame = &pkt->u.frame;
	struct ipw_rt_hdr *ipw_rt;

	/* First cache any information we need before we overwrite
	 * the information provided in the skb from the hardware */
	struct ieee80211_hdr *hdr;
	u16 channel = frame->received_channel;
	u8 phy_flags = frame->antennaAndPhy;
	s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
	s8 noise = (s8) le16_to_cpu(frame->noise);
	u8 rate = frame->rate;
	unsigned short len = le16_to_cpu(pkt->u.frame.length);
	struct sk_buff *skb;
	int hdr_only = 0;
	u16 filter = priv->prom_priv->filter;

	/* If the filter is set to not include Rx frames then return */
	if (filter & IPW_PROM_NO_RX)
		return;

	/* We received data from the HW, so stop the watchdog */
	netif_trans_update(dev);

	if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
		dev->stats.rx_errors++;
		IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
		return;
	}

	/* We only process data packets if the interface is open */
	if (unlikely(!netif_running(dev))) {
		dev->stats.rx_dropped++;
		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
		return;
	}

	/* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
	 * that now */
	if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
		/* FIXME: Should alloc bigger skb instead */
		dev->stats.rx_dropped++;
		IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
		return;
	}

	hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
	if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
		if (filter & IPW_PROM_NO_MGMT)
			return;
		if (filter & IPW_PROM_MGMT_HEADER_ONLY)
			hdr_only = 1;
	} else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
		if (filter & IPW_PROM_NO_CTL)
			return;
		if (filter & IPW_PROM_CTL_HEADER_ONLY)
			hdr_only = 1;
	} else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
		if (filter & IPW_PROM_NO_DATA)
			return;
		if (filter & IPW_PROM_DATA_HEADER_ONLY)
			hdr_only = 1;
	}

	/* Copy the SKB since this is for the promiscuous side */
	skb = skb_copy(rxb->skb, GFP_ATOMIC);
	if (skb == NULL) {
		IPW_ERROR("skb_clone failed for promiscuous copy.\n");
		return;
	}

	/* copy the frame data to write after where the radiotap header goes */
	ipw_rt = (void *)skb->data;

	if (hdr_only)
		len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));

	memcpy(ipw_rt->payload, hdr, len);

	ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
	ipw_rt->rt_hdr.it_pad = 0;	/* always good to zero */
	ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt));	/* total header+data */

	/* Set the size of the skb to the size of the frame */
	skb_put(skb, sizeof(*ipw_rt) + len);

	/* Big bitfield of all the fields we provide in radiotap */
	ipw_rt->rt_hdr.it_present = cpu_to_le32(
	     (1 << IEEE80211_RADIOTAP_TSFT) |
	     (1 << IEEE80211_RADIOTAP_FLAGS) |
	     (1 << IEEE80211_RADIOTAP_RATE) |
	     (1 << IEEE80211_RADIOTAP_CHANNEL) |
	     (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
	     (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
	     (1 << IEEE80211_RADIOTAP_ANTENNA));

	/* Zero the flags, we'll add to them as we go */
	ipw_rt->rt_flags = 0;
	ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
			       frame->parent_tsf[2] << 16 |
			       frame->parent_tsf[1] << 8  |
			       frame->parent_tsf[0]);

	/* Convert to DBM */
	ipw_rt->rt_dbmsignal = signal;
	ipw_rt->rt_dbmnoise = noise;

	/* Convert the channel data and set the flags */
	ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
	if (channel > 14) {	/* 802.11a */
		ipw_rt->rt_chbitmask =
		    cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
	} else if (phy_flags & (1 << 5)) {	/* 802.11b */
		ipw_rt->rt_chbitmask =
		    cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
	} else {		/* 802.11g */
		ipw_rt->rt_chbitmask =
		    cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
	}

	/* set the rate in multiples of 500k/s */
	switch (rate) {
	case IPW_TX_RATE_1MB:
		ipw_rt->rt_rate = 2;
		break;
	case IPW_TX_RATE_2MB:
		ipw_rt->rt_rate = 4;
		break;
	case IPW_TX_RATE_5MB:
		ipw_rt->rt_rate = 10;
		break;
	case IPW_TX_RATE_6MB:
		ipw_rt->rt_rate = 12;
		break;
	case IPW_TX_RATE_9MB:
		ipw_rt->rt_rate = 18;
		break;
	case IPW_TX_RATE_11MB:
		ipw_rt->rt_rate = 22;
		break;
	case IPW_TX_RATE_12MB:
		ipw_rt->rt_rate = 24;
		break;
	case IPW_TX_RATE_18MB:
		ipw_rt->rt_rate = 36;
		break;
	case IPW_TX_RATE_24MB:
		ipw_rt->rt_rate = 48;
		break;
	case IPW_TX_RATE_36MB:
		ipw_rt->rt_rate = 72;
		break;
	case IPW_TX_RATE_48MB:
		ipw_rt->rt_rate = 96;
		break;
	case IPW_TX_RATE_54MB:
		ipw_rt->rt_rate = 108;
		break;
	default:
		ipw_rt->rt_rate = 0;
		break;
	}

	/* antenna number */
	ipw_rt->rt_antenna = (phy_flags & 3);

	/* set the preamble flag if we have it */
	if (phy_flags & (1 << 6))
		ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;

	IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);

	if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
		dev->stats.rx_errors++;
		dev_kfree_skb_any(skb);
	}
}
#endif

static int is_network_packet(struct ipw_priv *priv,
				    struct libipw_hdr_4addr *header)
{
	/* Filter incoming packets to determine if they are targeted toward
	 * this network, discarding packets coming from ourselves */
	switch (priv->ieee->iw_mode) {
	case IW_MODE_ADHOC:	/* Header: Dest. | Source    | BSSID */
		/* packets from our adapter are dropped (echo) */
		if (ether_addr_equal(header->addr2, priv->net_dev->dev_addr))
			return 0;

		/* {broad,multi}cast packets to our BSSID go through */
		if (is_multicast_ether_addr(header->addr1))
			return ether_addr_equal(header->addr3, priv->bssid);

		/* packets to our adapter go through */
		return ether_addr_equal(header->addr1,
					priv->net_dev->dev_addr);

	case IW_MODE_INFRA:	/* Header: Dest. | BSSID | Source */
		/* packets from our adapter are dropped (echo) */
		if (ether_addr_equal(header->addr3, priv->net_dev->dev_addr))
			return 0;

		/* {broad,multi}cast packets to our BSS go through */
		if (is_multicast_ether_addr(header->addr1))
			return ether_addr_equal(header->addr2, priv->bssid);

		/* packets to our adapter go through */
		return ether_addr_equal(header->addr1,
					priv->net_dev->dev_addr);
	}

	return 1;
}

#define IPW_PACKET_RETRY_TIME HZ

static  int is_duplicate_packet(struct ipw_priv *priv,
				      struct libipw_hdr_4addr *header)
{
	u16 sc = le16_to_cpu(header->seq_ctl);
	u16 seq = WLAN_GET_SEQ_SEQ(sc);
	u16 frag = WLAN_GET_SEQ_FRAG(sc);
	u16 *last_seq, *last_frag;
	unsigned long *last_time;

	switch (priv->ieee->iw_mode) {
	case IW_MODE_ADHOC:
		{
			struct list_head *p;
			struct ipw_ibss_seq *entry = NULL;
			u8 *mac = header->addr2;
			int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;

			list_for_each(p, &priv->ibss_mac_hash[index]) {
				entry =
				    list_entry(p, struct ipw_ibss_seq, list);
				if (ether_addr_equal(entry->mac, mac))
					break;
			}
			if (p == &priv->ibss_mac_hash[index]) {
				entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
				if (!entry) {
					IPW_ERROR
					    ("Cannot malloc new mac entry\n");
					return 0;
				}
				memcpy(entry->mac, mac, ETH_ALEN);
				entry->seq_num = seq;
				entry->frag_num = frag;
				entry->packet_time = jiffies;
				list_add(&entry->list,
					 &priv->ibss_mac_hash[index]);
				return 0;
			}
			last_seq = &entry->seq_num;
			last_frag = &entry->frag_num;
			last_time = &entry->packet_time;
			break;
		}
	case IW_MODE_INFRA:
		last_seq = &priv->last_seq_num;
		last_frag = &priv->last_frag_num;
		last_time = &priv->last_packet_time;
		break;
	default:
		return 0;
	}
	if ((*last_seq == seq) &&
	    time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
		if (*last_frag == frag)
			goto drop;
		if (*last_frag + 1 != frag)
			/* out-of-order fragment */
			goto drop;
	} else
		*last_seq = seq;

	*last_frag = frag;
	*last_time = jiffies;
	return 0;

      drop:
	/* Comment this line now since we observed the card receives
	 * duplicate packets but the FCTL_RETRY bit is not set in the
	 * IBSS mode with fragmentation enabled.
	 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
	return 1;
}

static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
				   struct ipw_rx_mem_buffer *rxb,
				   struct libipw_rx_stats *stats)
{
	struct sk_buff *skb = rxb->skb;
	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
	struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
	    (skb->data + IPW_RX_FRAME_SIZE);

	libipw_rx_mgt(priv->ieee, header, stats);

	if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
	    ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
	      IEEE80211_STYPE_PROBE_RESP) ||
	     (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
	      IEEE80211_STYPE_BEACON))) {
		if (ether_addr_equal(header->addr3, priv->bssid))
			ipw_add_station(priv, header->addr2);
	}

	if (priv->config & CFG_NET_STATS) {
		IPW_DEBUG_HC("sending stat packet\n");

		/* Set the size of the skb to the size of the full
		 * ipw header and 802.11 frame */
		skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
			IPW_RX_FRAME_SIZE);

		/* Advance past the ipw packet header to the 802.11 frame */
		skb_pull(skb, IPW_RX_FRAME_SIZE);

		/* Push the libipw_rx_stats before the 802.11 frame */
		memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));

		skb->dev = priv->ieee->dev;

		/* Point raw at the libipw_stats */
		skb_reset_mac_header(skb);

		skb->pkt_type = PACKET_OTHERHOST;
		skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
		memset(skb->cb, 0, sizeof(rxb->skb->cb));
		netif_rx(skb);
		rxb->skb = NULL;
	}
}

/*
 * Main entry function for receiving a packet with 80211 headers.  This
 * should be called when ever the FW has notified us that there is a new
 * skb in the receive queue.
 */
static void ipw_rx(struct ipw_priv *priv)
{
	struct ipw_rx_mem_buffer *rxb;
	struct ipw_rx_packet *pkt;
	struct libipw_hdr_4addr *header;
	u32 r, i;
	u8 network_packet;
	u8 fill_rx = 0;

	r = ipw_read32(priv, IPW_RX_READ_INDEX);
	ipw_read32(priv, IPW_RX_WRITE_INDEX);
	i = priv->rxq->read;

	if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
		fill_rx = 1;

	while (i != r) {
		rxb = priv->rxq->queue[i];
		if (unlikely(rxb == NULL)) {
			printk(KERN_CRIT "Queue not allocated!\n");
			break;
		}
		priv->rxq->queue[i] = NULL;

		dma_sync_single_for_cpu(&priv->pci_dev->dev, rxb->dma_addr,
					IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);

		pkt = (struct ipw_rx_packet *)rxb->skb->data;
		IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
			     pkt->header.message_type,
			     pkt->header.rx_seq_num, pkt->header.control_bits);

		switch (pkt->header.message_type) {
		case RX_FRAME_TYPE:	/* 802.11 frame */  {
				struct libipw_rx_stats stats = {
					.rssi = pkt->u.frame.rssi_dbm -
					    IPW_RSSI_TO_DBM,
					.signal =
					    pkt->u.frame.rssi_dbm -
					    IPW_RSSI_TO_DBM + 0x100,
					.noise =
					    le16_to_cpu(pkt->u.frame.noise),
					.rate = pkt->u.frame.rate,
					.mac_time = jiffies,
					.received_channel =
					    pkt->u.frame.received_channel,
					.freq =
					    (pkt->u.frame.
					     control & (1 << 0)) ?
					    LIBIPW_24GHZ_BAND :
					    LIBIPW_52GHZ_BAND,
					.len = le16_to_cpu(pkt->u.frame.length),
				};

				if (stats.rssi != 0)
					stats.mask |= LIBIPW_STATMASK_RSSI;
				if (stats.signal != 0)
					stats.mask |= LIBIPW_STATMASK_SIGNAL;
				if (stats.noise != 0)
					stats.mask |= LIBIPW_STATMASK_NOISE;
				if (stats.rate != 0)
					stats.mask |= LIBIPW_STATMASK_RATE;

				priv->rx_packets++;

#ifdef CONFIG_IPW2200_PROMISCUOUS
	if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
		ipw_handle_promiscuous_rx(priv, rxb, &stats);
#endif

#ifdef CONFIG_IPW2200_MONITOR
				if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
#ifdef CONFIG_IPW2200_RADIOTAP

                ipw_handle_data_packet_monitor(priv,
					       rxb,
					       &stats);
#else
		ipw_handle_data_packet(priv, rxb,
				       &stats);
#endif
					break;
				}
#endif

				header =
				    (struct libipw_hdr_4addr *)(rxb->skb->
								   data +
								   IPW_RX_FRAME_SIZE);
				/* TODO: Check Ad-Hoc dest/source and make sure
				 * that we are actually parsing these packets
				 * correctly -- we should probably use the
				 * frame control of the packet and disregard
				 * the current iw_mode */

				network_packet =
				    is_network_packet(priv, header);
				if (network_packet && priv->assoc_network) {
					priv->assoc_network->stats.rssi =
					    stats.rssi;
					priv->exp_avg_rssi =
					    exponential_average(priv->exp_avg_rssi,
					    stats.rssi, DEPTH_RSSI);
				}

				IPW_DEBUG_RX("Frame: len=%u\n",
					     le16_to_cpu(pkt->u.frame.length));

				if (le16_to_cpu(pkt->u.frame.length) <
				    libipw_get_hdrlen(le16_to_cpu(
						    header->frame_ctl))) {
					IPW_DEBUG_DROP
					    ("Received packet is too small. "
					     "Dropping.\n");
					priv->net_dev->stats.rx_errors++;
					priv->wstats.discard.misc++;
					break;
				}

				switch (WLAN_FC_GET_TYPE
					(le16_to_cpu(header->frame_ctl))) {

				case IEEE80211_FTYPE_MGMT:
					ipw_handle_mgmt_packet(priv, rxb,
							       &stats);
					break;

				case IEEE80211_FTYPE_CTL:
					break;

				case IEEE80211_FTYPE_DATA:
					if (unlikely(!network_packet ||
						     is_duplicate_packet(priv,
									 header)))
					{
						IPW_DEBUG_DROP("Dropping: "
							       "%pM, "
							       "%pM, "
							       "%pM\n",
							       header->addr1,
							       header->addr2,
							       header->addr3);
						break;
					}

					ipw_handle_data_packet(priv, rxb,
							       &stats);

					break;
				}
				break;
			}

		case RX_HOST_NOTIFICATION_TYPE:{
				IPW_DEBUG_RX
				    ("Notification: subtype=%02X flags=%02X size=%d\n",
				     pkt->u.notification.subtype,
				     pkt->u.notification.flags,
				     le16_to_cpu(pkt->u.notification.size));
				ipw_rx_notification(priv, &pkt->u.notification);
				break;
			}

		default:
			IPW_DEBUG_RX("Bad Rx packet of type %d\n",
				     pkt->header.message_type);
			break;
		}

		/* For now we just don't re-use anything.  We can tweak this
		 * later to try and re-use notification packets and SKBs that
		 * fail to Rx correctly */
		if (rxb->skb != NULL) {
			dev_kfree_skb_any(rxb->skb);
			rxb->skb = NULL;
		}

		dma_unmap_single(&priv->pci_dev->dev, rxb->dma_addr,
				 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
		list_add_tail(&rxb->list, &priv->rxq->rx_used);

		i = (i + 1) % RX_QUEUE_SIZE;

		/* If there are a lot of unsued frames, restock the Rx queue
		 * so the ucode won't assert */
		if (fill_rx) {
			priv->rxq->read = i;
			ipw_rx_queue_replenish(priv);
		}
	}

	/* Backtrack one entry */
	priv->rxq->read = i;
	ipw_rx_queue_restock(priv);
}

#define DEFAULT_RTS_THRESHOLD     2304U
#define MIN_RTS_THRESHOLD         1U
#define MAX_RTS_THRESHOLD         2304U
#define DEFAULT_BEACON_INTERVAL   100U
#define	DEFAULT_SHORT_RETRY_LIMIT 7U
#define	DEFAULT_LONG_RETRY_LIMIT  4U

/*
 * ipw_sw_reset
 * @option: options to control different reset behaviour
 * 	    0 = reset everything except the 'disable' module_param
 * 	    1 = reset everything and print out driver info (for probe only)
 * 	    2 = reset everything
 */
static int ipw_sw_reset(struct ipw_priv *priv, int option)
{
	int band, modulation;
	int old_mode = priv->ieee->iw_mode;

	/* Initialize module parameter values here */
	priv->config = 0;

	/* We default to disabling the LED code as right now it causes
	 * too many systems to lock up... */
	if (!led_support)
		priv->config |= CFG_NO_LED;

	if (associate)
		priv->config |= CFG_ASSOCIATE;
	else
		IPW_DEBUG_INFO("Auto associate disabled.\n");

	if (auto_create)
		priv->config |= CFG_ADHOC_CREATE;
	else
		IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");

	priv->config &= ~CFG_STATIC_ESSID;
	priv->essid_len = 0;
	memset(priv->essid, 0, IW_ESSID_MAX_SIZE);

	if (disable && option) {
		priv->status |= STATUS_RF_KILL_SW;
		IPW_DEBUG_INFO("Radio disabled.\n");
	}

	if (default_channel != 0) {
		priv->config |= CFG_STATIC_CHANNEL;
		priv->channel = default_channel;
		IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
		/* TODO: Validate that provided channel is in range */
	}
#ifdef CONFIG_IPW2200_QOS
	ipw_qos_init(priv, qos_enable, qos_burst_enable,
		     burst_duration_CCK, burst_duration_OFDM);
#endif				/* CONFIG_IPW2200_QOS */

	switch (network_mode) {
	case 1:
		priv->ieee->iw_mode = IW_MODE_ADHOC;
		priv->net_dev->type = ARPHRD_ETHER;

		break;
#ifdef CONFIG_IPW2200_MONITOR
	case 2:
		priv->ieee->iw_mode = IW_MODE_MONITOR;
#ifdef CONFIG_IPW2200_RADIOTAP
		priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
#else
		priv->net_dev->type = ARPHRD_IEEE80211;
#endif
		break;
#endif
	default:
	case 0:
		priv->net_dev->type = ARPHRD_ETHER;
		priv->ieee->iw_mode = IW_MODE_INFRA;
		break;
	}

	if (hwcrypto) {
		priv->ieee->host_encrypt = 0;
		priv->ieee->host_encrypt_msdu = 0;
		priv->ieee->host_decrypt = 0;
		priv->ieee->host_mc_decrypt = 0;
	}
	IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");

	/* IPW2200/2915 is abled to do hardware fragmentation. */
	priv->ieee->host_open_frag = 0;

	if ((priv->pci_dev->device == 0x4223) ||
	    (priv->pci_dev->device == 0x4224)) {
		if (option == 1)
			printk(KERN_INFO DRV_NAME
			       ": Detected Intel PRO/Wireless 2915ABG Network "
			       "Connection\n");
		priv->ieee->abg_true = 1;
		band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
		modulation = LIBIPW_OFDM_MODULATION |
		    LIBIPW_CCK_MODULATION;
		priv->adapter = IPW_2915ABG;
		priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
	} else {
		if (option == 1)
			printk(KERN_INFO DRV_NAME
			       ": Detected Intel PRO/Wireless 2200BG Network "
			       "Connection\n");

		priv->ieee->abg_true = 0;
		band = LIBIPW_24GHZ_BAND;
		modulation = LIBIPW_OFDM_MODULATION |
		    LIBIPW_CCK_MODULATION;
		priv->adapter = IPW_2200BG;
		priv->ieee->mode = IEEE_G | IEEE_B;
	}

	priv->ieee->freq_band = band;
	priv->ieee->modulation = modulation;

	priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;

	priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
	priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;

	priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
	priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
	priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;

	/* If power management is turned on, default to AC mode */
	priv->power_mode = IPW_POWER_AC;
	priv->tx_power = IPW_TX_POWER_DEFAULT;

	return old_mode == priv->ieee->iw_mode;
}

/*
 * This file defines the Wireless Extension handlers.  It does not
 * define any methods of hardware manipulation and relies on the
 * functions defined in ipw_main to provide the HW interaction.
 *
 * The exception to this is the use of the ipw_get_ordinal()
 * function used to poll the hardware vs. making unnecessary calls.
 *
 */

static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
{
	if (channel == 0) {
		IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
		priv->config &= ~CFG_STATIC_CHANNEL;
		IPW_DEBUG_ASSOC("Attempting to associate with new "
				"parameters.\n");
		ipw_associate(priv);
		return 0;
	}

	priv->config |= CFG_STATIC_CHANNEL;

	if (priv->channel == channel) {
		IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
			       channel);
		return 0;
	}

	IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
	priv->channel = channel;

#ifdef CONFIG_IPW2200_MONITOR
	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
		int i;
		if (priv->status & STATUS_SCANNING) {
			IPW_DEBUG_SCAN("Scan abort triggered due to "
				       "channel change.\n");
			ipw_abort_scan(priv);
		}

		for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
			udelay(10);

		if (priv->status & STATUS_SCANNING)
			IPW_DEBUG_SCAN("Still scanning...\n");
		else
			IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
				       1000 - i);

		return 0;
	}
#endif				/* CONFIG_IPW2200_MONITOR */

	/* Network configuration changed -- force [re]association */
	IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
	if (!ipw_disassociate(priv))
		ipw_associate(priv);

	return 0;
}

static int ipw_wx_set_freq(struct net_device *dev,
			   struct iw_request_info *info,
			   union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);
	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
	struct iw_freq *fwrq = &wrqu->freq;
	int ret = 0, i;
	u8 channel, flags;
	int band;

	if (fwrq->m == 0) {
		IPW_DEBUG_WX("SET Freq/Channel -> any\n");
		mutex_lock(&priv->mutex);
		ret = ipw_set_channel(priv, 0);
		mutex_unlock(&priv->mutex);
		return ret;
	}
	/* if setting by freq convert to channel */
	if (fwrq->e == 1) {
		channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
		if (channel == 0)
			return -EINVAL;
	} else
		channel = fwrq->m;

	if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
		return -EINVAL;

	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
		i = libipw_channel_to_index(priv->ieee, channel);
		if (i == -1)
			return -EINVAL;

		flags = (band == LIBIPW_24GHZ_BAND) ?
		    geo->bg[i].flags : geo->a[i].flags;
		if (flags & LIBIPW_CH_PASSIVE_ONLY) {
			IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
			return -EINVAL;
		}
	}

	IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
	mutex_lock(&priv->mutex);
	ret = ipw_set_channel(priv, channel);
	mutex_unlock(&priv->mutex);
	return ret;
}

static int ipw_wx_get_freq(struct net_device *dev,
			   struct iw_request_info *info,
			   union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);

	wrqu->freq.e = 0;

	/* If we are associated, trying to associate, or have a statically
	 * configured CHANNEL then return that; otherwise return ANY */
	mutex_lock(&priv->mutex);
	if (priv->config & CFG_STATIC_CHANNEL ||
	    priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
		int i;

		i = libipw_channel_to_index(priv->ieee, priv->channel);
		BUG_ON(i == -1);
		wrqu->freq.e = 1;

		switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
		case LIBIPW_52GHZ_BAND:
			wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
			break;

		case LIBIPW_24GHZ_BAND:
			wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
			break;

		default:
			BUG();
		}
	} else
		wrqu->freq.m = 0;

	mutex_unlock(&priv->mutex);
	IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
	return 0;
}

static int ipw_wx_set_mode(struct net_device *dev,
			   struct iw_request_info *info,
			   union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);
	int err = 0;

	IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);

	switch (wrqu->mode) {
#ifdef CONFIG_IPW2200_MONITOR
	case IW_MODE_MONITOR:
#endif
	case IW_MODE_ADHOC:
	case IW_MODE_INFRA:
		break;
	case IW_MODE_AUTO:
		wrqu->mode = IW_MODE_INFRA;
		break;
	default:
		return -EINVAL;
	}
	if (wrqu->mode == priv->ieee->iw_mode)
		return 0;

	mutex_lock(&priv->mutex);

	ipw_sw_reset(priv, 0);

#ifdef CONFIG_IPW2200_MONITOR
	if (priv->ieee->iw_mode == IW_MODE_MONITOR)
		priv->net_dev->type = ARPHRD_ETHER;

	if (wrqu->mode == IW_MODE_MONITOR)
#ifdef CONFIG_IPW2200_RADIOTAP
		priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
#else
		priv->net_dev->type = ARPHRD_IEEE80211;
#endif
#endif				/* CONFIG_IPW2200_MONITOR */

	/* Free the existing firmware and reset the fw_loaded
	 * flag so ipw_load() will bring in the new firmware */
	free_firmware();

	priv->ieee->iw_mode = wrqu->mode;

	schedule_work(&priv->adapter_restart);
	mutex_unlock(&priv->mutex);
	return err;
}

static int ipw_wx_get_mode(struct net_device *dev,
			   struct iw_request_info *info,
			   union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);
	mutex_lock(&priv->mutex);
	wrqu->mode = priv->ieee->iw_mode;
	IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
	mutex_unlock(&priv->mutex);
	return 0;
}

/* Values are in microsecond */
static const s32 timeout_duration[] = {
	350000,
	250000,
	75000,
	37000,
	25000,
};

static const s32 period_duration[] = {
	400000,
	700000,
	1000000,
	1000000,
	1000000
};

static int ipw_wx_get_range(struct net_device *dev,
			    struct iw_request_info *info,
			    union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);
	struct iw_range *range = (struct iw_range *)extra;
	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
	int i = 0, j;

	wrqu->data.length = sizeof(*range);
	memset(range, 0, sizeof(*range));

	/* 54Mbs == ~27 Mb/s real (802.11g) */
	range->throughput = 27 * 1000 * 1000;

	range->max_qual.qual = 100;
	/* TODO: Find real max RSSI and stick here */
	range->max_qual.level = 0;
	range->max_qual.noise = 0;
	range->max_qual.updated = 7;	/* Updated all three */

	range->avg_qual.qual = 70;
	/* TODO: Find real 'good' to 'bad' threshold value for RSSI */
	range->avg_qual.level = 0;	/* FIXME to real average level */
	range->avg_qual.noise = 0;
	range->avg_qual.updated = 7;	/* Updated all three */
	mutex_lock(&priv->mutex);
	range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);

	for (i = 0; i < range->num_bitrates; i++)
		range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
		    500000;

	range->max_rts = DEFAULT_RTS_THRESHOLD;
	range->min_frag = MIN_FRAG_THRESHOLD;
	range->max_frag = MAX_FRAG_THRESHOLD;

	range->encoding_size[0] = 5;
	range->encoding_size[1] = 13;
	range->num_encoding_sizes = 2;
	range->max_encoding_tokens = WEP_KEYS;

	/* Set the Wireless Extension versions */
	range->we_version_compiled = WIRELESS_EXT;
	range->we_version_source = 18;

	i = 0;
	if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
		for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
			if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
			    (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
				continue;

			range->freq[i].i = geo->bg[j].channel;
			range->freq[i].m = geo->bg[j].freq * 100000;
			range->freq[i].e = 1;
			i++;
		}
	}

	if (priv->ieee->mode & IEEE_A) {
		for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
			if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
			    (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
				continue;

			range->freq[i].i = geo->a[j].channel;
			range->freq[i].m = geo->a[j].freq * 100000;
			range->freq[i].e = 1;
			i++;
		}
	}

	range->num_channels = i;
	range->num_frequency = i;

	mutex_unlock(&priv->mutex);

	/* Event capability (kernel + driver) */
	range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
				IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
				IW_EVENT_CAPA_MASK(SIOCGIWAP) |
				IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
	range->event_capa[1] = IW_EVENT_CAPA_K_1;

	range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
		IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;

	range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;

	IPW_DEBUG_WX("GET Range\n");
	return 0;
}

static int ipw_wx_set_wap(struct net_device *dev,
			  struct iw_request_info *info,
			  union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);

	if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
		return -EINVAL;
	mutex_lock(&priv->mutex);
	if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
	    is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
		/* we disable mandatory BSSID association */
		IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
		priv->config &= ~CFG_STATIC_BSSID;
		IPW_DEBUG_ASSOC("Attempting to associate with new "
				"parameters.\n");
		ipw_associate(priv);
		mutex_unlock(&priv->mutex);
		return 0;
	}

	priv->config |= CFG_STATIC_BSSID;
	if (ether_addr_equal(priv->bssid, wrqu->ap_addr.sa_data)) {
		IPW_DEBUG_WX("BSSID set to current BSSID.\n");
		mutex_unlock(&priv->mutex);
		return 0;
	}

	IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
		     wrqu->ap_addr.sa_data);

	memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);

	/* Network configuration changed -- force [re]association */
	IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
	if (!ipw_disassociate(priv))
		ipw_associate(priv);

	mutex_unlock(&priv->mutex);
	return 0;
}

static int ipw_wx_get_wap(struct net_device *dev,
			  struct iw_request_info *info,
			  union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);

	/* If we are associated, trying to associate, or have a statically
	 * configured BSSID then return that; otherwise return ANY */
	mutex_lock(&priv->mutex);
	if (priv->config & CFG_STATIC_BSSID ||
	    priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
		wrqu->ap_addr.sa_family = ARPHRD_ETHER;
		memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
	} else
		eth_zero_addr(wrqu->ap_addr.sa_data);

	IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
		     wrqu->ap_addr.sa_data);
	mutex_unlock(&priv->mutex);
	return 0;
}

static int ipw_wx_set_essid(struct net_device *dev,
			    struct iw_request_info *info,
			    union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);
        int length;

        mutex_lock(&priv->mutex);

        if (!wrqu->essid.flags)
        {
                IPW_DEBUG_WX("Setting ESSID to ANY\n");
                ipw_disassociate(priv);
                priv->config &= ~CFG_STATIC_ESSID;
                ipw_associate(priv);
                mutex_unlock(&priv->mutex);
                return 0;
        }

	length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);

	priv->config |= CFG_STATIC_ESSID;

	if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
	    && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
		IPW_DEBUG_WX("ESSID set to current ESSID.\n");
		mutex_unlock(&priv->mutex);
		return 0;
	}

	IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, extra, length);

	priv->essid_len = length;
	memcpy(priv->essid, extra, priv->essid_len);

	/* Network configuration changed -- force [re]association */
	IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
	if (!ipw_disassociate(priv))
		ipw_associate(priv);

	mutex_unlock(&priv->mutex);
	return 0;
}

static int ipw_wx_get_essid(struct net_device *dev,
			    struct iw_request_info *info,
			    union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);

	/* If we are associated, trying to associate, or have a statically
	 * configured ESSID then return that; otherwise return ANY */
	mutex_lock(&priv->mutex);
	if (priv->config & CFG_STATIC_ESSID ||
	    priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
		IPW_DEBUG_WX("Getting essid: '%*pE'\n",
			     priv->essid_len, priv->essid);
		memcpy(extra, priv->essid, priv->essid_len);
		wrqu->essid.length = priv->essid_len;
		wrqu->essid.flags = 1;	/* active */
	} else {
		IPW_DEBUG_WX("Getting essid: ANY\n");
		wrqu->essid.length = 0;
		wrqu->essid.flags = 0;	/* active */
	}
	mutex_unlock(&priv->mutex);
	return 0;
}

static int ipw_wx_set_nick(struct net_device *dev,
			   struct iw_request_info *info,
			   union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);

	IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
	if (wrqu->data.length > IW_ESSID_MAX_SIZE)
		return -E2BIG;
	mutex_lock(&priv->mutex);
	wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
	memset(priv->nick, 0, sizeof(priv->nick));
	memcpy(priv->nick, extra, wrqu->data.length);
	IPW_DEBUG_TRACE("<<\n");
	mutex_unlock(&priv->mutex);
	return 0;

}

static int ipw_wx_get_nick(struct net_device *dev,
			   struct iw_request_info *info,
			   union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);
	IPW_DEBUG_WX("Getting nick\n");
	mutex_lock(&priv->mutex);
	wrqu->data.length = strlen(priv->nick);
	memcpy(extra, priv->nick, wrqu->data.length);
	wrqu->data.flags = 1;	/* active */
	mutex_unlock(&priv->mutex);
	return 0;
}

static int ipw_wx_set_sens(struct net_device *dev,
			    struct iw_request_info *info,
			    union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);
	int err = 0;

	IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
	IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
	mutex_lock(&priv->mutex);

	if (wrqu->sens.fixed == 0)
	{
		priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
		priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
		goto out;
	}
	if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
	    (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
		err = -EINVAL;
		goto out;
	}

	priv->roaming_threshold = wrqu->sens.value;
	priv->disassociate_threshold = 3*wrqu->sens.value;
      out:
	mutex_unlock(&priv->mutex);
	return err;
}

static int ipw_wx_get_sens(struct net_device *dev,
			    struct iw_request_info *info,
			    union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);
	mutex_lock(&priv->mutex);
	wrqu->sens.fixed = 1;
	wrqu->sens.value = priv->roaming_threshold;
	mutex_unlock(&priv->mutex);

	IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
		     wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);

	return 0;
}

static int ipw_wx_set_rate(struct net_device *dev,
			   struct iw_request_info *info,
			   union iwreq_data *wrqu, char *extra)
{
	/* TODO: We should use semaphores or locks for access to priv */
	struct ipw_priv *priv = libipw_priv(dev);
	u32 target_rate = wrqu->bitrate.value;
	u32 fixed, mask;

	/* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
	/* value = X, fixed = 1 means only rate X */
	/* value = X, fixed = 0 means all rates lower equal X */

	if (target_rate == -1) {
		fixed = 0;
		mask = LIBIPW_DEFAULT_RATES_MASK;
		/* Now we should reassociate */
		goto apply;
	}

	mask = 0;
	fixed = wrqu->bitrate.fixed;

	if (target_rate == 1000000 || !fixed)
		mask |= LIBIPW_CCK_RATE_1MB_MASK;
	if (target_rate == 1000000)
		goto apply;

	if (target_rate == 2000000 || !fixed)
		mask |= LIBIPW_CCK_RATE_2MB_MASK;
	if (target_rate == 2000000)
		goto apply;

	if (target_rate == 5500000 || !fixed)
		mask |= LIBIPW_CCK_RATE_5MB_MASK;
	if (target_rate == 5500000)
		goto apply;

	if (target_rate == 6000000 || !fixed)
		mask |= LIBIPW_OFDM_RATE_6MB_MASK;
	if (target_rate == 6000000)
		goto apply;

	if (target_rate == 9000000 || !fixed)
		mask |= LIBIPW_OFDM_RATE_9MB_MASK;
	if (target_rate == 9000000)
		goto apply;

	if (target_rate == 11000000 || !fixed)
		mask |= LIBIPW_CCK_RATE_11MB_MASK;
	if (target_rate == 11000000)
		goto apply;

	if (target_rate == 12000000 || !fixed)
		mask |= LIBIPW_OFDM_RATE_12MB_MASK;
	if (target_rate == 12000000)
		goto apply;

	if (target_rate == 18000000 || !fixed)
		mask |= LIBIPW_OFDM_RATE_18MB_MASK;
	if (target_rate == 18000000)
		goto apply;

	if (target_rate == 24000000 || !fixed)
		mask |= LIBIPW_OFDM_RATE_24MB_MASK;
	if (target_rate == 24000000)
		goto apply;

	if (target_rate == 36000000 || !fixed)
		mask |= LIBIPW_OFDM_RATE_36MB_MASK;
	if (target_rate == 36000000)
		goto apply;

	if (target_rate == 48000000 || !fixed)
		mask |= LIBIPW_OFDM_RATE_48MB_MASK;
	if (target_rate == 48000000)
		goto apply;

	if (target_rate == 54000000 || !fixed)
		mask |= LIBIPW_OFDM_RATE_54MB_MASK;
	if (target_rate == 54000000)
		goto apply;

	IPW_DEBUG_WX("invalid rate specified, returning error\n");
	return -EINVAL;

      apply:
	IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
		     mask, fixed ? "fixed" : "sub-rates");
	mutex_lock(&priv->mutex);
	if (mask == LIBIPW_DEFAULT_RATES_MASK) {
		priv->config &= ~CFG_FIXED_RATE;
		ipw_set_fixed_rate(priv, priv->ieee->mode);
	} else
		priv->config |= CFG_FIXED_RATE;

	if (priv->rates_mask == mask) {
		IPW_DEBUG_WX("Mask set to current mask.\n");
		mutex_unlock(&priv->mutex);
		return 0;
	}

	priv->rates_mask = mask;

	/* Network configuration changed -- force [re]association */
	IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
	if (!ipw_disassociate(priv))
		ipw_associate(priv);

	mutex_unlock(&priv->mutex);
	return 0;
}

static int ipw_wx_get_rate(struct net_device *dev,
			   struct iw_request_info *info,
			   union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);
	mutex_lock(&priv->mutex);
	wrqu->bitrate.value = priv->last_rate;
	wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
	mutex_unlock(&priv->mutex);
	IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
	return 0;
}

static int ipw_wx_set_rts(struct net_device *dev,
			  struct iw_request_info *info,
			  union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);
	mutex_lock(&priv->mutex);
	if (wrqu->rts.disabled || !wrqu->rts.fixed)
		priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
	else {
		if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
		    wrqu->rts.value > MAX_RTS_THRESHOLD) {
			mutex_unlock(&priv->mutex);
			return -EINVAL;
		}
		priv->rts_threshold = wrqu->rts.value;
	}

	ipw_send_rts_threshold(priv, priv->rts_threshold);
	mutex_unlock(&priv->mutex);
	IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
	return 0;
}

static int ipw_wx_get_rts(struct net_device *dev,
			  struct iw_request_info *info,
			  union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);
	mutex_lock(&priv->mutex);
	wrqu->rts.value = priv->rts_threshold;
	wrqu->rts.fixed = 0;	/* no auto select */
	wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
	mutex_unlock(&priv->mutex);
	IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
	return 0;
}

static int ipw_wx_set_txpow(struct net_device *dev,
			    struct iw_request_info *info,
			    union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);
	int err = 0;

	mutex_lock(&priv->mutex);
	if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
		err = -EINPROGRESS;
		goto out;
	}

	if (!wrqu->power.fixed)
		wrqu->power.value = IPW_TX_POWER_DEFAULT;

	if (wrqu->power.flags != IW_TXPOW_DBM) {
		err = -EINVAL;
		goto out;
	}

	if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
	    (wrqu->power.value < IPW_TX_POWER_MIN)) {
		err = -EINVAL;
		goto out;
	}

	priv->tx_power = wrqu->power.value;
	err = ipw_set_tx_power(priv);
      out:
	mutex_unlock(&priv->mutex);
	return err;
}

static int ipw_wx_get_txpow(struct net_device *dev,
			    struct iw_request_info *info,
			    union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);
	mutex_lock(&priv->mutex);
	wrqu->power.value = priv->tx_power;
	wrqu->power.fixed = 1;
	wrqu->power.flags = IW_TXPOW_DBM;
	wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
	mutex_unlock(&priv->mutex);

	IPW_DEBUG_WX("GET TX Power -> %s %d\n",
		     wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);

	return 0;
}

static int ipw_wx_set_frag(struct net_device *dev,
			   struct iw_request_info *info,
			   union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);
	mutex_lock(&priv->mutex);
	if (wrqu->frag.disabled || !wrqu->frag.fixed)
		priv->ieee->fts = DEFAULT_FTS;
	else {
		if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
		    wrqu->frag.value > MAX_FRAG_THRESHOLD) {
			mutex_unlock(&priv->mutex);
			return -EINVAL;
		}

		priv->ieee->fts = wrqu->frag.value & ~0x1;
	}

	ipw_send_frag_threshold(priv, wrqu->frag.value);
	mutex_unlock(&priv->mutex);
	IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
	return 0;
}

static int ipw_wx_get_frag(struct net_device *dev,
			   struct iw_request_info *info,
			   union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);
	mutex_lock(&priv->mutex);
	wrqu->frag.value = priv->ieee->fts;
	wrqu->frag.fixed = 0;	/* no auto select */
	wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
	mutex_unlock(&priv->mutex);
	IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);

	return 0;
}

static int ipw_wx_set_retry(struct net_device *dev,
			    struct iw_request_info *info,
			    union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);

	if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
		return -EINVAL;

	if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
		return 0;

	if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
		return -EINVAL;

	mutex_lock(&priv->mutex);
	if (wrqu->retry.flags & IW_RETRY_SHORT)
		priv->short_retry_limit = (u8) wrqu->retry.value;
	else if (wrqu->retry.flags & IW_RETRY_LONG)
		priv->long_retry_limit = (u8) wrqu->retry.value;
	else {
		priv->short_retry_limit = (u8) wrqu->retry.value;
		priv->long_retry_limit = (u8) wrqu->retry.value;
	}

	ipw_send_retry_limit(priv, priv->short_retry_limit,
			     priv->long_retry_limit);
	mutex_unlock(&priv->mutex);
	IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
		     priv->short_retry_limit, priv->long_retry_limit);
	return 0;
}

static int ipw_wx_get_retry(struct net_device *dev,
			    struct iw_request_info *info,
			    union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);

	mutex_lock(&priv->mutex);
	wrqu->retry.disabled = 0;

	if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
		mutex_unlock(&priv->mutex);
		return -EINVAL;
	}

	if (wrqu->retry.flags & IW_RETRY_LONG) {
		wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
		wrqu->retry.value = priv->long_retry_limit;
	} else if (wrqu->retry.flags & IW_RETRY_SHORT) {
		wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
		wrqu->retry.value = priv->short_retry_limit;
	} else {
		wrqu->retry.flags = IW_RETRY_LIMIT;
		wrqu->retry.value = priv->short_retry_limit;
	}
	mutex_unlock(&priv->mutex);

	IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);

	return 0;
}

static int ipw_wx_set_scan(struct net_device *dev,
			   struct iw_request_info *info,
			   union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);
	struct iw_scan_req *req = (struct iw_scan_req *)extra;
	struct delayed_work *work = NULL;

	mutex_lock(&priv->mutex);

	priv->user_requested_scan = 1;

	if (wrqu->data.length == sizeof(struct iw_scan_req)) {
		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
			int len = min((int)req->essid_len,
			              (int)sizeof(priv->direct_scan_ssid));
			memcpy(priv->direct_scan_ssid, req->essid, len);
			priv->direct_scan_ssid_len = len;
			work = &priv->request_direct_scan;
		} else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
			work = &priv->request_passive_scan;
		}
	} else {
		/* Normal active broadcast scan */
		work = &priv->request_scan;
	}

	mutex_unlock(&priv->mutex);

	IPW_DEBUG_WX("Start scan\n");

	schedule_delayed_work(work, 0);

	return 0;
}

static int ipw_wx_get_scan(struct net_device *dev,
			   struct iw_request_info *info,
			   union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);
	return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
}

static int ipw_wx_set_encode(struct net_device *dev,
			     struct iw_request_info *info,
			     union iwreq_data *wrqu, char *key)
{
	struct ipw_priv *priv = libipw_priv(dev);
	int ret;
	u32 cap = priv->capability;

	mutex_lock(&priv->mutex);
	ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);

	/* In IBSS mode, we need to notify the firmware to update
	 * the beacon info after we changed the capability. */
	if (cap != priv->capability &&
	    priv->ieee->iw_mode == IW_MODE_ADHOC &&
	    priv->status & STATUS_ASSOCIATED)
		ipw_disassociate(priv);

	mutex_unlock(&priv->mutex);
	return ret;
}

static int ipw_wx_get_encode(struct net_device *dev,
			     struct iw_request_info *info,
			     union iwreq_data *wrqu, char *key)
{
	struct ipw_priv *priv = libipw_priv(dev);
	return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
}

static int ipw_wx_set_power(struct net_device *dev,
			    struct iw_request_info *info,
			    union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);
	int err;
	mutex_lock(&priv->mutex);
	if (wrqu->power.disabled) {
		priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
		err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
		if (err) {
			IPW_DEBUG_WX("failed setting power mode.\n");
			mutex_unlock(&priv->mutex);
			return err;
		}
		IPW_DEBUG_WX("SET Power Management Mode -> off\n");
		mutex_unlock(&priv->mutex);
		return 0;
	}

	switch (wrqu->power.flags & IW_POWER_MODE) {
	case IW_POWER_ON:	/* If not specified */
	case IW_POWER_MODE:	/* If set all mask */
	case IW_POWER_ALL_R:	/* If explicitly state all */
		break;
	default:		/* Otherwise we don't support it */
		IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
			     wrqu->power.flags);
		mutex_unlock(&priv->mutex);
		return -EOPNOTSUPP;
	}

	/* If the user hasn't specified a power management mode yet, default
	 * to BATTERY */
	if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
		priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
	else
		priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;

	err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
	if (err) {
		IPW_DEBUG_WX("failed setting power mode.\n");
		mutex_unlock(&priv->mutex);
		return err;
	}

	IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
	mutex_unlock(&priv->mutex);
	return 0;
}

static int ipw_wx_get_power(struct net_device *dev,
			    struct iw_request_info *info,
			    union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);
	mutex_lock(&priv->mutex);
	if (!(priv->power_mode & IPW_POWER_ENABLED))
		wrqu->power.disabled = 1;
	else
		wrqu->power.disabled = 0;

	mutex_unlock(&priv->mutex);
	IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);

	return 0;
}

static int ipw_wx_set_powermode(struct net_device *dev,
				struct iw_request_info *info,
				union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);
	int mode = *(int *)extra;
	int err;

	mutex_lock(&priv->mutex);
	if ((mode < 1) || (mode > IPW_POWER_LIMIT))
		mode = IPW_POWER_AC;

	if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
		err = ipw_send_power_mode(priv, mode);
		if (err) {
			IPW_DEBUG_WX("failed setting power mode.\n");
			mutex_unlock(&priv->mutex);
			return err;
		}
		priv->power_mode = IPW_POWER_ENABLED | mode;
	}
	mutex_unlock(&priv->mutex);
	return 0;
}

#define MAX_WX_STRING 80
static int ipw_wx_get_powermode(struct net_device *dev,
				struct iw_request_info *info,
				union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);
	int level = IPW_POWER_LEVEL(priv->power_mode);
	char *p = extra;

	p += scnprintf(p, MAX_WX_STRING, "Power save level: %d ", level);

	switch (level) {
	case IPW_POWER_AC:
		p += scnprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
		break;
	case IPW_POWER_BATTERY:
		p += scnprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
		break;
	default:
		p += scnprintf(p, MAX_WX_STRING - (p - extra),
			      "(Timeout %dms, Period %dms)",
			      timeout_duration[level - 1] / 1000,
			      period_duration[level - 1] / 1000);
	}

	if (!(priv->power_mode & IPW_POWER_ENABLED))
		p += scnprintf(p, MAX_WX_STRING - (p - extra), " OFF");

	wrqu->data.length = p - extra + 1;

	return 0;
}

static int ipw_wx_set_wireless_mode(struct net_device *dev,
				    struct iw_request_info *info,
				    union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);
	int mode = *(int *)extra;
	u8 band = 0, modulation = 0;

	if (mode == 0 || mode & ~IEEE_MODE_MASK) {
		IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
		return -EINVAL;
	}
	mutex_lock(&priv->mutex);
	if (priv->adapter == IPW_2915ABG) {
		priv->ieee->abg_true = 1;
		if (mode & IEEE_A) {
			band |= LIBIPW_52GHZ_BAND;
			modulation |= LIBIPW_OFDM_MODULATION;
		} else
			priv->ieee->abg_true = 0;
	} else {
		if (mode & IEEE_A) {
			IPW_WARNING("Attempt to set 2200BG into "
				    "802.11a mode\n");
			mutex_unlock(&priv->mutex);
			return -EINVAL;
		}

		priv->ieee->abg_true = 0;
	}

	if (mode & IEEE_B) {
		band |= LIBIPW_24GHZ_BAND;
		modulation |= LIBIPW_CCK_MODULATION;
	} else
		priv->ieee->abg_true = 0;

	if (mode & IEEE_G) {
		band |= LIBIPW_24GHZ_BAND;
		modulation |= LIBIPW_OFDM_MODULATION;
	} else
		priv->ieee->abg_true = 0;

	priv->ieee->mode = mode;
	priv->ieee->freq_band = band;
	priv->ieee->modulation = modulation;
	init_supported_rates(priv, &priv->rates);

	/* Network configuration changed -- force [re]association */
	IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
	if (!ipw_disassociate(priv)) {
		ipw_send_supported_rates(priv, &priv->rates);
		ipw_associate(priv);
	}

	/* Update the band LEDs */
	ipw_led_band_on(priv);

	IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
		     mode & IEEE_A ? 'a' : '.',
		     mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
	mutex_unlock(&priv->mutex);
	return 0;
}

static int ipw_wx_get_wireless_mode(struct net_device *dev,
				    struct iw_request_info *info,
				    union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);
	mutex_lock(&priv->mutex);
	switch (priv->ieee->mode) {
	case IEEE_A:
		strncpy(extra, "802.11a (1)", MAX_WX_STRING);
		break;
	case IEEE_B:
		strncpy(extra, "802.11b (2)", MAX_WX_STRING);
		break;
	case IEEE_A | IEEE_B:
		strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
		break;
	case IEEE_G:
		strncpy(extra, "802.11g (4)", MAX_WX_STRING);
		break;
	case IEEE_A | IEEE_G:
		strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
		break;
	case IEEE_B | IEEE_G:
		strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
		break;
	case IEEE_A | IEEE_B | IEEE_G:
		strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
		break;
	default:
		strncpy(extra, "unknown", MAX_WX_STRING);
		break;
	}
	extra[MAX_WX_STRING - 1] = '\0';

	IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);

	wrqu->data.length = strlen(extra) + 1;
	mutex_unlock(&priv->mutex);

	return 0;
}

static int ipw_wx_set_preamble(struct net_device *dev,
			       struct iw_request_info *info,
			       union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);
	int mode = *(int *)extra;
	mutex_lock(&priv->mutex);
	/* Switching from SHORT -> LONG requires a disassociation */
	if (mode == 1) {
		if (!(priv->config & CFG_PREAMBLE_LONG)) {
			priv->config |= CFG_PREAMBLE_LONG;

			/* Network configuration changed -- force [re]association */
			IPW_DEBUG_ASSOC
			    ("[re]association triggered due to preamble change.\n");
			if (!ipw_disassociate(priv))
				ipw_associate(priv);
		}
		goto done;
	}

	if (mode == 0) {
		priv->config &= ~CFG_PREAMBLE_LONG;
		goto done;
	}
	mutex_unlock(&priv->mutex);
	return -EINVAL;

      done:
	mutex_unlock(&priv->mutex);
	return 0;
}

static int ipw_wx_get_preamble(struct net_device *dev,
			       struct iw_request_info *info,
			       union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);
	mutex_lock(&priv->mutex);
	if (priv->config & CFG_PREAMBLE_LONG)
		snprintf(wrqu->name, IFNAMSIZ, "long (1)");
	else
		snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
	mutex_unlock(&priv->mutex);
	return 0;
}

#ifdef CONFIG_IPW2200_MONITOR
static int ipw_wx_set_monitor(struct net_device *dev,
			      struct iw_request_info *info,
			      union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);
	int *parms = (int *)extra;
	int enable = (parms[0] > 0);
	mutex_lock(&priv->mutex);
	IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
	if (enable) {
		if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
#ifdef CONFIG_IPW2200_RADIOTAP
			priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
#else
			priv->net_dev->type = ARPHRD_IEEE80211;
#endif
			schedule_work(&priv->adapter_restart);
		}

		ipw_set_channel(priv, parms[1]);
	} else {
		if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
			mutex_unlock(&priv->mutex);
			return 0;
		}
		priv->net_dev->type = ARPHRD_ETHER;
		schedule_work(&priv->adapter_restart);
	}
	mutex_unlock(&priv->mutex);
	return 0;
}

#endif				/* CONFIG_IPW2200_MONITOR */

static int ipw_wx_reset(struct net_device *dev,
			struct iw_request_info *info,
			union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);
	IPW_DEBUG_WX("RESET\n");
	schedule_work(&priv->adapter_restart);
	return 0;
}

static int ipw_wx_sw_reset(struct net_device *dev,
			   struct iw_request_info *info,
			   union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = libipw_priv(dev);
	union iwreq_data wrqu_sec = {
		.encoding = {
			     .flags = IW_ENCODE_DISABLED,
			     },
	};
	int ret;

	IPW_DEBUG_WX("SW_RESET\n");

	mutex_lock(&priv->mutex);

	ret = ipw_sw_reset(priv, 2);
	if (!ret) {
		free_firmware();
		ipw_adapter_restart(priv);
	}

	/* The SW reset bit might have been toggled on by the 'disable'
	 * module parameter, so take appropriate action */
	ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);

	mutex_unlock(&priv->mutex);
	libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
	mutex_lock(&priv->mutex);

	if (!(priv->status & STATUS_RF_KILL_MASK)) {
		/* Configuration likely changed -- force [re]association */
		IPW_DEBUG_ASSOC("[re]association triggered due to sw "
				"reset.\n");
		if (!ipw_disassociate(priv))
			ipw_associate(priv);
	}

	mutex_unlock(&priv->mutex);

	return 0;
}

/* Rebase the WE IOCTLs to zero for the handler array */
static iw_handler ipw_wx_handlers[] = {
	IW_HANDLER(SIOCGIWNAME, cfg80211_wext_giwname),
	IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
	IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
	IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
	IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
	IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
	IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
	IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
	IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
	IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
	IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
	IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
	IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
	IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
	IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
	IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
	IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
	IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
	IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
	IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
	IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
	IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
	IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
	IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
	IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
	IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
	IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
	IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
	IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
	IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
	IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
	IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
	IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
	IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
	IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
	IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
	IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
	IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
	IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
	IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
	IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
};

enum {
	IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
	IPW_PRIV_GET_POWER,
	IPW_PRIV_SET_MODE,
	IPW_PRIV_GET_MODE,
	IPW_PRIV_SET_PREAMBLE,
	IPW_PRIV_GET_PREAMBLE,
	IPW_PRIV_RESET,
	IPW_PRIV_SW_RESET,
#ifdef CONFIG_IPW2200_MONITOR
	IPW_PRIV_SET_MONITOR,
#endif
};

static struct iw_priv_args ipw_priv_args[] = {
	{
	 .cmd = IPW_PRIV_SET_POWER,
	 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
	 .name = "set_power"},
	{
	 .cmd = IPW_PRIV_GET_POWER,
	 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
	 .name = "get_power"},
	{
	 .cmd = IPW_PRIV_SET_MODE,
	 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
	 .name = "set_mode"},
	{
	 .cmd = IPW_PRIV_GET_MODE,
	 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
	 .name = "get_mode"},
	{
	 .cmd = IPW_PRIV_SET_PREAMBLE,
	 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
	 .name = "set_preamble"},
	{
	 .cmd = IPW_PRIV_GET_PREAMBLE,
	 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
	 .name = "get_preamble"},
	{
	 IPW_PRIV_RESET,
	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
	{
	 IPW_PRIV_SW_RESET,
	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
#ifdef CONFIG_IPW2200_MONITOR
	{
	 IPW_PRIV_SET_MONITOR,
	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
#endif				/* CONFIG_IPW2200_MONITOR */
};

static iw_handler ipw_priv_handler[] = {
	ipw_wx_set_powermode,
	ipw_wx_get_powermode,
	ipw_wx_set_wireless_mode,
	ipw_wx_get_wireless_mode,
	ipw_wx_set_preamble,
	ipw_wx_get_preamble,
	ipw_wx_reset,
	ipw_wx_sw_reset,
#ifdef CONFIG_IPW2200_MONITOR
	ipw_wx_set_monitor,
#endif
};

static const struct iw_handler_def ipw_wx_handler_def = {
	.standard = ipw_wx_handlers,
	.num_standard = ARRAY_SIZE(ipw_wx_handlers),
	.num_private = ARRAY_SIZE(ipw_priv_handler),
	.num_private_args = ARRAY_SIZE(ipw_priv_args),
	.private = ipw_priv_handler,
	.private_args = ipw_priv_args,
	.get_wireless_stats = ipw_get_wireless_stats,
};

/*
 * Get wireless statistics.
 * Called by /proc/net/wireless
 * Also called by SIOCGIWSTATS
 */
static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
{
	struct ipw_priv *priv = libipw_priv(dev);
	struct iw_statistics *wstats;

	wstats = &priv->wstats;

	/* if hw is disabled, then ipw_get_ordinal() can't be called.
	 * netdev->get_wireless_stats seems to be called before fw is
	 * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
	 * and associated; if not associcated, the values are all meaningless
	 * anyway, so set them all to NULL and INVALID */
	if (!(priv->status & STATUS_ASSOCIATED)) {
		wstats->miss.beacon = 0;
		wstats->discard.retries = 0;
		wstats->qual.qual = 0;
		wstats->qual.level = 0;
		wstats->qual.noise = 0;
		wstats->qual.updated = 7;
		wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
		    IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
		return wstats;
	}

	wstats->qual.qual = priv->quality;
	wstats->qual.level = priv->exp_avg_rssi;
	wstats->qual.noise = priv->exp_avg_noise;
	wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
	    IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;

	wstats->miss.beacon = average_value(&priv->average_missed_beacons);
	wstats->discard.retries = priv->last_tx_failures;
	wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;

/*	if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
	goto fail_get_ordinal;
	wstats->discard.retries += tx_retry; */

	return wstats;
}

/* net device stuff */

static  void init_sys_config(struct ipw_sys_config *sys_config)
{
	memset(sys_config, 0, sizeof(struct ipw_sys_config));
	sys_config->bt_coexistence = 0;
	sys_config->answer_broadcast_ssid_probe = 0;
	sys_config->accept_all_data_frames = 0;
	sys_config->accept_non_directed_frames = 1;
	sys_config->exclude_unicast_unencrypted = 0;
	sys_config->disable_unicast_decryption = 1;
	sys_config->exclude_multicast_unencrypted = 0;
	sys_config->disable_multicast_decryption = 1;
	if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
		antenna = CFG_SYS_ANTENNA_BOTH;
	sys_config->antenna_diversity = antenna;
	sys_config->pass_crc_to_host = 0;	/* TODO: See if 1 gives us FCS */
	sys_config->dot11g_auto_detection = 0;
	sys_config->enable_cts_to_self = 0;
	sys_config->bt_coexist_collision_thr = 0;
	sys_config->pass_noise_stats_to_host = 1;	/* 1 -- fix for 256 */
	sys_config->silence_threshold = 0x1e;
}

static int ipw_net_open(struct net_device *dev)
{
	IPW_DEBUG_INFO("dev->open\n");
	netif_start_queue(dev);
	return 0;
}

static int ipw_net_stop(struct net_device *dev)
{
	IPW_DEBUG_INFO("dev->close\n");
	netif_stop_queue(dev);
	return 0;
}

/*
todo:

modify to send one tfd per fragment instead of using chunking.  otherwise
we need to heavily modify the libipw_skb_to_txb.
*/

static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
			     int pri)
{
	struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
	    txb->fragments[0]->data;
	int i = 0;
	struct tfd_frame *tfd;
#ifdef CONFIG_IPW2200_QOS
	int tx_id = ipw_get_tx_queue_number(priv, pri);
	struct clx2_tx_queue *txq = &priv->txq[tx_id];
#else
	struct clx2_tx_queue *txq = &priv->txq[0];
#endif
	struct clx2_queue *q = &txq->q;
	u8 id, hdr_len, unicast;
	int fc;

	if (!(priv->status & STATUS_ASSOCIATED))
		goto drop;

	hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
	switch (priv->ieee->iw_mode) {
	case IW_MODE_ADHOC:
		unicast = !is_multicast_ether_addr(hdr->addr1);
		id = ipw_find_station(priv, hdr->addr1);
		if (id == IPW_INVALID_STATION) {
			id = ipw_add_station(priv, hdr->addr1);
			if (id == IPW_INVALID_STATION) {
				IPW_WARNING("Attempt to send data to "
					    "invalid cell: %pM\n",
					    hdr->addr1);
				goto drop;
			}
		}
		break;

	case IW_MODE_INFRA:
	default:
		unicast = !is_multicast_ether_addr(hdr->addr3);
		id = 0;
		break;
	}

	tfd = &txq->bd[q->first_empty];
	txq->txb[q->first_empty] = txb;
	memset(tfd, 0, sizeof(*tfd));
	tfd->u.data.station_number = id;

	tfd->control_flags.message_type = TX_FRAME_TYPE;
	tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;

	tfd->u.data.cmd_id = DINO_CMD_TX;
	tfd->u.data.len = cpu_to_le16(txb->payload_size);

	if (priv->assoc_request.ieee_mode == IPW_B_MODE)
		tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
	else
		tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;

	if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
		tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;

	fc = le16_to_cpu(hdr->frame_ctl);
	hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);

	memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);

	if (likely(unicast))
		tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;

	if (txb->encrypted && !priv->ieee->host_encrypt) {
		switch (priv->ieee->sec.level) {
		case SEC_LEVEL_3:
			tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
			    cpu_to_le16(IEEE80211_FCTL_PROTECTED);
			/* XXX: ACK flag must be set for CCMP even if it
			 * is a multicast/broadcast packet, because CCMP
			 * group communication encrypted by GTK is
			 * actually done by the AP. */
			if (!unicast)
				tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;

			tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
			tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
			tfd->u.data.key_index = 0;
			tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
			break;
		case SEC_LEVEL_2:
			tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
			    cpu_to_le16(IEEE80211_FCTL_PROTECTED);
			tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
			tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
			tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
			break;
		case SEC_LEVEL_1:
			tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
			    cpu_to_le16(IEEE80211_FCTL_PROTECTED);
			tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
			if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
			    40)
				tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
			else
				tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
			break;
		case SEC_LEVEL_0:
			break;
		default:
			printk(KERN_ERR "Unknown security level %d\n",
			       priv->ieee->sec.level);
			break;
		}
	} else
		/* No hardware encryption */
		tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;

#ifdef CONFIG_IPW2200_QOS
	if (fc & IEEE80211_STYPE_QOS_DATA)
		ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
#endif				/* CONFIG_IPW2200_QOS */

	/* payload */
	tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
						 txb->nr_frags));
	IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
		       txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
	for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
		IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
			       i, le32_to_cpu(tfd->u.data.num_chunks),
			       txb->fragments[i]->len - hdr_len);
		IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
			     i, tfd->u.data.num_chunks,
			     txb->fragments[i]->len - hdr_len);
		printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
			   txb->fragments[i]->len - hdr_len);

		tfd->u.data.chunk_ptr[i] =
		    cpu_to_le32(dma_map_single(&priv->pci_dev->dev,
					       txb->fragments[i]->data + hdr_len,
					       txb->fragments[i]->len - hdr_len,
					       DMA_TO_DEVICE));
		tfd->u.data.chunk_len[i] =
		    cpu_to_le16(txb->fragments[i]->len - hdr_len);
	}

	if (i != txb->nr_frags) {
		struct sk_buff *skb;
		u16 remaining_bytes = 0;
		int j;

		for (j = i; j < txb->nr_frags; j++)
			remaining_bytes += txb->fragments[j]->len - hdr_len;

		printk(KERN_INFO "Trying to reallocate for %d bytes\n",
		       remaining_bytes);
		skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
		if (skb != NULL) {
			tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
			for (j = i; j < txb->nr_frags; j++) {
				int size = txb->fragments[j]->len - hdr_len;

				printk(KERN_INFO "Adding frag %d %d...\n",
				       j, size);
				skb_put_data(skb,
					     txb->fragments[j]->data + hdr_len,
					     size);
			}
			dev_kfree_skb_any(txb->fragments[i]);
			txb->fragments[i] = skb;
			tfd->u.data.chunk_ptr[i] =
			    cpu_to_le32(dma_map_single(&priv->pci_dev->dev,
						       skb->data,
						       remaining_bytes,
						       DMA_TO_DEVICE));

			le32_add_cpu(&tfd->u.data.num_chunks, 1);
		}
	}

	/* kick DMA */
	q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
	ipw_write32(priv, q->reg_w, q->first_empty);

	if (ipw_tx_queue_space(q) < q->high_mark)
		netif_stop_queue(priv->net_dev);

	return NETDEV_TX_OK;

      drop:
	IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
	libipw_txb_free(txb);
	return NETDEV_TX_OK;
}

static int ipw_net_is_queue_full(struct net_device *dev, int pri)
{
	struct ipw_priv *priv = libipw_priv(dev);
#ifdef CONFIG_IPW2200_QOS
	int tx_id = ipw_get_tx_queue_number(priv, pri);
	struct clx2_tx_queue *txq = &priv->txq[tx_id];
#else
	struct clx2_tx_queue *txq = &priv->txq[0];
#endif				/* CONFIG_IPW2200_QOS */

	if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
		return 1;

	return 0;
}

#ifdef CONFIG_IPW2200_PROMISCUOUS
static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
				      struct libipw_txb *txb)
{
	struct libipw_rx_stats dummystats;
	struct ieee80211_hdr *hdr;
	u8 n;
	u16 filter = priv->prom_priv->filter;
	int hdr_only = 0;

	if (filter & IPW_PROM_NO_TX)
		return;

	memset(&dummystats, 0, sizeof(dummystats));

	/* Filtering of fragment chains is done against the first fragment */
	hdr = (void *)txb->fragments[0]->data;
	if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
		if (filter & IPW_PROM_NO_MGMT)
			return;
		if (filter & IPW_PROM_MGMT_HEADER_ONLY)
			hdr_only = 1;
	} else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
		if (filter & IPW_PROM_NO_CTL)
			return;
		if (filter & IPW_PROM_CTL_HEADER_ONLY)
			hdr_only = 1;
	} else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
		if (filter & IPW_PROM_NO_DATA)
			return;
		if (filter & IPW_PROM_DATA_HEADER_ONLY)
			hdr_only = 1;
	}

	for(n=0; n<txb->nr_frags; ++n) {
		struct sk_buff *src = txb->fragments[n];
		struct sk_buff *dst;
		struct ieee80211_radiotap_header *rt_hdr;
		int len;

		if (hdr_only) {
			hdr = (void *)src->data;
			len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
		} else
			len = src->len;

		dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC);
		if (!dst)
			continue;

		rt_hdr = skb_put(dst, sizeof(*rt_hdr));

		rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
		rt_hdr->it_pad = 0;
		rt_hdr->it_present = 0; /* after all, it's just an idea */
		rt_hdr->it_present |=  cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);

		*(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
			ieee80211chan2mhz(priv->channel));
		if (priv->channel > 14) 	/* 802.11a */
			*(__le16*)skb_put(dst, sizeof(u16)) =
				cpu_to_le16(IEEE80211_CHAN_OFDM |
					     IEEE80211_CHAN_5GHZ);
		else if (priv->ieee->mode == IEEE_B) /* 802.11b */
			*(__le16*)skb_put(dst, sizeof(u16)) =
				cpu_to_le16(IEEE80211_CHAN_CCK |
					     IEEE80211_CHAN_2GHZ);
		else 		/* 802.11g */
			*(__le16*)skb_put(dst, sizeof(u16)) =
				cpu_to_le16(IEEE80211_CHAN_OFDM |
				 IEEE80211_CHAN_2GHZ);

		rt_hdr->it_len = cpu_to_le16(dst->len);

		skb_copy_from_linear_data(src, skb_put(dst, len), len);

		if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
			dev_kfree_skb_any(dst);
	}
}
#endif

static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
					   struct net_device *dev, int pri)
{
	struct ipw_priv *priv = libipw_priv(dev);
	unsigned long flags;
	netdev_tx_t ret;

	IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
	spin_lock_irqsave(&priv->lock, flags);

#ifdef CONFIG_IPW2200_PROMISCUOUS
	if (rtap_iface && netif_running(priv->prom_net_dev))
		ipw_handle_promiscuous_tx(priv, txb);
#endif

	ret = ipw_tx_skb(priv, txb, pri);
	if (ret == NETDEV_TX_OK)
		__ipw_led_activity_on(priv);
	spin_unlock_irqrestore(&priv->lock, flags);

	return ret;
}

static void ipw_net_set_multicast_list(struct net_device *dev)
{

}

static int ipw_net_set_mac_address(struct net_device *dev, void *p)
{
	struct ipw_priv *priv = libipw_priv(dev);
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;
	mutex_lock(&priv->mutex);
	priv->config |= CFG_CUSTOM_MAC;
	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
	printk(KERN_INFO "%s: Setting MAC to %pM\n",
	       priv->net_dev->name, priv->mac_addr);
	schedule_work(&priv->adapter_restart);
	mutex_unlock(&priv->mutex);
	return 0;
}

static void ipw_ethtool_get_drvinfo(struct net_device *dev,
				    struct ethtool_drvinfo *info)
{
	struct ipw_priv *p = libipw_priv(dev);
	char vers[64];
	char date[32];
	u32 len;

	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
	strscpy(info->version, DRV_VERSION, sizeof(info->version));

	len = sizeof(vers);
	ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
	len = sizeof(date);
	ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);

	snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
		 vers, date);
	strscpy(info->bus_info, pci_name(p->pci_dev),
		sizeof(info->bus_info));
}

static u32 ipw_ethtool_get_link(struct net_device *dev)
{
	struct ipw_priv *priv = libipw_priv(dev);
	return (priv->status & STATUS_ASSOCIATED) != 0;
}

static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
{
	return IPW_EEPROM_IMAGE_SIZE;
}

static int ipw_ethtool_get_eeprom(struct net_device *dev,
				  struct ethtool_eeprom *eeprom, u8 * bytes)
{
	struct ipw_priv *p = libipw_priv(dev);

	if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
		return -EINVAL;
	mutex_lock(&p->mutex);
	memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
	mutex_unlock(&p->mutex);
	return 0;
}

static int ipw_ethtool_set_eeprom(struct net_device *dev,
				  struct ethtool_eeprom *eeprom, u8 * bytes)
{
	struct ipw_priv *p = libipw_priv(dev);
	int i;

	if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
		return -EINVAL;
	mutex_lock(&p->mutex);
	memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
	for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
		ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
	mutex_unlock(&p->mutex);
	return 0;
}

static const struct ethtool_ops ipw_ethtool_ops = {
	.get_link = ipw_ethtool_get_link,
	.get_drvinfo = ipw_ethtool_get_drvinfo,
	.get_eeprom_len = ipw_ethtool_get_eeprom_len,
	.get_eeprom = ipw_ethtool_get_eeprom,
	.set_eeprom = ipw_ethtool_set_eeprom,
};

static irqreturn_t ipw_isr(int irq, void *data)
{
	struct ipw_priv *priv = data;
	u32 inta, inta_mask;

	if (!priv)
		return IRQ_NONE;

	spin_lock(&priv->irq_lock);

	if (!(priv->status & STATUS_INT_ENABLED)) {
		/* IRQ is disabled */
		goto none;
	}

	inta = ipw_read32(priv, IPW_INTA_RW);
	inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);

	if (inta == 0xFFFFFFFF) {
		/* Hardware disappeared */
		IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
		goto none;
	}

	if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
		/* Shared interrupt */
		goto none;
	}

	/* tell the device to stop sending interrupts */
	__ipw_disable_interrupts(priv);

	/* ack current interrupts */
	inta &= (IPW_INTA_MASK_ALL & inta_mask);
	ipw_write32(priv, IPW_INTA_RW, inta);

	/* Cache INTA value for our tasklet */
	priv->isr_inta = inta;

	tasklet_schedule(&priv->irq_tasklet);

	spin_unlock(&priv->irq_lock);

	return IRQ_HANDLED;
      none:
	spin_unlock(&priv->irq_lock);
	return IRQ_NONE;
}

static void ipw_rf_kill(void *adapter)
{
	struct ipw_priv *priv = adapter;
	unsigned long flags;

	spin_lock_irqsave(&priv->lock, flags);

	if (rf_kill_active(priv)) {
		IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
		schedule_delayed_work(&priv->rf_kill, 2 * HZ);
		goto exit_unlock;
	}

	/* RF Kill is now disabled, so bring the device back up */

	if (!(priv->status & STATUS_RF_KILL_MASK)) {
		IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
				  "device\n");

		/* we can not do an adapter restart while inside an irq lock */
		schedule_work(&priv->adapter_restart);
	} else
		IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
				  "enabled\n");

      exit_unlock:
	spin_unlock_irqrestore(&priv->lock, flags);
}

static void ipw_bg_rf_kill(struct work_struct *work)
{
	struct ipw_priv *priv =
		container_of(work, struct ipw_priv, rf_kill.work);
	mutex_lock(&priv->mutex);
	ipw_rf_kill(priv);
	mutex_unlock(&priv->mutex);
}

static void ipw_link_up(struct ipw_priv *priv)
{
	priv->last_seq_num = -1;
	priv->last_frag_num = -1;
	priv->last_packet_time = 0;

	netif_carrier_on(priv->net_dev);

	cancel_delayed_work(&priv->request_scan);
	cancel_delayed_work(&priv->request_direct_scan);
	cancel_delayed_work(&priv->request_passive_scan);
	cancel_delayed_work(&priv->scan_event);
	ipw_reset_stats(priv);
	/* Ensure the rate is updated immediately */
	priv->last_rate = ipw_get_current_rate(priv);
	ipw_gather_stats(priv);
	ipw_led_link_up(priv);
	notify_wx_assoc_event(priv);

	if (priv->config & CFG_BACKGROUND_SCAN)
		schedule_delayed_work(&priv->request_scan, HZ);
}

static void ipw_bg_link_up(struct work_struct *work)
{
	struct ipw_priv *priv =
		container_of(work, struct ipw_priv, link_up);
	mutex_lock(&priv->mutex);
	ipw_link_up(priv);
	mutex_unlock(&priv->mutex);
}

static void ipw_link_down(struct ipw_priv *priv)
{
	ipw_led_link_down(priv);
	netif_carrier_off(priv->net_dev);
	notify_wx_assoc_event(priv);

	/* Cancel any queued work ... */
	cancel_delayed_work(&priv->request_scan);
	cancel_delayed_work(&priv->request_direct_scan);
	cancel_delayed_work(&priv->request_passive_scan);
	cancel_delayed_work(&priv->adhoc_check);
	cancel_delayed_work(&priv->gather_stats);

	ipw_reset_stats(priv);

	if (!(priv->status & STATUS_EXIT_PENDING)) {
		/* Queue up another scan... */
		schedule_delayed_work(&priv->request_scan, 0);
	} else
		cancel_delayed_work(&priv->scan_event);
}

static void ipw_bg_link_down(struct work_struct *work)
{
	struct ipw_priv *priv =
		container_of(work, struct ipw_priv, link_down);
	mutex_lock(&priv->mutex);
	ipw_link_down(priv);
	mutex_unlock(&priv->mutex);
}

static void ipw_setup_deferred_work(struct ipw_priv *priv)
{
	init_waitqueue_head(&priv->wait_command_queue);
	init_waitqueue_head(&priv->wait_state);

	INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
	INIT_WORK(&priv->associate, ipw_bg_associate);
	INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
	INIT_WORK(&priv->system_config, ipw_system_config);
	INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
	INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
	INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
	INIT_WORK(&priv->up, ipw_bg_up);
	INIT_WORK(&priv->down, ipw_bg_down);
	INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
	INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
	INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
	INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
	INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
	INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
	INIT_WORK(&priv->roam, ipw_bg_roam);
	INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
	INIT_WORK(&priv->link_up, ipw_bg_link_up);
	INIT_WORK(&priv->link_down, ipw_bg_link_down);
	INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
	INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
	INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
	INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);

#ifdef CONFIG_IPW2200_QOS
	INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
#endif				/* CONFIG_IPW2200_QOS */

	tasklet_setup(&priv->irq_tasklet, ipw_irq_tasklet);
}

static void shim__set_security(struct net_device *dev,
			       struct libipw_security *sec)
{
	struct ipw_priv *priv = libipw_priv(dev);
	int i;
	for (i = 0; i < 4; i++) {
		if (sec->flags & (1 << i)) {
			priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
			priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
			if (sec->key_sizes[i] == 0)
				priv->ieee->sec.flags &= ~(1 << i);
			else {
				memcpy(priv->ieee->sec.keys[i], sec->keys[i],
				       sec->key_sizes[i]);
				priv->ieee->sec.flags |= (1 << i);
			}
			priv->status |= STATUS_SECURITY_UPDATED;
		} else if (sec->level != SEC_LEVEL_1)
			priv->ieee->sec.flags &= ~(1 << i);
	}

	if (sec->flags & SEC_ACTIVE_KEY) {
		priv->ieee->sec.active_key = sec->active_key;
		priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
		priv->status |= STATUS_SECURITY_UPDATED;
	} else
		priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;

	if ((sec->flags & SEC_AUTH_MODE) &&
	    (priv->ieee->sec.auth_mode != sec->auth_mode)) {
		priv->ieee->sec.auth_mode = sec->auth_mode;
		priv->ieee->sec.flags |= SEC_AUTH_MODE;
		if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
			priv->capability |= CAP_SHARED_KEY;
		else
			priv->capability &= ~CAP_SHARED_KEY;
		priv->status |= STATUS_SECURITY_UPDATED;
	}

	if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
		priv->ieee->sec.flags |= SEC_ENABLED;
		priv->ieee->sec.enabled = sec->enabled;
		priv->status |= STATUS_SECURITY_UPDATED;
		if (sec->enabled)
			priv->capability |= CAP_PRIVACY_ON;
		else
			priv->capability &= ~CAP_PRIVACY_ON;
	}

	if (sec->flags & SEC_ENCRYPT)
		priv->ieee->sec.encrypt = sec->encrypt;

	if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
		priv->ieee->sec.level = sec->level;
		priv->ieee->sec.flags |= SEC_LEVEL;
		priv->status |= STATUS_SECURITY_UPDATED;
	}

	if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
		ipw_set_hwcrypto_keys(priv);

	/* To match current functionality of ipw2100 (which works well w/
	 * various supplicants, we don't force a disassociate if the
	 * privacy capability changes ... */
#if 0
	if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
	    (((priv->assoc_request.capability &
	       cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
	     (!(priv->assoc_request.capability &
		cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
		IPW_DEBUG_ASSOC("Disassociating due to capability "
				"change.\n");
		ipw_disassociate(priv);
	}
#endif
}

static int init_supported_rates(struct ipw_priv *priv,
				struct ipw_supported_rates *rates)
{
	/* TODO: Mask out rates based on priv->rates_mask */

	memset(rates, 0, sizeof(*rates));
	/* configure supported rates */
	switch (priv->ieee->freq_band) {
	case LIBIPW_52GHZ_BAND:
		rates->ieee_mode = IPW_A_MODE;
		rates->purpose = IPW_RATE_CAPABILITIES;
		ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
					LIBIPW_OFDM_DEFAULT_RATES_MASK);
		break;

	default:		/* Mixed or 2.4Ghz */
		rates->ieee_mode = IPW_G_MODE;
		rates->purpose = IPW_RATE_CAPABILITIES;
		ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
				       LIBIPW_CCK_DEFAULT_RATES_MASK);
		if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
			ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
						LIBIPW_OFDM_DEFAULT_RATES_MASK);
		}
		break;
	}

	return 0;
}

static int ipw_config(struct ipw_priv *priv)
{
	/* This is only called from ipw_up, which resets/reloads the firmware
	   so, we don't need to first disable the card before we configure
	   it */
	if (ipw_set_tx_power(priv))
		goto error;

	/* initialize adapter address */
	if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
		goto error;

	/* set basic system config settings */
	init_sys_config(&priv->sys_config);

	/* Support Bluetooth if we have BT h/w on board, and user wants to.
	 * Does not support BT priority yet (don't abort or defer our Tx) */
	if (bt_coexist) {
		unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];

		if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
			priv->sys_config.bt_coexistence
			    |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
		if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
			priv->sys_config.bt_coexistence
			    |= CFG_BT_COEXISTENCE_OOB;
	}

#ifdef CONFIG_IPW2200_PROMISCUOUS
	if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
		priv->sys_config.accept_all_data_frames = 1;
		priv->sys_config.accept_non_directed_frames = 1;
		priv->sys_config.accept_all_mgmt_bcpr = 1;
		priv->sys_config.accept_all_mgmt_frames = 1;
	}
#endif

	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
		priv->sys_config.answer_broadcast_ssid_probe = 1;
	else
		priv->sys_config.answer_broadcast_ssid_probe = 0;

	if (ipw_send_system_config(priv))
		goto error;

	init_supported_rates(priv, &priv->rates);
	if (ipw_send_supported_rates(priv, &priv->rates))
		goto error;

	/* Set request-to-send threshold */
	if (priv->rts_threshold) {
		if (ipw_send_rts_threshold(priv, priv->rts_threshold))
			goto error;
	}
#ifdef CONFIG_IPW2200_QOS
	IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
	ipw_qos_activate(priv, NULL);
#endif				/* CONFIG_IPW2200_QOS */

	if (ipw_set_random_seed(priv))
		goto error;

	/* final state transition to the RUN state */
	if (ipw_send_host_complete(priv))
		goto error;

	priv->status |= STATUS_INIT;

	ipw_led_init(priv);
	ipw_led_radio_on(priv);
	priv->notif_missed_beacons = 0;

	/* Set hardware WEP key if it is configured. */
	if ((priv->capability & CAP_PRIVACY_ON) &&
	    (priv->ieee->sec.level == SEC_LEVEL_1) &&
	    !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
		ipw_set_hwcrypto_keys(priv);

	return 0;

      error:
	return -EIO;
}

/*
 * NOTE:
 *
 * These tables have been tested in conjunction with the
 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
 *
 * Altering this values, using it on other hardware, or in geographies
 * not intended for resale of the above mentioned Intel adapters has
 * not been tested.
 *
 * Remember to update the table in README.ipw2200 when changing this
 * table.
 *
 */
static const struct libipw_geo ipw_geos[] = {
	{			/* Restricted */
	 "---",
	 .bg_channels = 11,
	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
		{2427, 4}, {2432, 5}, {2437, 6},
		{2442, 7}, {2447, 8}, {2452, 9},
		{2457, 10}, {2462, 11}},
	 },

	{			/* Custom US/Canada */
	 "ZZF",
	 .bg_channels = 11,
	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
		{2427, 4}, {2432, 5}, {2437, 6},
		{2442, 7}, {2447, 8}, {2452, 9},
		{2457, 10}, {2462, 11}},
	 .a_channels = 8,
	 .a = {{5180, 36},
	       {5200, 40},
	       {5220, 44},
	       {5240, 48},
	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
	 },

	{			/* Rest of World */
	 "ZZD",
	 .bg_channels = 13,
	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
		{2427, 4}, {2432, 5}, {2437, 6},
		{2442, 7}, {2447, 8}, {2452, 9},
		{2457, 10}, {2462, 11}, {2467, 12},
		{2472, 13}},
	 },

	{			/* Custom USA & Europe & High */
	 "ZZA",
	 .bg_channels = 11,
	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
		{2427, 4}, {2432, 5}, {2437, 6},
		{2442, 7}, {2447, 8}, {2452, 9},
		{2457, 10}, {2462, 11}},
	 .a_channels = 13,
	 .a = {{5180, 36},
	       {5200, 40},
	       {5220, 44},
	       {5240, 48},
	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
	       {5745, 149},
	       {5765, 153},
	       {5785, 157},
	       {5805, 161},
	       {5825, 165}},
	 },

	{			/* Custom NA & Europe */
	 "ZZB",
	 .bg_channels = 11,
	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
		{2427, 4}, {2432, 5}, {2437, 6},
		{2442, 7}, {2447, 8}, {2452, 9},
		{2457, 10}, {2462, 11}},
	 .a_channels = 13,
	 .a = {{5180, 36},
	       {5200, 40},
	       {5220, 44},
	       {5240, 48},
	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
	       {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
	       {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
	       {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
	       {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
	       {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
	 },

	{			/* Custom Japan */
	 "ZZC",
	 .bg_channels = 11,
	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
		{2427, 4}, {2432, 5}, {2437, 6},
		{2442, 7}, {2447, 8}, {2452, 9},
		{2457, 10}, {2462, 11}},
	 .a_channels = 4,
	 .a = {{5170, 34}, {5190, 38},
	       {5210, 42}, {5230, 46}},
	 },

	{			/* Custom */
	 "ZZM",
	 .bg_channels = 11,
	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
		{2427, 4}, {2432, 5}, {2437, 6},
		{2442, 7}, {2447, 8}, {2452, 9},
		{2457, 10}, {2462, 11}},
	 },

	{			/* Europe */
	 "ZZE",
	 .bg_channels = 13,
	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
		{2427, 4}, {2432, 5}, {2437, 6},
		{2442, 7}, {2447, 8}, {2452, 9},
		{2457, 10}, {2462, 11}, {2467, 12},
		{2472, 13}},
	 .a_channels = 19,
	 .a = {{5180, 36},
	       {5200, 40},
	       {5220, 44},
	       {5240, 48},
	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
	       {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
	       {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
	       {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
	       {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
	       {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
	       {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
	       {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
	       {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
	       {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
	       {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
	       {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
	 },

	{			/* Custom Japan */
	 "ZZJ",
	 .bg_channels = 14,
	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
		{2427, 4}, {2432, 5}, {2437, 6},
		{2442, 7}, {2447, 8}, {2452, 9},
		{2457, 10}, {2462, 11}, {2467, 12},
		{2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
	 .a_channels = 4,
	 .a = {{5170, 34}, {5190, 38},
	       {5210, 42}, {5230, 46}},
	 },

	{			/* Rest of World */
	 "ZZR",
	 .bg_channels = 14,
	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
		{2427, 4}, {2432, 5}, {2437, 6},
		{2442, 7}, {2447, 8}, {2452, 9},
		{2457, 10}, {2462, 11}, {2467, 12},
		{2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
			     LIBIPW_CH_PASSIVE_ONLY}},
	 },

	{			/* High Band */
	 "ZZH",
	 .bg_channels = 13,
	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
		{2427, 4}, {2432, 5}, {2437, 6},
		{2442, 7}, {2447, 8}, {2452, 9},
		{2457, 10}, {2462, 11},
		{2467, 12, LIBIPW_CH_PASSIVE_ONLY},
		{2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
	 .a_channels = 4,
	 .a = {{5745, 149}, {5765, 153},
	       {5785, 157}, {5805, 161}},
	 },

	{			/* Custom Europe */
	 "ZZG",
	 .bg_channels = 13,
	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
		{2427, 4}, {2432, 5}, {2437, 6},
		{2442, 7}, {2447, 8}, {2452, 9},
		{2457, 10}, {2462, 11},
		{2467, 12}, {2472, 13}},
	 .a_channels = 4,
	 .a = {{5180, 36}, {5200, 40},
	       {5220, 44}, {5240, 48}},
	 },

	{			/* Europe */
	 "ZZK",
	 .bg_channels = 13,
	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
		{2427, 4}, {2432, 5}, {2437, 6},
		{2442, 7}, {2447, 8}, {2452, 9},
		{2457, 10}, {2462, 11},
		{2467, 12, LIBIPW_CH_PASSIVE_ONLY},
		{2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
	 .a_channels = 24,
	 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
	       {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
	       {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
	       {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
	       {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
	       {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
	       {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
	       {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
	       {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
	       {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
	       {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
	       {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
	       {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
	       {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
	       {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
	       {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
	       {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
	       {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
	       {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
	       {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
	 },

	{			/* Europe */
	 "ZZL",
	 .bg_channels = 11,
	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
		{2427, 4}, {2432, 5}, {2437, 6},
		{2442, 7}, {2447, 8}, {2452, 9},
		{2457, 10}, {2462, 11}},
	 .a_channels = 13,
	 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
	       {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
	       {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
	       {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
	       {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
	       {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
	       {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
	       {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
	       {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
	 }
};

static void ipw_set_geo(struct ipw_priv *priv)
{
	int j;

	for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
		if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
			    ipw_geos[j].name, 3))
			break;
	}

	if (j == ARRAY_SIZE(ipw_geos)) {
		IPW_WARNING("SKU [%c%c%c] not recognized.\n",
			    priv->eeprom[EEPROM_COUNTRY_CODE + 0],
			    priv->eeprom[EEPROM_COUNTRY_CODE + 1],
			    priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
		j = 0;
	}

	libipw_set_geo(priv->ieee, &ipw_geos[j]);
}

#define MAX_HW_RESTARTS 5
static int ipw_up(struct ipw_priv *priv)
{
	int rc, i;

	/* Age scan list entries found before suspend */
	if (priv->suspend_time) {
		libipw_networks_age(priv->ieee, priv->suspend_time);
		priv->suspend_time = 0;
	}

	if (priv->status & STATUS_EXIT_PENDING)
		return -EIO;

	if (cmdlog && !priv->cmdlog) {
		priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
				       GFP_KERNEL);
		if (priv->cmdlog == NULL) {
			IPW_ERROR("Error allocating %d command log entries.\n",
				  cmdlog);
			return -ENOMEM;
		} else {
			priv->cmdlog_len = cmdlog;
		}
	}

	for (i = 0; i < MAX_HW_RESTARTS; i++) {
		/* Load the microcode, firmware, and eeprom.
		 * Also start the clocks. */
		rc = ipw_load(priv);
		if (rc) {
			IPW_ERROR("Unable to load firmware: %d\n", rc);
			return rc;
		}

		ipw_init_ordinals(priv);
		if (!(priv->config & CFG_CUSTOM_MAC))
			eeprom_parse_mac(priv, priv->mac_addr);
		eth_hw_addr_set(priv->net_dev, priv->mac_addr);

		ipw_set_geo(priv);

		if (priv->status & STATUS_RF_KILL_SW) {
			IPW_WARNING("Radio disabled by module parameter.\n");
			return 0;
		} else if (rf_kill_active(priv)) {
			IPW_WARNING("Radio Frequency Kill Switch is On:\n"
				    "Kill switch must be turned off for "
				    "wireless networking to work.\n");
			schedule_delayed_work(&priv->rf_kill, 2 * HZ);
			return 0;
		}

		rc = ipw_config(priv);
		if (!rc) {
			IPW_DEBUG_INFO("Configured device on count %i\n", i);

			/* If configure to try and auto-associate, kick
			 * off a scan. */
			schedule_delayed_work(&priv->request_scan, 0);

			return 0;
		}

		IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
		IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
			       i, MAX_HW_RESTARTS);

		/* We had an error bringing up the hardware, so take it
		 * all the way back down so we can try again */
		ipw_down(priv);
	}

	/* tried to restart and config the device for as long as our
	 * patience could withstand */
	IPW_ERROR("Unable to initialize device after %d attempts.\n", i);

	return -EIO;
}

static void ipw_bg_up(struct work_struct *work)
{
	struct ipw_priv *priv =
		container_of(work, struct ipw_priv, up);
	mutex_lock(&priv->mutex);
	ipw_up(priv);
	mutex_unlock(&priv->mutex);
}

static void ipw_deinit(struct ipw_priv *priv)
{
	int i;

	if (priv->status & STATUS_SCANNING) {
		IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
		ipw_abort_scan(priv);
	}

	if (priv->status & STATUS_ASSOCIATED) {
		IPW_DEBUG_INFO("Disassociating during shutdown.\n");
		ipw_disassociate(priv);
	}

	ipw_led_shutdown(priv);

	/* Wait up to 1s for status to change to not scanning and not
	 * associated (disassociation can take a while for a ful 802.11
	 * exchange */
	for (i = 1000; i && (priv->status &
			     (STATUS_DISASSOCIATING |
			      STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
		udelay(10);

	if (priv->status & (STATUS_DISASSOCIATING |
			    STATUS_ASSOCIATED | STATUS_SCANNING))
		IPW_DEBUG_INFO("Still associated or scanning...\n");
	else
		IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);

	/* Attempt to disable the card */
	ipw_send_card_disable(priv, 0);

	priv->status &= ~STATUS_INIT;
}

static void ipw_down(struct ipw_priv *priv)
{
	int exit_pending = priv->status & STATUS_EXIT_PENDING;

	priv->status |= STATUS_EXIT_PENDING;

	if (ipw_is_init(priv))
		ipw_deinit(priv);

	/* Wipe out the EXIT_PENDING status bit if we are not actually
	 * exiting the module */
	if (!exit_pending)
		priv->status &= ~STATUS_EXIT_PENDING;

	/* tell the device to stop sending interrupts */
	ipw_disable_interrupts(priv);

	/* Clear all bits but the RF Kill */
	priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
	netif_carrier_off(priv->net_dev);

	ipw_stop_nic(priv);

	ipw_led_radio_off(priv);
}

static void ipw_bg_down(struct work_struct *work)
{
	struct ipw_priv *priv =
		container_of(work, struct ipw_priv, down);
	mutex_lock(&priv->mutex);
	ipw_down(priv);
	mutex_unlock(&priv->mutex);
}

static int ipw_wdev_init(struct net_device *dev)
{
	int i, rc = 0;
	struct ipw_priv *priv = libipw_priv(dev);
	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
	struct wireless_dev *wdev = &priv->ieee->wdev;

	memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);

	/* fill-out priv->ieee->bg_band */
	if (geo->bg_channels) {
		struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;

		bg_band->band = NL80211_BAND_2GHZ;
		bg_band->n_channels = geo->bg_channels;
		bg_band->channels = kcalloc(geo->bg_channels,
					    sizeof(struct ieee80211_channel),
					    GFP_KERNEL);
		if (!bg_band->channels) {
			rc = -ENOMEM;
			goto out;
		}
		/* translate geo->bg to bg_band.channels */
		for (i = 0; i < geo->bg_channels; i++) {
			bg_band->channels[i].band = NL80211_BAND_2GHZ;
			bg_band->channels[i].center_freq = geo->bg[i].freq;
			bg_band->channels[i].hw_value = geo->bg[i].channel;
			bg_band->channels[i].max_power = geo->bg[i].max_power;
			if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
				bg_band->channels[i].flags |=
					IEEE80211_CHAN_NO_IR;
			if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
				bg_band->channels[i].flags |=
					IEEE80211_CHAN_NO_IR;
			if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
				bg_band->channels[i].flags |=
					IEEE80211_CHAN_RADAR;
			/* No equivalent for LIBIPW_CH_80211H_RULES,
			   LIBIPW_CH_UNIFORM_SPREADING, or
			   LIBIPW_CH_B_ONLY... */
		}
		/* point at bitrate info */
		bg_band->bitrates = ipw2200_bg_rates;
		bg_band->n_bitrates = ipw2200_num_bg_rates;

		wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
	}

	/* fill-out priv->ieee->a_band */
	if (geo->a_channels) {
		struct ieee80211_supported_band *a_band = &priv->ieee->a_band;

		a_band->band = NL80211_BAND_5GHZ;
		a_band->n_channels = geo->a_channels;
		a_band->channels = kcalloc(geo->a_channels,
					   sizeof(struct ieee80211_channel),
					   GFP_KERNEL);
		if (!a_band->channels) {
			rc = -ENOMEM;
			goto out;
		}
		/* translate geo->a to a_band.channels */
		for (i = 0; i < geo->a_channels; i++) {
			a_band->channels[i].band = NL80211_BAND_5GHZ;
			a_band->channels[i].center_freq = geo->a[i].freq;
			a_band->channels[i].hw_value = geo->a[i].channel;
			a_band->channels[i].max_power = geo->a[i].max_power;
			if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
				a_band->channels[i].flags |=
					IEEE80211_CHAN_NO_IR;
			if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
				a_band->channels[i].flags |=
					IEEE80211_CHAN_NO_IR;
			if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
				a_band->channels[i].flags |=
					IEEE80211_CHAN_RADAR;
			/* No equivalent for LIBIPW_CH_80211H_RULES,
			   LIBIPW_CH_UNIFORM_SPREADING, or
			   LIBIPW_CH_B_ONLY... */
		}
		/* point at bitrate info */
		a_band->bitrates = ipw2200_a_rates;
		a_band->n_bitrates = ipw2200_num_a_rates;

		wdev->wiphy->bands[NL80211_BAND_5GHZ] = a_band;
	}

	wdev->wiphy->cipher_suites = ipw_cipher_suites;
	wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);

	set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);

	/* With that information in place, we can now register the wiphy... */
	if (wiphy_register(wdev->wiphy))
		rc = -EIO;
out:
	return rc;
}

/* PCI driver stuff */
static const struct pci_device_id card_ids[] = {
	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
	{PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
	{PCI_VDEVICE(INTEL, 0x104f), 0},
	{PCI_VDEVICE(INTEL, 0x4220), 0},	/* BG */
	{PCI_VDEVICE(INTEL, 0x4221), 0},	/* BG */
	{PCI_VDEVICE(INTEL, 0x4223), 0},	/* ABG */
	{PCI_VDEVICE(INTEL, 0x4224), 0},	/* ABG */

	/* required last entry */
	{0,}
};

MODULE_DEVICE_TABLE(pci, card_ids);

static struct attribute *ipw_sysfs_entries[] = {
	&dev_attr_rf_kill.attr,
	&dev_attr_direct_dword.attr,
	&dev_attr_indirect_byte.attr,
	&dev_attr_indirect_dword.attr,
	&dev_attr_mem_gpio_reg.attr,
	&dev_attr_command_event_reg.attr,
	&dev_attr_nic_type.attr,
	&dev_attr_status.attr,
	&dev_attr_cfg.attr,
	&dev_attr_error.attr,
	&dev_attr_event_log.attr,
	&dev_attr_cmd_log.attr,
	&dev_attr_eeprom_delay.attr,
	&dev_attr_ucode_version.attr,
	&dev_attr_rtc.attr,
	&dev_attr_scan_age.attr,
	&dev_attr_led.attr,
	&dev_attr_speed_scan.attr,
	&dev_attr_net_stats.attr,
	&dev_attr_channels.attr,
#ifdef CONFIG_IPW2200_PROMISCUOUS
	&dev_attr_rtap_iface.attr,
	&dev_attr_rtap_filter.attr,
#endif
	NULL
};

static const struct attribute_group ipw_attribute_group = {
	.name = NULL,		/* put in device directory */
	.attrs = ipw_sysfs_entries,
};

#ifdef CONFIG_IPW2200_PROMISCUOUS
static int ipw_prom_open(struct net_device *dev)
{
	struct ipw_prom_priv *prom_priv = libipw_priv(dev);
	struct ipw_priv *priv = prom_priv->priv;

	IPW_DEBUG_INFO("prom dev->open\n");
	netif_carrier_off(dev);

	if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
		priv->sys_config.accept_all_data_frames = 1;
		priv->sys_config.accept_non_directed_frames = 1;
		priv->sys_config.accept_all_mgmt_bcpr = 1;
		priv->sys_config.accept_all_mgmt_frames = 1;

		ipw_send_system_config(priv);
	}

	return 0;
}

static int ipw_prom_stop(struct net_device *dev)
{
	struct ipw_prom_priv *prom_priv = libipw_priv(dev);
	struct ipw_priv *priv = prom_priv->priv;

	IPW_DEBUG_INFO("prom dev->stop\n");

	if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
		priv->sys_config.accept_all_data_frames = 0;
		priv->sys_config.accept_non_directed_frames = 0;
		priv->sys_config.accept_all_mgmt_bcpr = 0;
		priv->sys_config.accept_all_mgmt_frames = 0;

		ipw_send_system_config(priv);
	}

	return 0;
}

static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
					    struct net_device *dev)
{
	IPW_DEBUG_INFO("prom dev->xmit\n");
	dev_kfree_skb(skb);
	return NETDEV_TX_OK;
}

static const struct net_device_ops ipw_prom_netdev_ops = {
	.ndo_open 		= ipw_prom_open,
	.ndo_stop		= ipw_prom_stop,
	.ndo_start_xmit		= ipw_prom_hard_start_xmit,
	.ndo_set_mac_address 	= eth_mac_addr,
	.ndo_validate_addr	= eth_validate_addr,
};

static int ipw_prom_alloc(struct ipw_priv *priv)
{
	int rc = 0;

	if (priv->prom_net_dev)
		return -EPERM;

	priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
	if (priv->prom_net_dev == NULL)
		return -ENOMEM;

	priv->prom_priv = libipw_priv(priv->prom_net_dev);
	priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
	priv->prom_priv->priv = priv;

	strcpy(priv->prom_net_dev->name, "rtap%d");
	eth_hw_addr_set(priv->prom_net_dev, priv->mac_addr);

	priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
	priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;

	priv->prom_net_dev->min_mtu = 68;
	priv->prom_net_dev->max_mtu = LIBIPW_DATA_LEN;

	priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
	SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);

	rc = register_netdev(priv->prom_net_dev);
	if (rc) {
		free_libipw(priv->prom_net_dev, 1);
		priv->prom_net_dev = NULL;
		return rc;
	}

	return 0;
}

static void ipw_prom_free(struct ipw_priv *priv)
{
	if (!priv->prom_net_dev)
		return;

	unregister_netdev(priv->prom_net_dev);
	free_libipw(priv->prom_net_dev, 1);

	priv->prom_net_dev = NULL;
}

#endif

static const struct net_device_ops ipw_netdev_ops = {
	.ndo_open		= ipw_net_open,
	.ndo_stop		= ipw_net_stop,
	.ndo_set_rx_mode	= ipw_net_set_multicast_list,
	.ndo_set_mac_address	= ipw_net_set_mac_address,
	.ndo_start_xmit		= libipw_xmit,
	.ndo_validate_addr	= eth_validate_addr,
};

static int ipw_pci_probe(struct pci_dev *pdev,
				   const struct pci_device_id *ent)
{
	int err = 0;
	struct net_device *net_dev;
	void __iomem *base;
	u32 length, val;
	struct ipw_priv *priv;
	int i;

	net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
	if (net_dev == NULL) {
		err = -ENOMEM;
		goto out;
	}

	priv = libipw_priv(net_dev);
	priv->ieee = netdev_priv(net_dev);

	priv->net_dev = net_dev;
	priv->pci_dev = pdev;
	ipw_debug_level = debug;
	spin_lock_init(&priv->irq_lock);
	spin_lock_init(&priv->lock);
	for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
		INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);

	mutex_init(&priv->mutex);
	if (pci_enable_device(pdev)) {
		err = -ENODEV;
		goto out_free_libipw;
	}

	pci_set_master(pdev);

	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
	if (!err)
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
	if (err) {
		printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
		goto out_pci_disable_device;
	}

	pci_set_drvdata(pdev, priv);

	err = pci_request_regions(pdev, DRV_NAME);
	if (err)
		goto out_pci_disable_device;

	/* We disable the RETRY_TIMEOUT register (0x41) to keep
	 * PCI Tx retries from interfering with C3 CPU state */
	pci_read_config_dword(pdev, 0x40, &val);
	if ((val & 0x0000ff00) != 0)
		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);

	length = pci_resource_len(pdev, 0);
	priv->hw_len = length;

	base = pci_ioremap_bar(pdev, 0);
	if (!base) {
		err = -ENODEV;
		goto out_pci_release_regions;
	}

	priv->hw_base = base;
	IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
	IPW_DEBUG_INFO("pci_resource_base = %p\n", base);

	ipw_setup_deferred_work(priv);

	ipw_sw_reset(priv, 1);

	err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
	if (err) {
		IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
		goto out_iounmap;
	}

	SET_NETDEV_DEV(net_dev, &pdev->dev);

	mutex_lock(&priv->mutex);

	priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
	priv->ieee->set_security = shim__set_security;
	priv->ieee->is_queue_full = ipw_net_is_queue_full;

#ifdef CONFIG_IPW2200_QOS
	priv->ieee->is_qos_active = ipw_is_qos_active;
	priv->ieee->handle_probe_response = ipw_handle_beacon;
	priv->ieee->handle_beacon = ipw_handle_probe_response;
	priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
#endif				/* CONFIG_IPW2200_QOS */

	priv->ieee->perfect_rssi = -20;
	priv->ieee->worst_rssi = -85;

	net_dev->netdev_ops = &ipw_netdev_ops;
	priv->wireless_data.spy_data = &priv->ieee->spy_data;
	net_dev->wireless_data = &priv->wireless_data;
	net_dev->wireless_handlers = &ipw_wx_handler_def;
	net_dev->ethtool_ops = &ipw_ethtool_ops;

	net_dev->min_mtu = 68;
	net_dev->max_mtu = LIBIPW_DATA_LEN;

	err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
	if (err) {
		IPW_ERROR("failed to create sysfs device attributes\n");
		mutex_unlock(&priv->mutex);
		goto out_release_irq;
	}

	if (ipw_up(priv)) {
		mutex_unlock(&priv->mutex);
		err = -EIO;
		goto out_remove_sysfs;
	}

	mutex_unlock(&priv->mutex);

	err = ipw_wdev_init(net_dev);
	if (err) {
		IPW_ERROR("failed to register wireless device\n");
		goto out_remove_sysfs;
	}

	err = register_netdev(net_dev);
	if (err) {
		IPW_ERROR("failed to register network device\n");
		goto out_unregister_wiphy;
	}

#ifdef CONFIG_IPW2200_PROMISCUOUS
	if (rtap_iface) {
	        err = ipw_prom_alloc(priv);
		if (err) {
			IPW_ERROR("Failed to register promiscuous network "
				  "device (error %d).\n", err);
			unregister_netdev(priv->net_dev);
			goto out_unregister_wiphy;
		}
	}
#endif

	printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
	       "channels, %d 802.11a channels)\n",
	       priv->ieee->geo.name, priv->ieee->geo.bg_channels,
	       priv->ieee->geo.a_channels);

	return 0;

      out_unregister_wiphy:
	wiphy_unregister(priv->ieee->wdev.wiphy);
	kfree(priv->ieee->a_band.channels);
	kfree(priv->ieee->bg_band.channels);
      out_remove_sysfs:
	sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
      out_release_irq:
	free_irq(pdev->irq, priv);
      out_iounmap:
	iounmap(priv->hw_base);
      out_pci_release_regions:
	pci_release_regions(pdev);
      out_pci_disable_device:
	pci_disable_device(pdev);
      out_free_libipw:
	free_libipw(priv->net_dev, 0);
      out:
	return err;
}

static void ipw_pci_remove(struct pci_dev *pdev)
{
	struct ipw_priv *priv = pci_get_drvdata(pdev);
	struct list_head *p, *q;
	int i;

	if (!priv)
		return;

	mutex_lock(&priv->mutex);

	priv->status |= STATUS_EXIT_PENDING;
	ipw_down(priv);
	sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);

	mutex_unlock(&priv->mutex);

	unregister_netdev(priv->net_dev);

	if (priv->rxq) {
		ipw_rx_queue_free(priv, priv->rxq);
		priv->rxq = NULL;
	}
	ipw_tx_queue_free(priv);

	if (priv->cmdlog) {
		kfree(priv->cmdlog);
		priv->cmdlog = NULL;
	}

	/* make sure all works are inactive */
	cancel_delayed_work_sync(&priv->adhoc_check);
	cancel_work_sync(&priv->associate);
	cancel_work_sync(&priv->disassociate);
	cancel_work_sync(&priv->system_config);
	cancel_work_sync(&priv->rx_replenish);
	cancel_work_sync(&priv->adapter_restart);
	cancel_delayed_work_sync(&priv->rf_kill);
	cancel_work_sync(&priv->up);
	cancel_work_sync(&priv->down);
	cancel_delayed_work_sync(&priv->request_scan);
	cancel_delayed_work_sync(&priv->request_direct_scan);
	cancel_delayed_work_sync(&priv->request_passive_scan);
	cancel_delayed_work_sync(&priv->scan_event);
	cancel_delayed_work_sync(&priv->gather_stats);
	cancel_work_sync(&priv->abort_scan);
	cancel_work_sync(&priv->roam);
	cancel_delayed_work_sync(&priv->scan_check);
	cancel_work_sync(&priv->link_up);
	cancel_work_sync(&priv->link_down);
	cancel_delayed_work_sync(&priv->led_link_on);
	cancel_delayed_work_sync(&priv->led_link_off);
	cancel_delayed_work_sync(&priv->led_act_off);
	cancel_work_sync(&priv->merge_networks);

	/* Free MAC hash list for ADHOC */
	for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
		list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
			list_del(p);
			kfree(list_entry(p, struct ipw_ibss_seq, list));
		}
	}

	kfree(priv->error);
	priv->error = NULL;

#ifdef CONFIG_IPW2200_PROMISCUOUS
	ipw_prom_free(priv);
#endif

	free_irq(pdev->irq, priv);
	iounmap(priv->hw_base);
	pci_release_regions(pdev);
	pci_disable_device(pdev);
	/* wiphy_unregister needs to be here, before free_libipw */
	wiphy_unregister(priv->ieee->wdev.wiphy);
	kfree(priv->ieee->a_band.channels);
	kfree(priv->ieee->bg_band.channels);
	free_libipw(priv->net_dev, 0);
	free_firmware();
}

static int __maybe_unused ipw_pci_suspend(struct device *dev_d)
{
	struct ipw_priv *priv = dev_get_drvdata(dev_d);
	struct net_device *dev = priv->net_dev;

	printk(KERN_INFO "%s: Going into suspend...\n", dev->name);

	/* Take down the device; powers it off, etc. */
	ipw_down(priv);

	/* Remove the PRESENT state of the device */
	netif_device_detach(dev);

	priv->suspend_at = ktime_get_boottime_seconds();

	return 0;
}

static int __maybe_unused ipw_pci_resume(struct device *dev_d)
{
	struct pci_dev *pdev = to_pci_dev(dev_d);
	struct ipw_priv *priv = pci_get_drvdata(pdev);
	struct net_device *dev = priv->net_dev;
	u32 val;

	printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);

	/*
	 * Suspend/Resume resets the PCI configuration space, so we have to
	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
	 * from interfering with C3 CPU state. pci_restore_state won't help
	 * here since it only restores the first 64 bytes pci config header.
	 */
	pci_read_config_dword(pdev, 0x40, &val);
	if ((val & 0x0000ff00) != 0)
		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);

	/* Set the device back into the PRESENT state; this will also wake
	 * the queue of needed */
	netif_device_attach(dev);

	priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at;

	/* Bring the device back up */
	schedule_work(&priv->up);

	return 0;
}

static void ipw_pci_shutdown(struct pci_dev *pdev)
{
	struct ipw_priv *priv = pci_get_drvdata(pdev);

	/* Take down the device; powers it off, etc. */
	ipw_down(priv);

	pci_disable_device(pdev);
}

static SIMPLE_DEV_PM_OPS(ipw_pci_pm_ops, ipw_pci_suspend, ipw_pci_resume);

/* driver initialization stuff */
static struct pci_driver ipw_driver = {
	.name = DRV_NAME,
	.id_table = card_ids,
	.probe = ipw_pci_probe,
	.remove = ipw_pci_remove,
	.driver.pm = &ipw_pci_pm_ops,
	.shutdown = ipw_pci_shutdown,
};

static int __init ipw_init(void)
{
	int ret;

	printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
	printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");

	ret = pci_register_driver(&ipw_driver);
	if (ret) {
		IPW_ERROR("Unable to initialize PCI module\n");
		return ret;
	}

	ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
	if (ret) {
		IPW_ERROR("Unable to create driver sysfs file\n");
		pci_unregister_driver(&ipw_driver);
		return ret;
	}

	return ret;
}

static void __exit ipw_exit(void)
{
	driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
	pci_unregister_driver(&ipw_driver);
}

module_param(disable, int, 0444);
MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");

module_param(associate, int, 0444);
MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");

module_param(auto_create, int, 0444);
MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");

module_param_named(led, led_support, int, 0444);
MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)");

module_param(debug, int, 0444);
MODULE_PARM_DESC(debug, "debug output mask");

module_param_named(channel, default_channel, int, 0444);
MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");

#ifdef CONFIG_IPW2200_PROMISCUOUS
module_param(rtap_iface, int, 0444);
MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
#endif

#ifdef CONFIG_IPW2200_QOS
module_param(qos_enable, int, 0444);
MODULE_PARM_DESC(qos_enable, "enable all QoS functionalities");

module_param(qos_burst_enable, int, 0444);
MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");

module_param(qos_no_ack_mask, int, 0444);
MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");

module_param(burst_duration_CCK, int, 0444);
MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");

module_param(burst_duration_OFDM, int, 0444);
MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
#endif				/* CONFIG_IPW2200_QOS */

#ifdef CONFIG_IPW2200_MONITOR
module_param_named(mode, network_mode, int, 0444);
MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
#else
module_param_named(mode, network_mode, int, 0444);
MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
#endif

module_param(bt_coexist, int, 0444);
MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");

module_param(hwcrypto, int, 0444);
MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");

module_param(cmdlog, int, 0444);
MODULE_PARM_DESC(cmdlog,
		 "allocate a ring buffer for logging firmware commands");

module_param(roaming, int, 0444);
MODULE_PARM_DESC(roaming, "enable roaming support (default on)");

module_param(antenna, int, 0444);
MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");

module_exit(ipw_exit);
module_init(ipw_init);