Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Yi Zhu | 2511 | 34.28% | 1 | 0.49% |
Wey-Yi Guy | 2046 | 27.93% | 76 | 37.07% |
Johannes Berg | 1210 | 16.52% | 36 | 17.56% |
Tomas Winkler | 567 | 7.74% | 30 | 14.63% |
Ben M Cahill | 246 | 3.36% | 10 | 4.88% |
Emmanuel Grumbach | 225 | 3.07% | 20 | 9.76% |
Ron Rindjunsky | 201 | 2.74% | 4 | 1.95% |
Eric Dumazet | 85 | 1.16% | 1 | 0.49% |
Harvey Harrison | 81 | 1.11% | 2 | 0.98% |
Shanyu Zhao | 36 | 0.49% | 2 | 0.98% |
Christoph Hellwig | 16 | 0.22% | 1 | 0.49% |
Kees Cook | 15 | 0.20% | 1 | 0.49% |
Daniel C. Halperin | 13 | 0.18% | 4 | 1.95% |
Jay Sternberg | 12 | 0.16% | 2 | 0.98% |
Meenakshi Venkataraman | 10 | 0.14% | 1 | 0.49% |
Gregory Greenman | 10 | 0.14% | 2 | 0.98% |
John W. Linville | 8 | 0.11% | 2 | 0.98% |
Gustavo A. R. Silva | 5 | 0.07% | 1 | 0.49% |
Guy Cohen | 5 | 0.07% | 1 | 0.49% |
Rick Farrington | 4 | 0.05% | 1 | 0.49% |
Mohamed Abbas | 4 | 0.05% | 2 | 0.98% |
Max Stepanov | 4 | 0.05% | 1 | 0.49% |
Abhijeet Kolekar | 4 | 0.05% | 1 | 0.49% |
Luciano Coelho | 3 | 0.04% | 1 | 0.49% |
Phil Carmody | 2 | 0.03% | 1 | 0.49% |
Reinette Chatre | 2 | 0.03% | 1 | 0.49% |
Total | 7325 | 205 |
/* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */ /* * Copyright (C) 2005-2014 Intel Corporation */ /* * Please use this file (commands.h) only for uCode API definitions. * Please use iwl-xxxx-hw.h for hardware-related definitions. * Please use dev.h for driver implementation definitions. */ #ifndef __iwl_commands_h__ #define __iwl_commands_h__ #include <linux/ieee80211.h> #include <linux/types.h> enum { REPLY_ALIVE = 0x1, REPLY_ERROR = 0x2, REPLY_ECHO = 0x3, /* test command */ /* RXON and QOS commands */ REPLY_RXON = 0x10, REPLY_RXON_ASSOC = 0x11, REPLY_QOS_PARAM = 0x13, REPLY_RXON_TIMING = 0x14, /* Multi-Station support */ REPLY_ADD_STA = 0x18, REPLY_REMOVE_STA = 0x19, REPLY_REMOVE_ALL_STA = 0x1a, /* not used */ REPLY_TXFIFO_FLUSH = 0x1e, /* Security */ REPLY_WEPKEY = 0x20, /* RX, TX, LEDs */ REPLY_TX = 0x1c, REPLY_LEDS_CMD = 0x48, REPLY_TX_LINK_QUALITY_CMD = 0x4e, /* WiMAX coexistence */ COEX_PRIORITY_TABLE_CMD = 0x5a, COEX_MEDIUM_NOTIFICATION = 0x5b, COEX_EVENT_CMD = 0x5c, /* Calibration */ TEMPERATURE_NOTIFICATION = 0x62, CALIBRATION_CFG_CMD = 0x65, CALIBRATION_RES_NOTIFICATION = 0x66, CALIBRATION_COMPLETE_NOTIFICATION = 0x67, /* 802.11h related */ REPLY_QUIET_CMD = 0x71, /* not used */ REPLY_CHANNEL_SWITCH = 0x72, CHANNEL_SWITCH_NOTIFICATION = 0x73, REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74, SPECTRUM_MEASURE_NOTIFICATION = 0x75, /* Power Management */ POWER_TABLE_CMD = 0x77, PM_SLEEP_NOTIFICATION = 0x7A, PM_DEBUG_STATISTIC_NOTIFIC = 0x7B, /* Scan commands and notifications */ REPLY_SCAN_CMD = 0x80, REPLY_SCAN_ABORT_CMD = 0x81, SCAN_START_NOTIFICATION = 0x82, SCAN_RESULTS_NOTIFICATION = 0x83, SCAN_COMPLETE_NOTIFICATION = 0x84, /* IBSS/AP commands */ BEACON_NOTIFICATION = 0x90, REPLY_TX_BEACON = 0x91, WHO_IS_AWAKE_NOTIFICATION = 0x94, /* not used */ /* Miscellaneous commands */ REPLY_TX_POWER_DBM_CMD = 0x95, QUIET_NOTIFICATION = 0x96, /* not used */ REPLY_TX_PWR_TABLE_CMD = 0x97, REPLY_TX_POWER_DBM_CMD_V1 = 0x98, /* old version of API */ TX_ANT_CONFIGURATION_CMD = 0x98, MEASURE_ABORT_NOTIFICATION = 0x99, /* not used */ /* Bluetooth device coexistence config command */ REPLY_BT_CONFIG = 0x9b, /* Statistics */ REPLY_STATISTICS_CMD = 0x9c, STATISTICS_NOTIFICATION = 0x9d, /* RF-KILL commands and notifications */ REPLY_CARD_STATE_CMD = 0xa0, CARD_STATE_NOTIFICATION = 0xa1, /* Missed beacons notification */ MISSED_BEACONS_NOTIFICATION = 0xa2, REPLY_CT_KILL_CONFIG_CMD = 0xa4, SENSITIVITY_CMD = 0xa8, REPLY_PHY_CALIBRATION_CMD = 0xb0, REPLY_RX_PHY_CMD = 0xc0, REPLY_RX_MPDU_CMD = 0xc1, REPLY_RX = 0xc3, REPLY_COMPRESSED_BA = 0xc5, /* BT Coex */ REPLY_BT_COEX_PRIO_TABLE = 0xcc, REPLY_BT_COEX_PROT_ENV = 0xcd, REPLY_BT_COEX_PROFILE_NOTIF = 0xce, /* PAN commands */ REPLY_WIPAN_PARAMS = 0xb2, REPLY_WIPAN_RXON = 0xb3, /* use REPLY_RXON structure */ REPLY_WIPAN_RXON_TIMING = 0xb4, /* use REPLY_RXON_TIMING structure */ REPLY_WIPAN_RXON_ASSOC = 0xb6, /* use REPLY_RXON_ASSOC structure */ REPLY_WIPAN_QOS_PARAM = 0xb7, /* use REPLY_QOS_PARAM structure */ REPLY_WIPAN_WEPKEY = 0xb8, /* use REPLY_WEPKEY structure */ REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9, REPLY_WIPAN_NOA_NOTIFICATION = 0xbc, REPLY_WIPAN_DEACTIVATION_COMPLETE = 0xbd, REPLY_WOWLAN_PATTERNS = 0xe0, REPLY_WOWLAN_WAKEUP_FILTER = 0xe1, REPLY_WOWLAN_TSC_RSC_PARAMS = 0xe2, REPLY_WOWLAN_TKIP_PARAMS = 0xe3, REPLY_WOWLAN_KEK_KCK_MATERIAL = 0xe4, REPLY_WOWLAN_GET_STATUS = 0xe5, REPLY_D3_CONFIG = 0xd3, REPLY_MAX = 0xff }; /* * Minimum number of queues. MAX_NUM is defined in hw specific files. * Set the minimum to accommodate * - 4 standard TX queues * - the command queue * - 4 PAN TX queues * - the PAN multicast queue, and * - the AUX (TX during scan dwell) queue. */ #define IWL_MIN_NUM_QUEUES 11 /* * Command queue depends on iPAN support. */ #define IWL_DEFAULT_CMD_QUEUE_NUM 4 #define IWL_IPAN_CMD_QUEUE_NUM 9 #define IWL_TX_FIFO_BK 0 /* shared */ #define IWL_TX_FIFO_BE 1 #define IWL_TX_FIFO_VI 2 /* shared */ #define IWL_TX_FIFO_VO 3 #define IWL_TX_FIFO_BK_IPAN IWL_TX_FIFO_BK #define IWL_TX_FIFO_BE_IPAN 4 #define IWL_TX_FIFO_VI_IPAN IWL_TX_FIFO_VI #define IWL_TX_FIFO_VO_IPAN 5 /* re-uses the VO FIFO, uCode will properly flush/schedule */ #define IWL_TX_FIFO_AUX 5 #define IWL_TX_FIFO_UNUSED 255 #define IWLAGN_CMD_FIFO_NUM 7 /* * This queue number is required for proper operation * because the ucode will stop/start the scheduler as * required. */ #define IWL_IPAN_MCAST_QUEUE 8 /****************************************************************************** * (0) * Commonly used structures and definitions: * Command header, rate_n_flags, txpower * *****************************************************************************/ /** * iwlagn rate_n_flags bit fields * * rate_n_flags format is used in following iwlagn commands: * REPLY_RX (response only) * REPLY_RX_MPDU (response only) * REPLY_TX (both command and response) * REPLY_TX_LINK_QUALITY_CMD * * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"): * 2-0: 0) 6 Mbps * 1) 12 Mbps * 2) 18 Mbps * 3) 24 Mbps * 4) 36 Mbps * 5) 48 Mbps * 6) 54 Mbps * 7) 60 Mbps * * 4-3: 0) Single stream (SISO) * 1) Dual stream (MIMO) * 2) Triple stream (MIMO) * * 5: Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data * * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"): * 3-0: 0xD) 6 Mbps * 0xF) 9 Mbps * 0x5) 12 Mbps * 0x7) 18 Mbps * 0x9) 24 Mbps * 0xB) 36 Mbps * 0x1) 48 Mbps * 0x3) 54 Mbps * * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"): * 6-0: 10) 1 Mbps * 20) 2 Mbps * 55) 5.5 Mbps * 110) 11 Mbps */ #define RATE_MCS_CODE_MSK 0x7 #define RATE_MCS_SPATIAL_POS 3 #define RATE_MCS_SPATIAL_MSK 0x18 #define RATE_MCS_HT_DUP_POS 5 #define RATE_MCS_HT_DUP_MSK 0x20 /* Both legacy and HT use bits 7:0 as the CCK/OFDM rate or HT MCS */ #define RATE_MCS_RATE_MSK 0xff /* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */ #define RATE_MCS_FLAGS_POS 8 #define RATE_MCS_HT_POS 8 #define RATE_MCS_HT_MSK 0x100 /* Bit 9: (1) CCK, (0) OFDM. HT (bit 8) must be "0" for this bit to be valid */ #define RATE_MCS_CCK_POS 9 #define RATE_MCS_CCK_MSK 0x200 /* Bit 10: (1) Use Green Field preamble */ #define RATE_MCS_GF_POS 10 #define RATE_MCS_GF_MSK 0x400 /* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */ #define RATE_MCS_HT40_POS 11 #define RATE_MCS_HT40_MSK 0x800 /* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */ #define RATE_MCS_DUP_POS 12 #define RATE_MCS_DUP_MSK 0x1000 /* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */ #define RATE_MCS_SGI_POS 13 #define RATE_MCS_SGI_MSK 0x2000 /** * rate_n_flags Tx antenna masks * bit14:16 */ #define RATE_MCS_ANT_POS 14 #define RATE_MCS_ANT_A_MSK 0x04000 #define RATE_MCS_ANT_B_MSK 0x08000 #define RATE_MCS_ANT_C_MSK 0x10000 #define RATE_MCS_ANT_AB_MSK (RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK) #define RATE_MCS_ANT_ABC_MSK (RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK) #define RATE_ANT_NUM 3 #define POWER_TABLE_NUM_ENTRIES 33 #define POWER_TABLE_NUM_HT_OFDM_ENTRIES 32 #define POWER_TABLE_CCK_ENTRY 32 #define IWL_PWR_NUM_HT_OFDM_ENTRIES 24 #define IWL_PWR_CCK_ENTRIES 2 /** * struct tx_power_dual_stream * * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH * * Same format as iwl_tx_power_dual_stream, but __le32 */ struct tx_power_dual_stream { __le32 dw; } __packed; /** * Command REPLY_TX_POWER_DBM_CMD = 0x98 * struct iwlagn_tx_power_dbm_cmd */ #define IWLAGN_TX_POWER_AUTO 0x7f #define IWLAGN_TX_POWER_NO_CLOSED (0x1 << 6) struct iwlagn_tx_power_dbm_cmd { s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */ u8 flags; s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */ u8 reserved; } __packed; /** * Command TX_ANT_CONFIGURATION_CMD = 0x98 * This command is used to configure valid Tx antenna. * By default uCode concludes the valid antenna according to the radio flavor. * This command enables the driver to override/modify this conclusion. */ struct iwl_tx_ant_config_cmd { __le32 valid; } __packed; /****************************************************************************** * (0a) * Alive and Error Commands & Responses: * *****************************************************************************/ #define UCODE_VALID_OK cpu_to_le32(0x1) /** * REPLY_ALIVE = 0x1 (response only, not a command) * * uCode issues this "alive" notification once the runtime image is ready * to receive commands from the driver. This is the *second* "alive" * notification that the driver will receive after rebooting uCode; * this "alive" is indicated by subtype field != 9. * * See comments documenting "BSM" (bootstrap state machine). * * This response includes two pointers to structures within the device's * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging: * * 1) log_event_table_ptr indicates base of the event log. This traces * a 256-entry history of uCode execution within a circular buffer. * Its header format is: * * __le32 log_size; log capacity (in number of entries) * __le32 type; (1) timestamp with each entry, (0) no timestamp * __le32 wraps; # times uCode has wrapped to top of circular buffer * __le32 write_index; next circular buffer entry that uCode would fill * * The header is followed by the circular buffer of log entries. Entries * with timestamps have the following format: * * __le32 event_id; range 0 - 1500 * __le32 timestamp; low 32 bits of TSF (of network, if associated) * __le32 data; event_id-specific data value * * Entries without timestamps contain only event_id and data. * * * 2) error_event_table_ptr indicates base of the error log. This contains * information about any uCode error that occurs. For agn, the format * of the error log is defined by struct iwl_error_event_table. * * The Linux driver can print both logs to the system log when a uCode error * occurs. */ /* * Note: This structure is read from the device with IO accesses, * and the reading already does the endian conversion. As it is * read with u32-sized accesses, any members with a different size * need to be ordered correctly though! */ struct iwl_error_event_table { u32 valid; /* (nonzero) valid, (0) log is empty */ u32 error_id; /* type of error */ u32 pc; /* program counter */ u32 blink1; /* branch link */ u32 blink2; /* branch link */ u32 ilink1; /* interrupt link */ u32 ilink2; /* interrupt link */ u32 data1; /* error-specific data */ u32 data2; /* error-specific data */ u32 line; /* source code line of error */ u32 bcon_time; /* beacon timer */ u32 tsf_low; /* network timestamp function timer */ u32 tsf_hi; /* network timestamp function timer */ u32 gp1; /* GP1 timer register */ u32 gp2; /* GP2 timer register */ u32 gp3; /* GP3 timer register */ u32 ucode_ver; /* uCode version */ u32 hw_ver; /* HW Silicon version */ u32 brd_ver; /* HW board version */ u32 log_pc; /* log program counter */ u32 frame_ptr; /* frame pointer */ u32 stack_ptr; /* stack pointer */ u32 hcmd; /* last host command header */ u32 isr0; /* isr status register LMPM_NIC_ISR0: * rxtx_flag */ u32 isr1; /* isr status register LMPM_NIC_ISR1: * host_flag */ u32 isr2; /* isr status register LMPM_NIC_ISR2: * enc_flag */ u32 isr3; /* isr status register LMPM_NIC_ISR3: * time_flag */ u32 isr4; /* isr status register LMPM_NIC_ISR4: * wico interrupt */ u32 isr_pref; /* isr status register LMPM_NIC_PREF_STAT */ u32 wait_event; /* wait event() caller address */ u32 l2p_control; /* L2pControlField */ u32 l2p_duration; /* L2pDurationField */ u32 l2p_mhvalid; /* L2pMhValidBits */ u32 l2p_addr_match; /* L2pAddrMatchStat */ u32 lmpm_pmg_sel; /* indicate which clocks are turned on * (LMPM_PMG_SEL) */ u32 u_timestamp; /* indicate when the date and time of the * compilation */ u32 flow_handler; /* FH read/write pointers, RX credit */ } __packed; struct iwl_alive_resp { u8 ucode_minor; u8 ucode_major; __le16 reserved1; u8 sw_rev[8]; u8 ver_type; u8 ver_subtype; /* not "9" for runtime alive */ __le16 reserved2; __le32 log_event_table_ptr; /* SRAM address for event log */ __le32 error_event_table_ptr; /* SRAM address for error log */ __le32 timestamp; __le32 is_valid; } __packed; /* * REPLY_ERROR = 0x2 (response only, not a command) */ struct iwl_error_resp { __le32 error_type; u8 cmd_id; u8 reserved1; __le16 bad_cmd_seq_num; __le32 error_info; __le64 timestamp; } __packed; /****************************************************************************** * (1) * RXON Commands & Responses: * *****************************************************************************/ /* * Rx config defines & structure */ /* rx_config device types */ enum { RXON_DEV_TYPE_AP = 1, RXON_DEV_TYPE_ESS = 3, RXON_DEV_TYPE_IBSS = 4, RXON_DEV_TYPE_SNIFFER = 6, RXON_DEV_TYPE_CP = 7, RXON_DEV_TYPE_2STA = 8, RXON_DEV_TYPE_P2P = 9, }; #define RXON_RX_CHAIN_DRIVER_FORCE_MSK cpu_to_le16(0x1 << 0) #define RXON_RX_CHAIN_DRIVER_FORCE_POS (0) #define RXON_RX_CHAIN_VALID_MSK cpu_to_le16(0x7 << 1) #define RXON_RX_CHAIN_VALID_POS (1) #define RXON_RX_CHAIN_FORCE_SEL_MSK cpu_to_le16(0x7 << 4) #define RXON_RX_CHAIN_FORCE_SEL_POS (4) #define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK cpu_to_le16(0x7 << 7) #define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS (7) #define RXON_RX_CHAIN_CNT_MSK cpu_to_le16(0x3 << 10) #define RXON_RX_CHAIN_CNT_POS (10) #define RXON_RX_CHAIN_MIMO_CNT_MSK cpu_to_le16(0x3 << 12) #define RXON_RX_CHAIN_MIMO_CNT_POS (12) #define RXON_RX_CHAIN_MIMO_FORCE_MSK cpu_to_le16(0x1 << 14) #define RXON_RX_CHAIN_MIMO_FORCE_POS (14) /* rx_config flags */ /* band & modulation selection */ #define RXON_FLG_BAND_24G_MSK cpu_to_le32(1 << 0) #define RXON_FLG_CCK_MSK cpu_to_le32(1 << 1) /* auto detection enable */ #define RXON_FLG_AUTO_DETECT_MSK cpu_to_le32(1 << 2) /* TGg protection when tx */ #define RXON_FLG_TGG_PROTECT_MSK cpu_to_le32(1 << 3) /* cck short slot & preamble */ #define RXON_FLG_SHORT_SLOT_MSK cpu_to_le32(1 << 4) #define RXON_FLG_SHORT_PREAMBLE_MSK cpu_to_le32(1 << 5) /* antenna selection */ #define RXON_FLG_DIS_DIV_MSK cpu_to_le32(1 << 7) #define RXON_FLG_ANT_SEL_MSK cpu_to_le32(0x0f00) #define RXON_FLG_ANT_A_MSK cpu_to_le32(1 << 8) #define RXON_FLG_ANT_B_MSK cpu_to_le32(1 << 9) /* radar detection enable */ #define RXON_FLG_RADAR_DETECT_MSK cpu_to_le32(1 << 12) #define RXON_FLG_TGJ_NARROW_BAND_MSK cpu_to_le32(1 << 13) /* rx response to host with 8-byte TSF * (according to ON_AIR deassertion) */ #define RXON_FLG_TSF2HOST_MSK cpu_to_le32(1 << 15) /* HT flags */ #define RXON_FLG_CTRL_CHANNEL_LOC_POS (22) #define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK cpu_to_le32(0x1 << 22) #define RXON_FLG_HT_OPERATING_MODE_POS (23) #define RXON_FLG_HT_PROT_MSK cpu_to_le32(0x1 << 23) #define RXON_FLG_HT40_PROT_MSK cpu_to_le32(0x2 << 23) #define RXON_FLG_CHANNEL_MODE_POS (25) #define RXON_FLG_CHANNEL_MODE_MSK cpu_to_le32(0x3 << 25) /* channel mode */ enum { CHANNEL_MODE_LEGACY = 0, CHANNEL_MODE_PURE_40 = 1, CHANNEL_MODE_MIXED = 2, CHANNEL_MODE_RESERVED = 3, }; #define RXON_FLG_CHANNEL_MODE_LEGACY cpu_to_le32(CHANNEL_MODE_LEGACY << RXON_FLG_CHANNEL_MODE_POS) #define RXON_FLG_CHANNEL_MODE_PURE_40 cpu_to_le32(CHANNEL_MODE_PURE_40 << RXON_FLG_CHANNEL_MODE_POS) #define RXON_FLG_CHANNEL_MODE_MIXED cpu_to_le32(CHANNEL_MODE_MIXED << RXON_FLG_CHANNEL_MODE_POS) /* CTS to self (if spec allows) flag */ #define RXON_FLG_SELF_CTS_EN cpu_to_le32(0x1<<30) /* rx_config filter flags */ /* accept all data frames */ #define RXON_FILTER_PROMISC_MSK cpu_to_le32(1 << 0) /* pass control & management to host */ #define RXON_FILTER_CTL2HOST_MSK cpu_to_le32(1 << 1) /* accept multi-cast */ #define RXON_FILTER_ACCEPT_GRP_MSK cpu_to_le32(1 << 2) /* don't decrypt uni-cast frames */ #define RXON_FILTER_DIS_DECRYPT_MSK cpu_to_le32(1 << 3) /* don't decrypt multi-cast frames */ #define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4) /* STA is associated */ #define RXON_FILTER_ASSOC_MSK cpu_to_le32(1 << 5) /* transfer to host non bssid beacons in associated state */ #define RXON_FILTER_BCON_AWARE_MSK cpu_to_le32(1 << 6) /** * REPLY_RXON = 0x10 (command, has simple generic response) * * RXON tunes the radio tuner to a service channel, and sets up a number * of parameters that are used primarily for Rx, but also for Tx operations. * * NOTE: When tuning to a new channel, driver must set the * RXON_FILTER_ASSOC_MSK to 0. This will clear station-dependent * info within the device, including the station tables, tx retry * rate tables, and txpower tables. Driver must build a new station * table and txpower table before transmitting anything on the RXON * channel. * * NOTE: All RXONs wipe clean the internal txpower table. Driver must * issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10), * regardless of whether RXON_FILTER_ASSOC_MSK is set. */ struct iwl_rxon_cmd { u8 node_addr[6]; __le16 reserved1; u8 bssid_addr[6]; __le16 reserved2; u8 wlap_bssid_addr[6]; __le16 reserved3; u8 dev_type; u8 air_propagation; __le16 rx_chain; u8 ofdm_basic_rates; u8 cck_basic_rates; __le16 assoc_id; __le32 flags; __le32 filter_flags; __le16 channel; u8 ofdm_ht_single_stream_basic_rates; u8 ofdm_ht_dual_stream_basic_rates; u8 ofdm_ht_triple_stream_basic_rates; u8 reserved5; __le16 acquisition_data; __le16 reserved6; } __packed; /* * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response) */ struct iwl_rxon_assoc_cmd { __le32 flags; __le32 filter_flags; u8 ofdm_basic_rates; u8 cck_basic_rates; __le16 reserved1; u8 ofdm_ht_single_stream_basic_rates; u8 ofdm_ht_dual_stream_basic_rates; u8 ofdm_ht_triple_stream_basic_rates; u8 reserved2; __le16 rx_chain_select_flags; __le16 acquisition_data; __le32 reserved3; } __packed; #define IWL_CONN_MAX_LISTEN_INTERVAL 10 #define IWL_MAX_UCODE_BEACON_INTERVAL 4 /* 4096 */ /* * REPLY_RXON_TIMING = 0x14 (command, has simple generic response) */ struct iwl_rxon_time_cmd { __le64 timestamp; __le16 beacon_interval; __le16 atim_window; __le32 beacon_init_val; __le16 listen_interval; u8 dtim_period; u8 delta_cp_bss_tbtts; } __packed; /* * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response) */ /** * struct iwl5000_channel_switch_cmd * @band: 0- 5.2GHz, 1- 2.4GHz * @expect_beacon: 0- resume transmits after channel switch * 1- wait for beacon to resume transmits * @channel: new channel number * @rxon_flags: Rx on flags * @rxon_filter_flags: filtering parameters * @switch_time: switch time in extended beacon format * @reserved: reserved bytes */ struct iwl5000_channel_switch_cmd { u8 band; u8 expect_beacon; __le16 channel; __le32 rxon_flags; __le32 rxon_filter_flags; __le32 switch_time; __le32 reserved[2][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES]; } __packed; /** * struct iwl6000_channel_switch_cmd * @band: 0- 5.2GHz, 1- 2.4GHz * @expect_beacon: 0- resume transmits after channel switch * 1- wait for beacon to resume transmits * @channel: new channel number * @rxon_flags: Rx on flags * @rxon_filter_flags: filtering parameters * @switch_time: switch time in extended beacon format * @reserved: reserved bytes */ struct iwl6000_channel_switch_cmd { u8 band; u8 expect_beacon; __le16 channel; __le32 rxon_flags; __le32 rxon_filter_flags; __le32 switch_time; __le32 reserved[3][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES]; } __packed; /* * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command) */ struct iwl_csa_notification { __le16 band; __le16 channel; __le32 status; /* 0 - OK, 1 - fail */ } __packed; /****************************************************************************** * (2) * Quality-of-Service (QOS) Commands & Responses: * *****************************************************************************/ /** * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd * * @cw_min: Contention window, start value in numbers of slots. * Should be a power-of-2, minus 1. Device's default is 0x0f. * @cw_max: Contention window, max value in numbers of slots. * Should be a power-of-2, minus 1. Device's default is 0x3f. * @aifsn: Number of slots in Arbitration Interframe Space (before * performing random backoff timing prior to Tx). Device default 1. * @edca_txop: Length of Tx opportunity, in uSecs. Device default is 0. * * Device will automatically increase contention window by (2*CW) + 1 for each * transmission retry. Device uses cw_max as a bit mask, ANDed with new CW * value, to cap the CW value. */ struct iwl_ac_qos { __le16 cw_min; __le16 cw_max; u8 aifsn; u8 reserved1; __le16 edca_txop; } __packed; /* QoS flags defines */ #define QOS_PARAM_FLG_UPDATE_EDCA_MSK cpu_to_le32(0x01) #define QOS_PARAM_FLG_TGN_MSK cpu_to_le32(0x02) #define QOS_PARAM_FLG_TXOP_TYPE_MSK cpu_to_le32(0x10) /* Number of Access Categories (AC) (EDCA), queues 0..3 */ #define AC_NUM 4 /* * REPLY_QOS_PARAM = 0x13 (command, has simple generic response) * * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs * 0: Background, 1: Best Effort, 2: Video, 3: Voice. */ struct iwl_qosparam_cmd { __le32 qos_flags; struct iwl_ac_qos ac[AC_NUM]; } __packed; /****************************************************************************** * (3) * Add/Modify Stations Commands & Responses: * *****************************************************************************/ /* * Multi station support */ /* Special, dedicated locations within device's station table */ #define IWL_AP_ID 0 #define IWL_AP_ID_PAN 1 #define IWL_STA_ID 2 #define IWLAGN_PAN_BCAST_ID 14 #define IWLAGN_BROADCAST_ID 15 #define IWLAGN_STATION_COUNT 16 #define IWL_TID_NON_QOS IWL_MAX_TID_COUNT #define STA_FLG_TX_RATE_MSK cpu_to_le32(1 << 2) #define STA_FLG_PWR_SAVE_MSK cpu_to_le32(1 << 8) #define STA_FLG_PAN_STATION cpu_to_le32(1 << 13) #define STA_FLG_RTS_MIMO_PROT_MSK cpu_to_le32(1 << 17) #define STA_FLG_AGG_MPDU_8US_MSK cpu_to_le32(1 << 18) #define STA_FLG_MAX_AGG_SIZE_POS (19) #define STA_FLG_MAX_AGG_SIZE_MSK cpu_to_le32(3 << 19) #define STA_FLG_HT40_EN_MSK cpu_to_le32(1 << 21) #define STA_FLG_MIMO_DIS_MSK cpu_to_le32(1 << 22) #define STA_FLG_AGG_MPDU_DENSITY_POS (23) #define STA_FLG_AGG_MPDU_DENSITY_MSK cpu_to_le32(7 << 23) /* Use in mode field. 1: modify existing entry, 0: add new station entry */ #define STA_CONTROL_MODIFY_MSK 0x01 /* key flags __le16*/ #define STA_KEY_FLG_ENCRYPT_MSK cpu_to_le16(0x0007) #define STA_KEY_FLG_NO_ENC cpu_to_le16(0x0000) #define STA_KEY_FLG_WEP cpu_to_le16(0x0001) #define STA_KEY_FLG_CCMP cpu_to_le16(0x0002) #define STA_KEY_FLG_TKIP cpu_to_le16(0x0003) #define STA_KEY_FLG_KEYID_POS 8 #define STA_KEY_FLG_INVALID cpu_to_le16(0x0800) /* wep key is either from global key (0) or from station info array (1) */ #define STA_KEY_FLG_MAP_KEY_MSK cpu_to_le16(0x0008) /* wep key in STA: 5-bytes (0) or 13-bytes (1) */ #define STA_KEY_FLG_KEY_SIZE_MSK cpu_to_le16(0x1000) #define STA_KEY_MULTICAST_MSK cpu_to_le16(0x4000) #define STA_KEY_MAX_NUM 8 #define STA_KEY_MAX_NUM_PAN 16 /* must not match WEP_INVALID_OFFSET */ #define IWLAGN_HW_KEY_DEFAULT 0xfe /* Flags indicate whether to modify vs. don't change various station params */ #define STA_MODIFY_KEY_MASK 0x01 #define STA_MODIFY_TID_DISABLE_TX 0x02 #define STA_MODIFY_TX_RATE_MSK 0x04 #define STA_MODIFY_ADDBA_TID_MSK 0x08 #define STA_MODIFY_DELBA_TID_MSK 0x10 #define STA_MODIFY_SLEEP_TX_COUNT_MSK 0x20 /* agn */ struct iwl_keyinfo { __le16 key_flags; u8 tkip_rx_tsc_byte2; /* TSC[2] for key mix ph1 detection */ u8 reserved1; __le16 tkip_rx_ttak[5]; /* 10-byte unicast TKIP TTAK */ u8 key_offset; u8 reserved2; u8 key[16]; /* 16-byte unicast decryption key */ __le64 tx_secur_seq_cnt; __le64 hw_tkip_mic_rx_key; __le64 hw_tkip_mic_tx_key; } __packed; /** * struct sta_id_modify * @addr[ETH_ALEN]: station's MAC address * @sta_id: index of station in uCode's station table * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change * * Driver selects unused table index when adding new station, * or the index to a pre-existing station entry when modifying that station. * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP). * * modify_mask flags select which parameters to modify vs. leave alone. */ struct sta_id_modify { u8 addr[ETH_ALEN]; __le16 reserved1; u8 sta_id; u8 modify_mask; __le16 reserved2; } __packed; /* * REPLY_ADD_STA = 0x18 (command) * * The device contains an internal table of per-station information, * with info on security keys, aggregation parameters, and Tx rates for * initial Tx attempt and any retries (agn devices uses * REPLY_TX_LINK_QUALITY_CMD, * * REPLY_ADD_STA sets up the table entry for one station, either creating * a new entry, or modifying a pre-existing one. * * NOTE: RXON command (without "associated" bit set) wipes the station table * clean. Moving into RF_KILL state does this also. Driver must set up * new station table before transmitting anything on the RXON channel * (except active scans or active measurements; those commands carry * their own txpower/rate setup data). * * When getting started on a new channel, driver must set up the * IWL_BROADCAST_ID entry (last entry in the table). For a client * station in a BSS, once an AP is selected, driver sets up the AP STA * in the IWL_AP_ID entry (1st entry in the table). BROADCAST and AP * are all that are needed for a BSS client station. If the device is * used as AP, or in an IBSS network, driver must set up station table * entries for all STAs in network, starting with index IWL_STA_ID. */ struct iwl_addsta_cmd { u8 mode; /* 1: modify existing, 0: add new station */ u8 reserved[3]; struct sta_id_modify sta; struct iwl_keyinfo key; __le32 station_flags; /* STA_FLG_* */ __le32 station_flags_msk; /* STA_FLG_* */ /* bit field to disable (1) or enable (0) Tx for Traffic ID (TID) * corresponding to bit (e.g. bit 5 controls TID 5). * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */ __le16 tid_disable_tx; __le16 legacy_reserved; /* TID for which to add block-ack support. * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */ u8 add_immediate_ba_tid; /* TID for which to remove block-ack support. * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */ u8 remove_immediate_ba_tid; /* Starting Sequence Number for added block-ack support. * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */ __le16 add_immediate_ba_ssn; /* * Number of packets OK to transmit to station even though * it is asleep -- used to synchronise PS-poll and u-APSD * responses while ucode keeps track of STA sleep state. */ __le16 sleep_tx_count; __le16 reserved2; } __packed; #define ADD_STA_SUCCESS_MSK 0x1 #define ADD_STA_NO_ROOM_IN_TABLE 0x2 #define ADD_STA_NO_BLOCK_ACK_RESOURCE 0x4 #define ADD_STA_MODIFY_NON_EXIST_STA 0x8 /* * REPLY_ADD_STA = 0x18 (response) */ struct iwl_add_sta_resp { u8 status; /* ADD_STA_* */ } __packed; #define REM_STA_SUCCESS_MSK 0x1 /* * REPLY_REM_STA = 0x19 (response) */ struct iwl_rem_sta_resp { u8 status; } __packed; /* * REPLY_REM_STA = 0x19 (command) */ struct iwl_rem_sta_cmd { u8 num_sta; /* number of removed stations */ u8 reserved[3]; u8 addr[ETH_ALEN]; /* MAC addr of the first station */ u8 reserved2[2]; } __packed; /* WiFi queues mask */ #define IWL_SCD_BK_MSK BIT(0) #define IWL_SCD_BE_MSK BIT(1) #define IWL_SCD_VI_MSK BIT(2) #define IWL_SCD_VO_MSK BIT(3) #define IWL_SCD_MGMT_MSK BIT(3) /* PAN queues mask */ #define IWL_PAN_SCD_BK_MSK BIT(4) #define IWL_PAN_SCD_BE_MSK BIT(5) #define IWL_PAN_SCD_VI_MSK BIT(6) #define IWL_PAN_SCD_VO_MSK BIT(7) #define IWL_PAN_SCD_MGMT_MSK BIT(7) #define IWL_PAN_SCD_MULTICAST_MSK BIT(8) #define IWL_AGG_TX_QUEUE_MSK 0xffc00 #define IWL_DROP_ALL BIT(1) /* * REPLY_TXFIFO_FLUSH = 0x1e(command and response) * * When using full FIFO flush this command checks the scheduler HW block WR/RD * pointers to check if all the frames were transferred by DMA into the * relevant TX FIFO queue. Only when the DMA is finished and the queue is * empty the command can finish. * This command is used to flush the TXFIFO from transmit commands, it may * operate on single or multiple queues, the command queue can't be flushed by * this command. The command response is returned when all the queue flush * operations are done. Each TX command flushed return response with the FLUSH * status set in the TX response status. When FIFO flush operation is used, * the flush operation ends when both the scheduler DMA done and TXFIFO empty * are set. * * @queue_control: bit mask for which queues to flush * @flush_control: flush controls * 0: Dump single MSDU * 1: Dump multiple MSDU according to PS, INVALID STA, TTL, TID disable. * 2: Dump all FIFO */ struct iwl_txfifo_flush_cmd_v3 { __le32 queue_control; __le16 flush_control; __le16 reserved; } __packed; struct iwl_txfifo_flush_cmd_v2 { __le16 queue_control; __le16 flush_control; } __packed; /* * REPLY_WEP_KEY = 0x20 */ struct iwl_wep_key { u8 key_index; u8 key_offset; u8 reserved1[2]; u8 key_size; u8 reserved2[3]; u8 key[16]; } __packed; struct iwl_wep_cmd { u8 num_keys; u8 global_key_type; u8 flags; u8 reserved; struct iwl_wep_key key[]; } __packed; #define WEP_KEY_WEP_TYPE 1 #define WEP_KEYS_MAX 4 #define WEP_INVALID_OFFSET 0xff #define WEP_KEY_LEN_64 5 #define WEP_KEY_LEN_128 13 /****************************************************************************** * (4) * Rx Responses: * *****************************************************************************/ #define RX_RES_STATUS_NO_CRC32_ERROR cpu_to_le32(1 << 0) #define RX_RES_STATUS_NO_RXE_OVERFLOW cpu_to_le32(1 << 1) #define RX_RES_PHY_FLAGS_BAND_24_MSK cpu_to_le16(1 << 0) #define RX_RES_PHY_FLAGS_MOD_CCK_MSK cpu_to_le16(1 << 1) #define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK cpu_to_le16(1 << 2) #define RX_RES_PHY_FLAGS_NARROW_BAND_MSK cpu_to_le16(1 << 3) #define RX_RES_PHY_FLAGS_ANTENNA_MSK 0x70 #define RX_RES_PHY_FLAGS_ANTENNA_POS 4 #define RX_RES_PHY_FLAGS_AGG_MSK cpu_to_le16(1 << 7) #define RX_RES_STATUS_SEC_TYPE_MSK (0x7 << 8) #define RX_RES_STATUS_SEC_TYPE_NONE (0x0 << 8) #define RX_RES_STATUS_SEC_TYPE_WEP (0x1 << 8) #define RX_RES_STATUS_SEC_TYPE_CCMP (0x2 << 8) #define RX_RES_STATUS_SEC_TYPE_TKIP (0x3 << 8) #define RX_RES_STATUS_SEC_TYPE_ERR (0x7 << 8) #define RX_RES_STATUS_STATION_FOUND (1<<6) #define RX_RES_STATUS_NO_STATION_INFO_MISMATCH (1<<7) #define RX_RES_STATUS_DECRYPT_TYPE_MSK (0x3 << 11) #define RX_RES_STATUS_NOT_DECRYPT (0x0 << 11) #define RX_RES_STATUS_DECRYPT_OK (0x3 << 11) #define RX_RES_STATUS_BAD_ICV_MIC (0x1 << 11) #define RX_RES_STATUS_BAD_KEY_TTAK (0x2 << 11) #define RX_MPDU_RES_STATUS_ICV_OK (0x20) #define RX_MPDU_RES_STATUS_MIC_OK (0x40) #define RX_MPDU_RES_STATUS_TTAK_OK (1 << 7) #define RX_MPDU_RES_STATUS_DEC_DONE_MSK (0x800) #define IWLAGN_RX_RES_PHY_CNT 8 #define IWLAGN_RX_RES_AGC_IDX 1 #define IWLAGN_RX_RES_RSSI_AB_IDX 2 #define IWLAGN_RX_RES_RSSI_C_IDX 3 #define IWLAGN_OFDM_AGC_MSK 0xfe00 #define IWLAGN_OFDM_AGC_BIT_POS 9 #define IWLAGN_OFDM_RSSI_INBAND_A_BITMSK 0x00ff #define IWLAGN_OFDM_RSSI_ALLBAND_A_BITMSK 0xff00 #define IWLAGN_OFDM_RSSI_A_BIT_POS 0 #define IWLAGN_OFDM_RSSI_INBAND_B_BITMSK 0xff0000 #define IWLAGN_OFDM_RSSI_ALLBAND_B_BITMSK 0xff000000 #define IWLAGN_OFDM_RSSI_B_BIT_POS 16 #define IWLAGN_OFDM_RSSI_INBAND_C_BITMSK 0x00ff #define IWLAGN_OFDM_RSSI_ALLBAND_C_BITMSK 0xff00 #define IWLAGN_OFDM_RSSI_C_BIT_POS 0 struct iwlagn_non_cfg_phy { __le32 non_cfg_phy[IWLAGN_RX_RES_PHY_CNT]; /* up to 8 phy entries */ } __packed; /* * REPLY_RX = 0xc3 (response only, not a command) * Used only for legacy (non 11n) frames. */ struct iwl_rx_phy_res { u8 non_cfg_phy_cnt; /* non configurable DSP phy data byte count */ u8 cfg_phy_cnt; /* configurable DSP phy data byte count */ u8 stat_id; /* configurable DSP phy data set ID */ u8 reserved1; __le64 timestamp; /* TSF at on air rise */ __le32 beacon_time_stamp; /* beacon at on-air rise */ __le16 phy_flags; /* general phy flags: band, modulation, ... */ __le16 channel; /* channel number */ u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */ __le32 rate_n_flags; /* RATE_MCS_* */ __le16 byte_count; /* frame's byte-count */ __le16 frame_time; /* frame's time on the air */ } __packed; struct iwl_rx_mpdu_res_start { __le16 byte_count; __le16 reserved; } __packed; /****************************************************************************** * (5) * Tx Commands & Responses: * * Driver must place each REPLY_TX command into one of the prioritized Tx * queues in host DRAM, shared between driver and device (see comments for * SCD registers and Tx/Rx Queues). When the device's Tx scheduler and uCode * are preparing to transmit, the device pulls the Tx command over the PCI * bus via one of the device's Tx DMA channels, to fill an internal FIFO * from which data will be transmitted. * * uCode handles all timing and protocol related to control frames * (RTS/CTS/ACK), based on flags in the Tx command. uCode and Tx scheduler * handle reception of block-acks; uCode updates the host driver via * REPLY_COMPRESSED_BA. * * uCode handles retrying Tx when an ACK is expected but not received. * This includes trying lower data rates than the one requested in the Tx * command, as set up by the REPLY_TX_LINK_QUALITY_CMD (agn). * * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD. * This command must be executed after every RXON command, before Tx can occur. *****************************************************************************/ /* REPLY_TX Tx flags field */ /* * 1: Use RTS/CTS protocol or CTS-to-self if spec allows it * before this frame. if CTS-to-self required check * RXON_FLG_SELF_CTS_EN status. */ #define TX_CMD_FLG_PROT_REQUIRE_MSK cpu_to_le32(1 << 0) /* 1: Expect ACK from receiving station * 0: Don't expect ACK (MAC header's duration field s/b 0) * Set this for unicast frames, but not broadcast/multicast. */ #define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3) /* For agn devices: * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD). * Tx command's initial_rate_index indicates first rate to try; * uCode walks through table for additional Tx attempts. * 0: Use Tx rate/MCS from Tx command's rate_n_flags field. * This rate will be used for all Tx attempts; it will not be scaled. */ #define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4) /* 1: Expect immediate block-ack. * Set when Txing a block-ack request frame. Also set TX_CMD_FLG_ACK_MSK. */ #define TX_CMD_FLG_IMM_BA_RSP_MASK cpu_to_le32(1 << 6) /* Tx antenna selection field; reserved (0) for agn devices. */ #define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00) /* 1: Ignore Bluetooth priority for this frame. * 0: Delay Tx until Bluetooth device is done (normal usage). */ #define TX_CMD_FLG_IGNORE_BT cpu_to_le32(1 << 12) /* 1: uCode overrides sequence control field in MAC header. * 0: Driver provides sequence control field in MAC header. * Set this for management frames, non-QOS data frames, non-unicast frames, * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */ #define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13) /* 1: This frame is non-last MPDU; more fragments are coming. * 0: Last fragment, or not using fragmentation. */ #define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14) /* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame. * 0: No TSF required in outgoing frame. * Set this for transmitting beacons and probe responses. */ #define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16) /* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword * alignment of frame's payload data field. * 0: No pad * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4 * field (but not both). Driver must align frame data (i.e. data following * MAC header) to DWORD boundary. */ #define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20) /* accelerate aggregation support * 0 - no CCMP encryption; 1 - CCMP encryption */ #define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22) /* HCCA-AP - disable duration overwriting. */ #define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25) /* * TX command security control */ #define TX_CMD_SEC_WEP 0x01 #define TX_CMD_SEC_CCM 0x02 #define TX_CMD_SEC_TKIP 0x03 #define TX_CMD_SEC_MSK 0x03 #define TX_CMD_SEC_SHIFT 6 #define TX_CMD_SEC_KEY128 0x08 /* * REPLY_TX = 0x1c (command) */ /* * Used for managing Tx retries when expecting block-acks. * Driver should set these fields to 0. */ struct iwl_dram_scratch { u8 try_cnt; /* Tx attempts */ u8 bt_kill_cnt; /* Tx attempts blocked by Bluetooth device */ __le16 reserved; } __packed; struct iwl_tx_cmd { /* * MPDU byte count: * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size, * + 8 byte IV for CCM or TKIP (not used for WEP) * + Data payload * + 8-byte MIC (not used for CCM/WEP) * NOTE: Does not include Tx command bytes, post-MAC pad bytes, * MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i * Range: 14-2342 bytes. */ __le16 len; /* * MPDU or MSDU byte count for next frame. * Used for fragmentation and bursting, but not 11n aggregation. * Same as "len", but for next frame. Set to 0 if not applicable. */ __le16 next_frame_len; __le32 tx_flags; /* TX_CMD_FLG_* */ /* uCode may modify this field of the Tx command (in host DRAM!). * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */ struct iwl_dram_scratch scratch; /* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */ __le32 rate_n_flags; /* RATE_MCS_* */ /* Index of destination station in uCode's station table */ u8 sta_id; /* Type of security encryption: CCM or TKIP */ u8 sec_ctl; /* TX_CMD_SEC_* */ /* * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set. Normally "0" for * data frames, this field may be used to selectively reduce initial * rate (via non-0 value) for special frames (e.g. management), while * still supporting rate scaling for all frames. */ u8 initial_rate_index; u8 reserved; u8 key[16]; __le16 next_frame_flags; __le16 reserved2; union { __le32 life_time; __le32 attempt; } stop_time; /* Host DRAM physical address pointer to "scratch" in this command. * Must be dword aligned. "0" in dram_lsb_ptr disables usage. */ __le32 dram_lsb_ptr; u8 dram_msb_ptr; u8 rts_retry_limit; /*byte 50 */ u8 data_retry_limit; /*byte 51 */ u8 tid_tspec; union { __le16 pm_frame_timeout; __le16 attempt_duration; } timeout; /* * Duration of EDCA burst Tx Opportunity, in 32-usec units. * Set this if txop time is not specified by HCCA protocol (e.g. by AP). */ __le16 driver_txop; /* * MAC header goes here, followed by 2 bytes padding if MAC header * length is 26 or 30 bytes, followed by payload data */ union { DECLARE_FLEX_ARRAY(u8, payload); DECLARE_FLEX_ARRAY(struct ieee80211_hdr, hdr); }; } __packed; /* * TX command response is sent after *agn* transmission attempts. * * both postpone and abort status are expected behavior from uCode. there is * no special operation required from driver; except for RFKILL_FLUSH, * which required tx flush host command to flush all the tx frames in queues */ enum { TX_STATUS_SUCCESS = 0x01, TX_STATUS_DIRECT_DONE = 0x02, /* postpone TX */ TX_STATUS_POSTPONE_DELAY = 0x40, TX_STATUS_POSTPONE_FEW_BYTES = 0x41, TX_STATUS_POSTPONE_BT_PRIO = 0x42, TX_STATUS_POSTPONE_QUIET_PERIOD = 0x43, TX_STATUS_POSTPONE_CALC_TTAK = 0x44, /* abort TX */ TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY = 0x81, TX_STATUS_FAIL_SHORT_LIMIT = 0x82, TX_STATUS_FAIL_LONG_LIMIT = 0x83, TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84, TX_STATUS_FAIL_DRAIN_FLOW = 0x85, TX_STATUS_FAIL_RFKILL_FLUSH = 0x86, TX_STATUS_FAIL_LIFE_EXPIRE = 0x87, TX_STATUS_FAIL_DEST_PS = 0x88, TX_STATUS_FAIL_HOST_ABORTED = 0x89, TX_STATUS_FAIL_BT_RETRY = 0x8a, TX_STATUS_FAIL_STA_INVALID = 0x8b, TX_STATUS_FAIL_FRAG_DROPPED = 0x8c, TX_STATUS_FAIL_TID_DISABLE = 0x8d, TX_STATUS_FAIL_FIFO_FLUSHED = 0x8e, TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f, TX_STATUS_FAIL_PASSIVE_NO_RX = 0x90, TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91, }; #define TX_PACKET_MODE_REGULAR 0x0000 #define TX_PACKET_MODE_BURST_SEQ 0x0100 #define TX_PACKET_MODE_BURST_FIRST 0x0200 enum { TX_POWER_PA_NOT_ACTIVE = 0x0, }; enum { TX_STATUS_MSK = 0x000000ff, /* bits 0:7 */ TX_STATUS_DELAY_MSK = 0x00000040, TX_STATUS_ABORT_MSK = 0x00000080, TX_PACKET_MODE_MSK = 0x0000ff00, /* bits 8:15 */ TX_FIFO_NUMBER_MSK = 0x00070000, /* bits 16:18 */ TX_RESERVED = 0x00780000, /* bits 19:22 */ TX_POWER_PA_DETECT_MSK = 0x7f800000, /* bits 23:30 */ TX_ABORT_REQUIRED_MSK = 0x80000000, /* bits 31:31 */ }; /* ******************************* * TX aggregation status ******************************* */ enum { AGG_TX_STATE_TRANSMITTED = 0x00, AGG_TX_STATE_UNDERRUN_MSK = 0x01, AGG_TX_STATE_BT_PRIO_MSK = 0x02, AGG_TX_STATE_FEW_BYTES_MSK = 0x04, AGG_TX_STATE_ABORT_MSK = 0x08, AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10, AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20, AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40, AGG_TX_STATE_SCD_QUERY_MSK = 0x80, AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100, AGG_TX_STATE_RESPONSE_MSK = 0x1ff, AGG_TX_STATE_DUMP_TX_MSK = 0x200, AGG_TX_STATE_DELAY_TX_MSK = 0x400 }; #define AGG_TX_STATUS_MSK 0x00000fff /* bits 0:11 */ #define AGG_TX_TRY_MSK 0x0000f000 /* bits 12:15 */ #define AGG_TX_TRY_POS 12 #define AGG_TX_STATE_LAST_SENT_MSK (AGG_TX_STATE_LAST_SENT_TTL_MSK | \ AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \ AGG_TX_STATE_LAST_SENT_BT_KILL_MSK) /* # tx attempts for first frame in aggregation */ #define AGG_TX_STATE_TRY_CNT_POS 12 #define AGG_TX_STATE_TRY_CNT_MSK 0xf000 /* Command ID and sequence number of Tx command for this frame */ #define AGG_TX_STATE_SEQ_NUM_POS 16 #define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000 /* * REPLY_TX = 0x1c (response) * * This response may be in one of two slightly different formats, indicated * by the frame_count field: * * 1) No aggregation (frame_count == 1). This reports Tx results for * a single frame. Multiple attempts, at various bit rates, may have * been made for this frame. * * 2) Aggregation (frame_count > 1). This reports Tx results for * 2 or more frames that used block-acknowledge. All frames were * transmitted at same rate. Rate scaling may have been used if first * frame in this new agg block failed in previous agg block(s). * * Note that, for aggregation, ACK (block-ack) status is not delivered here; * block-ack has not been received by the time the agn device records * this status. * This status relates to reasons the tx might have been blocked or aborted * within the sending station (this agn device), rather than whether it was * received successfully by the destination station. */ struct agg_tx_status { __le16 status; __le16 sequence; } __packed; /* refer to ra_tid */ #define IWLAGN_TX_RES_TID_POS 0 #define IWLAGN_TX_RES_TID_MSK 0x0f #define IWLAGN_TX_RES_RA_POS 4 #define IWLAGN_TX_RES_RA_MSK 0xf0 struct iwlagn_tx_resp { u8 frame_count; /* 1 no aggregation, >1 aggregation */ u8 bt_kill_count; /* # blocked by bluetooth (unused for agg) */ u8 failure_rts; /* # failures due to unsuccessful RTS */ u8 failure_frame; /* # failures due to no ACK (unused for agg) */ /* For non-agg: Rate at which frame was successful. * For agg: Rate at which all frames were transmitted. */ __le32 rate_n_flags; /* RATE_MCS_* */ /* For non-agg: RTS + CTS + frame tx attempts time + ACK. * For agg: RTS + CTS + aggregation tx time + block-ack time. */ __le16 wireless_media_time; /* uSecs */ u8 pa_status; /* RF power amplifier measurement (not used) */ u8 pa_integ_res_a[3]; u8 pa_integ_res_b[3]; u8 pa_integ_res_C[3]; __le32 tfd_info; __le16 seq_ctl; __le16 byte_cnt; u8 tlc_info; u8 ra_tid; /* tid (0:3), sta_id (4:7) */ __le16 frame_ctrl; /* * For non-agg: frame status TX_STATUS_* * For agg: status of 1st frame, AGG_TX_STATE_*; other frame status * fields follow this one, up to frame_count. * Bit fields: * 11- 0: AGG_TX_STATE_* status code * 15-12: Retry count for 1st frame in aggregation (retries * occur if tx failed for this frame when it was a * member of a previous aggregation block). If rate * scaling is used, retry count indicates the rate * table entry used for all frames in the new agg. * 31-16: Sequence # for this frame's Tx cmd (not SSN!) */ struct agg_tx_status status; /* TX status (in aggregation - * status of 1st frame) */ } __packed; /* * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command) * * Reports Block-Acknowledge from recipient station */ struct iwl_compressed_ba_resp { __le32 sta_addr_lo32; __le16 sta_addr_hi16; __le16 reserved; /* Index of recipient (BA-sending) station in uCode's station table */ u8 sta_id; u8 tid; __le16 seq_ctl; __le64 bitmap; __le16 scd_flow; __le16 scd_ssn; u8 txed; /* number of frames sent */ u8 txed_2_done; /* number of frames acked */ __le16 reserved1; } __packed; /* * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response) * */ /*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */ #define LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK (1 << 0) /* # of EDCA prioritized tx fifos */ #define LINK_QUAL_AC_NUM AC_NUM /* # entries in rate scale table to support Tx retries */ #define LINK_QUAL_MAX_RETRY_NUM 16 /* Tx antenna selection values */ #define LINK_QUAL_ANT_A_MSK (1 << 0) #define LINK_QUAL_ANT_B_MSK (1 << 1) #define LINK_QUAL_ANT_MSK (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK) /** * struct iwl_link_qual_general_params * * Used in REPLY_TX_LINK_QUALITY_CMD */ struct iwl_link_qual_general_params { u8 flags; /* No entries at or above this (driver chosen) index contain MIMO */ u8 mimo_delimiter; /* Best single antenna to use for single stream (legacy, SISO). */ u8 single_stream_ant_msk; /* LINK_QUAL_ANT_* */ /* Best antennas to use for MIMO */ u8 dual_stream_ant_msk; /* LINK_QUAL_ANT_* */ /* * If driver needs to use different initial rates for different * EDCA QOS access categories (as implemented by tx fifos 0-3), * this table will set that up, by indicating the indexes in the * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start. * Otherwise, driver should set all entries to 0. * * Entry usage: * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3. */ u8 start_rate_index[LINK_QUAL_AC_NUM]; } __packed; #define LINK_QUAL_AGG_TIME_LIMIT_DEF (4000) /* 4 milliseconds */ #define LINK_QUAL_AGG_TIME_LIMIT_MAX (8000) #define LINK_QUAL_AGG_TIME_LIMIT_MIN (100) #define LINK_QUAL_AGG_DISABLE_START_DEF (3) #define LINK_QUAL_AGG_DISABLE_START_MAX (255) #define LINK_QUAL_AGG_DISABLE_START_MIN (0) #define LINK_QUAL_AGG_FRAME_LIMIT_DEF (63) #define LINK_QUAL_AGG_FRAME_LIMIT_MAX (63) #define LINK_QUAL_AGG_FRAME_LIMIT_MIN (0) /** * struct iwl_link_qual_agg_params * * Used in REPLY_TX_LINK_QUALITY_CMD */ struct iwl_link_qual_agg_params { /* *Maximum number of uSec in aggregation. * default set to 4000 (4 milliseconds) if not configured in .cfg */ __le16 agg_time_limit; /* * Number of Tx retries allowed for a frame, before that frame will * no longer be considered for the start of an aggregation sequence * (scheduler will then try to tx it as single frame). * Driver should set this to 3. */ u8 agg_dis_start_th; /* * Maximum number of frames in aggregation. * 0 = no limit (default). 1 = no aggregation. * Other values = max # frames in aggregation. */ u8 agg_frame_cnt_limit; __le32 reserved; } __packed; /* * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response) * * For agn devices * * Each station in the agn device's internal station table has its own table * of 16 * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when * an ACK is not received. This command replaces the entire table for * one station. * * NOTE: Station must already be in agn device's station table. * Use REPLY_ADD_STA. * * The rate scaling procedures described below work well. Of course, other * procedures are possible, and may work better for particular environments. * * * FILLING THE RATE TABLE * * Given a particular initial rate and mode, as determined by the rate * scaling algorithm described below, the Linux driver uses the following * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the * Link Quality command: * * * 1) If using High-throughput (HT) (SISO or MIMO) initial rate: * a) Use this same initial rate for first 3 entries. * b) Find next lower available rate using same mode (SISO or MIMO), * use for next 3 entries. If no lower rate available, switch to * legacy mode (no HT40 channel, no MIMO, no short guard interval). * c) If using MIMO, set command's mimo_delimiter to number of entries * using MIMO (3 or 6). * d) After trying 2 HT rates, switch to legacy mode (no HT40 channel, * no MIMO, no short guard interval), at the next lower bit rate * (e.g. if second HT bit rate was 54, try 48 legacy), and follow * legacy procedure for remaining table entries. * * 2) If using legacy initial rate: * a) Use the initial rate for only one entry. * b) For each following entry, reduce the rate to next lower available * rate, until reaching the lowest available rate. * c) When reducing rate, also switch antenna selection. * d) Once lowest available rate is reached, repeat this rate until * rate table is filled (16 entries), switching antenna each entry. * * * ACCUMULATING HISTORY * * The rate scaling algorithm for agn devices, as implemented in Linux driver, * uses two sets of frame Tx success history: One for the current/active * modulation mode, and one for a speculative/search mode that is being * attempted. If the speculative mode turns out to be more effective (i.e. * actual transfer rate is better), then the driver continues to use the * speculative mode as the new current active mode. * * Each history set contains, separately for each possible rate, data for a * sliding window of the 62 most recent tx attempts at that rate. The data * includes a shifting bitmap of success(1)/failure(0), and sums of successful * and attempted frames, from which the driver can additionally calculate a * success ratio (success / attempted) and number of failures * (attempted - success), and control the size of the window (attempted). * The driver uses the bit map to remove successes from the success sum, as * the oldest tx attempts fall out of the window. * * When the agn device makes multiple tx attempts for a given frame, each * attempt might be at a different rate, and have different modulation * characteristics (e.g. antenna, fat channel, short guard interval), as set * up in the rate scaling table in the Link Quality command. The driver must * determine which rate table entry was used for each tx attempt, to determine * which rate-specific history to update, and record only those attempts that * match the modulation characteristics of the history set. * * When using block-ack (aggregation), all frames are transmitted at the same * rate, since there is no per-attempt acknowledgment from the destination * station. The Tx response struct iwl_tx_resp indicates the Tx rate in * rate_n_flags field. After receiving a block-ack, the driver can update * history for the entire block all at once. * * * FINDING BEST STARTING RATE: * * When working with a selected initial modulation mode (see below), the * driver attempts to find a best initial rate. The initial rate is the * first entry in the Link Quality command's rate table. * * 1) Calculate actual throughput (success ratio * expected throughput, see * table below) for current initial rate. Do this only if enough frames * have been attempted to make the value meaningful: at least 6 failed * tx attempts, or at least 8 successes. If not enough, don't try rate * scaling yet. * * 2) Find available rates adjacent to current initial rate. Available means: * a) supported by hardware && * b) supported by association && * c) within any constraints selected by user * * 3) Gather measured throughputs for adjacent rates. These might not have * enough history to calculate a throughput. That's okay, we might try * using one of them anyway! * * 4) Try decreasing rate if, for current rate: * a) success ratio is < 15% || * b) lower adjacent rate has better measured throughput || * c) higher adjacent rate has worse throughput, and lower is unmeasured * * As a sanity check, if decrease was determined above, leave rate * unchanged if: * a) lower rate unavailable * b) success ratio at current rate > 85% (very good) * c) current measured throughput is better than expected throughput * of lower rate (under perfect 100% tx conditions, see table below) * * 5) Try increasing rate if, for current rate: * a) success ratio is < 15% || * b) both adjacent rates' throughputs are unmeasured (try it!) || * b) higher adjacent rate has better measured throughput || * c) lower adjacent rate has worse throughput, and higher is unmeasured * * As a sanity check, if increase was determined above, leave rate * unchanged if: * a) success ratio at current rate < 70%. This is not particularly * good performance; higher rate is sure to have poorer success. * * 6) Re-evaluate the rate after each tx frame. If working with block- * acknowledge, history and statistics may be calculated for the entire * block (including prior history that fits within the history windows), * before re-evaluation. * * FINDING BEST STARTING MODULATION MODE: * * After working with a modulation mode for a "while" (and doing rate scaling), * the driver searches for a new initial mode in an attempt to improve * throughput. The "while" is measured by numbers of attempted frames: * * For legacy mode, search for new mode after: * 480 successful frames, or 160 failed frames * For high-throughput modes (SISO or MIMO), search for new mode after: * 4500 successful frames, or 400 failed frames * * Mode switch possibilities are (3 for each mode): * * For legacy: * Change antenna, try SISO (if HT association), try MIMO (if HT association) * For SISO: * Change antenna, try MIMO, try shortened guard interval (SGI) * For MIMO: * Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI) * * When trying a new mode, use the same bit rate as the old/current mode when * trying antenna switches and shortened guard interval. When switching to * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate * for which the expected throughput (under perfect conditions) is about the * same or slightly better than the actual measured throughput delivered by * the old/current mode. * * Actual throughput can be estimated by multiplying the expected throughput * by the success ratio (successful / attempted tx frames). Frame size is * not considered in this calculation; it assumes that frame size will average * out to be fairly consistent over several samples. The following are * metric values for expected throughput assuming 100% success ratio. * Only G band has support for CCK rates: * * RATE: 1 2 5 11 6 9 12 18 24 36 48 54 60 * * G: 7 13 35 58 40 57 72 98 121 154 177 186 186 * A: 0 0 0 0 40 57 72 98 121 154 177 186 186 * SISO 20MHz: 0 0 0 0 42 42 76 102 124 159 183 193 202 * SGI SISO 20MHz: 0 0 0 0 46 46 82 110 132 168 192 202 211 * MIMO 20MHz: 0 0 0 0 74 74 123 155 179 214 236 244 251 * SGI MIMO 20MHz: 0 0 0 0 81 81 131 164 188 222 243 251 257 * SISO 40MHz: 0 0 0 0 77 77 127 160 184 220 242 250 257 * SGI SISO 40MHz: 0 0 0 0 83 83 135 169 193 229 250 257 264 * MIMO 40MHz: 0 0 0 0 123 123 182 214 235 264 279 285 289 * SGI MIMO 40MHz: 0 0 0 0 131 131 191 222 242 270 284 289 293 * * After the new mode has been tried for a short while (minimum of 6 failed * frames or 8 successful frames), compare success ratio and actual throughput * estimate of the new mode with the old. If either is better with the new * mode, continue to use the new mode. * * Continue comparing modes until all 3 possibilities have been tried. * If moving from legacy to HT, try all 3 possibilities from the new HT * mode. After trying all 3, a best mode is found. Continue to use this mode * for the longer "while" described above (e.g. 480 successful frames for * legacy), and then repeat the search process. * */ struct iwl_link_quality_cmd { /* Index of destination/recipient station in uCode's station table */ u8 sta_id; u8 reserved1; __le16 control; /* not used */ struct iwl_link_qual_general_params general_params; struct iwl_link_qual_agg_params agg_params; /* * Rate info; when using rate-scaling, Tx command's initial_rate_index * specifies 1st Tx rate attempted, via index into this table. * agn devices works its way through table when retrying Tx. */ struct { __le32 rate_n_flags; /* RATE_MCS_*, IWL_RATE_* */ } rs_table[LINK_QUAL_MAX_RETRY_NUM]; __le32 reserved2; } __packed; /* * BT configuration enable flags: * bit 0 - 1: BT channel announcement enabled * 0: disable * bit 1 - 1: priority of BT device enabled * 0: disable * bit 2 - 1: BT 2 wire support enabled * 0: disable */ #define BT_COEX_DISABLE (0x0) #define BT_ENABLE_CHANNEL_ANNOUNCE BIT(0) #define BT_ENABLE_PRIORITY BIT(1) #define BT_ENABLE_2_WIRE BIT(2) #define BT_COEX_DISABLE (0x0) #define BT_COEX_ENABLE (BT_ENABLE_CHANNEL_ANNOUNCE | BT_ENABLE_PRIORITY) #define BT_LEAD_TIME_MIN (0x0) #define BT_LEAD_TIME_DEF (0x1E) #define BT_LEAD_TIME_MAX (0xFF) #define BT_MAX_KILL_MIN (0x1) #define BT_MAX_KILL_DEF (0x5) #define BT_MAX_KILL_MAX (0xFF) #define BT_DURATION_LIMIT_DEF 625 #define BT_DURATION_LIMIT_MAX 1250 #define BT_DURATION_LIMIT_MIN 625 #define BT_ON_THRESHOLD_DEF 4 #define BT_ON_THRESHOLD_MAX 1000 #define BT_ON_THRESHOLD_MIN 1 #define BT_FRAG_THRESHOLD_DEF 0 #define BT_FRAG_THRESHOLD_MAX 0 #define BT_FRAG_THRESHOLD_MIN 0 #define BT_AGG_THRESHOLD_DEF 1200 #define BT_AGG_THRESHOLD_MAX 8000 #define BT_AGG_THRESHOLD_MIN 400 /* * REPLY_BT_CONFIG = 0x9b (command, has simple generic response) * * agn devices support hardware handshake with Bluetooth device on * same platform. Bluetooth device alerts wireless device when it will Tx; * wireless device can delay or kill its own Tx to accommodate. */ struct iwl_bt_cmd { u8 flags; u8 lead_time; u8 max_kill; u8 reserved; __le32 kill_ack_mask; __le32 kill_cts_mask; } __packed; #define IWLAGN_BT_FLAG_CHANNEL_INHIBITION BIT(0) #define IWLAGN_BT_FLAG_COEX_MODE_MASK (BIT(3)|BIT(4)|BIT(5)) #define IWLAGN_BT_FLAG_COEX_MODE_SHIFT 3 #define IWLAGN_BT_FLAG_COEX_MODE_DISABLED 0 #define IWLAGN_BT_FLAG_COEX_MODE_LEGACY_2W 1 #define IWLAGN_BT_FLAG_COEX_MODE_3W 2 #define IWLAGN_BT_FLAG_COEX_MODE_4W 3 #define IWLAGN_BT_FLAG_UCODE_DEFAULT BIT(6) /* Disable Sync PSPoll on SCO/eSCO */ #define IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE BIT(7) #define IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD -75 /* dBm */ #define IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD -65 /* dBm */ #define IWLAGN_BT_PRIO_BOOST_MAX 0xFF #define IWLAGN_BT_PRIO_BOOST_MIN 0x00 #define IWLAGN_BT_PRIO_BOOST_DEFAULT 0xF0 #define IWLAGN_BT_PRIO_BOOST_DEFAULT32 0xF0F0F0F0 #define IWLAGN_BT_MAX_KILL_DEFAULT 5 #define IWLAGN_BT3_T7_DEFAULT 1 enum iwl_bt_kill_idx { IWL_BT_KILL_DEFAULT = 0, IWL_BT_KILL_OVERRIDE = 1, IWL_BT_KILL_REDUCE = 2, }; #define IWLAGN_BT_KILL_ACK_MASK_DEFAULT cpu_to_le32(0xffff0000) #define IWLAGN_BT_KILL_CTS_MASK_DEFAULT cpu_to_le32(0xffff0000) #define IWLAGN_BT_KILL_ACK_CTS_MASK_SCO cpu_to_le32(0xffffffff) #define IWLAGN_BT_KILL_ACK_CTS_MASK_REDUCE cpu_to_le32(0) #define IWLAGN_BT3_PRIO_SAMPLE_DEFAULT 2 #define IWLAGN_BT3_T2_DEFAULT 0xc #define IWLAGN_BT_VALID_ENABLE_FLAGS cpu_to_le16(BIT(0)) #define IWLAGN_BT_VALID_BOOST cpu_to_le16(BIT(1)) #define IWLAGN_BT_VALID_MAX_KILL cpu_to_le16(BIT(2)) #define IWLAGN_BT_VALID_3W_TIMERS cpu_to_le16(BIT(3)) #define IWLAGN_BT_VALID_KILL_ACK_MASK cpu_to_le16(BIT(4)) #define IWLAGN_BT_VALID_KILL_CTS_MASK cpu_to_le16(BIT(5)) #define IWLAGN_BT_VALID_REDUCED_TX_PWR cpu_to_le16(BIT(6)) #define IWLAGN_BT_VALID_3W_LUT cpu_to_le16(BIT(7)) #define IWLAGN_BT_ALL_VALID_MSK (IWLAGN_BT_VALID_ENABLE_FLAGS | \ IWLAGN_BT_VALID_BOOST | \ IWLAGN_BT_VALID_MAX_KILL | \ IWLAGN_BT_VALID_3W_TIMERS | \ IWLAGN_BT_VALID_KILL_ACK_MASK | \ IWLAGN_BT_VALID_KILL_CTS_MASK | \ IWLAGN_BT_VALID_REDUCED_TX_PWR | \ IWLAGN_BT_VALID_3W_LUT) #define IWLAGN_BT_REDUCED_TX_PWR BIT(0) #define IWLAGN_BT_DECISION_LUT_SIZE 12 struct iwl_basic_bt_cmd { u8 flags; u8 ledtime; /* unused */ u8 max_kill; u8 bt3_timer_t7_value; __le32 kill_ack_mask; __le32 kill_cts_mask; u8 bt3_prio_sample_time; u8 bt3_timer_t2_value; __le16 bt4_reaction_time; /* unused */ __le32 bt3_lookup_table[IWLAGN_BT_DECISION_LUT_SIZE]; /* * bit 0: use reduced tx power for control frame * bit 1 - 7: reserved */ u8 reduce_txpower; u8 reserved; __le16 valid; }; struct iwl_bt_cmd_v1 { struct iwl_basic_bt_cmd basic; u8 prio_boost; /* * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask * if configure the following patterns */ u8 tx_prio_boost; /* SW boost of WiFi tx priority */ __le16 rx_prio_boost; /* SW boost of WiFi rx priority */ }; struct iwl_bt_cmd_v2 { struct iwl_basic_bt_cmd basic; __le32 prio_boost; /* * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask * if configure the following patterns */ u8 reserved; u8 tx_prio_boost; /* SW boost of WiFi tx priority */ __le16 rx_prio_boost; /* SW boost of WiFi rx priority */ }; #define IWLAGN_BT_SCO_ACTIVE cpu_to_le32(BIT(0)) struct iwlagn_bt_sco_cmd { __le32 flags; }; /****************************************************************************** * (6) * Spectrum Management (802.11h) Commands, Responses, Notifications: * *****************************************************************************/ /* * Spectrum Management */ #define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK | \ RXON_FILTER_CTL2HOST_MSK | \ RXON_FILTER_ACCEPT_GRP_MSK | \ RXON_FILTER_DIS_DECRYPT_MSK | \ RXON_FILTER_DIS_GRP_DECRYPT_MSK | \ RXON_FILTER_ASSOC_MSK | \ RXON_FILTER_BCON_AWARE_MSK) struct iwl_measure_channel { __le32 duration; /* measurement duration in extended beacon * format */ u8 channel; /* channel to measure */ u8 type; /* see enum iwl_measure_type */ __le16 reserved; } __packed; /* * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command) */ struct iwl_spectrum_cmd { __le16 len; /* number of bytes starting from token */ u8 token; /* token id */ u8 id; /* measurement id -- 0 or 1 */ u8 origin; /* 0 = TGh, 1 = other, 2 = TGk */ u8 periodic; /* 1 = periodic */ __le16 path_loss_timeout; __le32 start_time; /* start time in extended beacon format */ __le32 reserved2; __le32 flags; /* rxon flags */ __le32 filter_flags; /* rxon filter flags */ __le16 channel_count; /* minimum 1, maximum 10 */ __le16 reserved3; struct iwl_measure_channel channels[10]; } __packed; /* * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response) */ struct iwl_spectrum_resp { u8 token; u8 id; /* id of the prior command replaced, or 0xff */ __le16 status; /* 0 - command will be handled * 1 - cannot handle (conflicts with another * measurement) */ } __packed; enum iwl_measurement_state { IWL_MEASUREMENT_START = 0, IWL_MEASUREMENT_STOP = 1, }; enum iwl_measurement_status { IWL_MEASUREMENT_OK = 0, IWL_MEASUREMENT_CONCURRENT = 1, IWL_MEASUREMENT_CSA_CONFLICT = 2, IWL_MEASUREMENT_TGH_CONFLICT = 3, /* 4-5 reserved */ IWL_MEASUREMENT_STOPPED = 6, IWL_MEASUREMENT_TIMEOUT = 7, IWL_MEASUREMENT_PERIODIC_FAILED = 8, }; #define NUM_ELEMENTS_IN_HISTOGRAM 8 struct iwl_measurement_histogram { __le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 0.8usec counts */ __le32 cck[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 1usec counts */ } __packed; /* clear channel availability counters */ struct iwl_measurement_cca_counters { __le32 ofdm; __le32 cck; } __packed; enum iwl_measure_type { IWL_MEASURE_BASIC = (1 << 0), IWL_MEASURE_CHANNEL_LOAD = (1 << 1), IWL_MEASURE_HISTOGRAM_RPI = (1 << 2), IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3), IWL_MEASURE_FRAME = (1 << 4), /* bits 5:6 are reserved */ IWL_MEASURE_IDLE = (1 << 7), }; /* * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command) */ struct iwl_spectrum_notification { u8 id; /* measurement id -- 0 or 1 */ u8 token; u8 channel_index; /* index in measurement channel list */ u8 state; /* 0 - start, 1 - stop */ __le32 start_time; /* lower 32-bits of TSF */ u8 band; /* 0 - 5.2GHz, 1 - 2.4GHz */ u8 channel; u8 type; /* see enum iwl_measurement_type */ u8 reserved1; /* NOTE: cca_ofdm, cca_cck, basic_type, and histogram are only only * valid if applicable for measurement type requested. */ __le32 cca_ofdm; /* cca fraction time in 40Mhz clock periods */ __le32 cca_cck; /* cca fraction time in 44Mhz clock periods */ __le32 cca_time; /* channel load time in usecs */ u8 basic_type; /* 0 - bss, 1 - ofdm preamble, 2 - * unidentified */ u8 reserved2[3]; struct iwl_measurement_histogram histogram; __le32 stop_time; /* lower 32-bits of TSF */ __le32 status; /* see iwl_measurement_status */ } __packed; /****************************************************************************** * (7) * Power Management Commands, Responses, Notifications: * *****************************************************************************/ /** * struct iwl_powertable_cmd - Power Table Command * @flags: See below: * * POWER_TABLE_CMD = 0x77 (command, has simple generic response) * * PM allow: * bit 0 - '0' Driver not allow power management * '1' Driver allow PM (use rest of parameters) * * uCode send sleep notifications: * bit 1 - '0' Don't send sleep notification * '1' send sleep notification (SEND_PM_NOTIFICATION) * * Sleep over DTIM * bit 2 - '0' PM have to walk up every DTIM * '1' PM could sleep over DTIM till listen Interval. * * PCI power managed * bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1) * '1' !(PCI_CFG_LINK_CTRL & 0x1) * * Fast PD * bit 4 - '1' Put radio to sleep when receiving frame for others * * Force sleep Modes * bit 31/30- '00' use both mac/xtal sleeps * '01' force Mac sleep * '10' force xtal sleep * '11' Illegal set * * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then * ucode assume sleep over DTIM is allowed and we don't need to wake up * for every DTIM. */ #define IWL_POWER_VEC_SIZE 5 #define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK cpu_to_le16(BIT(0)) #define IWL_POWER_POWER_SAVE_ENA_MSK cpu_to_le16(BIT(0)) #define IWL_POWER_POWER_MANAGEMENT_ENA_MSK cpu_to_le16(BIT(1)) #define IWL_POWER_SLEEP_OVER_DTIM_MSK cpu_to_le16(BIT(2)) #define IWL_POWER_PCI_PM_MSK cpu_to_le16(BIT(3)) #define IWL_POWER_FAST_PD cpu_to_le16(BIT(4)) #define IWL_POWER_BEACON_FILTERING cpu_to_le16(BIT(5)) #define IWL_POWER_SHADOW_REG_ENA cpu_to_le16(BIT(6)) #define IWL_POWER_CT_KILL_SET cpu_to_le16(BIT(7)) #define IWL_POWER_BT_SCO_ENA cpu_to_le16(BIT(8)) #define IWL_POWER_ADVANCE_PM_ENA_MSK cpu_to_le16(BIT(9)) struct iwl_powertable_cmd { __le16 flags; u8 keep_alive_seconds; u8 debug_flags; __le32 rx_data_timeout; __le32 tx_data_timeout; __le32 sleep_interval[IWL_POWER_VEC_SIZE]; __le32 keep_alive_beacons; } __packed; /* * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command) * all devices identical. */ struct iwl_sleep_notification { u8 pm_sleep_mode; u8 pm_wakeup_src; __le16 reserved; __le32 sleep_time; __le32 tsf_low; __le32 bcon_timer; } __packed; /* Sleep states. all devices identical. */ enum { IWL_PM_NO_SLEEP = 0, IWL_PM_SLP_MAC = 1, IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2, IWL_PM_SLP_FULL_MAC_CARD_STATE = 3, IWL_PM_SLP_PHY = 4, IWL_PM_SLP_REPENT = 5, IWL_PM_WAKEUP_BY_TIMER = 6, IWL_PM_WAKEUP_BY_DRIVER = 7, IWL_PM_WAKEUP_BY_RFKILL = 8, /* 3 reserved */ IWL_PM_NUM_OF_MODES = 12, }; /* * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response) */ #define CARD_STATE_CMD_DISABLE 0x00 /* Put card to sleep */ #define CARD_STATE_CMD_ENABLE 0x01 /* Wake up card */ #define CARD_STATE_CMD_HALT 0x02 /* Power down permanently */ struct iwl_card_state_cmd { __le32 status; /* CARD_STATE_CMD_* request new power state */ } __packed; /* * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command) */ struct iwl_card_state_notif { __le32 flags; } __packed; #define HW_CARD_DISABLED 0x01 #define SW_CARD_DISABLED 0x02 #define CT_CARD_DISABLED 0x04 #define RXON_CARD_DISABLED 0x10 struct iwl_ct_kill_config { __le32 reserved; __le32 critical_temperature_M; __le32 critical_temperature_R; } __packed; /* 1000, and 6x00 */ struct iwl_ct_kill_throttling_config { __le32 critical_temperature_exit; __le32 reserved; __le32 critical_temperature_enter; } __packed; /****************************************************************************** * (8) * Scan Commands, Responses, Notifications: * *****************************************************************************/ #define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0) #define SCAN_CHANNEL_TYPE_ACTIVE cpu_to_le32(1) /** * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table * * One for each channel in the scan list. * Each channel can independently select: * 1) SSID for directed active scans * 2) Txpower setting (for rate specified within Tx command) * 3) How long to stay on-channel (behavior may be modified by quiet_time, * quiet_plcp_th, good_CRC_th) * * To avoid uCode errors, make sure the following are true (see comments * under struct iwl_scan_cmd about max_out_time and quiet_time): * 1) If using passive_dwell (i.e. passive_dwell != 0): * active_dwell <= passive_dwell (< max_out_time if max_out_time != 0) * 2) quiet_time <= active_dwell * 3) If restricting off-channel time (i.e. max_out_time !=0): * passive_dwell < max_out_time * active_dwell < max_out_time */ struct iwl_scan_channel { /* * type is defined as: * 0:0 1 = active, 0 = passive * 1:20 SSID direct bit map; if a bit is set, then corresponding * SSID IE is transmitted in probe request. * 21:31 reserved */ __le32 type; __le16 channel; /* band is selected by iwl_scan_cmd "flags" field */ u8 tx_gain; /* gain for analog radio */ u8 dsp_atten; /* gain for DSP */ __le16 active_dwell; /* in 1024-uSec TU (time units), typ 5-50 */ __le16 passive_dwell; /* in 1024-uSec TU (time units), typ 20-500 */ } __packed; /* set number of direct probes __le32 type */ #define IWL_SCAN_PROBE_MASK(n) cpu_to_le32((BIT(n) | (BIT(n) - BIT(1)))) /** * struct iwl_ssid_ie - directed scan network information element * * Up to 20 of these may appear in REPLY_SCAN_CMD, * selected by "type" bit field in struct iwl_scan_channel; * each channel may select different ssids from among the 20 entries. * SSID IEs get transmitted in reverse order of entry. */ struct iwl_ssid_ie { u8 id; u8 len; u8 ssid[32]; } __packed; #define PROBE_OPTION_MAX 20 #define TX_CMD_LIFE_TIME_INFINITE cpu_to_le32(0xFFFFFFFF) #define IWL_GOOD_CRC_TH_DISABLED 0 #define IWL_GOOD_CRC_TH_DEFAULT cpu_to_le16(1) #define IWL_GOOD_CRC_TH_NEVER cpu_to_le16(0xffff) #define IWL_MAX_CMD_SIZE 4096 /* * REPLY_SCAN_CMD = 0x80 (command) * * The hardware scan command is very powerful; the driver can set it up to * maintain (relatively) normal network traffic while doing a scan in the * background. The max_out_time and suspend_time control the ratio of how * long the device stays on an associated network channel ("service channel") * vs. how long it's away from the service channel, i.e. tuned to other channels * for scanning. * * max_out_time is the max time off-channel (in usec), and suspend_time * is how long (in "extended beacon" format) that the scan is "suspended" * after returning to the service channel. That is, suspend_time is the * time that we stay on the service channel, doing normal work, between * scan segments. The driver may set these parameters differently to support * scanning when associated vs. not associated, and light vs. heavy traffic * loads when associated. * * After receiving this command, the device's scan engine does the following; * * 1) Sends SCAN_START notification to driver * 2) Checks to see if it has time to do scan for one channel * 3) Sends NULL packet, with power-save (PS) bit set to 1, * to tell AP that we're going off-channel * 4) Tunes to first channel in scan list, does active or passive scan * 5) Sends SCAN_RESULT notification to driver * 6) Checks to see if it has time to do scan on *next* channel in list * 7) Repeats 4-6 until it no longer has time to scan the next channel * before max_out_time expires * 8) Returns to service channel * 9) Sends NULL packet with PS=0 to tell AP that we're back * 10) Stays on service channel until suspend_time expires * 11) Repeats entire process 2-10 until list is complete * 12) Sends SCAN_COMPLETE notification * * For fast, efficient scans, the scan command also has support for staying on * a channel for just a short time, if doing active scanning and getting no * responses to the transmitted probe request. This time is controlled by * quiet_time, and the number of received packets below which a channel is * considered "quiet" is controlled by quiet_plcp_threshold. * * For active scanning on channels that have regulatory restrictions against * blindly transmitting, the scan can listen before transmitting, to make sure * that there is already legitimate activity on the channel. If enough * packets are cleanly received on the channel (controlled by good_CRC_th, * typical value 1), the scan engine starts transmitting probe requests. * * Driver must use separate scan commands for 2.4 vs. 5 GHz bands. * * To avoid uCode errors, see timing restrictions described under * struct iwl_scan_channel. */ enum iwl_scan_flags { /* BIT(0) currently unused */ IWL_SCAN_FLAGS_ACTION_FRAME_TX = BIT(1), /* bits 2-7 reserved */ }; struct iwl_scan_cmd { __le16 len; u8 scan_flags; /* scan flags: see enum iwl_scan_flags */ u8 channel_count; /* # channels in channel list */ __le16 quiet_time; /* dwell only this # millisecs on quiet channel * (only for active scan) */ __le16 quiet_plcp_th; /* quiet chnl is < this # pkts (typ. 1) */ __le16 good_CRC_th; /* passive -> active promotion threshold */ __le16 rx_chain; /* RXON_RX_CHAIN_* */ __le32 max_out_time; /* max usec to be away from associated (service) * channel */ __le32 suspend_time; /* pause scan this long (in "extended beacon * format") when returning to service chnl: */ __le32 flags; /* RXON_FLG_* */ __le32 filter_flags; /* RXON_FILTER_* */ /* For active scans (set to all-0s for passive scans). * Does not include payload. Must specify Tx rate; no rate scaling. */ struct iwl_tx_cmd tx_cmd; /* For directed active scans (set to all-0s otherwise) */ struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX]; /* * Probe request frame, followed by channel list. * * Size of probe request frame is specified by byte count in tx_cmd. * Channel list follows immediately after probe request frame. * Number of channels in list is specified by channel_count. * Each channel in list is of type: * * struct iwl_scan_channel channels[0]; * * NOTE: Only one band of channels can be scanned per pass. You * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION) * before requesting another scan. */ u8 data[]; } __packed; /* Can abort will notify by complete notification with abort status. */ #define CAN_ABORT_STATUS cpu_to_le32(0x1) /* complete notification statuses */ #define ABORT_STATUS 0x2 /* * REPLY_SCAN_CMD = 0x80 (response) */ struct iwl_scanreq_notification { __le32 status; /* 1: okay, 2: cannot fulfill request */ } __packed; /* * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command) */ struct iwl_scanstart_notification { __le32 tsf_low; __le32 tsf_high; __le32 beacon_timer; u8 channel; u8 band; u8 reserved[2]; __le32 status; } __packed; #define SCAN_OWNER_STATUS 0x1 #define MEASURE_OWNER_STATUS 0x2 #define IWL_PROBE_STATUS_OK 0 #define IWL_PROBE_STATUS_TX_FAILED BIT(0) /* error statuses combined with TX_FAILED */ #define IWL_PROBE_STATUS_FAIL_TTL BIT(1) #define IWL_PROBE_STATUS_FAIL_BT BIT(2) #define NUMBER_OF_STATISTICS 1 /* first __le32 is good CRC */ /* * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command) */ struct iwl_scanresults_notification { u8 channel; u8 band; u8 probe_status; u8 num_probe_not_sent; /* not enough time to send */ __le32 tsf_low; __le32 tsf_high; __le32 statistics[NUMBER_OF_STATISTICS]; } __packed; /* * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command) */ struct iwl_scancomplete_notification { u8 scanned_channels; u8 status; u8 bt_status; /* BT On/Off status */ u8 last_channel; __le32 tsf_low; __le32 tsf_high; } __packed; /****************************************************************************** * (9) * IBSS/AP Commands and Notifications: * *****************************************************************************/ enum iwl_ibss_manager { IWL_NOT_IBSS_MANAGER = 0, IWL_IBSS_MANAGER = 1, }; /* * BEACON_NOTIFICATION = 0x90 (notification only, not a command) */ struct iwlagn_beacon_notif { struct iwlagn_tx_resp beacon_notify_hdr; __le32 low_tsf; __le32 high_tsf; __le32 ibss_mgr_status; } __packed; /* * REPLY_TX_BEACON = 0x91 (command, has simple generic response) */ struct iwl_tx_beacon_cmd { struct iwl_tx_cmd tx; __le16 tim_idx; u8 tim_size; u8 reserved1; struct ieee80211_hdr frame[]; /* beacon frame */ } __packed; /****************************************************************************** * (10) * Statistics Commands and Notifications: * *****************************************************************************/ #define IWL_TEMP_CONVERT 260 #define SUP_RATE_11A_MAX_NUM_CHANNELS 8 #define SUP_RATE_11B_MAX_NUM_CHANNELS 4 #define SUP_RATE_11G_MAX_NUM_CHANNELS 12 /* Used for passing to driver number of successes and failures per rate */ struct rate_histogram { union { __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS]; __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS]; __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS]; } success; union { __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS]; __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS]; __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS]; } failed; } __packed; /* statistics command response */ struct statistics_dbg { __le32 burst_check; __le32 burst_count; __le32 wait_for_silence_timeout_cnt; __le32 reserved[3]; } __packed; struct statistics_rx_phy { __le32 ina_cnt; __le32 fina_cnt; __le32 plcp_err; __le32 crc32_err; __le32 overrun_err; __le32 early_overrun_err; __le32 crc32_good; __le32 false_alarm_cnt; __le32 fina_sync_err_cnt; __le32 sfd_timeout; __le32 fina_timeout; __le32 unresponded_rts; __le32 rxe_frame_limit_overrun; __le32 sent_ack_cnt; __le32 sent_cts_cnt; __le32 sent_ba_rsp_cnt; __le32 dsp_self_kill; __le32 mh_format_err; __le32 re_acq_main_rssi_sum; __le32 reserved3; } __packed; struct statistics_rx_ht_phy { __le32 plcp_err; __le32 overrun_err; __le32 early_overrun_err; __le32 crc32_good; __le32 crc32_err; __le32 mh_format_err; __le32 agg_crc32_good; __le32 agg_mpdu_cnt; __le32 agg_cnt; __le32 unsupport_mcs; } __packed; #define INTERFERENCE_DATA_AVAILABLE cpu_to_le32(1) struct statistics_rx_non_phy { __le32 bogus_cts; /* CTS received when not expecting CTS */ __le32 bogus_ack; /* ACK received when not expecting ACK */ __le32 non_bssid_frames; /* number of frames with BSSID that * doesn't belong to the STA BSSID */ __le32 filtered_frames; /* count frames that were dumped in the * filtering process */ __le32 non_channel_beacons; /* beacons with our bss id but not on * our serving channel */ __le32 channel_beacons; /* beacons with our bss id and in our * serving channel */ __le32 num_missed_bcon; /* number of missed beacons */ __le32 adc_rx_saturation_time; /* count in 0.8us units the time the * ADC was in saturation */ __le32 ina_detection_search_time;/* total time (in 0.8us) searched * for INA */ __le32 beacon_silence_rssi_a; /* RSSI silence after beacon frame */ __le32 beacon_silence_rssi_b; /* RSSI silence after beacon frame */ __le32 beacon_silence_rssi_c; /* RSSI silence after beacon frame */ __le32 interference_data_flag; /* flag for interference data * availability. 1 when data is * available. */ __le32 channel_load; /* counts RX Enable time in uSec */ __le32 dsp_false_alarms; /* DSP false alarm (both OFDM * and CCK) counter */ __le32 beacon_rssi_a; __le32 beacon_rssi_b; __le32 beacon_rssi_c; __le32 beacon_energy_a; __le32 beacon_energy_b; __le32 beacon_energy_c; } __packed; struct statistics_rx_non_phy_bt { struct statistics_rx_non_phy common; /* additional stats for bt */ __le32 num_bt_kills; __le32 reserved[2]; } __packed; struct statistics_rx { struct statistics_rx_phy ofdm; struct statistics_rx_phy cck; struct statistics_rx_non_phy general; struct statistics_rx_ht_phy ofdm_ht; } __packed; struct statistics_rx_bt { struct statistics_rx_phy ofdm; struct statistics_rx_phy cck; struct statistics_rx_non_phy_bt general; struct statistics_rx_ht_phy ofdm_ht; } __packed; /** * struct statistics_tx_power - current tx power * * @ant_a: current tx power on chain a in 1/2 dB step * @ant_b: current tx power on chain b in 1/2 dB step * @ant_c: current tx power on chain c in 1/2 dB step */ struct statistics_tx_power { u8 ant_a; u8 ant_b; u8 ant_c; u8 reserved; } __packed; struct statistics_tx_non_phy_agg { __le32 ba_timeout; __le32 ba_reschedule_frames; __le32 scd_query_agg_frame_cnt; __le32 scd_query_no_agg; __le32 scd_query_agg; __le32 scd_query_mismatch; __le32 frame_not_ready; __le32 underrun; __le32 bt_prio_kill; __le32 rx_ba_rsp_cnt; } __packed; struct statistics_tx { __le32 preamble_cnt; __le32 rx_detected_cnt; __le32 bt_prio_defer_cnt; __le32 bt_prio_kill_cnt; __le32 few_bytes_cnt; __le32 cts_timeout; __le32 ack_timeout; __le32 expected_ack_cnt; __le32 actual_ack_cnt; __le32 dump_msdu_cnt; __le32 burst_abort_next_frame_mismatch_cnt; __le32 burst_abort_missing_next_frame_cnt; __le32 cts_timeout_collision; __le32 ack_or_ba_timeout_collision; struct statistics_tx_non_phy_agg agg; /* * "tx_power" are optional parameters provided by uCode, * 6000 series is the only device provide the information, * Those are reserved fields for all the other devices */ struct statistics_tx_power tx_power; __le32 reserved1; } __packed; struct statistics_div { __le32 tx_on_a; __le32 tx_on_b; __le32 exec_time; __le32 probe_time; __le32 reserved1; __le32 reserved2; } __packed; struct statistics_general_common { __le32 temperature; /* radio temperature */ __le32 temperature_m; /* radio voltage */ struct statistics_dbg dbg; __le32 sleep_time; __le32 slots_out; __le32 slots_idle; __le32 ttl_timestamp; struct statistics_div div; __le32 rx_enable_counter; /* * num_of_sos_states: * count the number of times we have to re-tune * in order to get out of bad PHY status */ __le32 num_of_sos_states; } __packed; struct statistics_bt_activity { /* Tx statistics */ __le32 hi_priority_tx_req_cnt; __le32 hi_priority_tx_denied_cnt; __le32 lo_priority_tx_req_cnt; __le32 lo_priority_tx_denied_cnt; /* Rx statistics */ __le32 hi_priority_rx_req_cnt; __le32 hi_priority_rx_denied_cnt; __le32 lo_priority_rx_req_cnt; __le32 lo_priority_rx_denied_cnt; } __packed; struct statistics_general { struct statistics_general_common common; __le32 reserved2; __le32 reserved3; } __packed; struct statistics_general_bt { struct statistics_general_common common; struct statistics_bt_activity activity; __le32 reserved2; __le32 reserved3; } __packed; #define UCODE_STATISTICS_CLEAR_MSK (0x1 << 0) #define UCODE_STATISTICS_FREQUENCY_MSK (0x1 << 1) #define UCODE_STATISTICS_NARROW_BAND_MSK (0x1 << 2) /* * REPLY_STATISTICS_CMD = 0x9c, * all devices identical. * * This command triggers an immediate response containing uCode statistics. * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below. * * If the CLEAR_STATS configuration flag is set, uCode will clear its * internal copy of the statistics (counters) after issuing the response. * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below). * * If the DISABLE_NOTIF configuration flag is set, uCode will not issue * STATISTICS_NOTIFICATIONs after received beacons (see below). This flag * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself. */ #define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1) /* see above */ #define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */ struct iwl_statistics_cmd { __le32 configuration_flags; /* IWL_STATS_CONF_* */ } __packed; /* * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command) * * By default, uCode issues this notification after receiving a beacon * while associated. To disable this behavior, set DISABLE_NOTIF flag in the * REPLY_STATISTICS_CMD 0x9c, above. * * Statistics counters continue to increment beacon after beacon, but are * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD * 0x9c with CLEAR_STATS bit set (see above). * * uCode also issues this notification during scans. uCode clears statistics * appropriately so that each notification contains statistics for only the * one channel that has just been scanned. */ #define STATISTICS_REPLY_FLG_BAND_24G_MSK cpu_to_le32(0x2) #define STATISTICS_REPLY_FLG_HT40_MODE_MSK cpu_to_le32(0x8) struct iwl_notif_statistics { __le32 flag; struct statistics_rx rx; struct statistics_tx tx; struct statistics_general general; } __packed; struct iwl_bt_notif_statistics { __le32 flag; struct statistics_rx_bt rx; struct statistics_tx tx; struct statistics_general_bt general; } __packed; /* * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command) * * uCode send MISSED_BEACONS_NOTIFICATION to driver when detect beacon missed * in regardless of how many missed beacons, which mean when driver receive the * notification, inside the command, it can find all the beacons information * which include number of total missed beacons, number of consecutive missed * beacons, number of beacons received and number of beacons expected to * receive. * * If uCode detected consecutive_missed_beacons > 5, it will reset the radio * in order to bring the radio/PHY back to working state; which has no relation * to when driver will perform sensitivity calibration. * * Driver should set it own missed_beacon_threshold to decide when to perform * sensitivity calibration based on number of consecutive missed beacons in * order to improve overall performance, especially in noisy environment. * */ #define IWL_MISSED_BEACON_THRESHOLD_MIN (1) #define IWL_MISSED_BEACON_THRESHOLD_DEF (5) #define IWL_MISSED_BEACON_THRESHOLD_MAX IWL_MISSED_BEACON_THRESHOLD_DEF struct iwl_missed_beacon_notif { __le32 consecutive_missed_beacons; __le32 total_missed_becons; __le32 num_expected_beacons; __le32 num_recvd_beacons; } __packed; /****************************************************************************** * (11) * Rx Calibration Commands: * * With the uCode used for open source drivers, most Tx calibration (except * for Tx Power) and most Rx calibration is done by uCode during the * "initialize" phase of uCode boot. Driver must calibrate only: * * 1) Tx power (depends on temperature), described elsewhere * 2) Receiver gain balance (optimize MIMO, and detect disconnected antennas) * 3) Receiver sensitivity (to optimize signal detection) * *****************************************************************************/ /** * SENSITIVITY_CMD = 0xa8 (command, has simple generic response) * * This command sets up the Rx signal detector for a sensitivity level that * is high enough to lock onto all signals within the associated network, * but low enough to ignore signals that are below a certain threshold, so as * not to have too many "false alarms". False alarms are signals that the * Rx DSP tries to lock onto, but then discards after determining that they * are noise. * * The optimum number of false alarms is between 5 and 50 per 200 TUs * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e. * time listening, not transmitting). Driver must adjust sensitivity so that * the ratio of actual false alarms to actual Rx time falls within this range. * * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each * received beacon. These provide information to the driver to analyze the * sensitivity. Don't analyze statistics that come in from scanning, or any * other non-associated-network source. Pertinent statistics include: * * From "general" statistics (struct statistics_rx_non_phy): * * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level) * Measure of energy of desired signal. Used for establishing a level * below which the device does not detect signals. * * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB) * Measure of background noise in silent period after beacon. * * channel_load * uSecs of actual Rx time during beacon period (varies according to * how much time was spent transmitting). * * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately: * * false_alarm_cnt * Signal locks abandoned early (before phy-level header). * * plcp_err * Signal locks abandoned late (during phy-level header). * * NOTE: Both false_alarm_cnt and plcp_err increment monotonically from * beacon to beacon, i.e. each value is an accumulation of all errors * before and including the latest beacon. Values will wrap around to 0 * after counting up to 2^32 - 1. Driver must differentiate vs. * previous beacon's values to determine # false alarms in the current * beacon period. * * Total number of false alarms = false_alarms + plcp_errs * * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd * (notice that the start points for OFDM are at or close to settings for * maximum sensitivity): * * START / MIN / MAX * HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX 90 / 85 / 120 * HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX 170 / 170 / 210 * HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX 105 / 105 / 140 * HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX 220 / 220 / 270 * * If actual rate of OFDM false alarms (+ plcp_errors) is too high * (greater than 50 for each 204.8 msecs listening), reduce sensitivity * by *adding* 1 to all 4 of the table entries above, up to the max for * each entry. Conversely, if false alarm rate is too low (less than 5 * for each 204.8 msecs listening), *subtract* 1 from each entry to * increase sensitivity. * * For CCK sensitivity, keep track of the following: * * 1). 20-beacon history of maximum background noise, indicated by * (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the * 3 receivers. For any given beacon, the "silence reference" is * the maximum of last 60 samples (20 beacons * 3 receivers). * * 2). 10-beacon history of strongest signal level, as indicated * by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers, * i.e. the strength of the signal through the best receiver at the * moment. These measurements are "upside down", with lower values * for stronger signals, so max energy will be *minimum* value. * * Then for any given beacon, the driver must determine the *weakest* * of the strongest signals; this is the minimum level that needs to be * successfully detected, when using the best receiver at the moment. * "Max cck energy" is the maximum (higher value means lower energy!) * of the last 10 minima. Once this is determined, driver must add * a little margin by adding "6" to it. * * 3). Number of consecutive beacon periods with too few false alarms. * Reset this to 0 at the first beacon period that falls within the * "good" range (5 to 50 false alarms per 204.8 milliseconds rx). * * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd * (notice that the start points for CCK are at maximum sensitivity): * * START / MIN / MAX * HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX 125 / 125 / 200 * HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX 200 / 200 / 400 * HD_MIN_ENERGY_CCK_DET_INDEX 100 / 0 / 100 * * If actual rate of CCK false alarms (+ plcp_errors) is too high * (greater than 50 for each 204.8 msecs listening), method for reducing * sensitivity is: * * 1) *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX, * up to max 400. * * 2) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160, * sensitivity has been reduced a significant amount; bring it up to * a moderate 161. Otherwise, *add* 3, up to max 200. * * 3) a) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160, * sensitivity has been reduced only a moderate or small amount; * *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX, * down to min 0. Otherwise (if gain has been significantly reduced), * don't change the HD_MIN_ENERGY_CCK_DET_INDEX value. * * b) Save a snapshot of the "silence reference". * * If actual rate of CCK false alarms (+ plcp_errors) is too low * (less than 5 for each 204.8 msecs listening), method for increasing * sensitivity is used only if: * * 1a) Previous beacon did not have too many false alarms * 1b) AND difference between previous "silence reference" and current * "silence reference" (prev - current) is 2 or more, * OR 2) 100 or more consecutive beacon periods have had rate of * less than 5 false alarms per 204.8 milliseconds rx time. * * Method for increasing sensitivity: * * 1) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX, * down to min 125. * * 2) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX, * down to min 200. * * 3) *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100. * * If actual rate of CCK false alarms (+ plcp_errors) is within good range * (between 5 and 50 for each 204.8 msecs listening): * * 1) Save a snapshot of the silence reference. * * 2) If previous beacon had too many CCK false alarms (+ plcp_errors), * give some extra margin to energy threshold by *subtracting* 8 * from value in HD_MIN_ENERGY_CCK_DET_INDEX. * * For all cases (too few, too many, good range), make sure that the CCK * detection threshold (energy) is below the energy level for robust * detection over the past 10 beacon periods, the "Max cck energy". * Lower values mean higher energy; this means making sure that the value * in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy". * */ /* * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd) */ #define HD_TABLE_SIZE (11) /* number of entries */ #define HD_MIN_ENERGY_CCK_DET_INDEX (0) /* table indexes */ #define HD_MIN_ENERGY_OFDM_DET_INDEX (1) #define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX (2) #define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX (3) #define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX (4) #define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX (5) #define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX (6) #define HD_BARKER_CORR_TH_ADD_MIN_INDEX (7) #define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX (8) #define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX (9) #define HD_OFDM_ENERGY_TH_IN_INDEX (10) /* * Additional table entries in enhance SENSITIVITY_CMD */ #define HD_INA_NON_SQUARE_DET_OFDM_INDEX (11) #define HD_INA_NON_SQUARE_DET_CCK_INDEX (12) #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX (13) #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX (14) #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (15) #define HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX (16) #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX (17) #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX (18) #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (19) #define HD_CCK_NON_SQUARE_DET_SLOPE_INDEX (20) #define HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX (21) #define HD_RESERVED (22) /* number of entries for enhanced tbl */ #define ENHANCE_HD_TABLE_SIZE (23) /* number of additional entries for enhanced tbl */ #define ENHANCE_HD_TABLE_ENTRIES (ENHANCE_HD_TABLE_SIZE - HD_TABLE_SIZE) #define HD_INA_NON_SQUARE_DET_OFDM_DATA_V1 cpu_to_le16(0) #define HD_INA_NON_SQUARE_DET_CCK_DATA_V1 cpu_to_le16(0) #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1 cpu_to_le16(0) #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 cpu_to_le16(668) #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 cpu_to_le16(4) #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1 cpu_to_le16(486) #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1 cpu_to_le16(37) #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 cpu_to_le16(853) #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 cpu_to_le16(4) #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1 cpu_to_le16(476) #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1 cpu_to_le16(99) #define HD_INA_NON_SQUARE_DET_OFDM_DATA_V2 cpu_to_le16(1) #define HD_INA_NON_SQUARE_DET_CCK_DATA_V2 cpu_to_le16(1) #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2 cpu_to_le16(1) #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 cpu_to_le16(600) #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 cpu_to_le16(40) #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2 cpu_to_le16(486) #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2 cpu_to_le16(45) #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 cpu_to_le16(853) #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 cpu_to_le16(60) #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2 cpu_to_le16(476) #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2 cpu_to_le16(99) /* Control field in struct iwl_sensitivity_cmd */ #define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE cpu_to_le16(0) #define SENSITIVITY_CMD_CONTROL_WORK_TABLE cpu_to_le16(1) /** * struct iwl_sensitivity_cmd * @control: (1) updates working table, (0) updates default table * @table: energy threshold values, use HD_* as index into table * * Always use "1" in "control" to update uCode's working table and DSP. */ struct iwl_sensitivity_cmd { __le16 control; /* always use "1" */ __le16 table[HD_TABLE_SIZE]; /* use HD_* as index */ } __packed; /* * */ struct iwl_enhance_sensitivity_cmd { __le16 control; /* always use "1" */ __le16 enhance_table[ENHANCE_HD_TABLE_SIZE]; /* use HD_* as index */ } __packed; /** * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response) * * This command sets the relative gains of agn device's 3 radio receiver chains. * * After the first association, driver should accumulate signal and noise * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20 * beacons from the associated network (don't collect statistics that come * in from scanning, or any other non-network source). * * DISCONNECTED ANTENNA: * * Driver should determine which antennas are actually connected, by comparing * average beacon signal levels for the 3 Rx chains. Accumulate (add) the * following values over 20 beacons, one accumulator for each of the chains * a/b/c, from struct statistics_rx_non_phy: * * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB) * * Find the strongest signal from among a/b/c. Compare the other two to the * strongest. If any signal is more than 15 dB (times 20, unless you * divide the accumulated values by 20) below the strongest, the driver * considers that antenna to be disconnected, and should not try to use that * antenna/chain for Rx or Tx. If both A and B seem to be disconnected, * driver should declare the stronger one as connected, and attempt to use it * (A and B are the only 2 Tx chains!). * * * RX BALANCE: * * Driver should balance the 3 receivers (but just the ones that are connected * to antennas, see above) for gain, by comparing the average signal levels * detected during the silence after each beacon (background noise). * Accumulate (add) the following values over 20 beacons, one accumulator for * each of the chains a/b/c, from struct statistics_rx_non_phy: * * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB) * * Find the weakest background noise level from among a/b/c. This Rx chain * will be the reference, with 0 gain adjustment. Attenuate other channels by * finding noise difference: * * (accum_noise[i] - accum_noise[reference]) / 30 * * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB. * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the * driver should limit the difference results to a range of 0-3 (0-4.5 dB), * and set bit 2 to indicate "reduce gain". The value for the reference * (weakest) chain should be "0". * * diff_gain_[abc] bit fields: * 2: (1) reduce gain, (0) increase gain * 1-0: amount of gain, units of 1.5 dB */ /* Phy calibration command for series */ enum { IWL_PHY_CALIBRATE_DC_CMD = 8, IWL_PHY_CALIBRATE_LO_CMD = 9, IWL_PHY_CALIBRATE_TX_IQ_CMD = 11, IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD = 15, IWL_PHY_CALIBRATE_BASE_BAND_CMD = 16, IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD = 17, IWL_PHY_CALIBRATE_TEMP_OFFSET_CMD = 18, }; /* This enum defines the bitmap of various calibrations to enable in both * init ucode and runtime ucode through CALIBRATION_CFG_CMD. */ enum iwl_ucode_calib_cfg { IWL_CALIB_CFG_RX_BB_IDX = BIT(0), IWL_CALIB_CFG_DC_IDX = BIT(1), IWL_CALIB_CFG_LO_IDX = BIT(2), IWL_CALIB_CFG_TX_IQ_IDX = BIT(3), IWL_CALIB_CFG_RX_IQ_IDX = BIT(4), IWL_CALIB_CFG_NOISE_IDX = BIT(5), IWL_CALIB_CFG_CRYSTAL_IDX = BIT(6), IWL_CALIB_CFG_TEMPERATURE_IDX = BIT(7), IWL_CALIB_CFG_PAPD_IDX = BIT(8), IWL_CALIB_CFG_SENSITIVITY_IDX = BIT(9), IWL_CALIB_CFG_TX_PWR_IDX = BIT(10), }; #define IWL_CALIB_INIT_CFG_ALL cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX | \ IWL_CALIB_CFG_DC_IDX | \ IWL_CALIB_CFG_LO_IDX | \ IWL_CALIB_CFG_TX_IQ_IDX | \ IWL_CALIB_CFG_RX_IQ_IDX | \ IWL_CALIB_CFG_CRYSTAL_IDX) #define IWL_CALIB_RT_CFG_ALL cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX | \ IWL_CALIB_CFG_DC_IDX | \ IWL_CALIB_CFG_LO_IDX | \ IWL_CALIB_CFG_TX_IQ_IDX | \ IWL_CALIB_CFG_RX_IQ_IDX | \ IWL_CALIB_CFG_TEMPERATURE_IDX | \ IWL_CALIB_CFG_PAPD_IDX | \ IWL_CALIB_CFG_TX_PWR_IDX | \ IWL_CALIB_CFG_CRYSTAL_IDX) #define IWL_CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_MSK cpu_to_le32(BIT(0)) struct iwl_calib_cfg_elmnt_s { __le32 is_enable; __le32 start; __le32 send_res; __le32 apply_res; __le32 reserved; } __packed; struct iwl_calib_cfg_status_s { struct iwl_calib_cfg_elmnt_s once; struct iwl_calib_cfg_elmnt_s perd; __le32 flags; } __packed; struct iwl_calib_cfg_cmd { struct iwl_calib_cfg_status_s ucd_calib_cfg; struct iwl_calib_cfg_status_s drv_calib_cfg; __le32 reserved1; } __packed; struct iwl_calib_hdr { u8 op_code; u8 first_group; u8 groups_num; u8 data_valid; } __packed; struct iwl_calib_cmd { struct iwl_calib_hdr hdr; u8 data[]; } __packed; struct iwl_calib_xtal_freq_cmd { struct iwl_calib_hdr hdr; u8 cap_pin1; u8 cap_pin2; u8 pad[2]; } __packed; #define DEFAULT_RADIO_SENSOR_OFFSET cpu_to_le16(2700) struct iwl_calib_temperature_offset_cmd { struct iwl_calib_hdr hdr; __le16 radio_sensor_offset; __le16 reserved; } __packed; struct iwl_calib_temperature_offset_v2_cmd { struct iwl_calib_hdr hdr; __le16 radio_sensor_offset_high; __le16 radio_sensor_offset_low; __le16 burntVoltageRef; __le16 reserved; } __packed; /* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */ struct iwl_calib_chain_noise_reset_cmd { struct iwl_calib_hdr hdr; u8 data[]; }; /* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */ struct iwl_calib_chain_noise_gain_cmd { struct iwl_calib_hdr hdr; u8 delta_gain_1; u8 delta_gain_2; u8 pad[2]; } __packed; /****************************************************************************** * (12) * Miscellaneous Commands: * *****************************************************************************/ /* * LEDs Command & Response * REPLY_LEDS_CMD = 0x48 (command, has simple generic response) * * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field), * this command turns it on or off, or sets up a periodic blinking cycle. */ struct iwl_led_cmd { __le32 interval; /* "interval" in uSec */ u8 id; /* 1: Activity, 2: Link, 3: Tech */ u8 off; /* # intervals off while blinking; * "0", with >0 "on" value, turns LED on */ u8 on; /* # intervals on while blinking; * "0", regardless of "off", turns LED off */ u8 reserved; } __packed; /* * station priority table entries * also used as potential "events" value for both * COEX_MEDIUM_NOTIFICATION and COEX_EVENT_CMD */ /* * COEX events entry flag masks * RP - Requested Priority * WP - Win Medium Priority: priority assigned when the contention has been won */ #define COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG (0x1) #define COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG (0x2) #define COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG (0x4) #define COEX_CU_UNASSOC_IDLE_RP 4 #define COEX_CU_UNASSOC_MANUAL_SCAN_RP 4 #define COEX_CU_UNASSOC_AUTO_SCAN_RP 4 #define COEX_CU_CALIBRATION_RP 4 #define COEX_CU_PERIODIC_CALIBRATION_RP 4 #define COEX_CU_CONNECTION_ESTAB_RP 4 #define COEX_CU_ASSOCIATED_IDLE_RP 4 #define COEX_CU_ASSOC_MANUAL_SCAN_RP 4 #define COEX_CU_ASSOC_AUTO_SCAN_RP 4 #define COEX_CU_ASSOC_ACTIVE_LEVEL_RP 4 #define COEX_CU_RF_ON_RP 6 #define COEX_CU_RF_OFF_RP 4 #define COEX_CU_STAND_ALONE_DEBUG_RP 6 #define COEX_CU_IPAN_ASSOC_LEVEL_RP 4 #define COEX_CU_RSRVD1_RP 4 #define COEX_CU_RSRVD2_RP 4 #define COEX_CU_UNASSOC_IDLE_WP 3 #define COEX_CU_UNASSOC_MANUAL_SCAN_WP 3 #define COEX_CU_UNASSOC_AUTO_SCAN_WP 3 #define COEX_CU_CALIBRATION_WP 3 #define COEX_CU_PERIODIC_CALIBRATION_WP 3 #define COEX_CU_CONNECTION_ESTAB_WP 3 #define COEX_CU_ASSOCIATED_IDLE_WP 3 #define COEX_CU_ASSOC_MANUAL_SCAN_WP 3 #define COEX_CU_ASSOC_AUTO_SCAN_WP 3 #define COEX_CU_ASSOC_ACTIVE_LEVEL_WP 3 #define COEX_CU_RF_ON_WP 3 #define COEX_CU_RF_OFF_WP 3 #define COEX_CU_STAND_ALONE_DEBUG_WP 6 #define COEX_CU_IPAN_ASSOC_LEVEL_WP 3 #define COEX_CU_RSRVD1_WP 3 #define COEX_CU_RSRVD2_WP 3 #define COEX_UNASSOC_IDLE_FLAGS 0 #define COEX_UNASSOC_MANUAL_SCAN_FLAGS \ (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG) #define COEX_UNASSOC_AUTO_SCAN_FLAGS \ (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG) #define COEX_CALIBRATION_FLAGS \ (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG) #define COEX_PERIODIC_CALIBRATION_FLAGS 0 /* * COEX_CONNECTION_ESTAB: * we need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network. */ #define COEX_CONNECTION_ESTAB_FLAGS \ (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \ COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG) #define COEX_ASSOCIATED_IDLE_FLAGS 0 #define COEX_ASSOC_MANUAL_SCAN_FLAGS \ (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG) #define COEX_ASSOC_AUTO_SCAN_FLAGS \ (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG) #define COEX_ASSOC_ACTIVE_LEVEL_FLAGS 0 #define COEX_RF_ON_FLAGS 0 #define COEX_RF_OFF_FLAGS 0 #define COEX_STAND_ALONE_DEBUG_FLAGS \ (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG) #define COEX_IPAN_ASSOC_LEVEL_FLAGS \ (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \ COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG) #define COEX_RSRVD1_FLAGS 0 #define COEX_RSRVD2_FLAGS 0 /* * COEX_CU_RF_ON is the event wrapping all radio ownership. * We need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network. */ #define COEX_CU_RF_ON_FLAGS \ (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \ COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG) enum { /* un-association part */ COEX_UNASSOC_IDLE = 0, COEX_UNASSOC_MANUAL_SCAN = 1, COEX_UNASSOC_AUTO_SCAN = 2, /* calibration */ COEX_CALIBRATION = 3, COEX_PERIODIC_CALIBRATION = 4, /* connection */ COEX_CONNECTION_ESTAB = 5, /* association part */ COEX_ASSOCIATED_IDLE = 6, COEX_ASSOC_MANUAL_SCAN = 7, COEX_ASSOC_AUTO_SCAN = 8, COEX_ASSOC_ACTIVE_LEVEL = 9, /* RF ON/OFF */ COEX_RF_ON = 10, COEX_RF_OFF = 11, COEX_STAND_ALONE_DEBUG = 12, /* IPAN */ COEX_IPAN_ASSOC_LEVEL = 13, /* reserved */ COEX_RSRVD1 = 14, COEX_RSRVD2 = 15, COEX_NUM_OF_EVENTS = 16 }; /* * Coexistence WIFI/WIMAX Command * COEX_PRIORITY_TABLE_CMD = 0x5a * */ struct iwl_wimax_coex_event_entry { u8 request_prio; u8 win_medium_prio; u8 reserved; u8 flags; } __packed; /* COEX flag masks */ /* Station table is valid */ #define COEX_FLAGS_STA_TABLE_VALID_MSK (0x1) /* UnMask wake up src at unassociated sleep */ #define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK (0x4) /* UnMask wake up src at associated sleep */ #define COEX_FLAGS_ASSOC_WA_UNMASK_MSK (0x8) /* Enable CoEx feature. */ #define COEX_FLAGS_COEX_ENABLE_MSK (0x80) struct iwl_wimax_coex_cmd { u8 flags; u8 reserved[3]; struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS]; } __packed; /* * Coexistence MEDIUM NOTIFICATION * COEX_MEDIUM_NOTIFICATION = 0x5b * * notification from uCode to host to indicate medium changes * */ /* * status field * bit 0 - 2: medium status * bit 3: medium change indication * bit 4 - 31: reserved */ /* status option values, (0 - 2 bits) */ #define COEX_MEDIUM_BUSY (0x0) /* radio belongs to WiMAX */ #define COEX_MEDIUM_ACTIVE (0x1) /* radio belongs to WiFi */ #define COEX_MEDIUM_PRE_RELEASE (0x2) /* received radio release */ #define COEX_MEDIUM_MSK (0x7) /* send notification status (1 bit) */ #define COEX_MEDIUM_CHANGED (0x8) #define COEX_MEDIUM_CHANGED_MSK (0x8) #define COEX_MEDIUM_SHIFT (3) struct iwl_coex_medium_notification { __le32 status; __le32 events; } __packed; /* * Coexistence EVENT Command * COEX_EVENT_CMD = 0x5c * * send from host to uCode for coex event request. */ /* flags options */ #define COEX_EVENT_REQUEST_MSK (0x1) struct iwl_coex_event_cmd { u8 flags; u8 event; __le16 reserved; } __packed; struct iwl_coex_event_resp { __le32 status; } __packed; /****************************************************************************** * Bluetooth Coexistence commands * *****************************************************************************/ /* * BT Status notification * REPLY_BT_COEX_PROFILE_NOTIF = 0xce */ enum iwl_bt_coex_profile_traffic_load { IWL_BT_COEX_TRAFFIC_LOAD_NONE = 0, IWL_BT_COEX_TRAFFIC_LOAD_LOW = 1, IWL_BT_COEX_TRAFFIC_LOAD_HIGH = 2, IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS = 3, /* * There are no more even though below is a u8, the * indication from the BT device only has two bits. */ }; #define BT_SESSION_ACTIVITY_1_UART_MSG 0x1 #define BT_SESSION_ACTIVITY_2_UART_MSG 0x2 /* BT UART message - Share Part (BT -> WiFi) */ #define BT_UART_MSG_FRAME1MSGTYPE_POS (0) #define BT_UART_MSG_FRAME1MSGTYPE_MSK \ (0x7 << BT_UART_MSG_FRAME1MSGTYPE_POS) #define BT_UART_MSG_FRAME1SSN_POS (3) #define BT_UART_MSG_FRAME1SSN_MSK \ (0x3 << BT_UART_MSG_FRAME1SSN_POS) #define BT_UART_MSG_FRAME1UPDATEREQ_POS (5) #define BT_UART_MSG_FRAME1UPDATEREQ_MSK \ (0x1 << BT_UART_MSG_FRAME1UPDATEREQ_POS) #define BT_UART_MSG_FRAME1RESERVED_POS (6) #define BT_UART_MSG_FRAME1RESERVED_MSK \ (0x3 << BT_UART_MSG_FRAME1RESERVED_POS) #define BT_UART_MSG_FRAME2OPENCONNECTIONS_POS (0) #define BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK \ (0x3 << BT_UART_MSG_FRAME2OPENCONNECTIONS_POS) #define BT_UART_MSG_FRAME2TRAFFICLOAD_POS (2) #define BT_UART_MSG_FRAME2TRAFFICLOAD_MSK \ (0x3 << BT_UART_MSG_FRAME2TRAFFICLOAD_POS) #define BT_UART_MSG_FRAME2CHLSEQN_POS (4) #define BT_UART_MSG_FRAME2CHLSEQN_MSK \ (0x1 << BT_UART_MSG_FRAME2CHLSEQN_POS) #define BT_UART_MSG_FRAME2INBAND_POS (5) #define BT_UART_MSG_FRAME2INBAND_MSK \ (0x1 << BT_UART_MSG_FRAME2INBAND_POS) #define BT_UART_MSG_FRAME2RESERVED_POS (6) #define BT_UART_MSG_FRAME2RESERVED_MSK \ (0x3 << BT_UART_MSG_FRAME2RESERVED_POS) #define BT_UART_MSG_FRAME3SCOESCO_POS (0) #define BT_UART_MSG_FRAME3SCOESCO_MSK \ (0x1 << BT_UART_MSG_FRAME3SCOESCO_POS) #define BT_UART_MSG_FRAME3SNIFF_POS (1) #define BT_UART_MSG_FRAME3SNIFF_MSK \ (0x1 << BT_UART_MSG_FRAME3SNIFF_POS) #define BT_UART_MSG_FRAME3A2DP_POS (2) #define BT_UART_MSG_FRAME3A2DP_MSK \ (0x1 << BT_UART_MSG_FRAME3A2DP_POS) #define BT_UART_MSG_FRAME3ACL_POS (3) #define BT_UART_MSG_FRAME3ACL_MSK \ (0x1 << BT_UART_MSG_FRAME3ACL_POS) #define BT_UART_MSG_FRAME3MASTER_POS (4) #define BT_UART_MSG_FRAME3MASTER_MSK \ (0x1 << BT_UART_MSG_FRAME3MASTER_POS) #define BT_UART_MSG_FRAME3OBEX_POS (5) #define BT_UART_MSG_FRAME3OBEX_MSK \ (0x1 << BT_UART_MSG_FRAME3OBEX_POS) #define BT_UART_MSG_FRAME3RESERVED_POS (6) #define BT_UART_MSG_FRAME3RESERVED_MSK \ (0x3 << BT_UART_MSG_FRAME3RESERVED_POS) #define BT_UART_MSG_FRAME4IDLEDURATION_POS (0) #define BT_UART_MSG_FRAME4IDLEDURATION_MSK \ (0x3F << BT_UART_MSG_FRAME4IDLEDURATION_POS) #define BT_UART_MSG_FRAME4RESERVED_POS (6) #define BT_UART_MSG_FRAME4RESERVED_MSK \ (0x3 << BT_UART_MSG_FRAME4RESERVED_POS) #define BT_UART_MSG_FRAME5TXACTIVITY_POS (0) #define BT_UART_MSG_FRAME5TXACTIVITY_MSK \ (0x3 << BT_UART_MSG_FRAME5TXACTIVITY_POS) #define BT_UART_MSG_FRAME5RXACTIVITY_POS (2) #define BT_UART_MSG_FRAME5RXACTIVITY_MSK \ (0x3 << BT_UART_MSG_FRAME5RXACTIVITY_POS) #define BT_UART_MSG_FRAME5ESCORETRANSMIT_POS (4) #define BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK \ (0x3 << BT_UART_MSG_FRAME5ESCORETRANSMIT_POS) #define BT_UART_MSG_FRAME5RESERVED_POS (6) #define BT_UART_MSG_FRAME5RESERVED_MSK \ (0x3 << BT_UART_MSG_FRAME5RESERVED_POS) #define BT_UART_MSG_FRAME6SNIFFINTERVAL_POS (0) #define BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK \ (0x1F << BT_UART_MSG_FRAME6SNIFFINTERVAL_POS) #define BT_UART_MSG_FRAME6DISCOVERABLE_POS (5) #define BT_UART_MSG_FRAME6DISCOVERABLE_MSK \ (0x1 << BT_UART_MSG_FRAME6DISCOVERABLE_POS) #define BT_UART_MSG_FRAME6RESERVED_POS (6) #define BT_UART_MSG_FRAME6RESERVED_MSK \ (0x3 << BT_UART_MSG_FRAME6RESERVED_POS) #define BT_UART_MSG_FRAME7SNIFFACTIVITY_POS (0) #define BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK \ (0x7 << BT_UART_MSG_FRAME7SNIFFACTIVITY_POS) #define BT_UART_MSG_FRAME7PAGE_POS (3) #define BT_UART_MSG_FRAME7PAGE_MSK \ (0x1 << BT_UART_MSG_FRAME7PAGE_POS) #define BT_UART_MSG_FRAME7INQUIRY_POS (4) #define BT_UART_MSG_FRAME7INQUIRY_MSK \ (0x1 << BT_UART_MSG_FRAME7INQUIRY_POS) #define BT_UART_MSG_FRAME7CONNECTABLE_POS (5) #define BT_UART_MSG_FRAME7CONNECTABLE_MSK \ (0x1 << BT_UART_MSG_FRAME7CONNECTABLE_POS) #define BT_UART_MSG_FRAME7RESERVED_POS (6) #define BT_UART_MSG_FRAME7RESERVED_MSK \ (0x3 << BT_UART_MSG_FRAME7RESERVED_POS) /* BT Session Activity 2 UART message (BT -> WiFi) */ #define BT_UART_MSG_2_FRAME1RESERVED1_POS (5) #define BT_UART_MSG_2_FRAME1RESERVED1_MSK \ (0x1<<BT_UART_MSG_2_FRAME1RESERVED1_POS) #define BT_UART_MSG_2_FRAME1RESERVED2_POS (6) #define BT_UART_MSG_2_FRAME1RESERVED2_MSK \ (0x3<<BT_UART_MSG_2_FRAME1RESERVED2_POS) #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS (0) #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_MSK \ (0x3F<<BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS) #define BT_UART_MSG_2_FRAME2RESERVED_POS (6) #define BT_UART_MSG_2_FRAME2RESERVED_MSK \ (0x3<<BT_UART_MSG_2_FRAME2RESERVED_POS) #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS (0) #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_MSK \ (0xF<<BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS) #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS (4) #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_MSK \ (0x1<<BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS) #define BT_UART_MSG_2_FRAME3LEMASTER_POS (5) #define BT_UART_MSG_2_FRAME3LEMASTER_MSK \ (0x1<<BT_UART_MSG_2_FRAME3LEMASTER_POS) #define BT_UART_MSG_2_FRAME3RESERVED_POS (6) #define BT_UART_MSG_2_FRAME3RESERVED_MSK \ (0x3<<BT_UART_MSG_2_FRAME3RESERVED_POS) #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS (0) #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_MSK \ (0xF<<BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS) #define BT_UART_MSG_2_FRAME4NUMLECONN_POS (4) #define BT_UART_MSG_2_FRAME4NUMLECONN_MSK \ (0x3<<BT_UART_MSG_2_FRAME4NUMLECONN_POS) #define BT_UART_MSG_2_FRAME4RESERVED_POS (6) #define BT_UART_MSG_2_FRAME4RESERVED_MSK \ (0x3<<BT_UART_MSG_2_FRAME4RESERVED_POS) #define BT_UART_MSG_2_FRAME5BTMINRSSI_POS (0) #define BT_UART_MSG_2_FRAME5BTMINRSSI_MSK \ (0xF<<BT_UART_MSG_2_FRAME5BTMINRSSI_POS) #define BT_UART_MSG_2_FRAME5LESCANINITMODE_POS (4) #define BT_UART_MSG_2_FRAME5LESCANINITMODE_MSK \ (0x1<<BT_UART_MSG_2_FRAME5LESCANINITMODE_POS) #define BT_UART_MSG_2_FRAME5LEADVERMODE_POS (5) #define BT_UART_MSG_2_FRAME5LEADVERMODE_MSK \ (0x1<<BT_UART_MSG_2_FRAME5LEADVERMODE_POS) #define BT_UART_MSG_2_FRAME5RESERVED_POS (6) #define BT_UART_MSG_2_FRAME5RESERVED_MSK \ (0x3<<BT_UART_MSG_2_FRAME5RESERVED_POS) #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS (0) #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_MSK \ (0x1F<<BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS) #define BT_UART_MSG_2_FRAME6RFU_POS (5) #define BT_UART_MSG_2_FRAME6RFU_MSK \ (0x1<<BT_UART_MSG_2_FRAME6RFU_POS) #define BT_UART_MSG_2_FRAME6RESERVED_POS (6) #define BT_UART_MSG_2_FRAME6RESERVED_MSK \ (0x3<<BT_UART_MSG_2_FRAME6RESERVED_POS) #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS (0) #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_MSK \ (0x7<<BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS) #define BT_UART_MSG_2_FRAME7LEPROFILE1_POS (3) #define BT_UART_MSG_2_FRAME7LEPROFILE1_MSK \ (0x1<<BT_UART_MSG_2_FRAME7LEPROFILE1_POS) #define BT_UART_MSG_2_FRAME7LEPROFILE2_POS (4) #define BT_UART_MSG_2_FRAME7LEPROFILE2_MSK \ (0x1<<BT_UART_MSG_2_FRAME7LEPROFILE2_POS) #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS (5) #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_MSK \ (0x1<<BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS) #define BT_UART_MSG_2_FRAME7RESERVED_POS (6) #define BT_UART_MSG_2_FRAME7RESERVED_MSK \ (0x3<<BT_UART_MSG_2_FRAME7RESERVED_POS) #define BT_ENABLE_REDUCED_TXPOWER_THRESHOLD (-62) #define BT_DISABLE_REDUCED_TXPOWER_THRESHOLD (-65) struct iwl_bt_uart_msg { u8 header; u8 frame1; u8 frame2; u8 frame3; u8 frame4; u8 frame5; u8 frame6; u8 frame7; } __packed; struct iwl_bt_coex_profile_notif { struct iwl_bt_uart_msg last_bt_uart_msg; u8 bt_status; /* 0 - off, 1 - on */ u8 bt_traffic_load; /* 0 .. 3? */ u8 bt_ci_compliance; /* 0 - not complied, 1 - complied */ u8 reserved; } __packed; #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_POS 0 #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_MSK 0x1 #define IWL_BT_COEX_PRIO_TBL_PRIO_POS 1 #define IWL_BT_COEX_PRIO_TBL_PRIO_MASK 0x0e #define IWL_BT_COEX_PRIO_TBL_RESERVED_POS 4 #define IWL_BT_COEX_PRIO_TBL_RESERVED_MASK 0xf0 #define IWL_BT_COEX_PRIO_TBL_PRIO_SHIFT 1 /* * BT Coexistence Priority table * REPLY_BT_COEX_PRIO_TABLE = 0xcc */ enum bt_coex_prio_table_events { BT_COEX_PRIO_TBL_EVT_INIT_CALIB1 = 0, BT_COEX_PRIO_TBL_EVT_INIT_CALIB2 = 1, BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW1 = 2, BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW2 = 3, /* DC calib */ BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH1 = 4, BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH2 = 5, BT_COEX_PRIO_TBL_EVT_DTIM = 6, BT_COEX_PRIO_TBL_EVT_SCAN52 = 7, BT_COEX_PRIO_TBL_EVT_SCAN24 = 8, BT_COEX_PRIO_TBL_EVT_RESERVED0 = 9, BT_COEX_PRIO_TBL_EVT_RESERVED1 = 10, BT_COEX_PRIO_TBL_EVT_RESERVED2 = 11, BT_COEX_PRIO_TBL_EVT_RESERVED3 = 12, BT_COEX_PRIO_TBL_EVT_RESERVED4 = 13, BT_COEX_PRIO_TBL_EVT_RESERVED5 = 14, BT_COEX_PRIO_TBL_EVT_RESERVED6 = 15, /* BT_COEX_PRIO_TBL_EVT_MAX should always be last */ BT_COEX_PRIO_TBL_EVT_MAX, }; enum bt_coex_prio_table_priorities { BT_COEX_PRIO_TBL_DISABLED = 0, BT_COEX_PRIO_TBL_PRIO_LOW = 1, BT_COEX_PRIO_TBL_PRIO_HIGH = 2, BT_COEX_PRIO_TBL_PRIO_BYPASS = 3, BT_COEX_PRIO_TBL_PRIO_COEX_OFF = 4, BT_COEX_PRIO_TBL_PRIO_COEX_ON = 5, BT_COEX_PRIO_TBL_PRIO_RSRVD1 = 6, BT_COEX_PRIO_TBL_PRIO_RSRVD2 = 7, BT_COEX_PRIO_TBL_MAX, }; struct iwl_bt_coex_prio_table_cmd { u8 prio_tbl[BT_COEX_PRIO_TBL_EVT_MAX]; } __packed; #define IWL_BT_COEX_ENV_CLOSE 0 #define IWL_BT_COEX_ENV_OPEN 1 /* * BT Protection Envelope * REPLY_BT_COEX_PROT_ENV = 0xcd */ struct iwl_bt_coex_prot_env_cmd { u8 action; /* 0 = closed, 1 = open */ u8 type; /* 0 .. 15 */ u8 reserved[2]; } __packed; /* * REPLY_D3_CONFIG */ enum iwlagn_d3_wakeup_filters { IWLAGN_D3_WAKEUP_RFKILL = BIT(0), IWLAGN_D3_WAKEUP_SYSASSERT = BIT(1), }; struct iwlagn_d3_config_cmd { __le32 min_sleep_time; __le32 wakeup_flags; } __packed; /* * REPLY_WOWLAN_PATTERNS */ #define IWLAGN_WOWLAN_MIN_PATTERN_LEN 16 #define IWLAGN_WOWLAN_MAX_PATTERN_LEN 128 struct iwlagn_wowlan_pattern { u8 mask[IWLAGN_WOWLAN_MAX_PATTERN_LEN / 8]; u8 pattern[IWLAGN_WOWLAN_MAX_PATTERN_LEN]; u8 mask_size; u8 pattern_size; __le16 reserved; } __packed; #define IWLAGN_WOWLAN_MAX_PATTERNS 20 struct iwlagn_wowlan_patterns_cmd { __le32 n_patterns; struct iwlagn_wowlan_pattern patterns[]; } __packed; /* * REPLY_WOWLAN_WAKEUP_FILTER */ enum iwlagn_wowlan_wakeup_filters { IWLAGN_WOWLAN_WAKEUP_MAGIC_PACKET = BIT(0), IWLAGN_WOWLAN_WAKEUP_PATTERN_MATCH = BIT(1), IWLAGN_WOWLAN_WAKEUP_BEACON_MISS = BIT(2), IWLAGN_WOWLAN_WAKEUP_LINK_CHANGE = BIT(3), IWLAGN_WOWLAN_WAKEUP_GTK_REKEY_FAIL = BIT(4), IWLAGN_WOWLAN_WAKEUP_EAP_IDENT_REQ = BIT(5), IWLAGN_WOWLAN_WAKEUP_4WAY_HANDSHAKE = BIT(6), IWLAGN_WOWLAN_WAKEUP_ALWAYS = BIT(7), IWLAGN_WOWLAN_WAKEUP_ENABLE_NET_DETECT = BIT(8), }; struct iwlagn_wowlan_wakeup_filter_cmd { __le32 enabled; __le16 non_qos_seq; __le16 reserved; __le16 qos_seq[8]; }; /* * REPLY_WOWLAN_TSC_RSC_PARAMS */ #define IWLAGN_NUM_RSC 16 struct tkip_sc { __le16 iv16; __le16 pad; __le32 iv32; } __packed; struct iwlagn_tkip_rsc_tsc { struct tkip_sc unicast_rsc[IWLAGN_NUM_RSC]; struct tkip_sc multicast_rsc[IWLAGN_NUM_RSC]; struct tkip_sc tsc; } __packed; struct aes_sc { __le64 pn; } __packed; struct iwlagn_aes_rsc_tsc { struct aes_sc unicast_rsc[IWLAGN_NUM_RSC]; struct aes_sc multicast_rsc[IWLAGN_NUM_RSC]; struct aes_sc tsc; } __packed; union iwlagn_all_tsc_rsc { struct iwlagn_tkip_rsc_tsc tkip; struct iwlagn_aes_rsc_tsc aes; }; struct iwlagn_wowlan_rsc_tsc_params_cmd { union iwlagn_all_tsc_rsc all_tsc_rsc; } __packed; /* * REPLY_WOWLAN_TKIP_PARAMS */ #define IWLAGN_MIC_KEY_SIZE 8 #define IWLAGN_P1K_SIZE 5 struct iwlagn_mic_keys { u8 tx[IWLAGN_MIC_KEY_SIZE]; u8 rx_unicast[IWLAGN_MIC_KEY_SIZE]; u8 rx_mcast[IWLAGN_MIC_KEY_SIZE]; } __packed; struct iwlagn_p1k_cache { __le16 p1k[IWLAGN_P1K_SIZE]; } __packed; #define IWLAGN_NUM_RX_P1K_CACHE 2 struct iwlagn_wowlan_tkip_params_cmd { struct iwlagn_mic_keys mic_keys; struct iwlagn_p1k_cache tx; struct iwlagn_p1k_cache rx_uni[IWLAGN_NUM_RX_P1K_CACHE]; struct iwlagn_p1k_cache rx_multi[IWLAGN_NUM_RX_P1K_CACHE]; } __packed; /* * REPLY_WOWLAN_KEK_KCK_MATERIAL */ #define IWLAGN_KCK_MAX_SIZE 32 #define IWLAGN_KEK_MAX_SIZE 32 struct iwlagn_wowlan_kek_kck_material_cmd { u8 kck[IWLAGN_KCK_MAX_SIZE]; u8 kek[IWLAGN_KEK_MAX_SIZE]; __le16 kck_len; __le16 kek_len; __le64 replay_ctr; } __packed; #define RF_KILL_INDICATOR_FOR_WOWLAN 0x87 /* * REPLY_WOWLAN_GET_STATUS = 0xe5 */ struct iwlagn_wowlan_status { __le64 replay_ctr; __le32 rekey_status; __le32 wakeup_reason; u8 pattern_number; u8 reserved1; __le16 qos_seq_ctr[8]; __le16 non_qos_seq_ctr; __le16 reserved2; union iwlagn_all_tsc_rsc tsc_rsc; __le16 reserved3; } __packed; /* * REPLY_WIPAN_PARAMS = 0xb2 (Commands and Notification) */ /* * Minimum slot time in TU */ #define IWL_MIN_SLOT_TIME 20 /** * struct iwl_wipan_slot * @width: Time in TU * @type: * 0 - BSS * 1 - PAN */ struct iwl_wipan_slot { __le16 width; u8 type; u8 reserved; } __packed; #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_CTS BIT(1) /* reserved */ #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_QUIET BIT(2) /* reserved */ #define IWL_WIPAN_PARAMS_FLG_SLOTTED_MODE BIT(3) /* reserved */ #define IWL_WIPAN_PARAMS_FLG_FILTER_BEACON_NOTIF BIT(4) #define IWL_WIPAN_PARAMS_FLG_FULL_SLOTTED_MODE BIT(5) /** * struct iwl_wipan_params_cmd * @flags: * bit0: reserved * bit1: CP leave channel with CTS * bit2: CP leave channel qith Quiet * bit3: slotted mode * 1 - work in slotted mode * 0 - work in non slotted mode * bit4: filter beacon notification * bit5: full tx slotted mode. if this flag is set, * uCode will perform leaving channel methods in context switch * also when working in same channel mode * @num_slots: 1 - 10 */ struct iwl_wipan_params_cmd { __le16 flags; u8 reserved; u8 num_slots; struct iwl_wipan_slot slots[10]; } __packed; /* * REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9 * * TODO: Figure out what this is used for, * it can only switch between 2.4 GHz * channels!! */ struct iwl_wipan_p2p_channel_switch_cmd { __le16 channel; __le16 reserved; }; /* * REPLY_WIPAN_NOA_NOTIFICATION = 0xbc * * This is used by the device to notify us of the * NoA schedule it determined so we can forward it * to userspace for inclusion in probe responses. * * In beacons, the NoA schedule is simply appended * to the frame we give the device. */ struct iwl_wipan_noa_descriptor { u8 count; __le32 duration; __le32 interval; __le32 starttime; } __packed; struct iwl_wipan_noa_attribute { u8 id; __le16 length; u8 index; u8 ct_window; struct iwl_wipan_noa_descriptor descr0, descr1; u8 reserved; } __packed; struct iwl_wipan_noa_notification { u32 noa_active; struct iwl_wipan_noa_attribute noa_attribute; } __packed; #endif /* __iwl_commands_h__ */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1