Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Bing Zhao | 4406 | 67.66% | 2 | 2.35% |
Avinash Patil | 883 | 13.56% | 26 | 30.59% |
Zhaoyang Liu | 271 | 4.16% | 6 | 7.06% |
Xinming Hu | 219 | 3.36% | 9 | 10.59% |
Amitkumar Karwar | 213 | 3.27% | 9 | 10.59% |
Marc Yang | 137 | 2.10% | 3 | 3.53% |
Andreas Fenkart | 132 | 2.03% | 4 | 4.71% |
Yogesh Ashok Powar | 96 | 1.47% | 7 | 8.24% |
Brian Norris | 36 | 0.55% | 1 | 1.18% |
Stone Piao | 27 | 0.41% | 3 | 3.53% |
Chunfan Chen | 18 | 0.28% | 1 | 1.18% |
Qing Xu | 17 | 0.26% | 1 | 1.18% |
Arnd Bergmann | 14 | 0.21% | 1 | 1.18% |
Dan Carpenter | 14 | 0.21% | 1 | 1.18% |
Thomas Gleixner | 10 | 0.15% | 2 | 2.35% |
Ganapathi Bhat | 7 | 0.11% | 1 | 1.18% |
Johannes Berg | 5 | 0.08% | 1 | 1.18% |
Masahiro Yamada | 1 | 0.02% | 1 | 1.18% |
Yue haibing | 1 | 0.02% | 1 | 1.18% |
Peter Senna Tschudin | 1 | 0.02% | 1 | 1.18% |
Colin Ian King | 1 | 0.02% | 1 | 1.18% |
Joe Perches | 1 | 0.02% | 1 | 1.18% |
Gustavo A. R. Silva | 1 | 0.02% | 1 | 1.18% |
Shawn Lin | 1 | 0.02% | 1 | 1.18% |
Total | 6512 | 85 |
// SPDX-License-Identifier: GPL-2.0-only /* * NXP Wireless LAN device driver: WMM * * Copyright 2011-2020 NXP */ #include "decl.h" #include "ioctl.h" #include "util.h" #include "fw.h" #include "main.h" #include "wmm.h" #include "11n.h" /* Maximum value FW can accept for driver delay in packet transmission */ #define DRV_PKT_DELAY_TO_FW_MAX 512 #define WMM_QUEUED_PACKET_LOWER_LIMIT 180 #define WMM_QUEUED_PACKET_UPPER_LIMIT 200 /* Offset for TOS field in the IP header */ #define IPTOS_OFFSET 5 static bool disable_tx_amsdu; module_param(disable_tx_amsdu, bool, 0644); /* This table inverses the tos_to_tid operation to get a priority * which is in sequential order, and can be compared. * Use this to compare the priority of two different TIDs. */ const u8 tos_to_tid_inv[] = { 0x02, /* from tos_to_tid[2] = 0 */ 0x00, /* from tos_to_tid[0] = 1 */ 0x01, /* from tos_to_tid[1] = 2 */ 0x03, 0x04, 0x05, 0x06, 0x07 }; /* WMM information IE */ static const u8 wmm_info_ie[] = { WLAN_EID_VENDOR_SPECIFIC, 0x07, 0x00, 0x50, 0xf2, 0x02, 0x00, 0x01, 0x00 }; static const u8 wmm_aci_to_qidx_map[] = { WMM_AC_BE, WMM_AC_BK, WMM_AC_VI, WMM_AC_VO }; static u8 tos_to_tid[] = { /* TID DSCP_P2 DSCP_P1 DSCP_P0 WMM_AC */ 0x01, /* 0 1 0 AC_BK */ 0x02, /* 0 0 0 AC_BK */ 0x00, /* 0 0 1 AC_BE */ 0x03, /* 0 1 1 AC_BE */ 0x04, /* 1 0 0 AC_VI */ 0x05, /* 1 0 1 AC_VI */ 0x06, /* 1 1 0 AC_VO */ 0x07 /* 1 1 1 AC_VO */ }; static u8 ac_to_tid[4][2] = { {1, 2}, {0, 3}, {4, 5}, {6, 7} }; /* * This function debug prints the priority parameters for a WMM AC. */ static void mwifiex_wmm_ac_debug_print(const struct ieee_types_wmm_ac_parameters *ac_param) { const char *ac_str[] = { "BK", "BE", "VI", "VO" }; pr_debug("info: WMM AC_%s: ACI=%d, ACM=%d, Aifsn=%d, " "EcwMin=%d, EcwMax=%d, TxopLimit=%d\n", ac_str[wmm_aci_to_qidx_map[(ac_param->aci_aifsn_bitmap & MWIFIEX_ACI) >> 5]], (ac_param->aci_aifsn_bitmap & MWIFIEX_ACI) >> 5, (ac_param->aci_aifsn_bitmap & MWIFIEX_ACM) >> 4, ac_param->aci_aifsn_bitmap & MWIFIEX_AIFSN, ac_param->ecw_bitmap & MWIFIEX_ECW_MIN, (ac_param->ecw_bitmap & MWIFIEX_ECW_MAX) >> 4, le16_to_cpu(ac_param->tx_op_limit)); } /* * This function allocates a route address list. * * The function also initializes the list with the provided RA. */ static struct mwifiex_ra_list_tbl * mwifiex_wmm_allocate_ralist_node(struct mwifiex_adapter *adapter, const u8 *ra) { struct mwifiex_ra_list_tbl *ra_list; ra_list = kzalloc(sizeof(struct mwifiex_ra_list_tbl), GFP_ATOMIC); if (!ra_list) return NULL; INIT_LIST_HEAD(&ra_list->list); skb_queue_head_init(&ra_list->skb_head); memcpy(ra_list->ra, ra, ETH_ALEN); ra_list->total_pkt_count = 0; mwifiex_dbg(adapter, INFO, "info: allocated ra_list %p\n", ra_list); return ra_list; } /* This function returns random no between 16 and 32 to be used as threshold * for no of packets after which BA setup is initiated. */ static u8 mwifiex_get_random_ba_threshold(void) { u64 ns; /* setup ba_packet_threshold here random number between * [BA_SETUP_PACKET_OFFSET, * BA_SETUP_PACKET_OFFSET+BA_SETUP_MAX_PACKET_THRESHOLD-1] */ ns = ktime_get_ns(); ns += (ns >> 32) + (ns >> 16); return ((u8)ns % BA_SETUP_MAX_PACKET_THRESHOLD) + BA_SETUP_PACKET_OFFSET; } /* * This function allocates and adds a RA list for all TIDs * with the given RA. */ void mwifiex_ralist_add(struct mwifiex_private *priv, const u8 *ra) { int i; struct mwifiex_ra_list_tbl *ra_list; struct mwifiex_adapter *adapter = priv->adapter; struct mwifiex_sta_node *node; for (i = 0; i < MAX_NUM_TID; ++i) { ra_list = mwifiex_wmm_allocate_ralist_node(adapter, ra); mwifiex_dbg(adapter, INFO, "info: created ra_list %p\n", ra_list); if (!ra_list) break; ra_list->is_11n_enabled = 0; ra_list->tdls_link = false; ra_list->ba_status = BA_SETUP_NONE; ra_list->amsdu_in_ampdu = false; if (!mwifiex_queuing_ra_based(priv)) { if (mwifiex_is_tdls_link_setup (mwifiex_get_tdls_link_status(priv, ra))) { ra_list->tdls_link = true; ra_list->is_11n_enabled = mwifiex_tdls_peer_11n_enabled(priv, ra); } else { ra_list->is_11n_enabled = IS_11N_ENABLED(priv); } } else { spin_lock_bh(&priv->sta_list_spinlock); node = mwifiex_get_sta_entry(priv, ra); if (node) ra_list->tx_paused = node->tx_pause; ra_list->is_11n_enabled = mwifiex_is_sta_11n_enabled(priv, node); if (ra_list->is_11n_enabled) ra_list->max_amsdu = node->max_amsdu; spin_unlock_bh(&priv->sta_list_spinlock); } mwifiex_dbg(adapter, DATA, "data: ralist %p: is_11n_enabled=%d\n", ra_list, ra_list->is_11n_enabled); if (ra_list->is_11n_enabled) { ra_list->ba_pkt_count = 0; ra_list->ba_packet_thr = mwifiex_get_random_ba_threshold(); } list_add_tail(&ra_list->list, &priv->wmm.tid_tbl_ptr[i].ra_list); } } /* * This function sets the WMM queue priorities to their default values. */ static void mwifiex_wmm_default_queue_priorities(struct mwifiex_private *priv) { /* Default queue priorities: VO->VI->BE->BK */ priv->wmm.queue_priority[0] = WMM_AC_VO; priv->wmm.queue_priority[1] = WMM_AC_VI; priv->wmm.queue_priority[2] = WMM_AC_BE; priv->wmm.queue_priority[3] = WMM_AC_BK; } /* * This function map ACs to TIDs. */ static void mwifiex_wmm_queue_priorities_tid(struct mwifiex_private *priv) { struct mwifiex_wmm_desc *wmm = &priv->wmm; u8 *queue_priority = wmm->queue_priority; int i; for (i = 0; i < 4; ++i) { tos_to_tid[7 - (i * 2)] = ac_to_tid[queue_priority[i]][1]; tos_to_tid[6 - (i * 2)] = ac_to_tid[queue_priority[i]][0]; } for (i = 0; i < MAX_NUM_TID; ++i) priv->tos_to_tid_inv[tos_to_tid[i]] = (u8)i; atomic_set(&wmm->highest_queued_prio, HIGH_PRIO_TID); } /* * This function initializes WMM priority queues. */ void mwifiex_wmm_setup_queue_priorities(struct mwifiex_private *priv, struct ieee_types_wmm_parameter *wmm_ie) { u16 cw_min, avg_back_off, tmp[4]; u32 i, j, num_ac; u8 ac_idx; if (!wmm_ie || !priv->wmm_enabled) { /* WMM is not enabled, just set the defaults and return */ mwifiex_wmm_default_queue_priorities(priv); return; } mwifiex_dbg(priv->adapter, INFO, "info: WMM Parameter IE: version=%d,\t" "qos_info Parameter Set Count=%d, Reserved=%#x\n", wmm_ie->version, wmm_ie->qos_info_bitmap & IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK, wmm_ie->reserved); for (num_ac = 0; num_ac < ARRAY_SIZE(wmm_ie->ac_params); num_ac++) { u8 ecw = wmm_ie->ac_params[num_ac].ecw_bitmap; u8 aci_aifsn = wmm_ie->ac_params[num_ac].aci_aifsn_bitmap; cw_min = (1 << (ecw & MWIFIEX_ECW_MIN)) - 1; avg_back_off = (cw_min >> 1) + (aci_aifsn & MWIFIEX_AIFSN); ac_idx = wmm_aci_to_qidx_map[(aci_aifsn & MWIFIEX_ACI) >> 5]; priv->wmm.queue_priority[ac_idx] = ac_idx; tmp[ac_idx] = avg_back_off; mwifiex_dbg(priv->adapter, INFO, "info: WMM: CWmax=%d CWmin=%d Avg Back-off=%d\n", (1 << ((ecw & MWIFIEX_ECW_MAX) >> 4)) - 1, cw_min, avg_back_off); mwifiex_wmm_ac_debug_print(&wmm_ie->ac_params[num_ac]); } /* Bubble sort */ for (i = 0; i < num_ac; i++) { for (j = 1; j < num_ac - i; j++) { if (tmp[j - 1] > tmp[j]) { swap(tmp[j - 1], tmp[j]); swap(priv->wmm.queue_priority[j - 1], priv->wmm.queue_priority[j]); } else if (tmp[j - 1] == tmp[j]) { if (priv->wmm.queue_priority[j - 1] < priv->wmm.queue_priority[j]) swap(priv->wmm.queue_priority[j - 1], priv->wmm.queue_priority[j]); } } } mwifiex_wmm_queue_priorities_tid(priv); } /* * This function evaluates whether or not an AC is to be downgraded. * * In case the AC is not enabled, the highest AC is returned that is * enabled and does not require admission control. */ static enum mwifiex_wmm_ac_e mwifiex_wmm_eval_downgrade_ac(struct mwifiex_private *priv, enum mwifiex_wmm_ac_e eval_ac) { int down_ac; enum mwifiex_wmm_ac_e ret_ac; struct mwifiex_wmm_ac_status *ac_status; ac_status = &priv->wmm.ac_status[eval_ac]; if (!ac_status->disabled) /* Okay to use this AC, its enabled */ return eval_ac; /* Setup a default return value of the lowest priority */ ret_ac = WMM_AC_BK; /* * Find the highest AC that is enabled and does not require * admission control. The spec disallows downgrading to an AC, * which is enabled due to a completed admission control. * Unadmitted traffic is not to be sent on an AC with admitted * traffic. */ for (down_ac = WMM_AC_BK; down_ac < eval_ac; down_ac++) { ac_status = &priv->wmm.ac_status[down_ac]; if (!ac_status->disabled && !ac_status->flow_required) /* AC is enabled and does not require admission control */ ret_ac = (enum mwifiex_wmm_ac_e) down_ac; } return ret_ac; } /* * This function downgrades WMM priority queue. */ void mwifiex_wmm_setup_ac_downgrade(struct mwifiex_private *priv) { int ac_val; mwifiex_dbg(priv->adapter, INFO, "info: WMM: AC Priorities:\t" "BK(0), BE(1), VI(2), VO(3)\n"); if (!priv->wmm_enabled) { /* WMM is not enabled, default priorities */ for (ac_val = WMM_AC_BK; ac_val <= WMM_AC_VO; ac_val++) priv->wmm.ac_down_graded_vals[ac_val] = (enum mwifiex_wmm_ac_e) ac_val; } else { for (ac_val = WMM_AC_BK; ac_val <= WMM_AC_VO; ac_val++) { priv->wmm.ac_down_graded_vals[ac_val] = mwifiex_wmm_eval_downgrade_ac(priv, (enum mwifiex_wmm_ac_e) ac_val); mwifiex_dbg(priv->adapter, INFO, "info: WMM: AC PRIO %d maps to %d\n", ac_val, priv->wmm.ac_down_graded_vals[ac_val]); } } } /* * This function converts the IP TOS field to an WMM AC * Queue assignment. */ static enum mwifiex_wmm_ac_e mwifiex_wmm_convert_tos_to_ac(struct mwifiex_adapter *adapter, u32 tos) { /* Map of TOS UP values to WMM AC */ static const enum mwifiex_wmm_ac_e tos_to_ac[] = { WMM_AC_BE, WMM_AC_BK, WMM_AC_BK, WMM_AC_BE, WMM_AC_VI, WMM_AC_VI, WMM_AC_VO, WMM_AC_VO }; if (tos >= ARRAY_SIZE(tos_to_ac)) return WMM_AC_BE; return tos_to_ac[tos]; } /* * This function evaluates a given TID and downgrades it to a lower * TID if the WMM Parameter IE received from the AP indicates that the * AP is disabled (due to call admission control (ACM bit). Mapping * of TID to AC is taken care of internally. */ u8 mwifiex_wmm_downgrade_tid(struct mwifiex_private *priv, u32 tid) { enum mwifiex_wmm_ac_e ac, ac_down; u8 new_tid; ac = mwifiex_wmm_convert_tos_to_ac(priv->adapter, tid); ac_down = priv->wmm.ac_down_graded_vals[ac]; /* Send the index to tid array, picking from the array will be * taken care by dequeuing function */ new_tid = ac_to_tid[ac_down][tid % 2]; return new_tid; } /* * This function initializes the WMM state information and the * WMM data path queues. */ void mwifiex_wmm_init(struct mwifiex_adapter *adapter) { int i, j; struct mwifiex_private *priv; for (j = 0; j < adapter->priv_num; ++j) { priv = adapter->priv[j]; if (!priv) continue; for (i = 0; i < MAX_NUM_TID; ++i) { if (!disable_tx_amsdu && adapter->tx_buf_size > MWIFIEX_TX_DATA_BUF_SIZE_2K) priv->aggr_prio_tbl[i].amsdu = priv->tos_to_tid_inv[i]; else priv->aggr_prio_tbl[i].amsdu = BA_STREAM_NOT_ALLOWED; priv->aggr_prio_tbl[i].ampdu_ap = priv->tos_to_tid_inv[i]; priv->aggr_prio_tbl[i].ampdu_user = priv->tos_to_tid_inv[i]; } priv->aggr_prio_tbl[6].amsdu = priv->aggr_prio_tbl[6].ampdu_ap = priv->aggr_prio_tbl[6].ampdu_user = BA_STREAM_NOT_ALLOWED; priv->aggr_prio_tbl[7].amsdu = priv->aggr_prio_tbl[7].ampdu_ap = priv->aggr_prio_tbl[7].ampdu_user = BA_STREAM_NOT_ALLOWED; mwifiex_set_ba_params(priv); mwifiex_reset_11n_rx_seq_num(priv); priv->wmm.drv_pkt_delay_max = MWIFIEX_WMM_DRV_DELAY_MAX; atomic_set(&priv->wmm.tx_pkts_queued, 0); atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID); } } int mwifiex_bypass_txlist_empty(struct mwifiex_adapter *adapter) { struct mwifiex_private *priv; int i; for (i = 0; i < adapter->priv_num; i++) { priv = adapter->priv[i]; if (!priv) continue; if (adapter->if_ops.is_port_ready && !adapter->if_ops.is_port_ready(priv)) continue; if (!skb_queue_empty(&priv->bypass_txq)) return false; } return true; } /* * This function checks if WMM Tx queue is empty. */ int mwifiex_wmm_lists_empty(struct mwifiex_adapter *adapter) { int i; struct mwifiex_private *priv; for (i = 0; i < adapter->priv_num; ++i) { priv = adapter->priv[i]; if (!priv) continue; if (!priv->port_open && (priv->bss_mode != NL80211_IFTYPE_ADHOC)) continue; if (adapter->if_ops.is_port_ready && !adapter->if_ops.is_port_ready(priv)) continue; if (atomic_read(&priv->wmm.tx_pkts_queued)) return false; } return true; } /* * This function deletes all packets in an RA list node. * * The packet sent completion callback handler are called with * status failure, after they are dequeued to ensure proper * cleanup. The RA list node itself is freed at the end. */ static void mwifiex_wmm_del_pkts_in_ralist_node(struct mwifiex_private *priv, struct mwifiex_ra_list_tbl *ra_list) { struct mwifiex_adapter *adapter = priv->adapter; struct sk_buff *skb, *tmp; skb_queue_walk_safe(&ra_list->skb_head, skb, tmp) { skb_unlink(skb, &ra_list->skb_head); mwifiex_write_data_complete(adapter, skb, 0, -1); } } /* * This function deletes all packets in an RA list. * * Each nodes in the RA list are freed individually first, and then * the RA list itself is freed. */ static void mwifiex_wmm_del_pkts_in_ralist(struct mwifiex_private *priv, struct list_head *ra_list_head) { struct mwifiex_ra_list_tbl *ra_list; list_for_each_entry(ra_list, ra_list_head, list) mwifiex_wmm_del_pkts_in_ralist_node(priv, ra_list); } /* * This function deletes all packets in all RA lists. */ static void mwifiex_wmm_cleanup_queues(struct mwifiex_private *priv) { int i; for (i = 0; i < MAX_NUM_TID; i++) mwifiex_wmm_del_pkts_in_ralist(priv, &priv->wmm.tid_tbl_ptr[i]. ra_list); atomic_set(&priv->wmm.tx_pkts_queued, 0); atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID); } /* * This function deletes all route addresses from all RA lists. */ static void mwifiex_wmm_delete_all_ralist(struct mwifiex_private *priv) { struct mwifiex_ra_list_tbl *ra_list, *tmp_node; int i; for (i = 0; i < MAX_NUM_TID; ++i) { mwifiex_dbg(priv->adapter, INFO, "info: ra_list: freeing buf for tid %d\n", i); list_for_each_entry_safe(ra_list, tmp_node, &priv->wmm.tid_tbl_ptr[i].ra_list, list) { list_del(&ra_list->list); kfree(ra_list); } INIT_LIST_HEAD(&priv->wmm.tid_tbl_ptr[i].ra_list); } } static int mwifiex_free_ack_frame(int id, void *p, void *data) { pr_warn("Have pending ack frames!\n"); kfree_skb(p); return 0; } /* * This function cleans up the Tx and Rx queues. * * Cleanup includes - * - All packets in RA lists * - All entries in Rx reorder table * - All entries in Tx BA stream table * - MPA buffer (if required) * - All RA lists */ void mwifiex_clean_txrx(struct mwifiex_private *priv) { struct sk_buff *skb, *tmp; mwifiex_11n_cleanup_reorder_tbl(priv); spin_lock_bh(&priv->wmm.ra_list_spinlock); mwifiex_wmm_cleanup_queues(priv); mwifiex_11n_delete_all_tx_ba_stream_tbl(priv); if (priv->adapter->if_ops.cleanup_mpa_buf) priv->adapter->if_ops.cleanup_mpa_buf(priv->adapter); mwifiex_wmm_delete_all_ralist(priv); memcpy(tos_to_tid, ac_to_tid, sizeof(tos_to_tid)); if (priv->adapter->if_ops.clean_pcie_ring && !test_bit(MWIFIEX_SURPRISE_REMOVED, &priv->adapter->work_flags)) priv->adapter->if_ops.clean_pcie_ring(priv->adapter); spin_unlock_bh(&priv->wmm.ra_list_spinlock); skb_queue_walk_safe(&priv->tdls_txq, skb, tmp) { skb_unlink(skb, &priv->tdls_txq); mwifiex_write_data_complete(priv->adapter, skb, 0, -1); } skb_queue_walk_safe(&priv->bypass_txq, skb, tmp) { skb_unlink(skb, &priv->bypass_txq); mwifiex_write_data_complete(priv->adapter, skb, 0, -1); } atomic_set(&priv->adapter->bypass_tx_pending, 0); idr_for_each(&priv->ack_status_frames, mwifiex_free_ack_frame, NULL); idr_destroy(&priv->ack_status_frames); } /* * This function retrieves a particular RA list node, matching with the * given TID and RA address. */ struct mwifiex_ra_list_tbl * mwifiex_wmm_get_ralist_node(struct mwifiex_private *priv, u8 tid, const u8 *ra_addr) { struct mwifiex_ra_list_tbl *ra_list; list_for_each_entry(ra_list, &priv->wmm.tid_tbl_ptr[tid].ra_list, list) { if (!memcmp(ra_list->ra, ra_addr, ETH_ALEN)) return ra_list; } return NULL; } void mwifiex_update_ralist_tx_pause(struct mwifiex_private *priv, u8 *mac, u8 tx_pause) { struct mwifiex_ra_list_tbl *ra_list; u32 pkt_cnt = 0, tx_pkts_queued; int i; spin_lock_bh(&priv->wmm.ra_list_spinlock); for (i = 0; i < MAX_NUM_TID; ++i) { ra_list = mwifiex_wmm_get_ralist_node(priv, i, mac); if (ra_list && ra_list->tx_paused != tx_pause) { pkt_cnt += ra_list->total_pkt_count; ra_list->tx_paused = tx_pause; if (tx_pause) priv->wmm.pkts_paused[i] += ra_list->total_pkt_count; else priv->wmm.pkts_paused[i] -= ra_list->total_pkt_count; } } if (pkt_cnt) { tx_pkts_queued = atomic_read(&priv->wmm.tx_pkts_queued); if (tx_pause) tx_pkts_queued -= pkt_cnt; else tx_pkts_queued += pkt_cnt; atomic_set(&priv->wmm.tx_pkts_queued, tx_pkts_queued); atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID); } spin_unlock_bh(&priv->wmm.ra_list_spinlock); } /* This function updates non-tdls peer ralist tx_pause while * tdls channel switching */ void mwifiex_update_ralist_tx_pause_in_tdls_cs(struct mwifiex_private *priv, u8 *mac, u8 tx_pause) { struct mwifiex_ra_list_tbl *ra_list; u32 pkt_cnt = 0, tx_pkts_queued; int i; spin_lock_bh(&priv->wmm.ra_list_spinlock); for (i = 0; i < MAX_NUM_TID; ++i) { list_for_each_entry(ra_list, &priv->wmm.tid_tbl_ptr[i].ra_list, list) { if (!memcmp(ra_list->ra, mac, ETH_ALEN)) continue; if (ra_list->tx_paused != tx_pause) { pkt_cnt += ra_list->total_pkt_count; ra_list->tx_paused = tx_pause; if (tx_pause) priv->wmm.pkts_paused[i] += ra_list->total_pkt_count; else priv->wmm.pkts_paused[i] -= ra_list->total_pkt_count; } } } if (pkt_cnt) { tx_pkts_queued = atomic_read(&priv->wmm.tx_pkts_queued); if (tx_pause) tx_pkts_queued -= pkt_cnt; else tx_pkts_queued += pkt_cnt; atomic_set(&priv->wmm.tx_pkts_queued, tx_pkts_queued); atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID); } spin_unlock_bh(&priv->wmm.ra_list_spinlock); } /* * This function retrieves an RA list node for a given TID and * RA address pair. * * If no such node is found, a new node is added first and then * retrieved. */ struct mwifiex_ra_list_tbl * mwifiex_wmm_get_queue_raptr(struct mwifiex_private *priv, u8 tid, const u8 *ra_addr) { struct mwifiex_ra_list_tbl *ra_list; ra_list = mwifiex_wmm_get_ralist_node(priv, tid, ra_addr); if (ra_list) return ra_list; mwifiex_ralist_add(priv, ra_addr); return mwifiex_wmm_get_ralist_node(priv, tid, ra_addr); } /* * This function deletes RA list nodes for given mac for all TIDs. * Function also decrements TX pending count accordingly. */ void mwifiex_wmm_del_peer_ra_list(struct mwifiex_private *priv, const u8 *ra_addr) { struct mwifiex_ra_list_tbl *ra_list; int i; spin_lock_bh(&priv->wmm.ra_list_spinlock); for (i = 0; i < MAX_NUM_TID; ++i) { ra_list = mwifiex_wmm_get_ralist_node(priv, i, ra_addr); if (!ra_list) continue; mwifiex_wmm_del_pkts_in_ralist_node(priv, ra_list); if (ra_list->tx_paused) priv->wmm.pkts_paused[i] -= ra_list->total_pkt_count; else atomic_sub(ra_list->total_pkt_count, &priv->wmm.tx_pkts_queued); list_del(&ra_list->list); kfree(ra_list); } spin_unlock_bh(&priv->wmm.ra_list_spinlock); } /* * This function checks if a particular RA list node exists in a given TID * table index. */ int mwifiex_is_ralist_valid(struct mwifiex_private *priv, struct mwifiex_ra_list_tbl *ra_list, int ptr_index) { struct mwifiex_ra_list_tbl *rlist; list_for_each_entry(rlist, &priv->wmm.tid_tbl_ptr[ptr_index].ra_list, list) { if (rlist == ra_list) return true; } return false; } /* * This function adds a packet to bypass TX queue. * This is special TX queue for packets which can be sent even when port_open * is false. */ void mwifiex_wmm_add_buf_bypass_txqueue(struct mwifiex_private *priv, struct sk_buff *skb) { skb_queue_tail(&priv->bypass_txq, skb); } /* * This function adds a packet to WMM queue. * * In disconnected state the packet is immediately dropped and the * packet send completion callback is called with status failure. * * Otherwise, the correct RA list node is located and the packet * is queued at the list tail. */ void mwifiex_wmm_add_buf_txqueue(struct mwifiex_private *priv, struct sk_buff *skb) { struct mwifiex_adapter *adapter = priv->adapter; u32 tid; struct mwifiex_ra_list_tbl *ra_list; u8 ra[ETH_ALEN], tid_down; struct list_head list_head; int tdls_status = TDLS_NOT_SETUP; struct ethhdr *eth_hdr = (struct ethhdr *)skb->data; struct mwifiex_txinfo *tx_info = MWIFIEX_SKB_TXCB(skb); memcpy(ra, eth_hdr->h_dest, ETH_ALEN); if (GET_BSS_ROLE(priv) == MWIFIEX_BSS_ROLE_STA && ISSUPP_TDLS_ENABLED(adapter->fw_cap_info)) { if (ntohs(eth_hdr->h_proto) == ETH_P_TDLS) mwifiex_dbg(adapter, DATA, "TDLS setup packet for %pM.\t" "Don't block\n", ra); else if (memcmp(priv->cfg_bssid, ra, ETH_ALEN)) tdls_status = mwifiex_get_tdls_link_status(priv, ra); } if (!priv->media_connected && !mwifiex_is_skb_mgmt_frame(skb)) { mwifiex_dbg(adapter, DATA, "data: drop packet in disconnect\n"); mwifiex_write_data_complete(adapter, skb, 0, -1); return; } tid = skb->priority; spin_lock_bh(&priv->wmm.ra_list_spinlock); tid_down = mwifiex_wmm_downgrade_tid(priv, tid); /* In case of infra as we have already created the list during association we just don't have to call get_queue_raptr, we will have only 1 raptr for a tid in case of infra */ if (!mwifiex_queuing_ra_based(priv) && !mwifiex_is_skb_mgmt_frame(skb)) { switch (tdls_status) { case TDLS_SETUP_COMPLETE: case TDLS_CHAN_SWITCHING: case TDLS_IN_BASE_CHAN: case TDLS_IN_OFF_CHAN: ra_list = mwifiex_wmm_get_queue_raptr(priv, tid_down, ra); tx_info->flags |= MWIFIEX_BUF_FLAG_TDLS_PKT; break; case TDLS_SETUP_INPROGRESS: skb_queue_tail(&priv->tdls_txq, skb); spin_unlock_bh(&priv->wmm.ra_list_spinlock); return; default: list_head = priv->wmm.tid_tbl_ptr[tid_down].ra_list; ra_list = list_first_entry_or_null(&list_head, struct mwifiex_ra_list_tbl, list); break; } } else { memcpy(ra, skb->data, ETH_ALEN); if (ra[0] & 0x01 || mwifiex_is_skb_mgmt_frame(skb)) eth_broadcast_addr(ra); ra_list = mwifiex_wmm_get_queue_raptr(priv, tid_down, ra); } if (!ra_list) { spin_unlock_bh(&priv->wmm.ra_list_spinlock); mwifiex_write_data_complete(adapter, skb, 0, -1); return; } skb_queue_tail(&ra_list->skb_head, skb); ra_list->ba_pkt_count++; ra_list->total_pkt_count++; if (atomic_read(&priv->wmm.highest_queued_prio) < priv->tos_to_tid_inv[tid_down]) atomic_set(&priv->wmm.highest_queued_prio, priv->tos_to_tid_inv[tid_down]); if (ra_list->tx_paused) priv->wmm.pkts_paused[tid_down]++; else atomic_inc(&priv->wmm.tx_pkts_queued); spin_unlock_bh(&priv->wmm.ra_list_spinlock); } /* * This function processes the get WMM status command response from firmware. * * The response may contain multiple TLVs - * - AC Queue status TLVs * - Current WMM Parameter IE TLV * - Admission Control action frame TLVs * * This function parses the TLVs and then calls further specific functions * to process any changes in the queue prioritize or state. */ int mwifiex_ret_wmm_get_status(struct mwifiex_private *priv, const struct host_cmd_ds_command *resp) { u8 *curr = (u8 *) &resp->params.get_wmm_status; uint16_t resp_len = le16_to_cpu(resp->size), tlv_len; int mask = IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK; bool valid = true; struct mwifiex_ie_types_data *tlv_hdr; struct mwifiex_ie_types_wmm_queue_status *tlv_wmm_qstatus; struct ieee_types_wmm_parameter *wmm_param_ie = NULL; struct mwifiex_wmm_ac_status *ac_status; mwifiex_dbg(priv->adapter, INFO, "info: WMM: WMM_GET_STATUS cmdresp received: %d\n", resp_len); while ((resp_len >= sizeof(tlv_hdr->header)) && valid) { tlv_hdr = (struct mwifiex_ie_types_data *) curr; tlv_len = le16_to_cpu(tlv_hdr->header.len); if (resp_len < tlv_len + sizeof(tlv_hdr->header)) break; switch (le16_to_cpu(tlv_hdr->header.type)) { case TLV_TYPE_WMMQSTATUS: tlv_wmm_qstatus = (struct mwifiex_ie_types_wmm_queue_status *) tlv_hdr; mwifiex_dbg(priv->adapter, CMD, "info: CMD_RESP: WMM_GET_STATUS:\t" "QSTATUS TLV: %d, %d, %d\n", tlv_wmm_qstatus->queue_index, tlv_wmm_qstatus->flow_required, tlv_wmm_qstatus->disabled); ac_status = &priv->wmm.ac_status[tlv_wmm_qstatus-> queue_index]; ac_status->disabled = tlv_wmm_qstatus->disabled; ac_status->flow_required = tlv_wmm_qstatus->flow_required; ac_status->flow_created = tlv_wmm_qstatus->flow_created; break; case WLAN_EID_VENDOR_SPECIFIC: /* * Point the regular IEEE IE 2 bytes into the Marvell IE * and setup the IEEE IE type and length byte fields */ wmm_param_ie = (struct ieee_types_wmm_parameter *) (curr + 2); wmm_param_ie->vend_hdr.len = (u8) tlv_len; wmm_param_ie->vend_hdr.element_id = WLAN_EID_VENDOR_SPECIFIC; mwifiex_dbg(priv->adapter, CMD, "info: CMD_RESP: WMM_GET_STATUS:\t" "WMM Parameter Set Count: %d\n", wmm_param_ie->qos_info_bitmap & mask); if (wmm_param_ie->vend_hdr.len + 2 > sizeof(struct ieee_types_wmm_parameter)) break; memcpy((u8 *) &priv->curr_bss_params.bss_descriptor. wmm_ie, wmm_param_ie, wmm_param_ie->vend_hdr.len + 2); break; default: valid = false; break; } curr += (tlv_len + sizeof(tlv_hdr->header)); resp_len -= (tlv_len + sizeof(tlv_hdr->header)); } mwifiex_wmm_setup_queue_priorities(priv, wmm_param_ie); mwifiex_wmm_setup_ac_downgrade(priv); return 0; } /* * Callback handler from the command module to allow insertion of a WMM TLV. * * If the BSS we are associating to supports WMM, this function adds the * required WMM Information IE to the association request command buffer in * the form of a Marvell extended IEEE IE. */ u32 mwifiex_wmm_process_association_req(struct mwifiex_private *priv, u8 **assoc_buf, struct ieee_types_wmm_parameter *wmm_ie, struct ieee80211_ht_cap *ht_cap) { struct mwifiex_ie_types_wmm_param_set *wmm_tlv; u32 ret_len = 0; /* Null checks */ if (!assoc_buf) return 0; if (!(*assoc_buf)) return 0; if (!wmm_ie) return 0; mwifiex_dbg(priv->adapter, INFO, "info: WMM: process assoc req: bss->wmm_ie=%#x\n", wmm_ie->vend_hdr.element_id); if ((priv->wmm_required || (ht_cap && (priv->adapter->config_bands & BAND_GN || priv->adapter->config_bands & BAND_AN))) && wmm_ie->vend_hdr.element_id == WLAN_EID_VENDOR_SPECIFIC) { wmm_tlv = (struct mwifiex_ie_types_wmm_param_set *) *assoc_buf; wmm_tlv->header.type = cpu_to_le16((u16) wmm_info_ie[0]); wmm_tlv->header.len = cpu_to_le16((u16) wmm_info_ie[1]); memcpy(wmm_tlv->wmm_ie, &wmm_info_ie[2], le16_to_cpu(wmm_tlv->header.len)); if (wmm_ie->qos_info_bitmap & IEEE80211_WMM_IE_AP_QOSINFO_UAPSD) memcpy((u8 *) (wmm_tlv->wmm_ie + le16_to_cpu(wmm_tlv->header.len) - sizeof(priv->wmm_qosinfo)), &priv->wmm_qosinfo, sizeof(priv->wmm_qosinfo)); ret_len = sizeof(wmm_tlv->header) + le16_to_cpu(wmm_tlv->header.len); *assoc_buf += ret_len; } return ret_len; } /* * This function computes the time delay in the driver queues for a * given packet. * * When the packet is received at the OS/Driver interface, the current * time is set in the packet structure. The difference between the present * time and that received time is computed in this function and limited * based on pre-compiled limits in the driver. */ u8 mwifiex_wmm_compute_drv_pkt_delay(struct mwifiex_private *priv, const struct sk_buff *skb) { u32 queue_delay = ktime_to_ms(net_timedelta(skb->tstamp)); u8 ret_val; /* * Queue delay is passed as a uint8 in units of 2ms (ms shifted * by 1). Min value (other than 0) is therefore 2ms, max is 510ms. * * Pass max value if queue_delay is beyond the uint8 range */ ret_val = (u8) (min(queue_delay, priv->wmm.drv_pkt_delay_max) >> 1); mwifiex_dbg(priv->adapter, DATA, "data: WMM: Pkt Delay: %d ms,\t" "%d ms sent to FW\n", queue_delay, ret_val); return ret_val; } /* * This function retrieves the highest priority RA list table pointer. */ static struct mwifiex_ra_list_tbl * mwifiex_wmm_get_highest_priolist_ptr(struct mwifiex_adapter *adapter, struct mwifiex_private **priv, int *tid) { struct mwifiex_private *priv_tmp; struct mwifiex_ra_list_tbl *ptr; struct mwifiex_tid_tbl *tid_ptr; atomic_t *hqp; int i, j; /* check the BSS with highest priority first */ for (j = adapter->priv_num - 1; j >= 0; --j) { /* iterate over BSS with the equal priority */ list_for_each_entry(adapter->bss_prio_tbl[j].bss_prio_cur, &adapter->bss_prio_tbl[j].bss_prio_head, list) { try_again: priv_tmp = adapter->bss_prio_tbl[j].bss_prio_cur->priv; if (((priv_tmp->bss_mode != NL80211_IFTYPE_ADHOC) && !priv_tmp->port_open) || (atomic_read(&priv_tmp->wmm.tx_pkts_queued) == 0)) continue; if (adapter->if_ops.is_port_ready && !adapter->if_ops.is_port_ready(priv_tmp)) continue; /* iterate over the WMM queues of the BSS */ hqp = &priv_tmp->wmm.highest_queued_prio; for (i = atomic_read(hqp); i >= LOW_PRIO_TID; --i) { spin_lock_bh(&priv_tmp->wmm.ra_list_spinlock); tid_ptr = &(priv_tmp)->wmm. tid_tbl_ptr[tos_to_tid[i]]; /* iterate over receiver addresses */ list_for_each_entry(ptr, &tid_ptr->ra_list, list) { if (!ptr->tx_paused && !skb_queue_empty(&ptr->skb_head)) /* holds both locks */ goto found; } spin_unlock_bh(&priv_tmp->wmm.ra_list_spinlock); } if (atomic_read(&priv_tmp->wmm.tx_pkts_queued) != 0) { atomic_set(&priv_tmp->wmm.highest_queued_prio, HIGH_PRIO_TID); /* Iterate current private once more, since * there still exist packets in data queue */ goto try_again; } else atomic_set(&priv_tmp->wmm.highest_queued_prio, NO_PKT_PRIO_TID); } } return NULL; found: /* holds ra_list_spinlock */ if (atomic_read(hqp) > i) atomic_set(hqp, i); spin_unlock_bh(&priv_tmp->wmm.ra_list_spinlock); *priv = priv_tmp; *tid = tos_to_tid[i]; return ptr; } /* This functions rotates ra and bss lists so packets are picked round robin. * * After a packet is successfully transmitted, rotate the ra list, so the ra * next to the one transmitted, will come first in the list. This way we pick * the ra' in a round robin fashion. Same applies to bss nodes of equal * priority. * * Function also increments wmm.packets_out counter. */ void mwifiex_rotate_priolists(struct mwifiex_private *priv, struct mwifiex_ra_list_tbl *ra, int tid) { struct mwifiex_adapter *adapter = priv->adapter; struct mwifiex_bss_prio_tbl *tbl = adapter->bss_prio_tbl; struct mwifiex_tid_tbl *tid_ptr = &priv->wmm.tid_tbl_ptr[tid]; spin_lock_bh(&tbl[priv->bss_priority].bss_prio_lock); /* * dirty trick: we remove 'head' temporarily and reinsert it after * curr bss node. imagine list to stay fixed while head is moved */ list_move(&tbl[priv->bss_priority].bss_prio_head, &tbl[priv->bss_priority].bss_prio_cur->list); spin_unlock_bh(&tbl[priv->bss_priority].bss_prio_lock); spin_lock_bh(&priv->wmm.ra_list_spinlock); if (mwifiex_is_ralist_valid(priv, ra, tid)) { priv->wmm.packets_out[tid]++; /* same as above */ list_move(&tid_ptr->ra_list, &ra->list); } spin_unlock_bh(&priv->wmm.ra_list_spinlock); } /* * This function checks if 11n aggregation is possible. */ static int mwifiex_is_11n_aggragation_possible(struct mwifiex_private *priv, struct mwifiex_ra_list_tbl *ptr, int max_buf_size) { int count = 0, total_size = 0; struct sk_buff *skb, *tmp; int max_amsdu_size; if (priv->bss_role == MWIFIEX_BSS_ROLE_UAP && priv->ap_11n_enabled && ptr->is_11n_enabled) max_amsdu_size = min_t(int, ptr->max_amsdu, max_buf_size); else max_amsdu_size = max_buf_size; skb_queue_walk_safe(&ptr->skb_head, skb, tmp) { total_size += skb->len; if (total_size >= max_amsdu_size) break; if (++count >= MIN_NUM_AMSDU) return true; } return false; } /* * This function sends a single packet to firmware for transmission. */ static void mwifiex_send_single_packet(struct mwifiex_private *priv, struct mwifiex_ra_list_tbl *ptr, int ptr_index) __releases(&priv->wmm.ra_list_spinlock) { struct sk_buff *skb, *skb_next; struct mwifiex_tx_param tx_param; struct mwifiex_adapter *adapter = priv->adapter; struct mwifiex_txinfo *tx_info; if (skb_queue_empty(&ptr->skb_head)) { spin_unlock_bh(&priv->wmm.ra_list_spinlock); mwifiex_dbg(adapter, DATA, "data: nothing to send\n"); return; } skb = skb_dequeue(&ptr->skb_head); tx_info = MWIFIEX_SKB_TXCB(skb); mwifiex_dbg(adapter, DATA, "data: dequeuing the packet %p %p\n", ptr, skb); ptr->total_pkt_count--; if (!skb_queue_empty(&ptr->skb_head)) skb_next = skb_peek(&ptr->skb_head); else skb_next = NULL; spin_unlock_bh(&priv->wmm.ra_list_spinlock); tx_param.next_pkt_len = ((skb_next) ? skb_next->len + sizeof(struct txpd) : 0); if (mwifiex_process_tx(priv, skb, &tx_param) == -EBUSY) { /* Queue the packet back at the head */ spin_lock_bh(&priv->wmm.ra_list_spinlock); if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) { spin_unlock_bh(&priv->wmm.ra_list_spinlock); mwifiex_write_data_complete(adapter, skb, 0, -1); return; } skb_queue_tail(&ptr->skb_head, skb); ptr->total_pkt_count++; ptr->ba_pkt_count++; tx_info->flags |= MWIFIEX_BUF_FLAG_REQUEUED_PKT; spin_unlock_bh(&priv->wmm.ra_list_spinlock); } else { mwifiex_rotate_priolists(priv, ptr, ptr_index); atomic_dec(&priv->wmm.tx_pkts_queued); } } /* * This function checks if the first packet in the given RA list * is already processed or not. */ static int mwifiex_is_ptr_processed(struct mwifiex_private *priv, struct mwifiex_ra_list_tbl *ptr) { struct sk_buff *skb; struct mwifiex_txinfo *tx_info; if (skb_queue_empty(&ptr->skb_head)) return false; skb = skb_peek(&ptr->skb_head); tx_info = MWIFIEX_SKB_TXCB(skb); if (tx_info->flags & MWIFIEX_BUF_FLAG_REQUEUED_PKT) return true; return false; } /* * This function sends a single processed packet to firmware for * transmission. */ static void mwifiex_send_processed_packet(struct mwifiex_private *priv, struct mwifiex_ra_list_tbl *ptr, int ptr_index) __releases(&priv->wmm.ra_list_spinlock) { struct mwifiex_tx_param tx_param; struct mwifiex_adapter *adapter = priv->adapter; int ret = -1; struct sk_buff *skb, *skb_next; struct mwifiex_txinfo *tx_info; if (skb_queue_empty(&ptr->skb_head)) { spin_unlock_bh(&priv->wmm.ra_list_spinlock); return; } skb = skb_dequeue(&ptr->skb_head); if (adapter->data_sent || adapter->tx_lock_flag) { ptr->total_pkt_count--; spin_unlock_bh(&priv->wmm.ra_list_spinlock); skb_queue_tail(&adapter->tx_data_q, skb); atomic_dec(&priv->wmm.tx_pkts_queued); atomic_inc(&adapter->tx_queued); return; } if (!skb_queue_empty(&ptr->skb_head)) skb_next = skb_peek(&ptr->skb_head); else skb_next = NULL; tx_info = MWIFIEX_SKB_TXCB(skb); spin_unlock_bh(&priv->wmm.ra_list_spinlock); tx_param.next_pkt_len = ((skb_next) ? skb_next->len + sizeof(struct txpd) : 0); if (adapter->iface_type == MWIFIEX_USB) { ret = adapter->if_ops.host_to_card(adapter, priv->usb_port, skb, &tx_param); } else { ret = adapter->if_ops.host_to_card(adapter, MWIFIEX_TYPE_DATA, skb, &tx_param); } switch (ret) { case -EBUSY: mwifiex_dbg(adapter, ERROR, "data: -EBUSY is returned\n"); spin_lock_bh(&priv->wmm.ra_list_spinlock); if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) { spin_unlock_bh(&priv->wmm.ra_list_spinlock); mwifiex_write_data_complete(adapter, skb, 0, -1); return; } skb_queue_tail(&ptr->skb_head, skb); tx_info->flags |= MWIFIEX_BUF_FLAG_REQUEUED_PKT; spin_unlock_bh(&priv->wmm.ra_list_spinlock); break; case -1: mwifiex_dbg(adapter, ERROR, "host_to_card failed: %#x\n", ret); adapter->dbg.num_tx_host_to_card_failure++; mwifiex_write_data_complete(adapter, skb, 0, ret); break; case -EINPROGRESS: break; case 0: mwifiex_write_data_complete(adapter, skb, 0, ret); break; default: break; } if (ret != -EBUSY) { mwifiex_rotate_priolists(priv, ptr, ptr_index); atomic_dec(&priv->wmm.tx_pkts_queued); spin_lock_bh(&priv->wmm.ra_list_spinlock); ptr->total_pkt_count--; spin_unlock_bh(&priv->wmm.ra_list_spinlock); } } /* * This function dequeues a packet from the highest priority list * and transmits it. */ static int mwifiex_dequeue_tx_packet(struct mwifiex_adapter *adapter) { struct mwifiex_ra_list_tbl *ptr; struct mwifiex_private *priv = NULL; int ptr_index = 0; u8 ra[ETH_ALEN]; int tid_del = 0, tid = 0; ptr = mwifiex_wmm_get_highest_priolist_ptr(adapter, &priv, &ptr_index); if (!ptr) return -1; tid = mwifiex_get_tid(ptr); mwifiex_dbg(adapter, DATA, "data: tid=%d\n", tid); spin_lock_bh(&priv->wmm.ra_list_spinlock); if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) { spin_unlock_bh(&priv->wmm.ra_list_spinlock); return -1; } if (mwifiex_is_ptr_processed(priv, ptr)) { mwifiex_send_processed_packet(priv, ptr, ptr_index); /* ra_list_spinlock has been freed in mwifiex_send_processed_packet() */ return 0; } if (!ptr->is_11n_enabled || ptr->ba_status || priv->wps.session_enable) { if (ptr->is_11n_enabled && ptr->ba_status && ptr->amsdu_in_ampdu && mwifiex_is_amsdu_allowed(priv, tid) && mwifiex_is_11n_aggragation_possible(priv, ptr, adapter->tx_buf_size)) mwifiex_11n_aggregate_pkt(priv, ptr, ptr_index); /* ra_list_spinlock has been freed in * mwifiex_11n_aggregate_pkt() */ else mwifiex_send_single_packet(priv, ptr, ptr_index); /* ra_list_spinlock has been freed in * mwifiex_send_single_packet() */ } else { if (mwifiex_is_ampdu_allowed(priv, ptr, tid) && ptr->ba_pkt_count > ptr->ba_packet_thr) { if (mwifiex_space_avail_for_new_ba_stream(adapter)) { mwifiex_create_ba_tbl(priv, ptr->ra, tid, BA_SETUP_INPROGRESS); mwifiex_send_addba(priv, tid, ptr->ra); } else if (mwifiex_find_stream_to_delete (priv, tid, &tid_del, ra)) { mwifiex_create_ba_tbl(priv, ptr->ra, tid, BA_SETUP_INPROGRESS); mwifiex_send_delba(priv, tid_del, ra, 1); } } if (mwifiex_is_amsdu_allowed(priv, tid) && mwifiex_is_11n_aggragation_possible(priv, ptr, adapter->tx_buf_size)) mwifiex_11n_aggregate_pkt(priv, ptr, ptr_index); /* ra_list_spinlock has been freed in mwifiex_11n_aggregate_pkt() */ else mwifiex_send_single_packet(priv, ptr, ptr_index); /* ra_list_spinlock has been freed in mwifiex_send_single_packet() */ } return 0; } void mwifiex_process_bypass_tx(struct mwifiex_adapter *adapter) { struct mwifiex_tx_param tx_param; struct sk_buff *skb; struct mwifiex_txinfo *tx_info; struct mwifiex_private *priv; int i; if (adapter->data_sent || adapter->tx_lock_flag) return; for (i = 0; i < adapter->priv_num; ++i) { priv = adapter->priv[i]; if (!priv) continue; if (adapter->if_ops.is_port_ready && !adapter->if_ops.is_port_ready(priv)) continue; if (skb_queue_empty(&priv->bypass_txq)) continue; skb = skb_dequeue(&priv->bypass_txq); tx_info = MWIFIEX_SKB_TXCB(skb); /* no aggregation for bypass packets */ tx_param.next_pkt_len = 0; if (mwifiex_process_tx(priv, skb, &tx_param) == -EBUSY) { skb_queue_head(&priv->bypass_txq, skb); tx_info->flags |= MWIFIEX_BUF_FLAG_REQUEUED_PKT; } else { atomic_dec(&adapter->bypass_tx_pending); } } } /* * This function transmits the highest priority packet awaiting in the * WMM Queues. */ void mwifiex_wmm_process_tx(struct mwifiex_adapter *adapter) { do { if (mwifiex_dequeue_tx_packet(adapter)) break; if (adapter->iface_type != MWIFIEX_SDIO) { if (adapter->data_sent || adapter->tx_lock_flag) break; } else { if (atomic_read(&adapter->tx_queued) >= MWIFIEX_MAX_PKTS_TXQ) break; } } while (!mwifiex_wmm_lists_empty(adapter)); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1