Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Gabor Juhos | 2046 | 55.54% | 16 | 22.86% |
Ivo van Doorn | 700 | 19.00% | 17 | 24.29% |
Stanislaw Gruszka | 462 | 12.54% | 7 | 10.00% |
Helmut Schaa | 294 | 7.98% | 11 | 15.71% |
Allen Pais | 60 | 1.63% | 1 | 1.43% |
Gertjan van Wingerde | 51 | 1.38% | 8 | 11.43% |
Arnd Bergmann | 43 | 1.17% | 2 | 2.86% |
Jakub Kiciński | 9 | 0.24% | 2 | 2.86% |
Bartlomiej Zolnierkiewicz | 6 | 0.16% | 2 | 2.86% |
RA-Shiang Tu | 5 | 0.14% | 1 | 1.43% |
Michael Skeffington | 5 | 0.14% | 1 | 1.43% |
Thomas Gleixner | 2 | 0.05% | 1 | 1.43% |
Johannes Stezenbach | 1 | 0.03% | 1 | 1.43% |
Total | 3684 | 70 |
// SPDX-License-Identifier: GPL-2.0-or-later /* Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com> * Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com> * Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org> * Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com> * Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de> * Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com> * Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com> * Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com> * <http://rt2x00.serialmonkey.com> */ /* Module: rt2800mmio * Abstract: rt2800 MMIO device routines. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/export.h> #include "rt2x00.h" #include "rt2x00mmio.h" #include "rt2800.h" #include "rt2800lib.h" #include "rt2800mmio.h" unsigned int rt2800mmio_get_dma_done(struct data_queue *queue) { struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; struct queue_entry *entry; int idx, qid; switch (queue->qid) { case QID_AC_VO: case QID_AC_VI: case QID_AC_BE: case QID_AC_BK: qid = queue->qid; idx = rt2x00mmio_register_read(rt2x00dev, TX_DTX_IDX(qid)); break; case QID_MGMT: idx = rt2x00mmio_register_read(rt2x00dev, TX_DTX_IDX(5)); break; case QID_RX: entry = rt2x00queue_get_entry(queue, Q_INDEX_DMA_DONE); idx = entry->entry_idx; break; default: WARN_ON_ONCE(1); idx = 0; break; } return idx; } EXPORT_SYMBOL_GPL(rt2800mmio_get_dma_done); /* * TX descriptor initialization */ __le32 *rt2800mmio_get_txwi(struct queue_entry *entry) { return (__le32 *) entry->skb->data; } EXPORT_SYMBOL_GPL(rt2800mmio_get_txwi); void rt2800mmio_write_tx_desc(struct queue_entry *entry, struct txentry_desc *txdesc) { struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); struct queue_entry_priv_mmio *entry_priv = entry->priv_data; __le32 *txd = entry_priv->desc; u32 word; const unsigned int txwi_size = entry->queue->winfo_size; /* * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1 * must contains a TXWI structure + 802.11 header + padding + 802.11 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11 * data. It means that LAST_SEC0 is always 0. */ /* * Initialize TX descriptor */ word = 0; rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma); rt2x00_desc_write(txd, 0, word); word = 0; rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len); rt2x00_set_field32(&word, TXD_W1_LAST_SEC1, !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W1_BURST, test_bit(ENTRY_TXD_BURST, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W1_SD_LEN0, txwi_size); rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0); rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0); rt2x00_desc_write(txd, 1, word); word = 0; rt2x00_set_field32(&word, TXD_W2_SD_PTR1, skbdesc->skb_dma + txwi_size); rt2x00_desc_write(txd, 2, word); word = 0; rt2x00_set_field32(&word, TXD_W3_WIV, !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W3_QSEL, 2); rt2x00_desc_write(txd, 3, word); /* * Register descriptor details in skb frame descriptor. */ skbdesc->desc = txd; skbdesc->desc_len = TXD_DESC_SIZE; } EXPORT_SYMBOL_GPL(rt2800mmio_write_tx_desc); /* * RX control handlers */ void rt2800mmio_fill_rxdone(struct queue_entry *entry, struct rxdone_entry_desc *rxdesc) { struct queue_entry_priv_mmio *entry_priv = entry->priv_data; __le32 *rxd = entry_priv->desc; u32 word; word = rt2x00_desc_read(rxd, 3); if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR)) rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; /* * Unfortunately we don't know the cipher type used during * decryption. This prevents us from correct providing * correct statistics through debugfs. */ rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR); if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) { /* * Hardware has stripped IV/EIV data from 802.11 frame during * decryption. Unfortunately the descriptor doesn't contain * any fields with the EIV/IV data either, so they can't * be restored by rt2x00lib. */ rxdesc->flags |= RX_FLAG_IV_STRIPPED; /* * The hardware has already checked the Michael Mic and has * stripped it from the frame. Signal this to mac80211. */ rxdesc->flags |= RX_FLAG_MMIC_STRIPPED; if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) { rxdesc->flags |= RX_FLAG_DECRYPTED; } else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) { /* * In order to check the Michael Mic, the packet must have * been decrypted. Mac80211 doesnt check the MMIC failure * flag to initiate MMIC countermeasures if the decoded flag * has not been set. */ rxdesc->flags |= RX_FLAG_DECRYPTED; rxdesc->flags |= RX_FLAG_MMIC_ERROR; } } if (rt2x00_get_field32(word, RXD_W3_MY_BSS)) rxdesc->dev_flags |= RXDONE_MY_BSS; if (rt2x00_get_field32(word, RXD_W3_L2PAD)) rxdesc->dev_flags |= RXDONE_L2PAD; /* * Process the RXWI structure that is at the start of the buffer. */ rt2800_process_rxwi(entry, rxdesc); } EXPORT_SYMBOL_GPL(rt2800mmio_fill_rxdone); /* * Interrupt functions. */ static void rt2800mmio_wakeup(struct rt2x00_dev *rt2x00dev) { struct ieee80211_conf conf = { .flags = 0 }; struct rt2x00lib_conf libconf = { .conf = &conf }; rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS); } static inline void rt2800mmio_enable_interrupt(struct rt2x00_dev *rt2x00dev, struct rt2x00_field32 irq_field) { u32 reg; /* * Enable a single interrupt. The interrupt mask register * access needs locking. */ spin_lock_irq(&rt2x00dev->irqmask_lock); reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR); rt2x00_set_field32(®, irq_field, 1); rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg); spin_unlock_irq(&rt2x00dev->irqmask_lock); } void rt2800mmio_pretbtt_tasklet(struct tasklet_struct *t) { struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, pretbtt_tasklet); rt2x00lib_pretbtt(rt2x00dev); if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT); } EXPORT_SYMBOL_GPL(rt2800mmio_pretbtt_tasklet); void rt2800mmio_tbtt_tasklet(struct tasklet_struct *t) { struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, tbtt_tasklet); struct rt2800_drv_data *drv_data = rt2x00dev->drv_data; u32 reg; rt2x00lib_beacondone(rt2x00dev); if (rt2x00dev->intf_ap_count) { /* * The rt2800pci hardware tbtt timer is off by 1us per tbtt * causing beacon skew and as a result causing problems with * some powersaving clients over time. Shorten the beacon * interval every 64 beacons by 64us to mitigate this effect. */ if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) { reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG); rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL, (rt2x00dev->beacon_int * 16) - 1); rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg); } else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) { reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG); rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL, (rt2x00dev->beacon_int * 16)); rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg); } drv_data->tbtt_tick++; drv_data->tbtt_tick %= BCN_TBTT_OFFSET; } if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT); } EXPORT_SYMBOL_GPL(rt2800mmio_tbtt_tasklet); void rt2800mmio_rxdone_tasklet(struct tasklet_struct *t) { struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, rxdone_tasklet); if (rt2x00mmio_rxdone(rt2x00dev)) tasklet_schedule(&rt2x00dev->rxdone_tasklet); else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE); } EXPORT_SYMBOL_GPL(rt2800mmio_rxdone_tasklet); void rt2800mmio_autowake_tasklet(struct tasklet_struct *t) { struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, autowake_tasklet); rt2800mmio_wakeup(rt2x00dev); if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP); } EXPORT_SYMBOL_GPL(rt2800mmio_autowake_tasklet); static void rt2800mmio_fetch_txstatus(struct rt2x00_dev *rt2x00dev) { u32 status; unsigned long flags; /* * The TX_FIFO_STATUS interrupt needs special care. We should * read TX_STA_FIFO but we should do it immediately as otherwise * the register can overflow and we would lose status reports. * * Hence, read the TX_STA_FIFO register and copy all tx status * reports into a kernel FIFO which is handled in the txstatus * tasklet. We use a tasklet to process the tx status reports * because we can schedule the tasklet multiple times (when the * interrupt fires again during tx status processing). * * We also read statuses from tx status timeout timer, use * lock to prevent concurent writes to fifo. */ spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags); while (!kfifo_is_full(&rt2x00dev->txstatus_fifo)) { status = rt2x00mmio_register_read(rt2x00dev, TX_STA_FIFO); if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID)) break; kfifo_put(&rt2x00dev->txstatus_fifo, status); } spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags); } void rt2800mmio_txstatus_tasklet(struct tasklet_struct *t) { struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, txstatus_tasklet); rt2800_txdone(rt2x00dev, 16); if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo)) tasklet_schedule(&rt2x00dev->txstatus_tasklet); } EXPORT_SYMBOL_GPL(rt2800mmio_txstatus_tasklet); irqreturn_t rt2800mmio_interrupt(int irq, void *dev_instance) { struct rt2x00_dev *rt2x00dev = dev_instance; u32 reg, mask; /* Read status and ACK all interrupts */ reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR); rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg); if (!reg) return IRQ_NONE; if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) return IRQ_HANDLED; /* * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits * for interrupts and interrupt masks we can just use the value of * INT_SOURCE_CSR to create the interrupt mask. */ mask = ~reg; if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) { rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1); rt2800mmio_fetch_txstatus(rt2x00dev); if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo)) tasklet_schedule(&rt2x00dev->txstatus_tasklet); } if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT)) tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet); if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT)) tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet); if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE)) tasklet_schedule(&rt2x00dev->rxdone_tasklet); if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP)) tasklet_schedule(&rt2x00dev->autowake_tasklet); /* * Disable all interrupts for which a tasklet was scheduled right now, * the tasklet will reenable the appropriate interrupts. */ spin_lock(&rt2x00dev->irqmask_lock); reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR); reg &= mask; rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg); spin_unlock(&rt2x00dev->irqmask_lock); return IRQ_HANDLED; } EXPORT_SYMBOL_GPL(rt2800mmio_interrupt); void rt2800mmio_toggle_irq(struct rt2x00_dev *rt2x00dev, enum dev_state state) { u32 reg; unsigned long flags; /* * When interrupts are being enabled, the interrupt registers * should clear the register to assure a clean state. */ if (state == STATE_RADIO_IRQ_ON) { reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR); rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg); } spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags); reg = 0; if (state == STATE_RADIO_IRQ_ON) { rt2x00_set_field32(®, INT_MASK_CSR_RX_DONE, 1); rt2x00_set_field32(®, INT_MASK_CSR_TBTT, 1); rt2x00_set_field32(®, INT_MASK_CSR_PRE_TBTT, 1); rt2x00_set_field32(®, INT_MASK_CSR_TX_FIFO_STATUS, 1); rt2x00_set_field32(®, INT_MASK_CSR_AUTO_WAKEUP, 1); } rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg); spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags); if (state == STATE_RADIO_IRQ_OFF) { /* * Wait for possibly running tasklets to finish. */ tasklet_kill(&rt2x00dev->txstatus_tasklet); tasklet_kill(&rt2x00dev->rxdone_tasklet); tasklet_kill(&rt2x00dev->autowake_tasklet); tasklet_kill(&rt2x00dev->tbtt_tasklet); tasklet_kill(&rt2x00dev->pretbtt_tasklet); } } EXPORT_SYMBOL_GPL(rt2800mmio_toggle_irq); /* * Queue handlers. */ void rt2800mmio_start_queue(struct data_queue *queue) { struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; u32 reg; switch (queue->qid) { case QID_RX: reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL); rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 1); rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg); break; case QID_BEACON: reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG); rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 1); rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 1); rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 1); rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg); reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN); rt2x00_set_field32(®, INT_TIMER_EN_PRE_TBTT_TIMER, 1); rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg); break; default: break; } } EXPORT_SYMBOL_GPL(rt2800mmio_start_queue); /* 200 ms */ #define TXSTATUS_TIMEOUT 200000000 void rt2800mmio_kick_queue(struct data_queue *queue) { struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; struct queue_entry *entry; switch (queue->qid) { case QID_AC_VO: case QID_AC_VI: case QID_AC_BE: case QID_AC_BK: WARN_ON_ONCE(rt2x00queue_empty(queue)); entry = rt2x00queue_get_entry(queue, Q_INDEX); rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(queue->qid), entry->entry_idx); hrtimer_start(&rt2x00dev->txstatus_timer, TXSTATUS_TIMEOUT, HRTIMER_MODE_REL); break; case QID_MGMT: entry = rt2x00queue_get_entry(queue, Q_INDEX); rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(5), entry->entry_idx); break; default: break; } } EXPORT_SYMBOL_GPL(rt2800mmio_kick_queue); void rt2800mmio_flush_queue(struct data_queue *queue, bool drop) { struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; bool tx_queue = false; unsigned int i; switch (queue->qid) { case QID_AC_VO: case QID_AC_VI: case QID_AC_BE: case QID_AC_BK: tx_queue = true; break; case QID_RX: break; default: return; } for (i = 0; i < 5; i++) { /* * Check if the driver is already done, otherwise we * have to sleep a little while to give the driver/hw * the oppurtunity to complete interrupt process itself. */ if (rt2x00queue_empty(queue)) break; /* * For TX queues schedule completion tasklet to catch * tx status timeouts, othewise just wait. */ if (tx_queue) queue_work(rt2x00dev->workqueue, &rt2x00dev->txdone_work); /* * Wait for a little while to give the driver * the oppurtunity to recover itself. */ msleep(50); } } EXPORT_SYMBOL_GPL(rt2800mmio_flush_queue); void rt2800mmio_stop_queue(struct data_queue *queue) { struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; u32 reg; switch (queue->qid) { case QID_RX: reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL); rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 0); rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg); break; case QID_BEACON: reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG); rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 0); rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 0); rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 0); rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg); reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN); rt2x00_set_field32(®, INT_TIMER_EN_PRE_TBTT_TIMER, 0); rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg); /* * Wait for current invocation to finish. The tasklet * won't be scheduled anymore afterwards since we disabled * the TBTT and PRE TBTT timer. */ tasklet_kill(&rt2x00dev->tbtt_tasklet); tasklet_kill(&rt2x00dev->pretbtt_tasklet); break; default: break; } } EXPORT_SYMBOL_GPL(rt2800mmio_stop_queue); void rt2800mmio_queue_init(struct data_queue *queue) { struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; unsigned short txwi_size, rxwi_size; rt2800_get_txwi_rxwi_size(rt2x00dev, &txwi_size, &rxwi_size); switch (queue->qid) { case QID_RX: queue->limit = 128; queue->data_size = AGGREGATION_SIZE; queue->desc_size = RXD_DESC_SIZE; queue->winfo_size = rxwi_size; queue->priv_size = sizeof(struct queue_entry_priv_mmio); break; case QID_AC_VO: case QID_AC_VI: case QID_AC_BE: case QID_AC_BK: queue->limit = 64; queue->data_size = AGGREGATION_SIZE; queue->desc_size = TXD_DESC_SIZE; queue->winfo_size = txwi_size; queue->priv_size = sizeof(struct queue_entry_priv_mmio); break; case QID_BEACON: queue->limit = 8; queue->data_size = 0; /* No DMA required for beacons */ queue->desc_size = TXD_DESC_SIZE; queue->winfo_size = txwi_size; queue->priv_size = sizeof(struct queue_entry_priv_mmio); break; case QID_ATIM: default: BUG(); break; } } EXPORT_SYMBOL_GPL(rt2800mmio_queue_init); /* * Initialization functions. */ bool rt2800mmio_get_entry_state(struct queue_entry *entry) { struct queue_entry_priv_mmio *entry_priv = entry->priv_data; u32 word; if (entry->queue->qid == QID_RX) { word = rt2x00_desc_read(entry_priv->desc, 1); return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE)); } else { word = rt2x00_desc_read(entry_priv->desc, 1); return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE)); } } EXPORT_SYMBOL_GPL(rt2800mmio_get_entry_state); void rt2800mmio_clear_entry(struct queue_entry *entry) { struct queue_entry_priv_mmio *entry_priv = entry->priv_data; struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; u32 word; if (entry->queue->qid == QID_RX) { word = rt2x00_desc_read(entry_priv->desc, 0); rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma); rt2x00_desc_write(entry_priv->desc, 0, word); word = rt2x00_desc_read(entry_priv->desc, 1); rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0); rt2x00_desc_write(entry_priv->desc, 1, word); /* * Set RX IDX in register to inform hardware that we have * handled this entry and it is available for reuse again. */ rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx); } else { word = rt2x00_desc_read(entry_priv->desc, 1); rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1); rt2x00_desc_write(entry_priv->desc, 1, word); /* If last entry stop txstatus timer */ if (entry->queue->length == 1) hrtimer_cancel(&rt2x00dev->txstatus_timer); } } EXPORT_SYMBOL_GPL(rt2800mmio_clear_entry); int rt2800mmio_init_queues(struct rt2x00_dev *rt2x00dev) { struct queue_entry_priv_mmio *entry_priv; /* * Initialize registers. */ entry_priv = rt2x00dev->tx[0].entries[0].priv_data; rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma); rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit); rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX0, 0); rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX0, 0); entry_priv = rt2x00dev->tx[1].entries[0].priv_data; rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma); rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit); rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX1, 0); rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX1, 0); entry_priv = rt2x00dev->tx[2].entries[0].priv_data; rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma); rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit); rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX2, 0); rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX2, 0); entry_priv = rt2x00dev->tx[3].entries[0].priv_data; rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma); rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit); rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX3, 0); rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX3, 0); rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR4, 0); rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT4, 0); rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX4, 0); rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX4, 0); rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR5, 0); rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT5, 0); rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX5, 0); rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX5, 0); entry_priv = rt2x00dev->rx->entries[0].priv_data; rt2x00mmio_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma); rt2x00mmio_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit); rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1); rt2x00mmio_register_write(rt2x00dev, RX_DRX_IDX, 0); rt2800_disable_wpdma(rt2x00dev); rt2x00mmio_register_write(rt2x00dev, DELAY_INT_CFG, 0); return 0; } EXPORT_SYMBOL_GPL(rt2800mmio_init_queues); int rt2800mmio_init_registers(struct rt2x00_dev *rt2x00dev) { u32 reg; /* * Reset DMA indexes */ reg = rt2x00mmio_register_read(rt2x00dev, WPDMA_RST_IDX); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX0, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX1, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX2, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX3, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX4, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX5, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DRX_IDX0, 1); rt2x00mmio_register_write(rt2x00dev, WPDMA_RST_IDX, reg); rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f); rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00); if (rt2x00_is_pcie(rt2x00dev) && (rt2x00_rt(rt2x00dev, RT3090) || rt2x00_rt(rt2x00dev, RT3390) || rt2x00_rt(rt2x00dev, RT3572) || rt2x00_rt(rt2x00dev, RT3593) || rt2x00_rt(rt2x00dev, RT5390) || rt2x00_rt(rt2x00dev, RT5392) || rt2x00_rt(rt2x00dev, RT5592))) { reg = rt2x00mmio_register_read(rt2x00dev, AUX_CTRL); rt2x00_set_field32(®, AUX_CTRL_FORCE_PCIE_CLK, 1); rt2x00_set_field32(®, AUX_CTRL_WAKE_PCIE_EN, 1); rt2x00mmio_register_write(rt2x00dev, AUX_CTRL, reg); } rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003); reg = 0; rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_CSR, 1); rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_BBP, 1); rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg); rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000); return 0; } EXPORT_SYMBOL_GPL(rt2800mmio_init_registers); /* * Device state switch handlers. */ int rt2800mmio_enable_radio(struct rt2x00_dev *rt2x00dev) { /* Wait for DMA, ignore error until we initialize queues. */ rt2800_wait_wpdma_ready(rt2x00dev); if (unlikely(rt2800mmio_init_queues(rt2x00dev))) return -EIO; return rt2800_enable_radio(rt2x00dev); } EXPORT_SYMBOL_GPL(rt2800mmio_enable_radio); static void rt2800mmio_work_txdone(struct work_struct *work) { struct rt2x00_dev *rt2x00dev = container_of(work, struct rt2x00_dev, txdone_work); if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) return; while (!kfifo_is_empty(&rt2x00dev->txstatus_fifo) || rt2800_txstatus_timeout(rt2x00dev)) { tasklet_disable(&rt2x00dev->txstatus_tasklet); rt2800_txdone(rt2x00dev, UINT_MAX); rt2800_txdone_nostatus(rt2x00dev); tasklet_enable(&rt2x00dev->txstatus_tasklet); } if (rt2800_txstatus_pending(rt2x00dev)) hrtimer_start(&rt2x00dev->txstatus_timer, TXSTATUS_TIMEOUT, HRTIMER_MODE_REL); } static enum hrtimer_restart rt2800mmio_tx_sta_fifo_timeout(struct hrtimer *timer) { struct rt2x00_dev *rt2x00dev = container_of(timer, struct rt2x00_dev, txstatus_timer); if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) goto out; if (!rt2800_txstatus_pending(rt2x00dev)) goto out; rt2800mmio_fetch_txstatus(rt2x00dev); if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo)) tasklet_schedule(&rt2x00dev->txstatus_tasklet); else queue_work(rt2x00dev->workqueue, &rt2x00dev->txdone_work); out: return HRTIMER_NORESTART; } int rt2800mmio_probe_hw(struct rt2x00_dev *rt2x00dev) { int retval; retval = rt2800_probe_hw(rt2x00dev); if (retval) return retval; /* * Set txstatus timer function. */ rt2x00dev->txstatus_timer.function = rt2800mmio_tx_sta_fifo_timeout; /* * Overwrite TX done handler */ INIT_WORK(&rt2x00dev->txdone_work, rt2800mmio_work_txdone); return 0; } EXPORT_SYMBOL_GPL(rt2800mmio_probe_hw); MODULE_AUTHOR(DRV_PROJECT); MODULE_VERSION(DRV_VERSION); MODULE_DESCRIPTION("rt2800 MMIO library"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1