Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Michael Wu | 4254 | 42.26% | 8 | 6.56% |
Hin-Tak Leung | 1987 | 19.74% | 3 | 2.46% |
Herton Ronaldo Krzesinski | 1219 | 12.11% | 18 | 14.75% |
Larry Finger | 906 | 9.00% | 18 | 14.75% |
Johannes Berg | 874 | 8.68% | 23 | 18.85% |
Attila Fazekas | 412 | 4.09% | 1 | 0.82% |
John W. Linville | 66 | 0.66% | 6 | 4.92% |
Andrea Merello | 54 | 0.54% | 6 | 4.92% |
Oliver Neukum | 32 | 0.32% | 1 | 0.82% |
Matthias Mueller | 29 | 0.29% | 1 | 0.82% |
Thadeu Lima de Souza Cascardo | 27 | 0.27% | 1 | 0.82% |
Ivan Kuten | 24 | 0.24% | 1 | 0.82% |
Alexey Khoroshilov | 19 | 0.19% | 1 | 0.82% |
Jiri Benc | 15 | 0.15% | 1 | 0.82% |
David S. Miller | 15 | 0.15% | 1 | 0.82% |
Luis R. Rodriguez | 12 | 0.12% | 2 | 1.64% |
Joe Perches | 10 | 0.10% | 3 | 2.46% |
Pan Bian | 10 | 0.10% | 1 | 0.82% |
Andrzej Zaborowski | 9 | 0.09% | 1 | 0.82% |
Florent Fourcot | 7 | 0.07% | 1 | 0.82% |
Ivo van Doorn | 7 | 0.07% | 1 | 0.82% |
Nils Holland | 7 | 0.07% | 1 | 0.82% |
Thomas Huehn | 7 | 0.07% | 1 | 0.82% |
Samuel Ortiz | 6 | 0.06% | 1 | 0.82% |
Karl Beldan | 6 | 0.06% | 1 | 0.82% |
Jiri Pirko | 5 | 0.05% | 1 | 0.82% |
Sage Sharp | 5 | 0.05% | 1 | 0.82% |
Yi Zhu | 5 | 0.05% | 1 | 0.82% |
Alexander Wetzel | 5 | 0.05% | 1 | 0.82% |
Juuso Oikarinen | 5 | 0.05% | 1 | 0.82% |
Harvey Harrison | 4 | 0.04% | 1 | 0.82% |
Michal Kazior | 4 | 0.04% | 1 | 0.82% |
Daniel Drake | 3 | 0.03% | 1 | 0.82% |
Paul Gortmaker | 3 | 0.03% | 1 | 0.82% |
Thomas Gleixner | 2 | 0.02% | 1 | 0.82% |
striebit | 2 | 0.02% | 1 | 0.82% |
Greg Kroah-Hartman | 2 | 0.02% | 1 | 0.82% |
Linus Torvalds (pre-git) | 2 | 0.02% | 1 | 0.82% |
matthieu Barthélemy | 1 | 0.01% | 1 | 0.82% |
Thomas Pedersen | 1 | 0.01% | 1 | 0.82% |
Linus Torvalds | 1 | 0.01% | 1 | 0.82% |
Bob Jolliffe | 1 | 0.01% | 1 | 0.82% |
Arvind Yadav | 1 | 0.01% | 1 | 0.82% |
Jelle Martijn Kok | 1 | 0.01% | 1 | 0.82% |
Total | 10067 | 122 |
// SPDX-License-Identifier: GPL-2.0-only /* * Linux device driver for RTL8187 * * Copyright 2007 Michael Wu <flamingice@sourmilk.net> * Copyright 2007 Andrea Merello <andrea.merello@gmail.com> * * Based on the r8187 driver, which is: * Copyright 2005 Andrea Merello <andrea.merello@gmail.com>, et al. * * The driver was extended to the RTL8187B in 2008 by: * Herton Ronaldo Krzesinski <herton@mandriva.com.br> * Hin-Tak Leung <htl10@users.sourceforge.net> * Larry Finger <Larry.Finger@lwfinger.net> * * Magic delays and register offsets below are taken from the original * r8187 driver sources. Thanks to Realtek for their support! */ #include <linux/usb.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/etherdevice.h> #include <linux/eeprom_93cx6.h> #include <linux/module.h> #include <net/mac80211.h> #include "rtl8187.h" #include "rtl8225.h" #ifdef CONFIG_RTL8187_LEDS #include "leds.h" #endif #include "rfkill.h" MODULE_AUTHOR("Michael Wu <flamingice@sourmilk.net>"); MODULE_AUTHOR("Andrea Merello <andrea.merello@gmail.com>"); MODULE_AUTHOR("Herton Ronaldo Krzesinski <herton@mandriva.com.br>"); MODULE_AUTHOR("Hin-Tak Leung <htl10@users.sourceforge.net>"); MODULE_AUTHOR("Larry Finger <Larry.Finger@lwfinger.net>"); MODULE_DESCRIPTION("RTL8187/RTL8187B USB wireless driver"); MODULE_LICENSE("GPL"); static const struct usb_device_id rtl8187_table[] = { /* Asus */ {USB_DEVICE(0x0b05, 0x171d), .driver_info = DEVICE_RTL8187}, /* Belkin */ {USB_DEVICE(0x050d, 0x705e), .driver_info = DEVICE_RTL8187B}, /* Realtek */ {USB_DEVICE(0x0bda, 0x8187), .driver_info = DEVICE_RTL8187}, {USB_DEVICE(0x0bda, 0x8189), .driver_info = DEVICE_RTL8187B}, {USB_DEVICE(0x0bda, 0x8197), .driver_info = DEVICE_RTL8187B}, {USB_DEVICE(0x0bda, 0x8198), .driver_info = DEVICE_RTL8187B}, /* Surecom */ {USB_DEVICE(0x0769, 0x11F2), .driver_info = DEVICE_RTL8187}, /* Logitech */ {USB_DEVICE(0x0789, 0x010C), .driver_info = DEVICE_RTL8187}, /* Netgear */ {USB_DEVICE(0x0846, 0x6100), .driver_info = DEVICE_RTL8187}, {USB_DEVICE(0x0846, 0x6a00), .driver_info = DEVICE_RTL8187}, {USB_DEVICE(0x0846, 0x4260), .driver_info = DEVICE_RTL8187B}, /* HP */ {USB_DEVICE(0x03f0, 0xca02), .driver_info = DEVICE_RTL8187}, /* Sitecom */ {USB_DEVICE(0x0df6, 0x000d), .driver_info = DEVICE_RTL8187}, {USB_DEVICE(0x0df6, 0x0028), .driver_info = DEVICE_RTL8187B}, {USB_DEVICE(0x0df6, 0x0029), .driver_info = DEVICE_RTL8187B}, /* Sphairon Access Systems GmbH */ {USB_DEVICE(0x114B, 0x0150), .driver_info = DEVICE_RTL8187}, /* Dick Smith Electronics */ {USB_DEVICE(0x1371, 0x9401), .driver_info = DEVICE_RTL8187}, /* Abocom */ {USB_DEVICE(0x13d1, 0xabe6), .driver_info = DEVICE_RTL8187}, /* Qcom */ {USB_DEVICE(0x18E8, 0x6232), .driver_info = DEVICE_RTL8187}, /* AirLive */ {USB_DEVICE(0x1b75, 0x8187), .driver_info = DEVICE_RTL8187}, /* Linksys */ {USB_DEVICE(0x1737, 0x0073), .driver_info = DEVICE_RTL8187B}, {} }; MODULE_DEVICE_TABLE(usb, rtl8187_table); static const struct ieee80211_rate rtl818x_rates[] = { { .bitrate = 10, .hw_value = 0, }, { .bitrate = 20, .hw_value = 1, }, { .bitrate = 55, .hw_value = 2, }, { .bitrate = 110, .hw_value = 3, }, { .bitrate = 60, .hw_value = 4, }, { .bitrate = 90, .hw_value = 5, }, { .bitrate = 120, .hw_value = 6, }, { .bitrate = 180, .hw_value = 7, }, { .bitrate = 240, .hw_value = 8, }, { .bitrate = 360, .hw_value = 9, }, { .bitrate = 480, .hw_value = 10, }, { .bitrate = 540, .hw_value = 11, }, }; static const struct ieee80211_channel rtl818x_channels[] = { { .center_freq = 2412 }, { .center_freq = 2417 }, { .center_freq = 2422 }, { .center_freq = 2427 }, { .center_freq = 2432 }, { .center_freq = 2437 }, { .center_freq = 2442 }, { .center_freq = 2447 }, { .center_freq = 2452 }, { .center_freq = 2457 }, { .center_freq = 2462 }, { .center_freq = 2467 }, { .center_freq = 2472 }, { .center_freq = 2484 }, }; static void rtl8187_iowrite_async_cb(struct urb *urb) { kfree(urb->context); } static void rtl8187_iowrite_async(struct rtl8187_priv *priv, __le16 addr, void *data, u16 len) { struct usb_ctrlrequest *dr; struct urb *urb; struct rtl8187_async_write_data { u8 data[4]; struct usb_ctrlrequest dr; } *buf; int rc; buf = kmalloc(sizeof(*buf), GFP_ATOMIC); if (!buf) return; urb = usb_alloc_urb(0, GFP_ATOMIC); if (!urb) { kfree(buf); return; } dr = &buf->dr; dr->bRequestType = RTL8187_REQT_WRITE; dr->bRequest = RTL8187_REQ_SET_REG; dr->wValue = addr; dr->wIndex = 0; dr->wLength = cpu_to_le16(len); memcpy(buf, data, len); usb_fill_control_urb(urb, priv->udev, usb_sndctrlpipe(priv->udev, 0), (unsigned char *)dr, buf, len, rtl8187_iowrite_async_cb, buf); usb_anchor_urb(urb, &priv->anchored); rc = usb_submit_urb(urb, GFP_ATOMIC); if (rc < 0) { kfree(buf); usb_unanchor_urb(urb); } usb_free_urb(urb); } static inline void rtl818x_iowrite32_async(struct rtl8187_priv *priv, __le32 *addr, u32 val) { __le32 buf = cpu_to_le32(val); rtl8187_iowrite_async(priv, cpu_to_le16((unsigned long)addr), &buf, sizeof(buf)); } void rtl8187_write_phy(struct ieee80211_hw *dev, u8 addr, u32 data) { struct rtl8187_priv *priv = dev->priv; data <<= 8; data |= addr | 0x80; rtl818x_iowrite8(priv, &priv->map->PHY[3], (data >> 24) & 0xFF); rtl818x_iowrite8(priv, &priv->map->PHY[2], (data >> 16) & 0xFF); rtl818x_iowrite8(priv, &priv->map->PHY[1], (data >> 8) & 0xFF); rtl818x_iowrite8(priv, &priv->map->PHY[0], data & 0xFF); } static void rtl8187_tx_cb(struct urb *urb) { struct sk_buff *skb = (struct sk_buff *)urb->context; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hw *hw = info->rate_driver_data[0]; struct rtl8187_priv *priv = hw->priv; skb_pull(skb, priv->is_rtl8187b ? sizeof(struct rtl8187b_tx_hdr) : sizeof(struct rtl8187_tx_hdr)); ieee80211_tx_info_clear_status(info); if (!(urb->status) && !(info->flags & IEEE80211_TX_CTL_NO_ACK)) { if (priv->is_rtl8187b) { skb_queue_tail(&priv->b_tx_status.queue, skb); /* queue is "full", discard last items */ while (skb_queue_len(&priv->b_tx_status.queue) > 5) { struct sk_buff *old_skb; dev_dbg(&priv->udev->dev, "transmit status queue full\n"); old_skb = skb_dequeue(&priv->b_tx_status.queue); ieee80211_tx_status_irqsafe(hw, old_skb); } return; } else { info->flags |= IEEE80211_TX_STAT_ACK; } } if (priv->is_rtl8187b) ieee80211_tx_status_irqsafe(hw, skb); else { /* Retry information for the RTI8187 is only available by * reading a register in the device. We are in interrupt mode * here, thus queue the skb and finish on a work queue. */ skb_queue_tail(&priv->b_tx_status.queue, skb); ieee80211_queue_delayed_work(hw, &priv->work, 0); } } static void rtl8187_tx(struct ieee80211_hw *dev, struct ieee80211_tx_control *control, struct sk_buff *skb) { struct rtl8187_priv *priv = dev->priv; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *tx_hdr = (struct ieee80211_hdr *)(skb->data); unsigned int ep; void *buf; struct urb *urb; __le16 rts_dur = 0; u32 flags; int rc; urb = usb_alloc_urb(0, GFP_ATOMIC); if (!urb) { kfree_skb(skb); return; } flags = skb->len; flags |= RTL818X_TX_DESC_FLAG_NO_ENC; flags |= ieee80211_get_tx_rate(dev, info)->hw_value << 24; if (ieee80211_has_morefrags(tx_hdr->frame_control)) flags |= RTL818X_TX_DESC_FLAG_MOREFRAG; /* HW will perform RTS-CTS when only RTS flags is set. * HW will perform CTS-to-self when both RTS and CTS flags are set. * RTS rate and RTS duration will be used also for CTS-to-self. */ if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS) { flags |= RTL818X_TX_DESC_FLAG_RTS; flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19; rts_dur = ieee80211_rts_duration(dev, priv->vif, skb->len, info); } else if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { flags |= RTL818X_TX_DESC_FLAG_RTS | RTL818X_TX_DESC_FLAG_CTS; flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19; rts_dur = ieee80211_ctstoself_duration(dev, priv->vif, skb->len, info); } if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) priv->seqno += 0x10; tx_hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); tx_hdr->seq_ctrl |= cpu_to_le16(priv->seqno); } if (!priv->is_rtl8187b) { struct rtl8187_tx_hdr *hdr = skb_push(skb, sizeof(*hdr)); hdr->flags = cpu_to_le32(flags); hdr->len = 0; hdr->rts_duration = rts_dur; hdr->retry = cpu_to_le32((info->control.rates[0].count - 1) << 8); buf = hdr; ep = 2; } else { /* fc needs to be calculated before skb_push() */ unsigned int epmap[4] = { 6, 7, 5, 4 }; u16 fc = le16_to_cpu(tx_hdr->frame_control); struct rtl8187b_tx_hdr *hdr = skb_push(skb, sizeof(*hdr)); struct ieee80211_rate *txrate = ieee80211_get_tx_rate(dev, info); memset(hdr, 0, sizeof(*hdr)); hdr->flags = cpu_to_le32(flags); hdr->rts_duration = rts_dur; hdr->retry = cpu_to_le32((info->control.rates[0].count - 1) << 8); hdr->tx_duration = ieee80211_generic_frame_duration(dev, priv->vif, info->band, skb->len, txrate); buf = hdr; if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) ep = 12; else ep = epmap[skb_get_queue_mapping(skb)]; } info->rate_driver_data[0] = dev; info->rate_driver_data[1] = urb; usb_fill_bulk_urb(urb, priv->udev, usb_sndbulkpipe(priv->udev, ep), buf, skb->len, rtl8187_tx_cb, skb); urb->transfer_flags |= URB_ZERO_PACKET; usb_anchor_urb(urb, &priv->anchored); rc = usb_submit_urb(urb, GFP_ATOMIC); if (rc < 0) { usb_unanchor_urb(urb); kfree_skb(skb); } usb_free_urb(urb); } static void rtl8187_rx_cb(struct urb *urb) { struct sk_buff *skb = (struct sk_buff *)urb->context; struct rtl8187_rx_info *info = (struct rtl8187_rx_info *)skb->cb; struct ieee80211_hw *dev = info->dev; struct rtl8187_priv *priv = dev->priv; struct ieee80211_rx_status rx_status = { 0 }; int rate, signal; u32 flags; unsigned long f; spin_lock_irqsave(&priv->rx_queue.lock, f); __skb_unlink(skb, &priv->rx_queue); spin_unlock_irqrestore(&priv->rx_queue.lock, f); skb_put(skb, urb->actual_length); if (unlikely(urb->status)) { dev_kfree_skb_irq(skb); return; } if (!priv->is_rtl8187b) { struct rtl8187_rx_hdr *hdr = (typeof(hdr))(skb_tail_pointer(skb) - sizeof(*hdr)); flags = le32_to_cpu(hdr->flags); /* As with the RTL8187B below, the AGC is used to calculate * signal strength. In this case, the scaling * constants are derived from the output of p54usb. */ signal = -4 - ((27 * hdr->agc) >> 6); rx_status.antenna = (hdr->signal >> 7) & 1; rx_status.mactime = le64_to_cpu(hdr->mac_time); } else { struct rtl8187b_rx_hdr *hdr = (typeof(hdr))(skb_tail_pointer(skb) - sizeof(*hdr)); /* The Realtek datasheet for the RTL8187B shows that the RX * header contains the following quantities: signal quality, * RSSI, AGC, the received power in dB, and the measured SNR. * In testing, none of these quantities show qualitative * agreement with AP signal strength, except for the AGC, * which is inversely proportional to the strength of the * signal. In the following, the signal strength * is derived from the AGC. The arbitrary scaling constants * are chosen to make the results close to the values obtained * for a BCM4312 using b43 as the driver. The noise is ignored * for now. */ flags = le32_to_cpu(hdr->flags); signal = 14 - hdr->agc / 2; rx_status.antenna = (hdr->rssi >> 7) & 1; rx_status.mactime = le64_to_cpu(hdr->mac_time); } rx_status.signal = signal; priv->signal = signal; rate = (flags >> 20) & 0xF; skb_trim(skb, flags & 0x0FFF); rx_status.rate_idx = rate; rx_status.freq = dev->conf.chandef.chan->center_freq; rx_status.band = dev->conf.chandef.chan->band; rx_status.flag |= RX_FLAG_MACTIME_START; if (flags & RTL818X_RX_DESC_FLAG_SPLCP) rx_status.enc_flags |= RX_ENC_FLAG_SHORTPRE; if (flags & RTL818X_RX_DESC_FLAG_CRC32_ERR) rx_status.flag |= RX_FLAG_FAILED_FCS_CRC; memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); ieee80211_rx_irqsafe(dev, skb); skb = dev_alloc_skb(RTL8187_MAX_RX); if (unlikely(!skb)) { /* TODO check rx queue length and refill *somewhere* */ return; } info = (struct rtl8187_rx_info *)skb->cb; info->urb = urb; info->dev = dev; urb->transfer_buffer = skb_tail_pointer(skb); urb->context = skb; skb_queue_tail(&priv->rx_queue, skb); usb_anchor_urb(urb, &priv->anchored); if (usb_submit_urb(urb, GFP_ATOMIC)) { usb_unanchor_urb(urb); skb_unlink(skb, &priv->rx_queue); dev_kfree_skb_irq(skb); } } static int rtl8187_init_urbs(struct ieee80211_hw *dev) { struct rtl8187_priv *priv = dev->priv; struct urb *entry = NULL; struct sk_buff *skb; struct rtl8187_rx_info *info; int ret = 0; while (skb_queue_len(&priv->rx_queue) < 32) { skb = __dev_alloc_skb(RTL8187_MAX_RX, GFP_KERNEL); if (!skb) { ret = -ENOMEM; goto err; } entry = usb_alloc_urb(0, GFP_KERNEL); if (!entry) { ret = -ENOMEM; goto err; } usb_fill_bulk_urb(entry, priv->udev, usb_rcvbulkpipe(priv->udev, priv->is_rtl8187b ? 3 : 1), skb_tail_pointer(skb), RTL8187_MAX_RX, rtl8187_rx_cb, skb); info = (struct rtl8187_rx_info *)skb->cb; info->urb = entry; info->dev = dev; skb_queue_tail(&priv->rx_queue, skb); usb_anchor_urb(entry, &priv->anchored); ret = usb_submit_urb(entry, GFP_KERNEL); if (ret) { skb_unlink(skb, &priv->rx_queue); usb_unanchor_urb(entry); usb_put_urb(entry); goto err; } usb_put_urb(entry); } return ret; err: kfree_skb(skb); usb_kill_anchored_urbs(&priv->anchored); return ret; } static void rtl8187b_status_cb(struct urb *urb) { struct ieee80211_hw *hw = (struct ieee80211_hw *)urb->context; struct rtl8187_priv *priv = hw->priv; u64 val; unsigned int cmd_type; if (unlikely(urb->status)) return; /* * Read from status buffer: * * bits [30:31] = cmd type: * - 0 indicates tx beacon interrupt * - 1 indicates tx close descriptor * * In the case of tx beacon interrupt: * [0:9] = Last Beacon CW * [10:29] = reserved * [30:31] = 00b * [32:63] = Last Beacon TSF * * If it's tx close descriptor: * [0:7] = Packet Retry Count * [8:14] = RTS Retry Count * [15] = TOK * [16:27] = Sequence No * [28] = LS * [29] = FS * [30:31] = 01b * [32:47] = unused (reserved?) * [48:63] = MAC Used Time */ val = le64_to_cpu(priv->b_tx_status.buf); cmd_type = (val >> 30) & 0x3; if (cmd_type == 1) { unsigned int pkt_rc, seq_no; bool tok; struct sk_buff *skb, *iter; struct ieee80211_hdr *ieee80211hdr; unsigned long flags; pkt_rc = val & 0xFF; tok = val & (1 << 15); seq_no = (val >> 16) & 0xFFF; spin_lock_irqsave(&priv->b_tx_status.queue.lock, flags); skb = NULL; skb_queue_reverse_walk(&priv->b_tx_status.queue, iter) { ieee80211hdr = (struct ieee80211_hdr *)iter->data; /* * While testing, it was discovered that the seq_no * doesn't actually contains the sequence number. * Instead of returning just the 12 bits of sequence * number, hardware is returning entire sequence control * (fragment number plus sequence number) in a 12 bit * only field overflowing after some time. As a * workaround, just consider the lower bits, and expect * it's unlikely we wrongly ack some sent data */ if ((le16_to_cpu(ieee80211hdr->seq_ctrl) & 0xFFF) == seq_no) { skb = iter; break; } } if (skb) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); __skb_unlink(skb, &priv->b_tx_status.queue); if (tok) info->flags |= IEEE80211_TX_STAT_ACK; info->status.rates[0].count = pkt_rc + 1; ieee80211_tx_status_irqsafe(hw, skb); } spin_unlock_irqrestore(&priv->b_tx_status.queue.lock, flags); } usb_anchor_urb(urb, &priv->anchored); if (usb_submit_urb(urb, GFP_ATOMIC)) usb_unanchor_urb(urb); } static int rtl8187b_init_status_urb(struct ieee80211_hw *dev) { struct rtl8187_priv *priv = dev->priv; struct urb *entry; int ret = 0; entry = usb_alloc_urb(0, GFP_KERNEL); if (!entry) return -ENOMEM; usb_fill_bulk_urb(entry, priv->udev, usb_rcvbulkpipe(priv->udev, 9), &priv->b_tx_status.buf, sizeof(priv->b_tx_status.buf), rtl8187b_status_cb, dev); usb_anchor_urb(entry, &priv->anchored); ret = usb_submit_urb(entry, GFP_KERNEL); if (ret) usb_unanchor_urb(entry); usb_free_urb(entry); return ret; } static void rtl8187_set_anaparam(struct rtl8187_priv *priv, bool rfon) { u32 anaparam, anaparam2; u8 anaparam3, reg; if (!priv->is_rtl8187b) { if (rfon) { anaparam = RTL8187_RTL8225_ANAPARAM_ON; anaparam2 = RTL8187_RTL8225_ANAPARAM2_ON; } else { anaparam = RTL8187_RTL8225_ANAPARAM_OFF; anaparam2 = RTL8187_RTL8225_ANAPARAM2_OFF; } } else { if (rfon) { anaparam = RTL8187B_RTL8225_ANAPARAM_ON; anaparam2 = RTL8187B_RTL8225_ANAPARAM2_ON; anaparam3 = RTL8187B_RTL8225_ANAPARAM3_ON; } else { anaparam = RTL8187B_RTL8225_ANAPARAM_OFF; anaparam2 = RTL8187B_RTL8225_ANAPARAM2_OFF; anaparam3 = RTL8187B_RTL8225_ANAPARAM3_OFF; } } rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_CONFIG); reg = rtl818x_ioread8(priv, &priv->map->CONFIG3); reg |= RTL818X_CONFIG3_ANAPARAM_WRITE; rtl818x_iowrite8(priv, &priv->map->CONFIG3, reg); rtl818x_iowrite32(priv, &priv->map->ANAPARAM, anaparam); rtl818x_iowrite32(priv, &priv->map->ANAPARAM2, anaparam2); if (priv->is_rtl8187b) rtl818x_iowrite8(priv, &priv->map->ANAPARAM3A, anaparam3); reg &= ~RTL818X_CONFIG3_ANAPARAM_WRITE; rtl818x_iowrite8(priv, &priv->map->CONFIG3, reg); rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_NORMAL); } static int rtl8187_cmd_reset(struct ieee80211_hw *dev) { struct rtl8187_priv *priv = dev->priv; u8 reg; int i; reg = rtl818x_ioread8(priv, &priv->map->CMD); reg &= (1 << 1); reg |= RTL818X_CMD_RESET; rtl818x_iowrite8(priv, &priv->map->CMD, reg); i = 10; do { msleep(2); if (!(rtl818x_ioread8(priv, &priv->map->CMD) & RTL818X_CMD_RESET)) break; } while (--i); if (!i) { wiphy_err(dev->wiphy, "Reset timeout!\n"); return -ETIMEDOUT; } /* reload registers from eeprom */ rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_LOAD); i = 10; do { msleep(4); if (!(rtl818x_ioread8(priv, &priv->map->EEPROM_CMD) & RTL818X_EEPROM_CMD_CONFIG)) break; } while (--i); if (!i) { wiphy_err(dev->wiphy, "eeprom reset timeout!\n"); return -ETIMEDOUT; } return 0; } static int rtl8187_init_hw(struct ieee80211_hw *dev) { struct rtl8187_priv *priv = dev->priv; u8 reg; int res; /* reset */ rtl8187_set_anaparam(priv, true); rtl818x_iowrite16(priv, &priv->map->INT_MASK, 0); msleep(200); rtl818x_iowrite8(priv, (u8 *)0xFE18, 0x10); rtl818x_iowrite8(priv, (u8 *)0xFE18, 0x11); rtl818x_iowrite8(priv, (u8 *)0xFE18, 0x00); msleep(200); res = rtl8187_cmd_reset(dev); if (res) return res; rtl8187_set_anaparam(priv, true); /* setup card */ rtl818x_iowrite16(priv, &priv->map->RFPinsSelect, 0); rtl818x_iowrite8(priv, &priv->map->GPIO0, 0); rtl818x_iowrite16(priv, &priv->map->RFPinsSelect, (4 << 8)); rtl818x_iowrite8(priv, &priv->map->GPIO0, 1); rtl818x_iowrite8(priv, &priv->map->GP_ENABLE, 0); rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_CONFIG); rtl818x_iowrite16(priv, (__le16 *)0xFFF4, 0xFFFF); reg = rtl818x_ioread8(priv, &priv->map->CONFIG1); reg &= 0x3F; reg |= 0x80; rtl818x_iowrite8(priv, &priv->map->CONFIG1, reg); rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_NORMAL); rtl818x_iowrite32(priv, &priv->map->INT_TIMEOUT, 0); rtl818x_iowrite8(priv, &priv->map->WPA_CONF, 0); rtl818x_iowrite8(priv, &priv->map->RATE_FALLBACK, 0); // TODO: set RESP_RATE and BRSR properly rtl818x_iowrite8(priv, &priv->map->RESP_RATE, (8 << 4) | 0); rtl818x_iowrite16(priv, &priv->map->BRSR, 0x01F3); /* host_usb_init */ rtl818x_iowrite16(priv, &priv->map->RFPinsSelect, 0); rtl818x_iowrite8(priv, &priv->map->GPIO0, 0); reg = rtl818x_ioread8(priv, (u8 *)0xFE53); rtl818x_iowrite8(priv, (u8 *)0xFE53, reg | (1 << 7)); rtl818x_iowrite16(priv, &priv->map->RFPinsSelect, (4 << 8)); rtl818x_iowrite8(priv, &priv->map->GPIO0, 0x20); rtl818x_iowrite8(priv, &priv->map->GP_ENABLE, 0); rtl818x_iowrite16(priv, &priv->map->RFPinsOutput, 0x80); rtl818x_iowrite16(priv, &priv->map->RFPinsSelect, 0x80); rtl818x_iowrite16(priv, &priv->map->RFPinsEnable, 0x80); msleep(100); rtl818x_iowrite32(priv, &priv->map->RF_TIMING, 0x000a8008); rtl818x_iowrite16(priv, &priv->map->BRSR, 0xFFFF); rtl818x_iowrite32(priv, &priv->map->RF_PARA, 0x00100044); rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_CONFIG); rtl818x_iowrite8(priv, &priv->map->CONFIG3, 0x44); rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_NORMAL); rtl818x_iowrite16(priv, &priv->map->RFPinsEnable, 0x1FF7); msleep(100); priv->rf->init(dev); rtl818x_iowrite16(priv, &priv->map->BRSR, 0x01F3); reg = rtl818x_ioread8(priv, &priv->map->PGSELECT) & ~1; rtl818x_iowrite8(priv, &priv->map->PGSELECT, reg | 1); rtl818x_iowrite16(priv, (__le16 *)0xFFFE, 0x10); rtl818x_iowrite8(priv, &priv->map->TALLY_SEL, 0x80); rtl818x_iowrite8(priv, (u8 *)0xFFFF, 0x60); rtl818x_iowrite8(priv, &priv->map->PGSELECT, reg); return 0; } static const u8 rtl8187b_reg_table[][3] = { {0xF0, 0x32, 0}, {0xF1, 0x32, 0}, {0xF2, 0x00, 0}, {0xF3, 0x00, 0}, {0xF4, 0x32, 0}, {0xF5, 0x43, 0}, {0xF6, 0x00, 0}, {0xF7, 0x00, 0}, {0xF8, 0x46, 0}, {0xF9, 0xA4, 0}, {0xFA, 0x00, 0}, {0xFB, 0x00, 0}, {0xFC, 0x96, 0}, {0xFD, 0xA4, 0}, {0xFE, 0x00, 0}, {0xFF, 0x00, 0}, {0x58, 0x4B, 1}, {0x59, 0x00, 1}, {0x5A, 0x4B, 1}, {0x5B, 0x00, 1}, {0x60, 0x4B, 1}, {0x61, 0x09, 1}, {0x62, 0x4B, 1}, {0x63, 0x09, 1}, {0xCE, 0x0F, 1}, {0xCF, 0x00, 1}, {0xF0, 0x4E, 1}, {0xF1, 0x01, 1}, {0xF2, 0x02, 1}, {0xF3, 0x03, 1}, {0xF4, 0x04, 1}, {0xF5, 0x05, 1}, {0xF6, 0x06, 1}, {0xF7, 0x07, 1}, {0xF8, 0x08, 1}, {0x4E, 0x00, 2}, {0x0C, 0x04, 2}, {0x21, 0x61, 2}, {0x22, 0x68, 2}, {0x23, 0x6F, 2}, {0x24, 0x76, 2}, {0x25, 0x7D, 2}, {0x26, 0x84, 2}, {0x27, 0x8D, 2}, {0x4D, 0x08, 2}, {0x50, 0x05, 2}, {0x51, 0xF5, 2}, {0x52, 0x04, 2}, {0x53, 0xA0, 2}, {0x54, 0x1F, 2}, {0x55, 0x23, 2}, {0x56, 0x45, 2}, {0x57, 0x67, 2}, {0x58, 0x08, 2}, {0x59, 0x08, 2}, {0x5A, 0x08, 2}, {0x5B, 0x08, 2}, {0x60, 0x08, 2}, {0x61, 0x08, 2}, {0x62, 0x08, 2}, {0x63, 0x08, 2}, {0x64, 0xCF, 2}, {0x5B, 0x40, 0}, {0x84, 0x88, 0}, {0x85, 0x24, 0}, {0x88, 0x54, 0}, {0x8B, 0xB8, 0}, {0x8C, 0x07, 0}, {0x8D, 0x00, 0}, {0x94, 0x1B, 0}, {0x95, 0x12, 0}, {0x96, 0x00, 0}, {0x97, 0x06, 0}, {0x9D, 0x1A, 0}, {0x9F, 0x10, 0}, {0xB4, 0x22, 0}, {0xBE, 0x80, 0}, {0xDB, 0x00, 0}, {0xEE, 0x00, 0}, {0x4C, 0x00, 2}, {0x9F, 0x00, 3}, {0x8C, 0x01, 0}, {0x8D, 0x10, 0}, {0x8E, 0x08, 0}, {0x8F, 0x00, 0} }; static int rtl8187b_init_hw(struct ieee80211_hw *dev) { struct rtl8187_priv *priv = dev->priv; int res, i; u8 reg; rtl8187_set_anaparam(priv, true); /* Reset PLL sequence on 8187B. Realtek note: reduces power * consumption about 30 mA */ rtl818x_iowrite8(priv, (u8 *)0xFF61, 0x10); reg = rtl818x_ioread8(priv, (u8 *)0xFF62); rtl818x_iowrite8(priv, (u8 *)0xFF62, reg & ~(1 << 5)); rtl818x_iowrite8(priv, (u8 *)0xFF62, reg | (1 << 5)); res = rtl8187_cmd_reset(dev); if (res) return res; rtl8187_set_anaparam(priv, true); /* BRSR (Basic Rate Set Register) on 8187B looks to be the same as * RESP_RATE on 8187L in Realtek sources: each bit should be each * one of the 12 rates, all are enabled */ rtl818x_iowrite16(priv, (__le16 *)0xFF34, 0x0FFF); reg = rtl818x_ioread8(priv, &priv->map->CW_CONF); reg |= RTL818X_CW_CONF_PERPACKET_RETRY; rtl818x_iowrite8(priv, &priv->map->CW_CONF, reg); /* Auto Rate Fallback Register (ARFR): 1M-54M setting */ rtl818x_iowrite16_idx(priv, (__le16 *)0xFFE0, 0x0FFF, 1); rtl818x_iowrite8_idx(priv, (u8 *)0xFFE2, 0x00, 1); rtl818x_iowrite16_idx(priv, (__le16 *)0xFFD4, 0xFFFF, 1); rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_CONFIG); reg = rtl818x_ioread8(priv, &priv->map->CONFIG1); rtl818x_iowrite8(priv, &priv->map->CONFIG1, (reg & 0x3F) | 0x80); rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_NORMAL); rtl818x_iowrite8(priv, &priv->map->WPA_CONF, 0); for (i = 0; i < ARRAY_SIZE(rtl8187b_reg_table); i++) { rtl818x_iowrite8_idx(priv, (u8 *)(uintptr_t) (rtl8187b_reg_table[i][0] | 0xFF00), rtl8187b_reg_table[i][1], rtl8187b_reg_table[i][2]); } rtl818x_iowrite16(priv, &priv->map->TID_AC_MAP, 0xFA50); rtl818x_iowrite16(priv, &priv->map->INT_MIG, 0); rtl818x_iowrite32_idx(priv, (__le32 *)0xFFF0, 0, 1); rtl818x_iowrite32_idx(priv, (__le32 *)0xFFF4, 0, 1); rtl818x_iowrite8_idx(priv, (u8 *)0xFFF8, 0, 1); rtl818x_iowrite32(priv, &priv->map->RF_TIMING, 0x00004001); /* RFSW_CTRL register */ rtl818x_iowrite16_idx(priv, (__le16 *)0xFF72, 0x569A, 2); rtl818x_iowrite16(priv, &priv->map->RFPinsOutput, 0x0480); rtl818x_iowrite16(priv, &priv->map->RFPinsSelect, 0x2488); rtl818x_iowrite16(priv, &priv->map->RFPinsEnable, 0x1FFF); msleep(100); priv->rf->init(dev); reg = RTL818X_CMD_TX_ENABLE | RTL818X_CMD_RX_ENABLE; rtl818x_iowrite8(priv, &priv->map->CMD, reg); rtl818x_iowrite16(priv, &priv->map->INT_MASK, 0xFFFF); rtl818x_iowrite8(priv, (u8 *)0xFE41, 0xF4); rtl818x_iowrite8(priv, (u8 *)0xFE40, 0x00); rtl818x_iowrite8(priv, (u8 *)0xFE42, 0x00); rtl818x_iowrite8(priv, (u8 *)0xFE42, 0x01); rtl818x_iowrite8(priv, (u8 *)0xFE40, 0x0F); rtl818x_iowrite8(priv, (u8 *)0xFE42, 0x00); rtl818x_iowrite8(priv, (u8 *)0xFE42, 0x01); reg = rtl818x_ioread8(priv, (u8 *)0xFFDB); rtl818x_iowrite8(priv, (u8 *)0xFFDB, reg | (1 << 2)); rtl818x_iowrite16_idx(priv, (__le16 *)0xFF72, 0x59FA, 3); rtl818x_iowrite16_idx(priv, (__le16 *)0xFF74, 0x59D2, 3); rtl818x_iowrite16_idx(priv, (__le16 *)0xFF76, 0x59D2, 3); rtl818x_iowrite16_idx(priv, (__le16 *)0xFF78, 0x19FA, 3); rtl818x_iowrite16_idx(priv, (__le16 *)0xFF7A, 0x19FA, 3); rtl818x_iowrite16_idx(priv, (__le16 *)0xFF7C, 0x00D0, 3); rtl818x_iowrite8(priv, (u8 *)0xFF61, 0); rtl818x_iowrite8_idx(priv, (u8 *)0xFF80, 0x0F, 1); rtl818x_iowrite8_idx(priv, (u8 *)0xFF83, 0x03, 1); rtl818x_iowrite8(priv, (u8 *)0xFFDA, 0x10); rtl818x_iowrite8_idx(priv, (u8 *)0xFF4D, 0x08, 2); rtl818x_iowrite32(priv, &priv->map->HSSI_PARA, 0x0600321B); rtl818x_iowrite16_idx(priv, (__le16 *)0xFFEC, 0x0800, 1); priv->slot_time = 0x9; priv->aifsn[0] = 2; /* AIFSN[AC_VO] */ priv->aifsn[1] = 2; /* AIFSN[AC_VI] */ priv->aifsn[2] = 7; /* AIFSN[AC_BK] */ priv->aifsn[3] = 3; /* AIFSN[AC_BE] */ rtl818x_iowrite8(priv, &priv->map->ACM_CONTROL, 0); /* ENEDCA flag must always be set, transmit issues? */ rtl818x_iowrite8(priv, &priv->map->MSR, RTL818X_MSR_ENEDCA); return 0; } static void rtl8187_work(struct work_struct *work) { /* The RTL8187 returns the retry count through register 0xFFFA. In * addition, it appears to be a cumulative retry count, not the * value for the current TX packet. When multiple TX entries are * waiting in the queue, the retry count will be the total for all. * The "error" may matter for purposes of rate setting, but there is * no other choice with this hardware. */ struct rtl8187_priv *priv = container_of(work, struct rtl8187_priv, work.work); struct ieee80211_tx_info *info; struct ieee80211_hw *dev = priv->dev; static u16 retry; u16 tmp; u16 avg_retry; int length; mutex_lock(&priv->conf_mutex); tmp = rtl818x_ioread16(priv, (__le16 *)0xFFFA); length = skb_queue_len(&priv->b_tx_status.queue); if (unlikely(!length)) length = 1; if (unlikely(tmp < retry)) tmp = retry; avg_retry = (tmp - retry) / length; while (skb_queue_len(&priv->b_tx_status.queue) > 0) { struct sk_buff *old_skb; old_skb = skb_dequeue(&priv->b_tx_status.queue); info = IEEE80211_SKB_CB(old_skb); info->status.rates[0].count = avg_retry + 1; if (info->status.rates[0].count > RETRY_COUNT) info->flags &= ~IEEE80211_TX_STAT_ACK; ieee80211_tx_status_irqsafe(dev, old_skb); } retry = tmp; mutex_unlock(&priv->conf_mutex); } static int rtl8187_start(struct ieee80211_hw *dev) { struct rtl8187_priv *priv = dev->priv; u32 reg; int ret; mutex_lock(&priv->conf_mutex); ret = (!priv->is_rtl8187b) ? rtl8187_init_hw(dev) : rtl8187b_init_hw(dev); if (ret) goto rtl8187_start_exit; init_usb_anchor(&priv->anchored); priv->dev = dev; if (priv->is_rtl8187b) { reg = RTL818X_RX_CONF_MGMT | RTL818X_RX_CONF_DATA | RTL818X_RX_CONF_BROADCAST | RTL818X_RX_CONF_NICMAC | RTL818X_RX_CONF_BSSID | (7 << 13 /* RX FIFO threshold NONE */) | (7 << 10 /* MAX RX DMA */) | RTL818X_RX_CONF_RX_AUTORESETPHY | RTL818X_RX_CONF_ONLYERLPKT; priv->rx_conf = reg; rtl818x_iowrite32(priv, &priv->map->RX_CONF, reg); reg = rtl818x_ioread8(priv, &priv->map->TX_AGC_CTL); reg &= ~RTL818X_TX_AGC_CTL_PERPACKET_GAIN; reg &= ~RTL818X_TX_AGC_CTL_PERPACKET_ANTSEL; reg &= ~RTL818X_TX_AGC_CTL_FEEDBACK_ANT; rtl818x_iowrite8(priv, &priv->map->TX_AGC_CTL, reg); rtl818x_iowrite32(priv, &priv->map->TX_CONF, RTL818X_TX_CONF_HW_SEQNUM | RTL818X_TX_CONF_DISREQQSIZE | (RETRY_COUNT << 8 /* short retry limit */) | (RETRY_COUNT << 0 /* long retry limit */) | (7 << 21 /* MAX TX DMA */)); ret = rtl8187_init_urbs(dev); if (ret) goto rtl8187_start_exit; ret = rtl8187b_init_status_urb(dev); if (ret) usb_kill_anchored_urbs(&priv->anchored); goto rtl8187_start_exit; } rtl818x_iowrite16(priv, &priv->map->INT_MASK, 0xFFFF); rtl818x_iowrite32(priv, &priv->map->MAR[0], ~0); rtl818x_iowrite32(priv, &priv->map->MAR[1], ~0); ret = rtl8187_init_urbs(dev); if (ret) goto rtl8187_start_exit; reg = RTL818X_RX_CONF_ONLYERLPKT | RTL818X_RX_CONF_RX_AUTORESETPHY | RTL818X_RX_CONF_BSSID | RTL818X_RX_CONF_MGMT | RTL818X_RX_CONF_DATA | (7 << 13 /* RX FIFO threshold NONE */) | (7 << 10 /* MAX RX DMA */) | RTL818X_RX_CONF_BROADCAST | RTL818X_RX_CONF_NICMAC; priv->rx_conf = reg; rtl818x_iowrite32(priv, &priv->map->RX_CONF, reg); reg = rtl818x_ioread8(priv, &priv->map->CW_CONF); reg &= ~RTL818X_CW_CONF_PERPACKET_CW; reg |= RTL818X_CW_CONF_PERPACKET_RETRY; rtl818x_iowrite8(priv, &priv->map->CW_CONF, reg); reg = rtl818x_ioread8(priv, &priv->map->TX_AGC_CTL); reg &= ~RTL818X_TX_AGC_CTL_PERPACKET_GAIN; reg &= ~RTL818X_TX_AGC_CTL_PERPACKET_ANTSEL; reg &= ~RTL818X_TX_AGC_CTL_FEEDBACK_ANT; rtl818x_iowrite8(priv, &priv->map->TX_AGC_CTL, reg); reg = RTL818X_TX_CONF_CW_MIN | (7 << 21 /* MAX TX DMA */) | RTL818X_TX_CONF_NO_ICV; rtl818x_iowrite32(priv, &priv->map->TX_CONF, reg); reg = rtl818x_ioread8(priv, &priv->map->CMD); reg |= RTL818X_CMD_TX_ENABLE; reg |= RTL818X_CMD_RX_ENABLE; rtl818x_iowrite8(priv, &priv->map->CMD, reg); INIT_DELAYED_WORK(&priv->work, rtl8187_work); rtl8187_start_exit: mutex_unlock(&priv->conf_mutex); return ret; } static void rtl8187_stop(struct ieee80211_hw *dev) { struct rtl8187_priv *priv = dev->priv; struct sk_buff *skb; u32 reg; mutex_lock(&priv->conf_mutex); rtl818x_iowrite16(priv, &priv->map->INT_MASK, 0); reg = rtl818x_ioread8(priv, &priv->map->CMD); reg &= ~RTL818X_CMD_TX_ENABLE; reg &= ~RTL818X_CMD_RX_ENABLE; rtl818x_iowrite8(priv, &priv->map->CMD, reg); priv->rf->stop(dev); rtl8187_set_anaparam(priv, false); rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_CONFIG); reg = rtl818x_ioread8(priv, &priv->map->CONFIG4); rtl818x_iowrite8(priv, &priv->map->CONFIG4, reg | RTL818X_CONFIG4_VCOOFF); rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_NORMAL); while ((skb = skb_dequeue(&priv->b_tx_status.queue))) dev_kfree_skb_any(skb); usb_kill_anchored_urbs(&priv->anchored); mutex_unlock(&priv->conf_mutex); if (!priv->is_rtl8187b) cancel_delayed_work_sync(&priv->work); } static u64 rtl8187_get_tsf(struct ieee80211_hw *dev, struct ieee80211_vif *vif) { struct rtl8187_priv *priv = dev->priv; return rtl818x_ioread32(priv, &priv->map->TSFT[0]) | (u64)(rtl818x_ioread32(priv, &priv->map->TSFT[1])) << 32; } static void rtl8187_beacon_work(struct work_struct *work) { struct rtl8187_vif *vif_priv = container_of(work, struct rtl8187_vif, beacon_work.work); struct ieee80211_vif *vif = container_of((void *)vif_priv, struct ieee80211_vif, drv_priv); struct ieee80211_hw *dev = vif_priv->dev; struct ieee80211_mgmt *mgmt; struct sk_buff *skb; /* don't overflow the tx ring */ if (ieee80211_queue_stopped(dev, 0)) goto resched; /* grab a fresh beacon */ skb = ieee80211_beacon_get(dev, vif, 0); if (!skb) goto resched; /* * update beacon timestamp w/ TSF value * TODO: make hardware update beacon timestamp */ mgmt = (struct ieee80211_mgmt *)skb->data; mgmt->u.beacon.timestamp = cpu_to_le64(rtl8187_get_tsf(dev, vif)); /* TODO: use actual beacon queue */ skb_set_queue_mapping(skb, 0); rtl8187_tx(dev, NULL, skb); resched: /* * schedule next beacon * TODO: use hardware support for beacon timing */ schedule_delayed_work(&vif_priv->beacon_work, usecs_to_jiffies(1024 * vif->bss_conf.beacon_int)); } static int rtl8187_add_interface(struct ieee80211_hw *dev, struct ieee80211_vif *vif) { struct rtl8187_priv *priv = dev->priv; struct rtl8187_vif *vif_priv; int i; int ret = -EOPNOTSUPP; mutex_lock(&priv->conf_mutex); if (priv->vif) goto exit; switch (vif->type) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_ADHOC: break; default: goto exit; } ret = 0; priv->vif = vif; /* Initialize driver private area */ vif_priv = (struct rtl8187_vif *)&vif->drv_priv; vif_priv->dev = dev; INIT_DELAYED_WORK(&vif_priv->beacon_work, rtl8187_beacon_work); vif_priv->enable_beacon = false; rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_CONFIG); for (i = 0; i < ETH_ALEN; i++) rtl818x_iowrite8(priv, &priv->map->MAC[i], ((u8 *)vif->addr)[i]); rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_NORMAL); exit: mutex_unlock(&priv->conf_mutex); return ret; } static void rtl8187_remove_interface(struct ieee80211_hw *dev, struct ieee80211_vif *vif) { struct rtl8187_priv *priv = dev->priv; mutex_lock(&priv->conf_mutex); priv->vif = NULL; mutex_unlock(&priv->conf_mutex); } static int rtl8187_config(struct ieee80211_hw *dev, u32 changed) { struct rtl8187_priv *priv = dev->priv; struct ieee80211_conf *conf = &dev->conf; u32 reg; mutex_lock(&priv->conf_mutex); reg = rtl818x_ioread32(priv, &priv->map->TX_CONF); /* Enable TX loopback on MAC level to avoid TX during channel * changes, as this has be seen to causes problems and the * card will stop work until next reset */ rtl818x_iowrite32(priv, &priv->map->TX_CONF, reg | RTL818X_TX_CONF_LOOPBACK_MAC); priv->rf->set_chan(dev, conf); msleep(10); rtl818x_iowrite32(priv, &priv->map->TX_CONF, reg); rtl818x_iowrite16(priv, &priv->map->ATIM_WND, 2); rtl818x_iowrite16(priv, &priv->map->ATIMTR_INTERVAL, 100); rtl818x_iowrite16(priv, &priv->map->BEACON_INTERVAL, 100); rtl818x_iowrite16(priv, &priv->map->BEACON_INTERVAL_TIME, 100); mutex_unlock(&priv->conf_mutex); return 0; } /* * With 8187B, AC_*_PARAM clashes with FEMR definition in struct rtl818x_csr for * example. Thus we have to use raw values for AC_*_PARAM register addresses. */ static __le32 *rtl8187b_ac_addr[4] = { (__le32 *) 0xFFF0, /* AC_VO */ (__le32 *) 0xFFF4, /* AC_VI */ (__le32 *) 0xFFFC, /* AC_BK */ (__le32 *) 0xFFF8, /* AC_BE */ }; #define SIFS_TIME 0xa static void rtl8187_conf_erp(struct rtl8187_priv *priv, bool use_short_slot, bool use_short_preamble) { if (priv->is_rtl8187b) { u8 difs, eifs; u16 ack_timeout; int queue; if (use_short_slot) { priv->slot_time = 0x9; difs = 0x1c; eifs = 0x53; } else { priv->slot_time = 0x14; difs = 0x32; eifs = 0x5b; } rtl818x_iowrite8(priv, &priv->map->SIFS, 0x22); rtl818x_iowrite8(priv, &priv->map->SLOT, priv->slot_time); rtl818x_iowrite8(priv, &priv->map->DIFS, difs); /* * BRSR+1 on 8187B is in fact EIFS register * Value in units of 4 us */ rtl818x_iowrite8(priv, (u8 *)&priv->map->BRSR + 1, eifs); /* * For 8187B, CARRIER_SENSE_COUNTER is in fact ack timeout * register. In units of 4 us like eifs register * ack_timeout = ack duration + plcp + difs + preamble */ ack_timeout = 112 + 48 + difs; if (use_short_preamble) ack_timeout += 72; else ack_timeout += 144; rtl818x_iowrite8(priv, &priv->map->CARRIER_SENSE_COUNTER, DIV_ROUND_UP(ack_timeout, 4)); for (queue = 0; queue < 4; queue++) rtl818x_iowrite8(priv, (u8 *) rtl8187b_ac_addr[queue], priv->aifsn[queue] * priv->slot_time + SIFS_TIME); } else { rtl818x_iowrite8(priv, &priv->map->SIFS, 0x22); if (use_short_slot) { rtl818x_iowrite8(priv, &priv->map->SLOT, 0x9); rtl818x_iowrite8(priv, &priv->map->DIFS, 0x14); rtl818x_iowrite8(priv, &priv->map->EIFS, 91 - 0x14); } else { rtl818x_iowrite8(priv, &priv->map->SLOT, 0x14); rtl818x_iowrite8(priv, &priv->map->DIFS, 0x24); rtl818x_iowrite8(priv, &priv->map->EIFS, 91 - 0x24); } } } static void rtl8187_bss_info_changed(struct ieee80211_hw *dev, struct ieee80211_vif *vif, struct ieee80211_bss_conf *info, u64 changed) { struct rtl8187_priv *priv = dev->priv; struct rtl8187_vif *vif_priv; int i; u8 reg; vif_priv = (struct rtl8187_vif *)&vif->drv_priv; if (changed & BSS_CHANGED_BSSID) { mutex_lock(&priv->conf_mutex); for (i = 0; i < ETH_ALEN; i++) rtl818x_iowrite8(priv, &priv->map->BSSID[i], info->bssid[i]); if (priv->is_rtl8187b) reg = RTL818X_MSR_ENEDCA; else reg = 0; if (is_valid_ether_addr(info->bssid)) { if (vif->type == NL80211_IFTYPE_ADHOC) reg |= RTL818X_MSR_ADHOC; else reg |= RTL818X_MSR_INFRA; } else reg |= RTL818X_MSR_NO_LINK; rtl818x_iowrite8(priv, &priv->map->MSR, reg); mutex_unlock(&priv->conf_mutex); } if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE)) rtl8187_conf_erp(priv, info->use_short_slot, info->use_short_preamble); if (changed & BSS_CHANGED_BEACON_ENABLED) vif_priv->enable_beacon = info->enable_beacon; if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON)) { cancel_delayed_work_sync(&vif_priv->beacon_work); if (vif_priv->enable_beacon) schedule_work(&vif_priv->beacon_work.work); } } static u64 rtl8187_prepare_multicast(struct ieee80211_hw *dev, struct netdev_hw_addr_list *mc_list) { return netdev_hw_addr_list_count(mc_list); } static void rtl8187_configure_filter(struct ieee80211_hw *dev, unsigned int changed_flags, unsigned int *total_flags, u64 multicast) { struct rtl8187_priv *priv = dev->priv; if (changed_flags & FIF_FCSFAIL) priv->rx_conf ^= RTL818X_RX_CONF_FCS; if (changed_flags & FIF_CONTROL) priv->rx_conf ^= RTL818X_RX_CONF_CTRL; if (*total_flags & FIF_OTHER_BSS || *total_flags & FIF_ALLMULTI || multicast > 0) priv->rx_conf |= RTL818X_RX_CONF_MONITOR; else priv->rx_conf &= ~RTL818X_RX_CONF_MONITOR; *total_flags = 0; if (priv->rx_conf & RTL818X_RX_CONF_FCS) *total_flags |= FIF_FCSFAIL; if (priv->rx_conf & RTL818X_RX_CONF_CTRL) *total_flags |= FIF_CONTROL; if (priv->rx_conf & RTL818X_RX_CONF_MONITOR) { *total_flags |= FIF_OTHER_BSS; *total_flags |= FIF_ALLMULTI; } rtl818x_iowrite32_async(priv, &priv->map->RX_CONF, priv->rx_conf); } static int rtl8187_conf_tx(struct ieee80211_hw *dev, struct ieee80211_vif *vif, unsigned int link_id, u16 queue, const struct ieee80211_tx_queue_params *params) { struct rtl8187_priv *priv = dev->priv; u8 cw_min, cw_max; if (queue > 3) return -EINVAL; cw_min = fls(params->cw_min); cw_max = fls(params->cw_max); if (priv->is_rtl8187b) { priv->aifsn[queue] = params->aifs; /* * This is the structure of AC_*_PARAM registers in 8187B: * - TXOP limit field, bit offset = 16 * - ECWmax, bit offset = 12 * - ECWmin, bit offset = 8 * - AIFS, bit offset = 0 */ rtl818x_iowrite32(priv, rtl8187b_ac_addr[queue], (params->txop << 16) | (cw_max << 12) | (cw_min << 8) | (params->aifs * priv->slot_time + SIFS_TIME)); } else { if (queue != 0) return -EINVAL; rtl818x_iowrite8(priv, &priv->map->CW_VAL, cw_min | (cw_max << 4)); } return 0; } static const struct ieee80211_ops rtl8187_ops = { .tx = rtl8187_tx, .wake_tx_queue = ieee80211_handle_wake_tx_queue, .start = rtl8187_start, .stop = rtl8187_stop, .add_interface = rtl8187_add_interface, .remove_interface = rtl8187_remove_interface, .config = rtl8187_config, .bss_info_changed = rtl8187_bss_info_changed, .prepare_multicast = rtl8187_prepare_multicast, .configure_filter = rtl8187_configure_filter, .conf_tx = rtl8187_conf_tx, .rfkill_poll = rtl8187_rfkill_poll, .get_tsf = rtl8187_get_tsf, }; static void rtl8187_eeprom_register_read(struct eeprom_93cx6 *eeprom) { struct ieee80211_hw *dev = eeprom->data; struct rtl8187_priv *priv = dev->priv; u8 reg = rtl818x_ioread8(priv, &priv->map->EEPROM_CMD); eeprom->reg_data_in = reg & RTL818X_EEPROM_CMD_WRITE; eeprom->reg_data_out = reg & RTL818X_EEPROM_CMD_READ; eeprom->reg_data_clock = reg & RTL818X_EEPROM_CMD_CK; eeprom->reg_chip_select = reg & RTL818X_EEPROM_CMD_CS; } static void rtl8187_eeprom_register_write(struct eeprom_93cx6 *eeprom) { struct ieee80211_hw *dev = eeprom->data; struct rtl8187_priv *priv = dev->priv; u8 reg = RTL818X_EEPROM_CMD_PROGRAM; if (eeprom->reg_data_in) reg |= RTL818X_EEPROM_CMD_WRITE; if (eeprom->reg_data_out) reg |= RTL818X_EEPROM_CMD_READ; if (eeprom->reg_data_clock) reg |= RTL818X_EEPROM_CMD_CK; if (eeprom->reg_chip_select) reg |= RTL818X_EEPROM_CMD_CS; rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, reg); udelay(10); } static int rtl8187_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(intf); struct ieee80211_hw *dev; struct rtl8187_priv *priv; struct eeprom_93cx6 eeprom; struct ieee80211_channel *channel; const char *chip_name; u16 txpwr, reg; u16 product_id = le16_to_cpu(udev->descriptor.idProduct); int err, i; u8 mac_addr[ETH_ALEN]; dev = ieee80211_alloc_hw(sizeof(*priv), &rtl8187_ops); if (!dev) { printk(KERN_ERR "rtl8187: ieee80211 alloc failed\n"); return -ENOMEM; } priv = dev->priv; priv->is_rtl8187b = (id->driver_info == DEVICE_RTL8187B); /* allocate "DMA aware" buffer for register accesses */ priv->io_dmabuf = kmalloc(sizeof(*priv->io_dmabuf), GFP_KERNEL); if (!priv->io_dmabuf) { err = -ENOMEM; goto err_free_dev; } mutex_init(&priv->io_mutex); mutex_init(&priv->conf_mutex); SET_IEEE80211_DEV(dev, &intf->dev); usb_set_intfdata(intf, dev); priv->udev = udev; usb_get_dev(udev); skb_queue_head_init(&priv->rx_queue); BUILD_BUG_ON(sizeof(priv->channels) != sizeof(rtl818x_channels)); BUILD_BUG_ON(sizeof(priv->rates) != sizeof(rtl818x_rates)); memcpy(priv->channels, rtl818x_channels, sizeof(rtl818x_channels)); memcpy(priv->rates, rtl818x_rates, sizeof(rtl818x_rates)); priv->map = (struct rtl818x_csr *)0xFF00; priv->band.band = NL80211_BAND_2GHZ; priv->band.channels = priv->channels; priv->band.n_channels = ARRAY_SIZE(rtl818x_channels); priv->band.bitrates = priv->rates; priv->band.n_bitrates = ARRAY_SIZE(rtl818x_rates); dev->wiphy->bands[NL80211_BAND_2GHZ] = &priv->band; ieee80211_hw_set(dev, RX_INCLUDES_FCS); ieee80211_hw_set(dev, HOST_BROADCAST_PS_BUFFERING); ieee80211_hw_set(dev, SIGNAL_DBM); /* Initialize rate-control variables */ dev->max_rates = 1; dev->max_rate_tries = RETRY_COUNT; eeprom.data = dev; eeprom.register_read = rtl8187_eeprom_register_read; eeprom.register_write = rtl8187_eeprom_register_write; if (rtl818x_ioread32(priv, &priv->map->RX_CONF) & (1 << 6)) eeprom.width = PCI_EEPROM_WIDTH_93C66; else eeprom.width = PCI_EEPROM_WIDTH_93C46; rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_CONFIG); udelay(10); eeprom_93cx6_multiread(&eeprom, RTL8187_EEPROM_MAC_ADDR, (__le16 __force *)mac_addr, 3); if (!is_valid_ether_addr(mac_addr)) { printk(KERN_WARNING "rtl8187: Invalid hwaddr! Using randomly " "generated MAC address\n"); eth_random_addr(mac_addr); } SET_IEEE80211_PERM_ADDR(dev, mac_addr); channel = priv->channels; for (i = 0; i < 3; i++) { eeprom_93cx6_read(&eeprom, RTL8187_EEPROM_TXPWR_CHAN_1 + i, &txpwr); (*channel++).hw_value = txpwr & 0xFF; (*channel++).hw_value = txpwr >> 8; } for (i = 0; i < 2; i++) { eeprom_93cx6_read(&eeprom, RTL8187_EEPROM_TXPWR_CHAN_4 + i, &txpwr); (*channel++).hw_value = txpwr & 0xFF; (*channel++).hw_value = txpwr >> 8; } eeprom_93cx6_read(&eeprom, RTL8187_EEPROM_TXPWR_BASE, &priv->txpwr_base); reg = rtl818x_ioread8(priv, &priv->map->PGSELECT) & ~1; rtl818x_iowrite8(priv, &priv->map->PGSELECT, reg | 1); /* 0 means asic B-cut, we should use SW 3 wire * bit-by-bit banging for radio. 1 means we can use * USB specific request to write radio registers */ priv->asic_rev = rtl818x_ioread8(priv, (u8 *)0xFFFE) & 0x3; rtl818x_iowrite8(priv, &priv->map->PGSELECT, reg); rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_NORMAL); if (!priv->is_rtl8187b) { u32 reg32; reg32 = rtl818x_ioread32(priv, &priv->map->TX_CONF); reg32 &= RTL818X_TX_CONF_HWVER_MASK; switch (reg32) { case RTL818X_TX_CONF_R8187vD_B: /* Some RTL8187B devices have a USB ID of 0x8187 * detect them here */ chip_name = "RTL8187BvB(early)"; priv->is_rtl8187b = 1; priv->hw_rev = RTL8187BvB; break; case RTL818X_TX_CONF_R8187vD: chip_name = "RTL8187vD"; break; default: chip_name = "RTL8187vB (default)"; } } else { /* * Force USB request to write radio registers for 8187B, Realtek * only uses it in their sources */ /*if (priv->asic_rev == 0) { printk(KERN_WARNING "rtl8187: Forcing use of USB " "requests to write to radio registers\n"); priv->asic_rev = 1; }*/ switch (rtl818x_ioread8(priv, (u8 *)0xFFE1)) { case RTL818X_R8187B_B: chip_name = "RTL8187BvB"; priv->hw_rev = RTL8187BvB; break; case RTL818X_R8187B_D: chip_name = "RTL8187BvD"; priv->hw_rev = RTL8187BvD; break; case RTL818X_R8187B_E: chip_name = "RTL8187BvE"; priv->hw_rev = RTL8187BvE; break; default: chip_name = "RTL8187BvB (default)"; priv->hw_rev = RTL8187BvB; } } if (!priv->is_rtl8187b) { for (i = 0; i < 2; i++) { eeprom_93cx6_read(&eeprom, RTL8187_EEPROM_TXPWR_CHAN_6 + i, &txpwr); (*channel++).hw_value = txpwr & 0xFF; (*channel++).hw_value = txpwr >> 8; } } else { eeprom_93cx6_read(&eeprom, RTL8187_EEPROM_TXPWR_CHAN_6, &txpwr); (*channel++).hw_value = txpwr & 0xFF; eeprom_93cx6_read(&eeprom, 0x0A, &txpwr); (*channel++).hw_value = txpwr & 0xFF; eeprom_93cx6_read(&eeprom, 0x1C, &txpwr); (*channel++).hw_value = txpwr & 0xFF; (*channel++).hw_value = txpwr >> 8; } /* Handle the differing rfkill GPIO bit in different models */ priv->rfkill_mask = RFKILL_MASK_8187_89_97; if (product_id == 0x8197 || product_id == 0x8198) { eeprom_93cx6_read(&eeprom, RTL8187_EEPROM_SELECT_GPIO, ®); if (reg & 0xFF00) priv->rfkill_mask = RFKILL_MASK_8198; } dev->vif_data_size = sizeof(struct rtl8187_vif); dev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_ADHOC) ; wiphy_ext_feature_set(dev->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST); if ((id->driver_info == DEVICE_RTL8187) && priv->is_rtl8187b) printk(KERN_INFO "rtl8187: inconsistency between id with OEM" " info!\n"); priv->rf = rtl8187_detect_rf(dev); dev->extra_tx_headroom = (!priv->is_rtl8187b) ? sizeof(struct rtl8187_tx_hdr) : sizeof(struct rtl8187b_tx_hdr); if (!priv->is_rtl8187b) dev->queues = 1; else dev->queues = 4; err = ieee80211_register_hw(dev); if (err) { printk(KERN_ERR "rtl8187: Cannot register device\n"); goto err_free_dmabuf; } skb_queue_head_init(&priv->b_tx_status.queue); wiphy_info(dev->wiphy, "hwaddr %pM, %s V%d + %s, rfkill mask %d\n", mac_addr, chip_name, priv->asic_rev, priv->rf->name, priv->rfkill_mask); #ifdef CONFIG_RTL8187_LEDS eeprom_93cx6_read(&eeprom, 0x3F, ®); reg &= 0xFF; rtl8187_leds_init(dev, reg); #endif rtl8187_rfkill_init(dev); return 0; err_free_dmabuf: kfree(priv->io_dmabuf); usb_set_intfdata(intf, NULL); usb_put_dev(udev); err_free_dev: ieee80211_free_hw(dev); return err; } static void rtl8187_disconnect(struct usb_interface *intf) { struct ieee80211_hw *dev = usb_get_intfdata(intf); struct rtl8187_priv *priv; if (!dev) return; #ifdef CONFIG_RTL8187_LEDS rtl8187_leds_exit(dev); #endif rtl8187_rfkill_exit(dev); ieee80211_unregister_hw(dev); priv = dev->priv; usb_reset_device(priv->udev); usb_put_dev(interface_to_usbdev(intf)); kfree(priv->io_dmabuf); ieee80211_free_hw(dev); } static struct usb_driver rtl8187_driver = { .name = KBUILD_MODNAME, .id_table = rtl8187_table, .probe = rtl8187_probe, .disconnect = rtl8187_disconnect, .disable_hub_initiated_lpm = 1, }; module_usb_driver(rtl8187_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1